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ABSTRACT

This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation
(NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code
Nek5000 using the Dakota package [2] for flows encountered in the nuclear engineering industry. Nek5000
is a high order spectral element CFD code developed at Argonne National Laboratory for high resolution
spectral-filtered large eddy simulations (LESs) and unsteady Reynolds averaged Navier-Stokes (URANS)
simulations. The Dakota package developed at Sandia National Laboratory can be integrated with many
scientific and engineering codes to facilitate efficient, effective uncertainty quantification (UQ) and
sensitivity analyses. The objective of this work is to perform a UQ and a sensitivity analysis of the
numerical and physical models implemented in Nek5000 and used to solve for flows in two geometries of
interest: a 3-D pipe and a 7-pin bundle. The results presented in this report demonstrate loose integration of
Dakota with Nek5000 and thus should not be used to assess the accuracy of the numerical methods and
physical models implemented in Nek5000. All results were obtained by running the default version of
Nek5000 which does not include any turbulent models. Thus, any experimental data with the current
results is not expected to be validated.

1. INTRODUCTION

Predictive modeling and simulation of the performance of a nuclear reactor and its fuel is a challenging
task because of the large number of coupled physical phenomena that must be addressed. In addition to this
intrinsic complexity, model uncertainty must be accounted for in any analysis if the model will be used to
facilitate design or operational decisions which may impact safety and performance. Rigorous, structured
uncertainty analyses are performed by first characterizing the model’s input uncertainties and, then
propagating the uncertainty through the model in order to estimate the output’s uncertainty.

1.1 OBJECTIVES

This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow
configurations relevant to the advanced reactor applications of the NEAMS program. Two geometries are
under investigation in these preliminary assessments: a 3-D pipe and a 3-D 7-pin-bundle. Initial efforts
have focused on gaining an understanding of Nek5000 modeling options and integration of Nek5000 with
Dakota. This report focuses on an initial demonstration of the use of Dakota to assess parametric
uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the
uncertainty quantification strategy and to estimate computational requirements for assessments considering
more complex geometries.

The objective of this project is threefolds. In the first step, the uncertainty of the numerical model, the flow
condition, and the material properties used in Nek5000 will be characterized for flow in a 3-D pipe by
comparing the numerical results against experimental data [4, 5]. Once Nek5000 is calibrated using results
from the first study, the flow in a 7-pin-bundle geometry will be simulated. Then, both an uncertainty
quantification and a sensitivity analysis will be performed. Particular attention will be focused on UQ
methods used (polynomial chaos or sampling methods for instance) in order to minimize the computational
cost. In this report, only results of the first step are presented. Comparison with the commercial CFD code
Star-CCM+ will be also investigated.



1.2 NEKS000 CODE AND DAKOTA

The computational fluid dynamic (CFD) code Nek5000 developed at Argonne National Laboratory is used
to simulate flow behavior in the 3-D pipe. The incompressible Navier-Stokes equations are solved on a
computational domain discretized by a spectral element method (SEM). Several temporal discretization
methods are available for transient simulations. A second-order temporal discretization is used for the
results presented in this report. The Nek5000 code is designed to run on massively supercomputers and has
been widely used and tested for CFD simulations around the world.

The UQ analysis is performed using the Dakota package [2] that includes methods for parameter studies,
optimization, sensitivity analysis, and uncertainty quantification (UQ). Dakota is designed to interface with
external packages/codes such as Nek5000 through a script-driven interface called fork. Such interface
provides maximum flexibility to the users for pre- and post-processing tasks preceding and following each
function evaluation. For this study, a given set of input parameters of known uncertainty is supplied to
Nek5000 through the Dakota interface, and then the code which corresponds to a function evaluation is run.
Outputs of interest, or response functions in UQ terms, are returned to Dakota to determine the outputs’
uncertainty. More details regarding the input and output parameters of interest are provided in Section 2.



2. UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSES

In this section, details regarding the geometry, as well as the input and output parameters, are presented.

2.1 THE MODEL OF INTEREST

Flow of Reynolds number Re = 31 - 103 in a 3-D pipe with a nondimensional length of 70 in the z-direction
is investigated using the code Nek5000; the time-dependent incompressible Navier-Stokes equations are
solved on an unstructured mesh of 200, 000 hexagonal elements using fourth-order SEM (see Figs. 1a and
1b). Note that the mesh density is high enough to resolve the eddies.
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(a) View of the 3-D pipe. (b) Mesh density in a slice of the 3-D pipe.

For each time step, an estimate of the velocity profile is obtained through a Helmholtz solver, and then
corrected by solving pressure Laplace equations. Inlet and outflow boundary conditions are used to set the
inlet velocity profile and the outlet pressure, respectively.

We ran the large eddy simulation (LES) version of Nek5000 and monitor the L, error norm between the
numerical and experimental data describing the fully developed radial velocity profile. The L, norm is
computed using the following four-step process (all length are in nondimensional unit):

1. The time-averaged, z-direction velocity is extracted from the Nek5000 output file from a slice at
(x,y,2)=(0,0,70) using Visit [1]. This information is collected from O to 5 s and stored in a text file
along with node coordinates.

2. For each node of the slice S, the distance to the outside wall is computed using the following relation:

. D
distio wan = 5 = V&2 3%, (1)

where D = 1 is the diameter of the pipe in nondimensional unit.



3. Once the variable dist;, war is Obtained, the nodes are gathered in pools using the following rule: a
node belongs to a pool if the relative difference between the value dist;, wan(node) and the pool
radius 7,0, 1s less than a user-supplied tolerance: fol. When a node meets the previous criterion, the
corresponding velocity magnitude V(node) is added to the pool velocity V.. A script representing
the above would be:

for loop over nodes of slice S
|rpool — disty wa(node)|

ratio =
"' pool

if ratio > tol
node does not belong to pool 740
else
node belongs to pool 70
Vpoor+ = V(node)
Nyodes+ =1
endif
endfor
Vpoor* = 1./Npodes
Note that the number of nodes, N,,4.s added to each pool must be tracked in order to compute the
pool’s average velocity. The pool radius r,,,; can be set equal to the coordinates of the experimental
data. It is, however, preferred to have a sufficient number of pools such as all nodes from numerical

data fall inside a pool. The number of nodes stored in each pool depends on the value of the
tolerance fol.

4. The experimental and numerical values of the velocity magnitude are now available at the same
coordinates and are used to compute the L, norm of the error, as follows:

N pool

L5 = | D WVpoot(D) = VeupDIP, @)
i

where N, is the number of pool.

5. The Lg”‘” norm value is returned to Dakota.

The method described above to compute the L5"" error norm between the experimental data and the
numerical results is not used in this report but will be the focus of future investigations. The process
described above is driven by a Python script (APPENDIX A.) and thus does not require any user
intervention besides launching the Dakota input file. Once Dakota has collected all L5"" norms from the
Nek5000 runs, a uncertainty quantification or statistics assessment is performed.

2.2 RESULTS

The results presented in this report should not be used to assess the accuracy of the physical models and the
numerical methods implemented in Nek5000, but to demonstrate the interest of integrating Dakota with
Nek5000 when simulating engineering flows.



This report presents an initial assessment of the sensitivity of the Nek5000 numerical results for a flow in a
3-D pipe to the spectral filtering input parameters P101 and P103. When turned on, these two parameters
control the filtering of modes for LES-type simulations [3]. The parameters P101 and P103 are varied in
the ranges [0, 6] and [0.05, 0.2], respectively, using the discrete_uncertain_set method from the Dakota
package. The parameters were treated as discrete uncertain variables (real or integer) whose values come
from a set of admissible elements. The contributing simulation was allowed to complete 5, 000 time steps
on 96 processors in about 5 hours. The time average velocity profile obtained with Nek5000 is plotted
against the experimental data in Fig. 2 for different values of the input parameter P101. A solution obtained
with default input parameters (P101 = 0 and P103 = 0) in Nek5000 is used as a reference solution to
highlight the sensitivity of the numerical simulations when varying the input parameters P101 and P103.
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Fig. 2. Velocity magnitude profile in a slice located at (x,y, z) = (0,0, 70) for different values
of the input parameters P101 and P103.

The numerical results presented in Fig. 2 show a strong dependence upon the parameter P101, i.e. the
number of modes filtered when solving for the turbulent flow in the 3-D pipe. As the number of modes



filtered is increased, the time average velocity profile obtained from Nek5000 diverges from the reference
profile. Although it is not shown here, the same behavior is observed when the input parameter P103
increases.

The average velocity magnitude profile on section S is shown in Fig. 3. Turbulence flow is well developed
and is consistent with the 1-D velocity profiles presented in Fig. 2: the velocity is zero at the wall, and it
increases towards the center of the pipe.
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Fig. 3. Time average velocity magnitude profile on slice S.



3. CONCLUDING REMARKS

3.1 OUR ANALYSIS

This report demonstrates the sensitivity of Nek5000 predictions of axial velocity in a 3D pipe to input
parameters P101 and P103 and outlines an approach for performing a UQ study using Nek5000 and Dakota
that will be used in future work. It is estimated that an average of 100 hours computing time on 200
processors will be needed for further UQ analysis.

3.2 PATH FORWARD

At this stage, the combined use of Dakota and Nek5000 shows promising results. In the future, the
influence of other input parameters on the numerical solution, the computing time, and the number of
solver iterations, for instance, will be investigated. A calibration study will be also performed for the flow
in a 3-D pipe using the experimental data as reference. In the long term, the same study for flow in a 7-pin
bundle will be performed.
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APPENDIX A. PYTHON SCRIPT

# This python script intends to read a data file (format xmd) and post-—
process it. The first part of the code is dedicated to reading and
storing the data in arrays that can be easily manipulated in a
second step. The second step is user dependent.

# import python utilities
import sys

import os

import math

import numpy as np
import itertools as it
import matplotlib as mpl
mpl.use (" Agg’)

import matplotlib.pyplot as plt
from operator import add
from operator import mul

nek5000_inputfile=sys.argv[1] # Nek5000 input file name
exp_inputfile=sys.argv[2]
dakota_output_file=sys.argv[3]

num=sys.argv|[4]

rel_tol=0.02 # relative tolerance in percentage

D=1. # assuming circular pipe of dimater 1

# #

###### read and store data from input file ######

# #

#print {AC_I}

print °’ ’

print ’Reading.and.storing.data.from.input.file

print °’ ’

# declare variables

#nek5000_inputfile="avgpipeLong—cycle —2000—point —0-0-30.0kc" # Nek5000
input file name

nek5000_nb_head=9 # number of line to skip before reading Nek5000 data

exp_nb_head=2 # number of line to skip before reading experimental data

head=[] # list storing the head file

num_lines = sum(1l for line in open(nek5000_inputfile, ’r’)) # number of
lines in the file

>

# read data file

data=open(nek5000_inputfile , 'r’)

for i in xrange(0,nek5000_nb_head,1):
line=data.readline ()



head.append(line . split ())

# set and print information from head file
nb_var=int (head [0][0]) # number of variables (including mesh)
print ’Number_.of_variables:’, nb_var
nb_points=int (head [0][1])

nb_phys_var=nb_var-3 # number of physical variables (excluding mesh)

print ’Number.of.variables.excluding.the_.mesh:’, nb_phys_var
var_names=head [1:nb_var+1] # variables names from the input file
print ’Variable.names:’ ,var_names

max_var=head[nb_var+1:2«nb_var+1] # maximum values for all variables
for i in xrange(0,nb_var,1):

print ’Minimum.and._maximum.values.for’, var_names[i], :’,max_var[i
110:2]
# declare variables to store data
X [1 # x
y = [1 #y
z =[] # z
var = [] # variables

# loop over the remaining of the file, make them float and store them
for i in xrange(nek5000_nb_head ,num_lines ,1):

line=data.readline ()

row = line.split()

x.append (float (row[0]))

y.append(float(row([1]))

z.append (float (row([2]))

var .append (map(float ,row[3:nb_var+1]))

’ ’

print
print ’Done.reading.and.storing.data_.from.input.file
print °’ ’

bl

# #
H#A#RABA#RARA#AR post—processing experimental data #HAH##ABHAH#HAZHAH
# #

B bl

print
print ’Post—processing.experimental._data’

B bl

print
# Read experimental data
exp_dist_to_wall = []
exp_vel = []



num_lines=sum(1 for line in open(exp_inputfile, ’r’)) # number of lines
in the file
exp_data=open(exp_inputfile , 'r’)
for line in xrange(0, exp_nb_head, 1):
exp_data.readline ()
for line in xrange(exp_nb_head ,num_lines , 1):
line=exp_data.readline ()
row = line.split()
exp_vel.append(float(row[0]))
exp_dist_to_wall.append(float(row[1]))

# Check experimental data consistency
exp_nb_points=len(exp_dist_to_wall)
if exp_nb_points != len(exp_vel):
print ’ERROR:._the_.number.of_.experimental_.nodes.and.the.number.of.
nodal.velocity.do.not.match.’
sys.exit ()

# Convert list to array
idx=np.argsort(exp_dist_to_wall)
exp_dist_to_wall_temp=np.array (exp_dist_to_wall)[idx]
exp_dist_to_wall=exp_dist_to_wall_temp
exp_vel_temp=np.array (exp_vel)[idx]
exp_vel=exp_vel_temp
nb_exp_points=len(exp_dist_to_wall)

exp_delta_radius_min=max(exp_dist_to_wall)
for point in xrange(0O,exp_nb_points —1):
exp_delta_radius=abs(exp_dist_to_wall[point]—exp_dist_to_wall[point
+11)
exp_delta_radius_min=min(exp_delta_radius_min ,exp_delta_radius)

’

print ’Number_.of_.experimental_.points:’, nb_exp_points

B )

print
print ’Done_.post—processing.experimental._data’
print °’ ’

# #
AA#ABARARARARAE post—processing Nek5000 data #HH#AHAHA#ARARH#HHS
# #
print °’ ’

print ’Post—processing.Nek5000_.data’

print °’ ’

# set variables

A-3



nb_points=len (x)
print ’Number_.of._points/nodes.to_.post—process:’,nb_points
print ’Relative.tolerance.to.use:’, rel_tol

# declare variables as lists

dist_to_wall = []

flag = [0] *= nb_points # set all flags to zero
vel_pool = []

radius_pool = []

nb_nodes_per_pool = []

# Compute the distance to wall for each node of the mesh
for nodes in xrange(0O,nb_points ,1):
dist_to_wall.append (max(0.5+«D-math. sqrt (x[nodes]**2+y[nodes]*x2), 0.)
)

# Sort the value from min to max in ’dist_to_wall’ array
idx_nek=np.argsort(dist_to_wall)
dist_to_wall_temp=np.array (dist_to_wall)[idx_nek]
dist_to_wall=dist_to_wall_temp

var_temp=np.array (var)[idx_nek]

var=var_temp

# Sort the value from min to max in ’dist_to_wall’ array
#print var

#idx_nek=np.argsort(var)
#var_temp=np.array(var)[idx_nek]

#var=var_temp

#print var
#dist_to_wall_temp=np.array(dist_to_wall)[idx_nek]
#dist_to_wall=dist_to_wall_temp

if min(dist_to_wall)>min(exp_dist_to_wall):
print "WARNING: .the.mesh.domain.does.not.cover.the.entire.
experimental.data.domain’

# find points with the same distance to the wall within the tolerance
# 'rel_tol’ and group them in a pool to compute a mean value. Each node
# is flagged so that it only gets accounted for once.

#for nodes in xrange(0,10,1):

vel_pool = []
dist_to_wall_pool
nb_nodes_per_pool
node=0

while (node<nb_points):

[]
[]

A-4



vel_pool.append(var[node])
dist_to_wall_pool.append(dist_to_wall[node])
nb_nodes_per_pool.append (1)
if node==nb_points —1:
break
#j=node+1 if node<nb_points—1 else nb_points—1I
j=node+1
while (j<nb_points and abs(dist_to_wall[node]—-dist_to_wall[j])
< rel_tolxdist_to_wall[node]):
#while (j<nb_points and abs(var[node]—var[j]) < rel_tol=var/
node]) :
vel_pool[-1]+=var[j]
dist_to_wall_pool[-1]+=dist_to_wall[j]
nb_nodes_per_pool[-1]+=1
j+=1
node=j

# Output information on screen: number of pools
print ’Final.number.of_pools.after_.eliminating.pools.with_.zero_.point:’,
len(vel_pool)

# Convert list to array for easy post—processing
vel_pool=np.asarray (vel_pool)
vel_pool=vel_pool. flatten ()
nb_nodes_per_pool=np.asarray (nb_nodes_per_pool)
nb_nodes_per_pool=nb_nodes_per_pool. flatten ()
dist_to_wall_pool=np.asarray (dist_to_wall_pool)
dist_to_wall_pool=dist_to_wall_pool. flatten ()

# Perform operation on velocity and radius for each pool
vel_pool=np.divide (vel_pool ,nb_nodes_per_pool)
dist_to_wall_pool=np.divide (dist_to_wall_pool ,nb_nodes_per_pool)

’ >

print
print ’Done.post—processing.Nek5000_.data’
print °’ ’

# #
#####ARAA R AR AA#R Interpolating and computing error #HHAH#HAHAH#HAZHAH
# #

B

print

s

print ’Interpolating.and.computing.L2.norm.error._between.experimental.



and_Nek5000_data”’
print °’

s

# Get Nek5000 data at exoerimental nodes by interpolating

print ’Interpolating.data_.at’, len(exp_dist_to_wall), ’points’

nek5000_vel_pool_at_exp_nodes=np.interp (exp_dist_to_wall,
dist_to_wall_pool, vel_pool)

nek5000_vel_pool_at_exp_nodes=np.array (nek5000_vel_pool_at_exp_nodes)

# Compute L2 error norm
sri=math. sqrt(np.linalg .norm(exp_vel-nek5000_vel_pool_at_exp_nodes))
print ’Compute_.L2.error.norm:’, sri

# Saving plot
plt.plot(exp_dist_to_wall, exp_vel, ’x’, label="experimental.data’)
plt.plot(dist_to_wall_pool, vel_pool, ’x’, label="Nek5000.pool.data’)
plt.plot(exp_dist_to_wall, nek5000_vel_pool_at_exp_nodes, '+, label="
Nek5000.interpolated._data’)
legend = plt.legend(loc="lower.right’, shadow=True)
frame = legend. get_frame ()
frame . set_facecolor(’°0.90")
for label in legend. get_texts ():
label.set_fontsize (’large’)
for label in legend.get_lines():
label .set_linewidth (1.5)
plt.suptitle (’Re.31000°, fontsize =20)
plt.xlabel (’Distance_to.wall’, fontsize=18)
plt.ylabel (’ Velocity.magnitude’, fontsize=16)
fig_name="Re-31k-"+num+’.eps’
plt.savefig(fig_name, format="eps’, dpi=1000)
print ’Saving.plot.using.Matplotlib:’, fig_name
output_data_txt_file="velocity —data—"+num+". txt"
with open(output_data_txt_file ,"w") as fin:
header="##_.Nek5000-dist —to—wall"+"\t"+"Nek5000-velocity "+"\t"+"
intepolated —velocity "+"\t"+"exp—dist —to—wall"+"\t"+"exp—velocity.
##"+"\n"
fin.write (header)
for e in it.izip_longest(dist_to_wall_pool, vel_pool,
nek5000_vel_pool_at_exp_nodes, exp_dist_to_wall, exp_vel, fillvalue
=)
print >>fin ," {0:A"8} N\t {1:A8 )\t {2:708 o\t {3: 28} .\t {4:78}" . format
(xe)



print ’Saving.Nek5000.data,_.experimental_data_.and_.interpolated._data.in’
, output_data_txt_file

b

print

>

print ’Done.interpolating._.and.computing.lL.2_.norm.error.between.
experimental .and.Nek5000._data’
print °’

i

with open(dakota_output_file ,"a+") as f:
f.write(str(sri))

data.close ()

exp_data.close ()
sys.exit ()

A-T
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