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Abstract

The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record.

Minimization of particle loss along the accelerator is a top-level requirement and
requires sophisticated design intimately relating the accelerated beam and the
accelerator structure. Such design technique, based on the space-charge physics of
linear accelerators (linacs), is used in this report in the development of conceptual
designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF
accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ,
a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs.
Design strategies are illustrated for combining several desirable characteristics,
prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak
field, short length, high percentage of accelerated particles. The CDR design has
~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor
1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR
design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has
KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete
background for the designs is given, and comparisons are made. Beam-loss
distributions are used as input for nuclear physics simulations of radioactivity
effects in the IFMIF accelerator hall, to give information for shielding, radiation
safety and maintenance design. Beam-loss distributions resulting from a ~1M
particle input distribution representative of the IFMIF ECR ion source are presented.

The simulations reported were performed with a consistent family of codes.

Relevant comparison with other codes has not been possible as their source code is
not available. Certain differences have been noted but are not consistent over a
broad range of designs and parameter range. The exact transmission found by any
of these codes should be treated as indicative, as each has various sensitivities in its
internal methods. Continued work to compare results between different codes more
broadly and deeply than heretofore is highly recommended - this requires
comparison at source code level and devising of appropriate tests. It is strongly
recommended that the project obtain source code for all important simulation work.






1. Introduction

Progress toward the realization of fusion power requires development of low-
activation and neutron-damage resistant materials, with experimental suitability
evidence satisfying technical and licensing requirements. Decades of work have
established that a high-flux source of neutrons with appropriate spectrum must be
built and operated, and that a neutron source based on the D-Li stripping reaction
best suits this purpose. Facility design was first developed by the Fusion Materials
Irradiation Test (FMIT) Project (1978-84) [1], later by the Energy Selective Neutron
Irradiation Test Facility (ESNIT) Program (1988-92) [2], and from 1994-2006 by the
International Fusion Materials Irradiation Facility (IFMIF) Project [3]. Major
worldwide advances in accelerator technology over the past decade have further
added to the credibility of this approach.

This report has been written for the IFMIF Project, as a United States contribution to
EU Work Package TW5-TTMI-001, Task Deliverable 3, and complements extensive
2006 work by the Institut Angewandte Physik (IAP), Goethe Uni. Frankfurt on end-
to-end simulation, beam loss modeling, and the potential advantages of
superconducting technology for the IFMIF linac.

IFMIF uses two continuous-wave (cw) 175 MHz linear accelerators, each providing a
125 mA, 40 MeV deuteron beam. The top-level performance requirements for the
IFMIF accelerators are described in Table 1-1. Many aspects of the design are
driven by the requirement that hands-on maintenance of the accelerator must be
allowed throughout the life of the facility.

Table 1-1. Top-level specification for the IFMIF Accelerator Facility

IFMIF Accelerator Facilities
Performance requirements

Particle type D"; H," for testing (to avoid activation)
Accelerator type RF linac

Number of accelerators 2 , in parallel operation

Beam distribution Rectangular flat top

(20 cm horizontal x 5 cm vertical)

Output energy 40 MeV

Output energy dispersion + 0.5 MeV FWHM

Duty factor CW (pulsed tune-up and start-up)

Availability >88 %

Maintainability Hands-on (For accelerator components up to final bend in

HEBT with local shielding as required; design not to preclude
capability for remote maintenance.)

Design lifetime 30 years

A Radio-Frequency Quadrupole (RFQ) accelerates the beam from 95 keV to 5 MeV
and bunches the dc beam from the injector as required for injection into the
following linac, which continues the acceleration to 40 MeV. The top-level
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specification for the RFQ is given in Table 1-2. The maintainability specification is a
deceptively simple statement to the non-expert - it involves stringent minimization of
stray particle loss along the linac; it is the crux of the design, and has been the
subject of many years of research effort. This report strives to explore this aspect in
breadth and depth, and therefore assumes, already from this point on, that the
reader is familiar with the general description and elementary theory of the RFQ
[4,5,6].

Table 1-2. Top-level specification for the IFMIF RFQ.

Radio Frequency Quadrupole

RFQ type Resonant longitudinal coupling (3 RF segments), 4-vane integral
structure

RF operating frequency 175 MHz

Input / output energy 95 keV /5 MeV

Input / output current 130-140 mA / 125 mA (nearly all losses below 2 MeV)

RFQ length ~12.5m

Total input RF power 1.3 MW

Cavity power 685 kW

Transverse emittance < 0.4 © mm mrad (normalized rms)

Longitudinal emittance = 0.8 @ mm mrad (normalized rms)

Duty factor CW (pulsed tune-up and start-up)

Maintainability Hands-on. May require local shielding. Design not to preclude remote
maintainability.

The report compares in some depth three RFQs - the CDR Equipartitioned RFQ, a
CDR Alternative RFQ, and a new Post-CDR Equipartitioned RFQ design - concerning
the design strategies and trade-offs, the resulting designs and their performance in
terms of beam loss:

- The CDR RFQ is an equipartitioned design ~12m long. The design strategy
is described in detail in [7].

- An alternative CDR design uses a simpler design technique and had an
additional design objective — to reduce peak surface field. It is also ~12m long, and
has about the same transmission and loss features as the CDR RFQ although
crossing a parametric resonance.

- Refined equipartitioned design and optimization techniques result in a
Post-CDR design. The beam loss at energies above ~1 MeV, rf power and peak field
are similar to the older designs, while the length is reduced to ~8m (significant cost
saving) and the percentage of accelerated beam is significantly higher.

The decision to use the equipartitioned RFQ design for the CDR is recorded in [§].
This report gives background and further development.

Although this report presents three RFQ designs and beam-loss distributions, any
one of these should not be considered as a final design. The intent of these designs
has been to develop improved design and optimization techniques, and to explore
design strategy options. Using these tools and from these examples, a final design



can be decided. Very substantial work is required for the final design. Issues
include:

1.1 Caveats

1.1.1 LEBT Design and Simulation Refinement

The low-energy-beam-transport (LEBT) design has a very strong influence on the
RFQ design (beam loss and transmission performance, length, rf power
consumption). The CDR presents a feasible conceptual case; a fully integrated and
optimized LEBT/RFQ combination for IFMIF has not been designed yet.

The choice of injection energy into the RFQ is important. Typically, a lower injection
energy results in a shorter RFQ but other aspects of the RFQ performance may
suffer. Lower injection energy results in higher space-charge effect in the sections of
the LEBT which are not space-charge neutralized. Studies during the IFMIF project
led to the choice of 0.095 MeV injection energy presented in the CDR. This choice
was re-evaluated; the conclusion is that 0.095 MeV appears optimal.

A much more accurate representation of the ion-source/LEBT is required to fully
characterize the beam distribution entering the RFQ. The best beam-loss model
produced so far is described in the CDA [9] Issues include:

- ECR ion source performance at the require 130-140 mA deuteron current
with the specified emittance has not been demonstrated. Scaling to 125 mA
deuterons requires 200 mA H+ from the source; this level has not been
demonstrated and the corresponding emittance is not known.

- There is a paucity of emittance data from the ECR ion source; only one 125
mA H+ emittance data set has been available to the Project, and no deuteron beam
emittance measurement. This data set has been numerically transformed to the
input ellipse matching parameters required by the RFQs. However, this data set is
thresholded by an inaccurate (and optimistic) method. The more accurate method
developed by M. Stockli at SNS should be used. [10]

- The beam is composed of multiple species of deuteron ions (and may also
be contaminated with other ions). The emittance data need to be separated
according to species, and all species tracked simultaneously through the LEBT and
the RFQ. (The simulation program pteqHI can transport multiple species
simultaneously.)

Other LEBT effects include:

- beam neutralization (~98%),

- high-frequency noise on the ion-source beam. This noise may result in an
amplified beam current variation in the LEBT if the time constant of the
neutralization phenomenon is slower than the noise, and this effect must be
included in the simulation. [9,11]

- a short (~3cm) section at the RFQ input where there is neither
neutralization nor focusing, resulting in a strong space-charge effect.

- The 2-solenoid low-energy-beam transport (LEBT) between the ion source
and the RFQ has not been designed in detail and is not included in the input beam
distribution used in this report. The solenoid simulation should include higher-
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order field effects both within the solenoid and in the solenoid end fringe field
regions, which will produce further aberrations in the input beam. [12]

- Coulomb scattering of beam particles on residual gas [13]

- Effect of auxiliary gasses [14]

These issues are being addressed by IAP, Goethe Uni Frankfurt in the same EU
2006 Work Package; these results and method for presenting beam loss should be
used in the final RFQ design work.

These effects will probably produce larger beam-losses in the presented RFQ
designs. As the RFQ design is intimately related to the input beam, it may be
possible to reduce the RFQ losses again with further optimization work using the
more accurate ion-source/LEBT input distribution in the optimization process.

1.1.2 HEBT Design and Simulation

Conceptual design of the IMFIF High-Energy-Beam-Transport, from the end of the
linac to the target, is not complete and presents design challenges, which may be
influenced by the linac performance, including errors.

1.1.3 RFQ Design Strategy, Trade-offs, Optimization

- The RFQs presented here require detailed design work to add vane gaps
between manufactured sections, and the transition and output radial matching cells
at the output.

- The final choice of parameters and design strategy has to ultimately be
made by the IFMIF program - selecting the desired trade-off between the top-level
specifications for low beam loss, cost factors such as RFQ length and rf power
requirement, and engineering factors such as peak field. In this report, a
prioritization of the top-level specs has been chosen:

1) Minimum beam loss at energies above ~ 1 MeV. This has been chosen as the
highest priority because maintenance of the linac without the use of remote
manipulators (“hands-on” maintenance) is of primary importance. There is no lower
energy threshold for inducement of radioactivity when deuterons strike material, but
confinement of beam losses as much as possible to under 1 MeV (~10 times the
injection energy) can be achieved with design and optimization techniques.

2) Low rf power requirement for the RFQ structure. The cost of rf power
comprises the initial capital cost plus the operating cost over the factory life, and
therefore overshadows the capital cost of the RFQ structure.

3) Low peak field. If the peak field were too high, sparking and performance
degradation could occur. This requirement is not so difficult to achieve, as the
required beam focusing can be achieved without needing the highest practical fields.

4) Short length. Modern RFQs can be built to any length. For IFMIF,
considerations of the beam acceleration and efficiency have guided the choice of 5
MeV as the output energy of the RFQ. The RFQ capital cost is then optimized for
the shortest RFQ that accelerates from 0.095 - 5 MeV, while meeting the other
specs.

5) High percentage of accelerated particles. The IFMIF ECR deuteron ion source
should reliably produce at least 140 mA cw beam current, and 125 mA (89.3%)
must be accelerated. Better would be ~96.2% acceleration of 130 mA input, and
this has been a design goal of the CDR and Post-CDR work. Some sacrifice of
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accelerated beam percentage could be made, assuming the ion source should have
some excess capacity, in order to minimize >1MeV losses; i.e., transmission is
hardly the full story.

- Then the final design must be optimized, including sensitivity checks of
various factors (e.g., different input emittance, beam current and matching).
Guidance is provided in this report. At present, the optimization procedure is still
tedious.

- It is important to recall also that IFMIF decided for multiple linacs for
increased reliability of beam on target. Each linac would provide 125 mA cw beam,
with the present IFMIF consisting of two such modules. A later upgrade of the
module for higher beam current would not be done; if higher current were desired,
another module would be installed. This strategy then allows module performance
and cost optimization, which guided the choice of main parameters such as the rf
frequency.

- New insights into factors influencing optimum transmission and low beam
loss have been gained and are the subject of ongoing research; it is hoped they will
be useful in the final design work for IFMIF.

1.1.4 Design and Simulation Tools

- The LINACS design tool [15,16] used in this report gives complete control
over the space-charge physics, including utilization of an equilibrium beam [17],
control of the tune trajectory with respect to resonances, and control of all
parameter variations inside the RFQ.

- Simulation results presented in this report were obtained using the pteqHI
code [18], a version of PARMTEQ with many improvements, including the ability to
simultaneously handle multiple species. Multipole and image effects are
represented analytically using the method of Crandall [19,20]. The source code is
available. Final design work should use a code with similar improvements and also
a field map representation of the vane surfaces. The RFQTRAK [21] or LIDOS [22]
codes are recommended. The newest version of PARMTEQM also uses field maps,
but continues to use an approximate method for space-charge computation (the
independent variable is position instead of time, transformations at the space-
charge computation points are inaccurate, resulting in inaccurate beam loss
localization (beam-loss pattern) [12] ). Despite arduous attempts, reproduction of
published results of the TOUTATIS code [23] was not successful, and therefore it
has not been used further.

The exact transmission found by any of these codes should be treated as indicative,
as each has various sensitivities in its internal methods. Continued work to
compare results between different codes more broadly and deeply than heretofore is
highly recommended - this requires comparison at source code level and devising of
appropriate tests. It is strongly recommended that the project obtain source code
for all important simulation work.



1.2. Outline of the Report

The report has two main purposes:
1) (Sections 2-3) To present three designs in the usual format of:
- their vane parameters vs. cell number
- their transmission
- their beam-loss pattern.
2) (Sections 4-9) To go beyond the usual format,to:
- explain in some depth the development of linac design technique,
and how this influences the three designs.
- explain enhanced design and simulation tools that afford control of
the beam space-charge physics and the design strategy and parameters.
- analyze the designs in these terms.
- give comments on a varying vane-voltage profile, the rf power
estimates, the design and simulation codes, and the LEBT.

Section 2 presents and compares the vane parameter characteristics and basic rms
beam behavior of each of the three RFQs.

Section 3 presents, under restricted conditions, beam-loss distributions for each of
the RFQs.

Section 4 outlines the process of “conventional” RFQ design technique, exemplified
by the Alternative CDR RFQ.

Section 5 discusses Beam-Based Linear Accelerator Design Technique, of which
RFQ design is a subset, exemplified by the CDR and Post-CDR RFQs,

Section 6 presents and compares the performance of the three example RFQs
against the background of beam-based design. The underlying space-charge
physics of the beam as it travels through the RFQs is revealed. This is the key
section, with a summary and suggestions for further design work.

Section 7 discusses the use of a variable vane voltage profile, which has been used
by experienced RFQ designers in operating RFQs. The characteristics of the
Russian IFMIF partner’s preliminary proposal for an RFQ are given as an example of
support for variable vane voltage.

Section 8 characterizes the computer codes used for design and simulation, upon
which the results for all three designs critically depend. Variation of results with the
number of particles simulated is presented.

The material in Sections 5-8 goes beyond the commonly used practice, and must be
understood by project team members, as well as project leaders, reviewers and other
interested parties.

In capsule form: “Conventional” design techniques involve a global characterization
of space charge defocusing vs. rf field focusing in terms of a “current limit” and
simplified rules for parameter variation. The advanced beam-based technique
requires definition of the detailed space-charge defocusing vs. rf field focusing at
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each cell, and then finds the appropriate RFQ structure to satisfy this space-charge
physics definition. There are more parameters available than needed to satisfy the
space-charge physics requirements; the extra ones are specified by rules. All of the
many RFQ parameters are under direct control of the designer.

Accurate beam distributions for the ion-source and simulation through the LEBT
are crucial for accurate simulation through the RFQ and post-RFQ linacs to the full
energy of 40 MeV, as discussed in Section 1.1; a few additional notes are given in
Section 9.

Section 10 gives a few concluding remarks.
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2. Presentation of Three IFMIF RFQ Designs

The figures are traditional for RFQ experts, and are given here without further
elaboration.

2.1 CDR Equipartitioned RFQ

2.5....!....!....!....!....!....!....0
Shaper; Mailn RFQ H B/10 i
beam brought equipartition maintained m 1
to equilibrium
(equipartitioned) | phis controlled ! : 1
at end of Shaper |.----.ww--ireeemeeeeenn S L L 4 20
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Fig. 2.1-1. Vane parameters for the 140 mA CDR equipartitioned RFQ. Aperture
(a) and trms = transverse rms beam radius are in cm. (m) is the vane
modulation, V is the vane voltage, B is the transverse focusing strength. Phi is
the synchronous phase (phis). Rho/r0 = 0.75. Input current = 140 mA, input
energy = 0.100 MeV, input transverse normalized rms emittance = 0.20
mm.mrad.
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2.2 CDR Alternative RFQ
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Fig. 2.2-1. Vane parameters for the 130 mA CDR Alternative RFQ. Input current
= 130 mA, input energy = 0.095 MeV, input transverse normalized rms
emittance = 0.25 mm.mrad.
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Fig. 2.2-2. The Rho/r0 ratio is varied, to give lower peak surface field (lower KP
factor) in the downstream part of the RFQ. Epeak (KP) is the KP factor, ckappa
is the ratio between the peak field on the vane surface and the vane-tip field.
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2.3 New Post-CDR Equipartitioned RFQ
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Fig. 2.3-1. Vane parameters for the 130 mA New Post-CDR RFQ. Input current
= 130 mA, input energy = 0.095 MeV, input transverse normalized rms
emittance = 0.25 mm.mrad.
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2.4 Comparisons
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Fig. 2.4-1,2. Comparison of minimum aperture, a (nearly the same for the three
RFQs), and average aperture, rO.
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Fig.2.4-3,4. Comparison of vane voltage and accelerating factor ez.
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3. Beam-Loss Distributions and Accelerated Beam
Transmission

Some particles are inevitably lost in a particle accelerator; their reactions with the
surrounding materials produce radioactive by-products, accumulation of which
must be minimized. The location and energy of lost particles is obtained from
simulations of the accelerator, and used as input for nuclear physics simulations of
radioactivity effects in the IFMIF accelerator hall, to give information for shielding,
radiation safety and maintenance design. Conservative safety margins are assigned
in each of these areas over the simulated effects.

Simulations were run with up to 1 M particles, including a representative
distribution from the ECR ion source. Only the results using this ion source
distribution are presented in this Section. It is necessary to build up extensive
background in Sections 4 and 5, before discussion of the beam performance can be
given in Section 6.

The definitions applied in the accelerator simulation to determine when a particle is
assumed lost, and with what energy, are outlined in Section 8.2.2.

3.1 Beam Loss Distribution Comparisons

Confinement of losses to low energy as much as possible helps reduce the induced
radioactivity, and this was chosen as the most important of the five main
specifications. At the design conditions, the three RFQs are rather similar; for the
ion source emittance distribution of ~1M particles rms matched to the RFQ input,
the percent of particles lost with energy 21 MeV is:

CDR 0.073% loss above 1 MeV
AltCdr 0.123% loss above 1 MeV
Post-CDR 0.081% loss above 1 MeV

Although the totals are similar, Figs. 3.1 and 3.2 show different loss distributions.
This will be discussed later in Section 6.
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3.2 Transmission to RFQ output

For the ion source emittance distribution of ~1M particles rms matched to the RFQ
input, the percent of accelerated beam is:

CDR 89.4%
AltCdr 89.9%
Post-CDR 95.8%

Fig. 3.2-1 shows the percent of accelerated particles through the RFQs. Features will
be discussed in Section 6.
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Fig. 3.2-1. % Accelerated particles from Source Emittance initial distribution vs cell
number.

The total percentage of transmitted particles, including particles with low energy, is:

CDR 90.0%
AltCdr 92.0%
Post-CDR 97.0%
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4. “Conventional” RFQ Design Technique

The job of a linac is to efficiently accelerate a beam of given current from an initial
energy to a final energy. If some particles are lost by striking the accelerator structure
during this process, they will cause a radioactivity buildup over time - thus
minimization of beam loss becomes an overriding concern. It would not be
economically feasible to maintain an entire linac by remote manipulators, so the
specification requires “hands-on maintenance,” meaning there can be local hot spots
that may require special tooling, shielding, and limited access, but not remote
manipulators.

“Conventional” intense RFQ design, still used almost exclusively today, is exemplified by
the design of RFQs as originally laid out by Los Alamos in 1978-1980, in which only a
global beam-current-related criterion was invoked for guidance as to the practical
maximum current that should be accelerated for given focusing parameters, plus a cell-
by-cell recipe for assigning the synchronous phase. The linac is laid out, keeping many
parameters constant in the main accelerating section to ease manufacturing and tuning
as understood at the time. Then beam acceleration is simulated and the resulting
transmission to the output is observed as the measure of successful performance. It
has been considered “too difficult” to understand in detail the cell-by-cell performance
of the beam as it undergoes the very complicated process of forming a bunch from an
initially dc beam and accelerating. This method is thus characterized as design “from
the external field to the beam result” - i.e., “from the outside in”.

4.1 External Field Quantities as Defined by the RFQ Metal

4.1.1 2-Term Potential Field Description

The RFQ is an accelerating device with time-varying fields. The classical description of
the RFQ external fields uses the first two terms of the field solution in the vicinity of the
vane tips - called the 2-term potential’ - to describe the transverse and longitudinal
field. It is emphasized that this representation is only accurate near the beam axis. In
practice, this has led to the use of field maps in recent codes (LIDOS, the most recent
version of PARMTEQM, and TOUTATIS).

The metal contour of the vane in the 2-term potential description is described by the
aperture between opposing vanes and the modulation in the longitudinal direction. A
potential, which can vary with the position (z) along the RFQ, is set up between the
opposing pairs of vanes by the rf field, to provide the focusing and accelerating fields.
Unmodulated vanes produce a purely transverse focusing field. Perturbation of the
vanes with a specific, velocity-modulated pattern produces a longitudinal field
component that can provide particle acceleration.

Modern practice replaces the 2-term longitudinal profile with a sinusoidal profile, which
is easier to machine and gives somewhat more efficient acceleration.
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4.1.2 Multipole and Image Fields

In practice, the vanes are not machined to the exact 2-term potential shape; the
compromises result in higher order multipole terms that must be included. Older
versions of simulation codes handled the higher-order terms analytically with coefficient
tables [19,20]; pteqHI incorporates this method.

Duperrier (24) showed, for fields including analytically expressed multipoles, that
inaccuracies occur outside the transverse circle drawn at the vane tip minimum. That
and removal of paraxial approximation were main reasons why he wrote the simulation
code TOUTATIS.

Recent codes (LIDOS, the most recent version of PARMTEQM, and TOUTATIS)
incorporate field maps, which represent the exact vane shape used, out to some radius
from the axis.

Image-charge effects are important in RFQs with significant beam current. The
analytical method of Crandall [20] is implemented in both the design code LINACSrfq
(negligible in the envelope design process, but coefficient tables are produced for the
simulation code pteqHI), and in pteqHI.

4.2 Minimum Beam-Related Specification

Four variables describe the RFQ vane surface:

- either the minimum aperture a[rfq] or the average aperture rO[rfq]:

- the modulation em|rfq]

- the voltage between opposing vane tips v[riq]

- the synchronous phase angle phis[rfq] at the location of the synchronous
particle in each cell when the rf phase equals zero.

4.2.1 Teplyakov Synchronous Phase Rule

The synchronous phase angle must be specified. This is usually done using the rule
invented by Teplyakov [25] which was the key to the success of the RFQ: the charge
density of the forming bunch should remain constant; i.e., the ratio between the
accelerating bucket length and the beam length should be constant. In “conventional”
design procedures, this is the only place where a relationship between the beam and the
structure is required at each cell.

The charge density can be allowed to vary to some extent, and specific control is
available in the more flexible design procedure available in LINACS. This control of the
charge density is especially useful in controlling the length of the RFQ.

4.2.2 Beam-Envelope Matching

Two envelope equations describe the variation of the rms beam radius and length of a
bunched ellipsoidal beam in the smooth approximation (rapid variation of the
quadrupolar field is smoothed) of a focusing system, as a function of the external fields
and the internal space-charge forces within the beam, which work to counteract the
external fields:
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where ¢ is the normalized rms (root mean square) emittance, o is the phase advance
with beam current, t denotes transverse and [longitudinal, a and b are transverse
and longitudinal rms beam radii, A is the rf wavelength.
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where B is the RFQ focusing parameter, I is the beam current, ff is the geometry factor
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the rf defocusing parameter, A, Vo, ¢, are accelerating parameter, intervane voltage and

synchronous phase respectively.

These equations apply to a periodic focusing system of infinite length, but can be
applied locally when the parameter variation is reasonably adiabatic, as indicated by
the absence of first and second derivative terms. Careful checks were made from the
full Hamiltonian to verify that terms related to acceleration are negligible (always
assumed, but a reference has not been found). Equating the second derivatives of the
beam sizes to zero means that the beam is “matched” to the focusing system. This
condition is essentially satisfied in practical designs; however, there is evidence that in
some subtle aspects the derivatives should be taken into account, and this is a subject
of ongoing research.

4.2.3 Beam-Envelope Matching at Transitions

Transitions occur often in practical linacs; as energy increases, a different type of
accelerator structure must be used, or engineering reasons require parameter changes,
etc. The matching equations (1) and (2) immediately indicate how to maintain the
matched condition at a transition, across which it would be desired that the emittances
and beam sizes remain constant. Maintaining the matched conditions then requires
that the phase advances per unit length, o/A, also remain constant.
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4.2.4 Global Space-charge Rule

If the current is increased until the phase advances equal zero, the “space-charge limit”
is reached. At some intermediate current, the matching equations (1) and (2) indicate
that the emittances and the current will have equal effect on the beam radii. If the
beam bunch is assumed to be spherical, this occurs when the “tune depressions) o/o0 =
~0.4. The original procedure solved Egs. (1) and (2) independently with o/c0 = 0.4 to
find “transverse and longitudinal current limits,” which were brought to equality by
parameter adjustments. Requiring that the desired operating current be ~half of this
“current limit” was then used as a practical guide for RFQ design.

4.3 “Conventional Design”

The design process developed at Los Alamos in 1978-1980 is still the most commonly
used. It basically approaches the problem from the point of view of the external fields,
and then checking the effect on the beam using a full simulation code. The rule that
the “current limit” is twice the desired operating current guides the choice of rf
frequency, which in turn governs the maximum allowable intervane voltage according to
a “bravery factor” (typically < 2) over a sparkdown criterion such as defined by
Kilpatrick.

Parameters (such as the average aperture rO between vanes, the voltage V between
opposing vanes, the transverse focusing parameter B) were held constant along the
vanes as much as possible to ease manufacturing complexity. Later it was learned how
the parameters could be varied, giving an additional element of flexibility to the design
process.

The RFQ is divided into four sections. A “radial matching section” about 4-6 cells long
brings the beam into the RFQ by ramping up the fields from zero to a chosen value.

The fields are then raised in a “shaper” section to the full transverse focusing ability
available from the voltage and aperture chosen (zero modulation and -90° synchronous
phase). Then the beam is slowly bunched and accelerated in a “gentle buncher”
section, being very careful not to create strong space-charge forces leading to beam
blow-up and lost particles, either immediately or later downstream. Typically the gentle
buncher accelerates to about ten times the injection energy. Reasonable optimization is
achieved by varying the synchronous phase reached at the end of the gentle buncher
section.

The average aperture, rO, was held constant, to facilitate tuning the structure, and this
also keeps the transverse beam size ~constant as the modulation increases. This has
an important consequence, because as the modulation, synchronous phase and beam
velocity increase, the required minimum aperture decreases quickly toward zero, as
seen from the relation rO= (Minimum Aperture)(1+modulation)/2. Before this can
occur, further increase of the modulation must be stopped. This point nominally
defines the end of the “gentle buncher” section, and is considered the “choke-point”
where the “current-limit” requirement applies.

An improvement for intense beams was to modify the shaper and gentle buncher to
have a long initial “porch” section where the synchronous phase remains at -90° with
no modulation to allow initial bunching with no acceleration, followed by a section with
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increase of phis of a few degrees and small modulation to bring the beam to a
satisfactory bunch length, and then using the Teplyakov rule for phis to further bunch
and accelerate the beam.

The “acceleration section” then accelerates the beam to the final energy. The
modulation is held constant at its end-of-gentle-buncher value. Within the constraint
of the focusing available from the vane voltage such that rO remains constant, the
synchronous phase may be raised further, and then is clamped.

It was also found that a lower B at the beginning of the shaper requires less
convergence of the injected beam, making the space-charge effects at injection less and
making it easier to achieve a good input match. Therefore a lower vane voltage can also
be used at the front end, lowering rf losses.

4.3.1 “How to choose the operating point?“

We draw here directly from material in [26] for an equivalent approach to define the end
of the gentle buncher, as used in the design of the Alternative CDR RFQ:

“1) We know that the biggest problem should be expected at the end of the Gentle Buncher, when the
bunch already exist but it is not really accelerated. At this point we know the energy of the beam, the
phase, the emittance and the current.

2) We draw the following figure. There are two sets of curves. The dot curves (o) show the lines of a given
Kilpatrick value (1.8 is the desired value in our case, the green curve). So we have to choose a point on that
line. The second set is described by lines with (+), representing the modulation value.

n = 1.41.6 2.0 (+)
60|r|:|l° Es/EKp = 1.6 1.8 2.2 (o)
T T T T T E Kp = 18.400 MUrm
CEs = 1.500
Ca = 1.100
co FHF = 35Z2.000 MHz
i 7 Wsgb = 768.000 keV
osgb = -35.000 deg
Etn = 1.500 T nm.mrd
Tacc = 100.000 nA
40 L o
sol = 21.000 deg
got = Z22.000 deg
sl 1 L = 0.5474
PT = 0.7143
a = 3.0471 nm
n = 1.6408
2ol ] U = B88.711 kU
AV = 36.405 kU
e =] xw = 49438 W
A = 0.4104
1ol | X = 0.5573
Cr m = 8.8818E-16
RO = 4.0817 mm
Esc = 32.600 MU/m
s 0 20 30 20 =0 60 - Esc/EKp= 1.77 —

o

sot

Fig. 4.1 A global design aid - 1. (Caption added.)

So, for a given Kilpatrick we choose the maximum modulation in order to obtain the smallest RFQ. In this
particular figure, we have chosen 0p=22° and 0y=21°, and this point give the modulation, aperture, vane

voltage, depression tune pt and pl.
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3) We draw the next figure. It permits to verify that the chosen point is a valid one. We know that a

« good » point will be with a depression tune over 0.4. The red curve describes pt as a function of og. We
have chosen 22°, so we can verify that this value give us a ut over 0.4. The green curves are a set of curves
describing pl as a function of oy for different value of oy. We verify that the point 6,=22° and 5(=21°
give us a ul over 0.4.”

otsoot = floot) 30°

I I I I I I I I
) 10 20 30 49 S0 EQ 7O 20 90

FHF = 352.0 MHz Usgb = 768.000 kel gzgh = -35.0 deg
Lmaille = 1.080 Etn = 1.50 m mm.nrad Iacc = 100.0 mA

Fig. 4.2 A global design aid - 2. (Caption added.)
(end of direct extraction from [26].)

4) These values were then held constant through the remainder of the RFQ accelerating
section.

4.3.2 An Optimization Approach to the “Conventional” Design

The paper [27] compares a “constant r0O, constant V” design to a “varying rO and V”
design, to “avoid the bottleneck’ (of the “constant r0,V” design) in the minimum
aperture profile at the end of the gentle buncher, where the minimum aperture has to
decrease rapidly in order to accommodate the increasing modulation.”

Other parameter choice differences between the two designs caused them to have nearly
the same length, copper power and transmission characteristics. This was done to
show that a lower peak surface field can be used in the “varying r0, V” design for the
same length.

It is stated that the “constant rO,V” design is much easier to machine and tune. In
modern design practice, however, the machining and tuning are readily accomplished
and would not take any priority over other desirable features.

It was found that beam losses are more localized at the bottleneck in the “constant rO,
V” design. In the “varying rO, V” design, the minimum aperture decreases slightly
through the RFQ and rO increases according to the modulation; losses more distributed

26



along the RFQ, and its transmission is therefore less sensitive to input beam
misalignment or increasing transverse input emittance.

Also stated as an important advantage of the “constant rO, V” approach is that it is
easier to find an optimized solution in the multi-parameter design space. At this date,
the optimization process is still indeed tedious, but advantages of a more encompassing
optimization are worth the extra work in the design phase. For example, the beam
losses should be confined to occur at the lowest possible energy, in order to minimize
buildup of radioactivity. More sophisticated parameter variation methods described
below are aimed at including such important aspects in the optimization process.

For an intense, factory-type linac of IFMIF class, all aspects point to design
sophistication beyond “constant rO, V.”

4.4 The IFMIF Alternative CDR RFQ Design

As seen in Sections 2.2 and 2.4, the IFMIF Alternative CDR design has the
“conventional” design, with nearly constant voltage and rO in the main part of the RFQ.
The “bottleneck” in the aperture is apparent (Figs. 2.2-1 and 2.4-1). The voltage is
higher at the front end, and falls to the end of the shaper section, from which it remains
nearly constant except for a slight adjustment at the bottleneck.

For the Alternative CDR RFQ, changes were made in the IFMIF Specifications used for
the CDR RFQ. The normalized rms input emittance was raised from 0.2 pi.mm.mrad to
0.25 pi.mm.mrad, reflecting an estimate of how the ion source and LEBT would
perform, easing the space-charge forces in the RFQ. The injection energy was lowered
from 0.100 MeV to 0.095 MeV, which would produce a shorter RFQ if all other
conditions remained the same. A KP factor (KP) of 1.8 was used, to have the possibility
of more focusing and consequently less space-charge effect than the KP = 1.7 CDR
design, and reflecting confidence that this field level is practical.

Another parameter variation is introduced in this design. In practice, the vane tip is
machined with a transverse radius Rho. Varying the ratio of Rho/r0 changes the ratio
of the peak surface field to vanetip field, the capacitance between adjacent vanes, and
the size of the multipole potential terms. In the Alternative CDR RFQ, the Rho/r0 ratio
is varied, to give lower peak surface field (lower KP factor) at the fixed vane voltage in
the downstream part of the RFQ (Fig. 3.2-2). As the higher voltage in the front end is
not required to achieve adequate focusing, the strategy there could be modified.

The ability to vary Rho/r0 is an important feature, and could be exploited in the final
IFMIF RFQ design.

In Fig. 2.2-1, note that after the bottleneck, in the accelerating section, the modulation
and aperture, thus also rO, and synchronous phase are constant. The vane voltage is
essentially constant, thus also B. The consequences of this on the beam dynamics,
e.g., the longitudinal emittance and beam loss behavior (Fig. 3.2-1) are discussed in
Section 6.
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5. Beam-Based Linear Accelerator Design Technique

This chapter describes accelerator design techniques that go beyond those commonly
used, and which must be understood by project team members, as well as project
leaders, reviewers and other interested parties.

Design of an RFQ is the focal point of this discussion, but it applies to linear
accelerators of all types.

Repeating from the introduction to Section 4: “Conventional” intense RFQ design, still
used almost exclusively today, is exemplified by the design of RFQs as originally laid out by
Los Alamos in 1978-1980, in which only a global beam-current-related criterion was invoked
for guidance as to the practical maximum current that should be accelerated for given
focusing parameters, plus a cell-by-cell recipe for assigning the synchronous phase. The
linac is laid out, keeping many parameters constant in the main accelerating section to ease
manufacturing and tuning as understood at the time. Then beam acceleration is simulated
and the resulting transmission to the output is observed as the measure of successful
performance. The detailed pattern of beam loss has rarely been studied. It has been
considered “too difficult” to understand in detail the cell-by-cell performance of the beam as
it undergoes the very complicated process of forming a bunch from an initially dc beam and
accelerating. This method is thus characterized as design “from the external field to the
beam result,” i.e., “from the outside in.”

This method does involve the injected beam in the design, but not the detailed beam
behavior inside the RFQ. For intense, factory-type linac facilities like the IFMIF, where
continuous operation for a period of ~40 years is expected, and minimized radioactivity
buildup is a key objective, a more rigorous design method was sought.

An inverse design procedure is more relevant to the problem of achieving low beam loss:
a beam-based design procedure starting from the space-charge physics characteristics
of the desired beam, and finding the external fields appropriate to confine it.

Therefore the author has derived a “from the inside out” beam-based approach, in
which the desired space-charge physics of the beam is first specified at each cell, and
then accelerator fields are derived for the desired conditions.

The beam-based method requires a practical formulation of the space-charge physics,
understanding of the effect of accelerator structure resonances and their spreading by
space-charge, phase-space transport mechanisms [28], controlled use of a beam
internal energy equilibrium and the parameters related to it, and other factors.

A major requirement of the beam-based method is that the desired design performance
be very closely verified by the detailed beam simulation. This was not lightly achieved,
and required extensive development of the design method to include all of the effects to
be simulated, and of the simulation code itself. These tools are discussed in Section 8.
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Rules governing the space-charge physics of intense beams in linacs were introduced
into the cell-by-cell design procedures starting in 1981 [17]. The evolution of the design
methods, and their application to the CDR and Post-CDR RFQ designs presented above,
are discussed in the following paragraphs.

5.1 Extension of the "Conventional” Procedure to Achieve
Shorter RFQs

Through experience, it was quickly found that RFQs designed by the “conventional”
procedure tended to be longer than desired. Other trial-and-error procedures were
developed that produced shorter RFQs with nearly as good transmission; these methods
remained largely private however.

A thorough investigation of the “traditional” gentle-buncher design procedure and the
previously trial-and-error extension to shorter RFQs is given in [29]. Finding a
satisfactory synchronous phase at the end of the gentle buncher corresponded to
keeping the tune depressions there >~0.4. It was found that the conventional approach
was allowing the tune depression to be <0.4, and often even to go to zero (the space-
charge limit), within the gentle buncher. The conclusion was that for intense beams,
the single-point rule at the end of the gentle buncher was inadequate, and that the tune
depression in the gentle buncher should be maintained above zero. For moderate to low
beam intensities, the original procedure produces adequate results, although the RFQs
are often considered long. In addition, the complication of the parameter space was
shown, and how shorter RFQs are produced.

Other improvements were found empirically by experienced designers. [30,31,32,33,34|
It was realized that lower focusing at injection eased input matching, and as a
consequence that a lower vane voltage can be used in this region, saving rf power.

It was found that relaxing the transverse focusing in the accelerating section to keep the
transverse phase advance more similar to the longitudinal phase advance gave better
transmission. The reason for this was made clear by the author in the following
amplification of the space-charge physics relations between the accelerator structure
and a beam.

5.2 Space-charge Physics Relations Between the Accelerator
Structure and a Beam

For a rigorous and practical beam-based design technique, the central requirement is to
use all available beam physics information in the design process; the resulting design is
then checked by a simulation code with the same underlying physics.

5.2.1 The Beam-Envelope Matching Equations

In the “conventional” design, the beam-envelope matching equations 1-6, Section 4.2.2,
are used to set a “current limit”. For a beam-based design, they are invoked at every
cell.
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The equations describe the variation of the rms beam radius and length, as a function
of the external fields and the internal space-charge forces within the beam, which work
to counteract the external fields. They describe a bunched beam of ellipsoidal form, so
apply exactly after the beam is bunched enough to be described as an equivalent
ellipsoid.

Sacherer [35] showed, in his derivation of these equations, that the actual form of
various particle distributions causes only a few percent difference in the solution, if the
rms properties of the distributions are the same - a seminal result that enables an
“equivalent rms” design method. The remaining difference is, however, important to
achievement of the best beam-loss performance. The design strategy incorporated in
LINACS can account for the variation in the form factor of the ellipsoid, and this is
effective in reducing beam loss!.

The equations cannot be extended to account for emittance growth - the derivation
requires the emittances to be either constant, or to have a functional form known
apriori. The ability to use an apriori form is valuable for certain design problems.

Cylindrical beam envelope equations can also be written. The beam transition in the
RFQ from cylindrical to ellipsoidal form is however very complicated and a precise
enough (less than ~2% error) analytical expression for the transition has not been
found.

The matched beam radius and length should vary smoothly in order to avoid unwanted
effects, so that the derivative of the beam size is allowed to vary only slowly -
approximately adiabatically in terms of the betatron and synchrotron oscillation
wavelengths, so that a’ = da/dz is ~zero. When the second derivatives of the beam size
are ~0, the beam is “matched” transversely and longitudinally:

Now in addition to the external field variables contained in the zero-current phase
advances, four new variables appear - the transverse and longitudinal rms beam sizes
and emittances.

Equations (1) and (2) may be solved for any two variables; the others must be
prescribed.

5.2.2 Beam Equilibrium - The Equipartitioned Condition

One other space-charge physics relationship that can be employed for design is known,
called the equipartitioning relationship [15,17], which requires that the energy content
within the beam be equal in the transverse and longitudinal degrees of freedom. When
this condition is satisfied, there is no free energy within the beam that is available to
drive a resonance condition:

Em9: (7)

&0y

which also implies &m _ Y0 _ o' (8)
&g, a o

IThe form factor adjustment is a complex subject and beyond the scope of this report.
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The availability of an equilibrium, or equipartitioned (EP) condition for the beam is of
course a powerful advantage. As explained below, the equilibrium requirement can be
invoked at will by the designer; its utility varies according to detailed design
requirements.

As the emittances can varied apriori, it is seen that the equipartitioned condition can be
applied over a wide range of conditions, and can change within the accelerator.

The equilibrium condition can be required in addition to the matched conditions, and
Egs. (1), (2), and (7) solved simultaneously at each cell.

Now there are three equations, which may be solved for any three variables; the others
must be prescribed. Typically, the beam transverse and longitudinal radii must be
matched, and the EP condition forces a relationship between the beam radii. Thus two
of the equations are effectively used for the beam radii, and the third equation to invoke
the EP relationship through the use of one of the available RFQ external parameters, for
example, the vane modulation.

5.2.3 Phase Advances - Resonances

Egs. (1), (2), and (7) represent a typical nonlinear system, with all the complex behavior
[28,36,37] that today receives very much attention in the field called nonlinear
dynamics, with which the particle accelerator community is in general not familiar. It is
interesting that the field of nonlinear dynamics itself changed significantly in the past
decade or so. Previously, it was attempted to explain “complex behavior” or “chaos”
using theory stemming from a perturbed Hamiltonian. Some relations were found, for
example, the Lyapunov Criterion which indicated whether a system was chaotic, which
seemed to be useful even though the system was perturbed very far beyond the
infinitesimal perturbation over which the theory was valid. More recently, a
geometrically based theory of nonlinear behavior has been developed, which can handle
large perturbations, and in which it becomes clear that the mechanism for phase-space
transport is resonances - with which the accelerator community is very familiar. A
combined point of view is useful [38].

With no beam (zero beam current), the structure resonances are defined completely by
the local external fields, at all rational number combinations of the tune ratio Go!/ Oof =
sig0]l/sigOt. With beam current, these resonances are broadened by the collective effect
of space-charge, depending on the rms 0!/ Ot = sigl/sigt and the internal tune spread of
the beam particles.

All satisfactory RFQ designs should avoid the stronger resonances, either purposely or
coincidentally to the design procedure used.

When the beam is in the equilibrium, equipartitioned, condition, there is no free energy
available to be converted into changes in the particle distribution through resonant
actions. In other words, the structure resonance still exists, but although the beam
tunes may be in the resonance band, no action occurs because the beam is in
equilibrium and there is no free energy.
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This is the feature of a very useful tune chart for linear accelerators developed by
Hofmann [39]. Fig. 5.2.3-1:
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Fig. 5.2.3-1. Hofmann Chart for longitudinal-to-transverse emittance ratio eln/etn = 2.0;
thus kz/kx = 0.5 is the equipartitioned condition for this chart.

The abscissa is the ratio of longitudinal tune to transverse tune. The ordinate is the
tune depression, here labeled kx/kOx signifying transverse, but in practice, the
trajectories of the envelope tunes in the x,y average termed transverse, and z
(longitudinal) are both plotted cell-by-cell on the chart. The coloring represents the
growth rate of a space-charge broadened tune resonance. Only a few major resonances
are shown. On this chart, the growth rates for kz/kx = 1, 1/3, and smaller fractions
are seen. If the emittance ratio remains constant, one chart suffices, but the chart is
very dependent on emittance ratio, so if it is changing, several charts must be used.

In the early days of the 1980’s, it was very tedious to solve the resonance growth rate
equations and only some thresholds for growth were available. However, it was found
that if either the transverse or longitudinal tune trajectory went below the threshold,
emittance growth in that trajectory would occur [40,41]. Later with Mathematica®© the
charts became practical to generate, and their use is slowly being adopted [42,43,44],
albeit mostly to check a design rather than to base a design trajectory on the desired
location on the chart, and with some differences; for example, not generally realized are
the usefulness of plotting the trajectories in both (or all) degrees of freedom, details
about various placements of the trajectory on the chart, or the very detailed evidence of
smaller resonances that can be detected.
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As indicated above, resonances are present at every rational ratio of the tunes. In the
design process, the major resonances should be either be avoided, or if traversed, then
quickly so little growth in emittance occurs, or by requiring the beam to be in
equilibrium in the vicinity of the resonance - so that even though the resonance is still
there, there is no free energy and it is not excited.

Thus the eln/etn = 2/1 = 2 chart of Fig. 5.2.3-1 is equipartitioned at kz/kx =1/2 = 0.5,
and this is why no growth occurs in this region, until the tune depression reaches
about 0.3 and less.

It is seen that there are areas in the tune chart where the trajectory can be placed
without significant growth, especially around the equipartitioned region. It should be
remembered, however, that there are an infinite number of smaller resonances. A (non-
equipartitioned) trajectory cutting across a region of kz/kx that is free from the major
resonances shown will still exhibit a small, linearly increasing emittance as the beam is
excited by these smaller resonances. The linear growth is typical of such a random
scattering effect.

Thus, the EP condition need not be satisfied exactly, and good designs are possible
without purposely using the equipartitioning relation. However as will be shown, it is
practical and effective to satisfy it nearly exactly after the bunch has been formed. The
EP ratios eln/etn=b/a=cot/ol can even be varied along the trajectory if desired, always
avoiding growth due to the corresponding resonance. That is, one could purposely
traverse a major resonance without significant effect if the beam is maintained in
equilibrium during the traverse.

The information represented by the Hofmann chart can also be represented in the
typical phase-space plots of nonlinear systems, which show resonance islands, and
which change depending on the degree of nonlinearity in the system. As the
nonlinearity is increased, resonances begin to overlap. Eventually, the last free-
standing resonance is overlapped and the system breaks into complete chaos. The
degree of nonlinearity at this point is called the stochastic limit, and is seen to occur on
the Hofmann Chart when the tune depression reaches ~0.3 and below, where there is a
general area of growth.

There is a very significant change in the nature of the phase-space dynamics, phase-
space transport, and growth rates or disturbance settling times when the stochastic
limit is reached. Beyond the stochastic limit, the system is in chaos, with strong mixing
and short settling time. In this region, the term temperature can be invoked. Below the
stochastic limit, where a linac usually operates, the growth dynamics is completely
different, and use of the terms “temperature” and “thermalization” are not appropriate
(although rather widely invoked in the accelerator community). The dynamics is
characterized as “meta-stable,” with very long settling times; there are areas of phase-
space that are stable and others that are chaotic. Another way of saying this is that
“simplification” by using the space-charge limit (tune depression = 0) is inappropriate
for practical design work.
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The Hofmann Chart will be used below to assist in defining and clarifying the beam
dynamics of the three sample RFQs. As a reminder, the designer should remember that
if the emittance ratio changes, a different chart is needed.

5.3 Beam-Based Design Procedure

5.3.1 LINACSrfq Design Interface

The ingredients for beam-based design are now in hand - the two matching equations
which should always be satisfied, and the third EP equation, which may be invoked if
desired and solved simultaneously with the matching equations. Three RFQ
parameters, typically the transverse and longitudinal beam sizes, and the modulation if
EP is used, are used to satisfy the equations. At this time, the remaining (many) RFQ
parameters must be chosen from other perspectives that do not involve beam/structure
equations directly. (Design optimization is still an open issue, with many possibilities
for more complex expression.)

The LINACSrfq design code incorporates this approach. The designer has cell-by-cell
control over all parameters, and over the space-charge physics behavior desired.

It is important to note that now, as the beam itself is specified in terms of its rms
emittances as well as current, the design and optimization process are now specific to this
beam. This is why certain knowledge of the ion source and LEBT is important. In a
factory-type application such as IFMIF, the characteristics of the ion source and LEBT
should be reproducible within certain limits (for example, if the ion source is replaced with
a spare).

The beam-based design interface for the LINACSrfq code is next outlined to illustrate
the design process [7].

(* Set up the general characteristics of the RFQ ¥)

injenergy = 0.095; (* IFMIF EP RFQ, new spec *)
curamp = 0.130;

freq = 175.;

him = 2.0145;

q-=1;

endenergy = 5.; (* final energy of RFQ, MeV *))

(* IFMIF is a 4-vane type RFQ. Rf power factors are specified - see Section 7 *)
rfqtype = 4vane;
powcuLEDAscaletoIFMIF = 7.94;
powcuFac = powcuLEDAscaletoIFMIF;

(* Initialize V2TERM or VSINE vane geometry functions for 4-vane RFQ. Turn
multipoles on (mon) or off (moff), or (mon) with individual control of mpole terms (terms
1 =A01 and 3 = A10 are always 'on'. mpoleterms(AO1, A03, A10, A12, A21, A23, A30,
A32 %)

geom = "VSINE";
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mpoleswitch = "mon";

mpoleterms = {1, 1, 1, 1, 1, 1, 1, 1};
If [mpoleswitch == "moff,” mpoleterms =
getvanegeomcoeffs; getimagecoeffs;

{1,0,1,0,0,0,0,0}1;

(* Set RhooverRO (could also be f(z) ¥)
RhooverRO = 0.75;

—_
*

The "field" is set to the desired Kilpatrick level KPlimit*KPfac. ¥)
KPlimit = limkpfld[freq]; (*=13.98 at 175 MHz *)
KPfac = 1.7;

—_
*

Enter the desired input normalized rms emittances (pi - cm - rad), *) etnrmsgiven
0.000025;
elnrmsgiven = 0.000040;

(* enter the rms emittances desired in the main RFQ after the shaper: *)
etnrmsgivenmain=etnrmsgiven;
elnrmsgivenmain=elnrmsgiven;

Here are some examples of apriori varying emittance:

(* etnrmsgivenmain := If[(z - zstart) < 1.0, etnrmsgiven*(1 - 0.2%(z - zstart)/1.0),
0.000016]; *)

(* elnrmsgivenmain := If[z < 1.2, elnrmsgiven, elnrmsgiven + 0.000025%((z - 1.2)/8)]; *)
(*elnrmsgivenmain := -5.3276*107(-5) + 2.174*107(-6)*(i/ celldiv) - 1.9926*10%(-

8)*(i/ celldiv)A2 + [J 9.0126*107(-11)*(i/celldiv)"3 - 1.9926*107(-13)*(i/celldiv)"4 +
1.7246*107(-16)*(i/ celldiv)”5; *)

(* Set up the engineering choices and rules for the RFQ ¥*)
(* Shaper parameters : *)

The design process starts at the end of the shaper section, where the beam is required to
be equipartitioned. The aperture is entered as a fraction of the wavelength, as a
comparison to the cell length, which is fA/2. Transmission can be optimized by varying
this aperture.

EOSaperfac = 5.1;

apertgt = (100.*betalaminject/EOSaperfac);

The synchronous phase phis at the end of the shaper is near -90°, typically -88 to -84°. The RFQ
will be shorter if phis is raised higher, but transmission may be lower.

phistarget = -84.;

Next the reduction in B at the beginning of the shaper is specified:
bfraction = 0.55;

Continuing to work backwards, specify the number of cells in the radial matching section.
rmscells = 4;
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v[rfq] voltage rule for the shaper

frontendvrule:=(e.g., the voltage found by the KP limit at the end of the
shaper)

Finally, the length of the shaper has to be specified. The program uses a rule involving
the integrated zero-current longitudinal phase advance (i.e., the phase advance of a
particle very near the synchronous particle), but the relation is not rigorous - siglint is only
a number that controls the shaper length. The “porch” is the initial fraction of the shaper
length where phis remains at -90° phis is raised to phistarget in the remainder of the
shaper. The shaper length and porch fraction are used as optimization variables to
minimize the energy of lost particles.

siglint = 270.;

porch = 75.;

(* Main part of RFQ : ¥)

In a final design optimization step, the form factor is adjusted to conform to the actual
distribution formed in the RFQ.
(* Interpolating function for ffadj : *)

ffadjrule :=

Rules are now specified for the main RFQ parameters. The general form is:
- Specify some rules

- Select the rule to be used in this design

(* phis[rfq] law in main rfq. *)

Specification of the Teplyakov-Kapschinsky Rule, here with saturation at -20° if reached.
The bucket-beam length ratio can be varied along the RFQ; lfacincr is the change in the
ratio, lfacdist is the distance over which the change is made.

lfacincr = 0.0;

lfacdist = 10.0;

c2 = lfacincr/lfacdist;

TKphisrule := (If[phisbw = -20., phis[rfq] = phisbw,

phis[rfq] = -20.];);

Another rule, with cosine-like form:

cossec = 0.4;

endphis = -20.;

Cosphisrule := (If[phizz = -20., phis[rfq] = phizz,
phis[rfq] = -20.];);
A rule linear with position along the RFQ:
philinear := -88. + 43.*((z - zstart)/(2.7 - zstart));

Choose which rule to use in this run:
mainrfgphisrule := TKphisrule;

Another example of a rule which could be used:
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(* mainrfgphisrule:=If[philinear > phisbw, phis[rfq] = philinear, (philinear = -90.;
TKphisrule)]; *)

(* alrfq] aperture rule for main RFQ : *)

mainrfqgaperrule := (endbeta = 0.073;
c3 = 1.2;
a[rfq] := atarget* (1 +
c3* ((beta-betastart)/ (endbeta-betastart))”1.0); );

(* v[rfq] voltage rule for the main RFQ *)

(* mainrfq voltage definitions : ¥)
vKP = KPlimit*KPfac*rO[rfq]/ckappa[rfq];
vlinear = vol0* (1.0 + (1.33* (z - zstart)/endz));
endz = 1.63;

Choose rule:
mainrfgvrule :=vKP;

(* em[rfq] modulation law in main rfq. %)

(*1. For EP, em|rfq] is used to solve for the EP condition. Also used for Constant B
strategy. ¥)

mfree := (em[rfq] =.;);
(* 2. Function for em]rfq] : ¥)

mfunc := (em[rfq] = Min[emtarget*(1l. + 1l.*((z -

zstart)/0.85)"71.0),3.01;);

(* 3. em]rfq] is driven by a cosine function which starts using the em|rfq] slope at the
end of the shaper, has length = cossecem, and ends with zero slope at the specified end
value of em|[rfq](endmodl). *)

cossecem = 1.75;

endmodl = 3.;

mCostype := emzz;
(* Set mainrfgemrule to one of the laws ¥)

mainrfgemrule := mfree;

(* Choose strategy for main RFQ : *)

(* 1. matchonly - will use a rule for em][{q], e.g., mfunc, and the two matching
equations.

2. matchEP - em]rfq] is a variable (use mainrfqemrule := mfree;), matching and EP
equations are satisfied.

3. matchConstB - em|rfq] is a variable (use mainrfqgemrule := mfree;), [lmatching
equations are satisfied and B is kept constant.

4. matchboaRatio - em[rfq] is a variable (use mainrfqemrule := mfree;), matching
equations are satisfied and rmsl/ rmsr is kept constant [ boaratio =
1.2;

S. matchUser - user written criteria *)
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matchUser := ... ;
Select the strategy to be used for this run:
mainRFQstrategy := matchEP;(]

Everything has now been specified and the design program is ready to run. Many other
variations could be specified; all the parameters are under control.

(* Run the subroutines that generate the shaper *)
The front end is generated from the end of the shaper (EOS) backwards. First the EP and
matched condition at the EOS is found, then the conditions at the beginning of the shaper,
then at the entrance of the RFQ. Working forward, the radial matching section and
shaper are generated. The process is iterated using the energy found at the EOS on the
first pass. Two passes suffice.
nshprpasses = 2;
For[(j = 1l;emtarget = setbeginem;),j <= nshprpasses, j++,
(dum =x; shprpass=j; shprend;
If[j==1, (energy = injenergy),
(energy = energystart)];
shprtgt; beginshprtgt; enterrms; rfgshramp; pass)];

(* Run the subroutines that generate the main RFQ *)
Then the main RFQ is generated from the EOS to the final energy.
phisemrules; rfgaemvar; passmain;

5.3.2 Design Strategy Discussion

The RFQ has now three sections - radial matching, shaper (to bring the beam to EP),
and acceleration.

Bringing the beam to the EP condition at the end of the shaper (EOS) has proven so
robust and useful that it is the standard approach. It is easy to change the shaper
rules, for example, to the constant rO conventional method which exhibits the
bottleneck, but tests of this method against the EP at EOS method (ref. Comment in [7])
have consistently shown better beam-loss performance for the EP at EOS method.

Complex rules in the main RFQ can be specified; for example:

- The CDR and Post-CDR RFQs , typical of high-intensity cw RFQs, maintain EP
from the EOS to the end of the RFQ.

- Bringing the RFQ to EP at the EOS, and then relaxing the EP condition
downstream while taking care to not let the tune depressions become too low, and if a
major resonance is crossed, then to cross it quickly, has been an effective method for
some applications [44].

Rules are specified for all other parameters.

The original goal of this approach was first to bring all of the RFQ parameters and beam
physics (the matching and EP envelope equations, plus some detailed extensions, which
are all we know at this time) under complete and flexible control. This is now achieved.
The original goal was then to investigate optimization.
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5.3.3 Design Optimization Discussion

There are so many parameters, and so many different views of what an optimum
constitutes, that optimization if still an open and very interesting research topic. As
computer power continues to increase, it becomes more feasible, and modern
optimization methods, which can handle many variables and strategies, should be
applied to the accelerator design problem.

Experience with LINACS has resulted in an effective, but tedious optimization procedure
[7]; after each LINACS step, pteqHI has to be run to check transmission, energy at
which losses occur, etc.

1. Get a rough design using the desired design strategy and default values that results
in a solution.

2. Find a reasonable input beam ellipse alpha and beta.

3. Optimize transmission varying EOSaperfac.

4. Minimize beam loss above ~10 times the input energy (e.g., above 1 MeV) by varying
the shaper parameters siglint and porch. The length of the shaper and porch have
influence on the transmission and also on the maximum energy of the bulk of the lost
particles.

5. Find the input match for best transmission using the transmission matrix option in
pteqHI. Using the simulation code pteqHI, the input match must be checked
occasionally as the design develops. The most reliable input matching method is to find
the transmission over a matrix of input ellipse alphas and betas.

All five of the main RFQ specifications are strongly influenced by the coefficients used in
the Teplyakov synchronous phase rule, the voltage and aperture rules, and by the
equipartitioning and emittance rules selected.

6. The aperture must open enough as a function of beta to keep radial beam loss low;
this raises the voltage and the length.

7. Reduce the RFQ length if possible using a negative Ifacincr to allow the beam length
to grow relative to the bucket length.

8. Length is also reduced for lower EP ratio. Varying EP strategy may be useful.

9. For lower current designs, abandoning EP after the shaper may be useful.

10. Iterate, iterate. Tedious.

When the design has been optimized, a final optimization step almost always produces
another significant improvement in transmission - an adjustment in the design code of
the space-charge form factor, sometimes augmented by an apriori adjustment of the
transverse and longitudinal rms emittances.
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6. Comparisons of the Three RFQs in Terms of Beam-
based Design

6.1 The IFMIF CDR RFQ Design

The optimized CDR equipartitioned RFQ design and simulation were prepared for the
CDA [7] and CDR. The input current was specified as 140 mA, to be sure of
accelerating at least 125 mA. The input transverse normalized emittance was specified
as 0.20 mm.mrad, the estimated emittance of the ECR ion source. At that time,
multiple and image-charge effects were not included in the design code LINACSrfq or
the simulation code pteqHI; simulation using codes available at that time which
included multipole and image-charge effects indicated transmission of ~95%.

The design optimization (for minimum beam loss at energies above ~ 1 MeV, short
length, low peak field, low rf power, high percentage of accelerated particles) was done
using the 2-term potential description. The design maintains an equipartitioned beam
from the end of the shaper to the end of the RFQ, with fixed emittance ratio eln/etn =
2.0. Simulation using the corresponding 2-term potential description showed that the
beam is very closely equipartitioned from the end of the shaper (EOS) to the end of the
RFQ, as indicated in Fig. 6.1-1 and on the Hofmann Chart, Fig. 6.1-2. Fig. 6.1-3 shows
small emittance growth after the end of the shaper.

3

moms,k7a5.1i180p60ff&e#2
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Cell No.
Fig. 6.1-1. Equipartitioning ratio, and corresponding beam size, emittance and tune

ratios, Egs. (7) and (8) for the IFMIF CDR RFQ using the 2-term potential. (Ignore
the file ID material after the commas.)
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Fig. 6.1-2. Hofmann Chart for eln/etn=2.0, showing the trajectory for the IFMIF
CDR RFQ from the EOS to the output, using the 2-term potential.
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Fig. 6.1-3. Longitudinal and transverse normalized rms emittances through the
IFMIF CDR RFQ.

During 2006, multipole and image-charge effects were added to LINACSrfq and pteqHI,
and the IFMIF CDR RFQ was resimulated in pteqHI, using the same input beam.
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Section 3 shows results; the accelerated beam transmission drops to ~90%, while the
percentage of beam loss above 1 MeV remains low at 0.073%. Figs. 6.1-4 and 6.1-5
indicate the effect on the space-charge physics; the beam is no longer equipartitioned,
and the trajectory has moved toward the resonance to the left. This simulation with
multipoles and image-charges is used below in the comparisons.
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Fig. 6.1-4. Equipartitioning ratio, and corresponding beam size, emittance and tune
ratios, Egs. (7) and (8) for the IFMIF CDR RFQ using pteqHI including multipole and
image-charge effects.
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Fig. 6.1-5. Hofmann Chart for eln/etn=2.0, showing the IFMIF CDR RFQ trajectory
for the shaper and from the EOS to the output, using pteqHI including multipole
and image-charge effects.

The beam size ratio remains nearly constant; the emittance ratio shows growth; Fig.
6.1-6 shows this occurs in the longitudinal rms emittance. The only difference between
Figs. 6.1-1,2,3 and 6.1-4,5,6 is the addition of the multipole and image effects in the
pteqHI simulation. The linear growth in the longitudinal emittance is characteristic of a
scattering effect.
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Fig. 6.1-6. Transverse and longitudinal rms normalized emittances for the IFMIF
CDR RFQ, using pteqHI including multipole and image-charge effects.

6.2 The IFMIF Post-CDR Equipartitioned RFQ Design

6.2.1 Post-CDR RFQ Design Objectives

The Post-CDR RFQ design effort has several objectives:

- to determine if the design optimization procedure including multipole and
image-charge effects would still function in the same way as the procedure outlined in
[7] without multipoles and image-charges. The multipole effects are significant in the
beam envelope design code LINACSrfq, while the image-effects are not; both are
significant in the simulation code pteqHI. The result was that the optimization
procedure remains the same, and the design produces a compensation for the multipole
effects, resulting in good transmission and low losses at higher energy.

- to use the recommended lower vane voltage at the front end, for easier
matching and lower rf power.

- to explore the trade-off between RFQ length and rf copper power requirement,
and the effect on performance. It is seen that good beam-loss and transmission
performance can be obtained with shorter length than the CDR design, at
approximately the same rf power. It is more important to conserve rf power than to
have a short RFQ, because of the rf power operating cost. Very roughly from the CDA
Cost Estimate:

CDR Design, requiring ~1MW rf copper power for the RFQ:
RFQ structure cost = (the average of Acc#1 and Acc#2)
= ($15.69M + $9.83M) = $12.8M
Accelerator Hall Cost for RFQ = total*(5MeV/40MeV) = $6.7M(1/8) = $0.84M
Total RFQ Cost = $13.64M
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RF system cost = (total, the average of Acc#1 and #2)*(1/8)= ($77M)(1/8) = $9.6M
Rf power bay cost = total(1/8) = $5.9M(1/8) = $0.74M
Total RFQ rf power fixed cost = $10.34M

Total fixed cost for RFQ (no spares) = $24M

Electricity cost/ kWhr = $0.10

Total electricity cost/year for Acc#1 = 1.33*10"8 kWhr*0.1 = $13.3M/yr
RFQ electricity cost/year ~ total(1/8) = $1.6625M/yr

RFQ electricity cost for 20 years = $33.2M

RFQ electricity cost for 40 years = $66.4M

Post-CDR Design, requiring ~1.0MW rf copper power for the RFQ:
RFQ structure cost = $12.8M(8m/12m) = $8.5M

Accelerator Hall Cost for RFQ = $0.84M(8m/12m) = $0.56M

Total RFQ Cost = $9.06M

Total RFQ rf power fixed cost = same = $10.34M
Total fixed cost for RFQ (no spares) = $20M
Electricity cost = same

This suggests that the PostCDR RFQ saves the project ~$4M. On the other hand, if the
RFQ length remained at 12m and the rf power could be reduced to ~800kW, a savings
of nearly $10M would result. Little experience has been obtained so far with
optimization; it is possible that a search in the latter direction could be fruitful.

6.2.2 Post-CDR Specification Changes

The Post-CDR specifications were changed in accordance with specification changes
adopted for the Alternative CDR RFQ:

- the current was reduced from 140 mA to 130 mA, in expectation that a higher
percentage of accelerated current could be obtained from the RFQ to give 125 mA
output current.

- the injection energy was lowered from 0.100 MeV to 0.095 MeV. This would
result in a shorter RFQ assuming all other conditions were the same.

- the normalized rms input emittance was raised from 0.2 pi.mm.mrad to 0.25
pi.mm.mrad, reflecting a newer estimate of how the ion source and LEBT would
perform. This lowers the space-charge effect.

However, the KP factor = 1.8 used for the alternative CDR RFQ was lowered to KP = 1.7,
the same as used in the CDR RFQ. It was found that the higher KP factor is not needed
to provide adequate focusing, and requires more rf power.

6.2.3 Intermediate Fixed EP Ratio Design

An initial optimization attempt explored a lower EP ratios setting, as this has a strong
effect on the RFQ length. Figs. 6.2-1,2,3 show the space-charge physics and emittance
behavior of an RFQ designed for a fixed emittance ratio = eln/etn = 1.6, and optimized
including the multipole effects.

46



Equipartitioning Ratios

: : b/a, Post CDR RFQ ;

FC I I ) T S T eln/etn, Post CDR RFQ R
H H sigt/sigl, Post CDR RFQ H

----- eln*a/etn*b, Post CDR RFQ

25 o\ o T T

0 50 100 150 200 250 300 350 400

ncell

Fig. 6.2-1. Equipartitioning ratio, and corresponding beam size, emittance and tune
ratios, Eqgs. (7) and (8) for the intermediate RFQ using pteqHI including multipole
and image-charge effects.
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and image-charge effects.
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Fig. 6.2-3. Transverse and longitudinal rms normalized emittances for the
intermediate RFQ, using pteqHI including multipole and image-charge effects.

The equilbrium, equipartitioned, condition is held closely from the end of the shaper to
the end of the RFQ.

This 1.7 KP RFQ requires ~1.0 MW rf power and is ~7.6m long, considerably shorter
than the CDR RFQ. However, 0.72% losses above 1 MeV occur for a 1M particle ideal
waterbag input distribution, and 1.15% for the ion source distribution - ~10 times the
CDR RFQ, and unacceptable. A large fraction of these losses occurs during the
synchronous phase rise after the shaper, and is not influenced greatly by the shaper
length and porch.

In these RFQs, the Teplyakov synchronous phase rule is relaxed to let the ratio of
bucket-to-beam length reduce somewhat through the main RFQ. This provides a
significant reduction in the RFQ length.

Figs. 2.4-12, 6.1-5, and 6.2-3 show longitudinal emittance growth approximately linear
with cell number after the end of the shaper. The observed emittance growth suggested
a strategy for reducing the losses above ~1 MeV.

6.2.4 Post-CDR RFQ Varying EP Ratio Design

In the final Post-CDR design, the longitudinal normalized rms eln is given, on purpose,
an apriori growth proportional to beta, while maintaining equipartitioning, with the
ratios increasing from 1.6 at the end of the shaper toward 2.0 at the end of the RFQ.

The aperture was allowed to grow (also proportional to beta) more than in the
intermediate design, to reduce radial losses. This results in a longer RFQ, but it was
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found that the bucket-to-beam length ratio could be reduced more than in the
intermediate RFQ, again reducing the length.

With these changes in the main RFQ, the effect of the shaper became more pronounced.
Reoptimization resulted in a reduced B at the beginning of the shaper, and a shorter
shaper (with the same fraction of porch).

The resulting KP 1.7, Post-CDR RFQ has ~0.081% beam loss above 1 MeV and 95.8%
accelerated beam fraction for the source emittance input distribution. It is ~8.0 m long,
not including an output Crandall transition cell or output radial matching section. It
requires ~1.1 MW rf power, about the same as the CDR RFQ.

Figs. 6.2.-4,5,6 show the space-charge physics and emittance behavior. The ratios rise
as a function of beta, and the beam remains closely equipartitioned. A composite
Hofmann Chart with eln/etn = 2 overlaid on eln/etn = 1.4 is shown, to convey the
required change in the EP ratios from 1.6 at EOS to 2 at the end of the RFQ. There is

no resonance growth.

b/a, PostCDR
----- eln/etn, PostCDR

----- eln*a/etn*b, PostCDR

Equipartitioning Ratios

H n H H H H H
R EANH L T PR Y H H H

. ﬁ'\ '..‘.‘l.:.\‘.'..b’...\.‘:.. .‘-‘-\_‘.I‘.ﬂ...‘..‘.!?_‘.._.'—?.;-Ho-‘-:-_.- —
Y e H d : H H H -

05 [

0 50 100 150 200 250 300 350 400

neell
Fig. 6.2-4. Equipartitioning ratio, and corresponding beam size, emittance and tune

ratios, Egs. (7) and (8) for the Post-CDR equipartitioned RFQ using pteqHI including
multipole and image-charge effects.
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Fig. 6.2-5. Composite Hofmann Chart for eln/etn=1.4 (underlying blue-toned

shadows) and eln/etn

2 (overlying magenta toned shadows).

The Post-CDR

equipartitioned RFQ trajectories for the shaper and from the EOS to the output are
shown, using pteqHI including multipole and image-charge effects.
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Fig. 6.2-6. Transverse and longitudinal rms normalized emittances for the Post-CDR
equipartitioned RFQ, using pteqHI including multipole and image-charge effects.
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6.3 The IFMIF Alternative CDR RFQ Design

The space-charge physics of the Alternative CDR RFQ conventional design is more
complicated. Figs. 6.3-1,2,3 explain the situation and concerns such as expressed in
Section 4.4.

4rrrr LIS N S S S S S S S S S S S ——— Y 4 "/} S R R R

- || [— eln/etn, ARCDR RFQ i
35 L sigt/sigl, AItCDR RFQ 5 i
. __ .. - _eln*a/etn*b, AltCDR RFQ ................. —

05 il N
' . tapedist1S100K :

o ™ e
0 100 200 300 400 500 600

ncell, AtCDR RFQ

Fig. 6.3-1. Equipartitioning ratio, and corresponding beam size, emittance and tune
ratios, Eqgs. (7) and (8) for the IFMIF Alternative CDR RFQ using pteqHI including
multipole and image-charge effects.
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= sigl/sig0l, gentle buncher section AItCDR RFQ
sigt/sigOt, accel section, ARCDR RFQ
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Fig.6.3-2. Hofmann chart for the AltCDR RFQ. Chart is for emittance ratio of 1.4.
Beam reached equipartitioned equilibrium briefly at emittance ratio of 1.6 (Fig.6.3-
1). (On a chart with 1.6 emittance ratio, the resonance at kz/kx=0.5 would be
weakened, and the resonance to the left of kz/kx=1 would be stronger).
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Fig. 6.3-3. Transverse and longitudinal rms normalized emittances for the IFMIF
Alternative CDR RFQ, using pteqHI including multipole and image-charge effects.

Near the end of the gentle buncher, the beam coincidentally becomes nearly
equipartitioned at emittance ratio eln/etn ~ 1.6. As indicated in Fig.6.3-2, this places
the trajectory in a resonance-free region, and the emittances remain essentially
constant.

In the acceleration section, the beam departs strongly from EP and there is free energy
available to drive resonances. The transverse rms emittance stays essentially constant,
with a slight reduction after the end of gentle buncher bottleneck, reflecting the loss of
particles in this region. This is a consequence of the conventional design strategy,
which maintains strong transverse focusing in the acceleration section. Fig. 6.3-2
shows that the transverse trajectory tune shift rises from ~0.4 to 0.7 in the acceleration
section, and although it traverses the 1/2 and 1/3 resonances, the tune depression is
not so low (strong transverse focusing), it crosses quickly, and no transverse emittance
growth results.

On the other hand, the longitudinal tune shift decreases from 0.3 to 0.2, and traverses
a strongly resonant region, with directly correlated strong longitudinal rms emittance
growth (Fig. 6.3-3) and beam loss (Fig. 3.2-1 and 6.7-2).

Figs. 6.3-4a,4b show evidence of the longitudinal resonances in the z-z’ phase space.
The scalloping at the front edge is characteristic of a strong resonance. The tail
emerges from the top of the bucket. Fig. 6.3-5 shows the z-z’ phase space at Cell 420,
before the onset of the resonances.
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Fig. 6.3-4a. AltCDR RFQ z-z’ phase space at the end of the RFQ; 4b - expanded scale
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Fig. 6.3-5. AltCDR RFQ z-z’ phase space at Cell 420.

6.4 Beam Size and Emittance Comparison

rms beam size, cm

0.6

—trms, CDR RFQ
-zrms, CDR RFQ
trms, AIRCDR RFQ
-zrms, AIRCDR RFQ
trms, PostCDR
----- zrms, PostCDR

Fig. 6.4-1. Rms beam radius (trms) and length (zrms), cm.
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Fig. 6.4-2. Rms normalized transverse (etn) and longitudinal (eln) emittances,
cm.rad. The AItCDR and CDR/PostCDR eln are not qualitatively similar, as
discussed above. The transverse input distribution is an ideal waterbag, 100K
particles, etn = 0.25 mm.mrad for each RFQ; an immediate redistribution in the
transverse emittance occurs as the distribution adapts to the RFQ.

6.5 Tune Comparisons
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Fig. 6.5-1. Zero-current phase advances/transverse focusing period, degrees.
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Fig. 6.5-2. Zero-current phase advances oo, and depressed tunes o/0o, for the three
RFQs.
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Fig. 6.5-3 Side-by-side comparison of the Hofmann Charts for the three RFQs.

6.6 Beam-Loss Characteristics

6.6.1 Representative Post-CDR and CDR Equipartitioned-Type RFQ Phase-
Space Plots and Beam Loss Distribution Characteristics

Plots are at the middle of the last cell. Black: 1M particle ideal waterbag; Red: ~1M
particle ion source distribution rms matched to the RFQ.

100

30 -100
o . o 45 -4 -05 0 05 1 15
x X
Fig. 6.6-1. RFQ x-x’ input distributions. Fig. 6.6-2. RFQ x-x’ output distribution.
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Fig. 6.6-3. RFQ x-y output distribution. Fig. 6.6-4. RFQ x’-y’ output distribution.
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Fig. 6.6-5. x-y distribution of all lost Fig. 6.6-6. x-y distribution of
particles. radially lost particles.
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Fig. 6.6-7. RFQ z-z’ output distribution. Fig. 6.6-8. RFQ z-z’ accelerating
bucket output distribution.
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Fig. 6.6-9a,b. RFQ, with ion source input. Particle energy of all losses at each cell.
There is a spectrum of lost particle energies at each cell, from ~0.05*(synchronous
energy) to ~(synchronous energy).
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6.7 Beam-Loss Pattern Comparisons
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Fig. 6.7-1. Fig. 3.1-3 repeated; beam loss for ~1M particle ion source emittance
distribution, expanded scale.
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Fig. 6.7-2. % accelerated particles vs. cell number, Source Emittance initial
distribution.

As shown in Section 3.1, at the design conditions, the three RFQs are rather similar; for
the ion source emittance distribution of ~1M particles rms matched to the RFQ input,
the percent of particles lost with energy 21 MeV is:

Post-CDR 0.081% loss above 1 MeV
CDR 0.073% loss above 1 MeV
AltCdr 0.123% loss above 1 MeV

The longer CDR RFQ accumulates about the same amount of losses with energies >
1MeV as the shorter Post-CDR RFQ. The AItCDR RFQ has larger losses between 1 MeV
and 3 MeV, and less losses with energies above 3 MeV.
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6.8 Sensitivity Comparisons

Sensitivities of the percentage of accelerated beam and the percentage of losses above 1
MeV were explored with 100K particle runs for variations of input emittance, input
current, and the input emittance alpha and beta parameters. As noted in Section 8,
10K particles is not enough for reliable loss-above-1-MeV statistics, but the running
time for 100K particles is long.

The same vertical scales are used for each group of plots to aid the eye in comparing the
RFQs. Red - % accelerated beam; blue, % >1MeV losses.

6.8.1 Variation of Input Emittance and Input Current
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Figs. 6.8-1-a,b,c. Variation with input Figs. 6.8-2-a,b,c. Variation with
emittance area. input current.

The >1MeV-losses of the longer CDR RFQ and especially the AltCDR RFQ are quite
insensitive to the input emittance area.

The long CDR RFQ has relatively low >1MeV-losses sensitivity to the input current.
The AItCDR and Post-CDR RFQs are similar to each other.

The Post-CDR RFQ exhibits a decline in the percentage of accelerated beam as the input
current is reduced. This is unusual. The behavior is the same for very small input
emittance and current - the decline in accelerated beam fraction is a consequence of the
quite short shaper, which, however, provided a high %-accelerated beam and acceptable
>1MeV-losses at the design current.
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6.8.2 Variation of Accelerated Beam with Input Emittance a and f3

These figures use the 100K input distribution — see Section 8.2.4.
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3. CDR RFQ - % Accelerated beam sensitivity to input emittance o and 3. The design o

and [} are as found for the original CDR RFQ evaluated without multipole or image fields.

Fig.6.8-

At

{%AccBeam, %Loss>1MeV} is {89.6,0.034}. Ato = 1.4, =

>

12.7828

§
11.5, {89.9,0.030}; at o = 1.4, f = 12.75, {89.6,0.014}; (Fig. 6.8-6).

1.7008,

the design o

2.25, B =

Fig.6.8-4. AltCDR RFQ - Accelerated beam sensitivity to input emittance ot and 3. At the

design o = 2.362, } = 14.2, {%AccBeam, %Loss>1MeV} is {90.0,0.066}. At o=

12.75, {91.3,0.080}; at o = 2.47, B = 15., {90.7,0.058}; (Fig. 6.8-7).
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Fig.6.8-5. Post-CDR RFQ - Accelerated beam sensitivity to input emittance a and . The
design a = 1.2, 3 = 11, as found during the optimization; {%AccBeam, %Loss>1MeV} is
{98.0,0.101}. Ata = 1.3, = 10.9, {97.0,0.074}; at o = 1.1, = 10.1, {96.9,0.076}; (Fig.
6.8-8).

Variation of >1MeV losses with input emittance a and f§ is shown in the next section.
It is seen that the matching for maximum accelerated beam percentage is generally not
the same as a match for minimum >1MeV losses.

The CDR and AltCDR RFQs have similar sensitivity of the accelerated beam percentage

to the match. The Post CDR RFQ is more sensitive, as expected from pushing the
design toward shorter length.
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6.8.3 Variation of >1MeV Losses with Input Emittance a and f3
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Fig.6.8-7. AIltCDR RFQ - >1MeV-losses sensitivity to input emittance o and . At the

2.25 P =

2.362, B = 14.2, {%AccBeam, %Loss>1MeV} is {90.0,0.066}. At o

12.75, {91.3,0.080}; at o = 2.47, = 15., {90.7,0.058}; (Fig. 6.8-4).

design o

The trend of the >1MeV losses to the match is similar for all three RFQs. The exact

values are approximate even with 100K particles per point - see the discussion on the

number of particles simulated in Section 8.2.4
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Fig.6.8-8. Post-CDR RFQ - >1MeV-losses sensitivity to input emittance o and §. At the
design o = 1.2, B = 11, {%AccBeam, %Loss>1MeV} is {98.0,0.101}. At a = 1.3, § = 10.9,
{97.0,0.074}; at o = 1.1, p = 10.1, {96.9,0.076}; (Fig. 6.8-5).

6.9 Comparison Summary

Table 6.9-1 Summary of design conditions, strategy and optimization (a.-e.)
and prioritized results (1.-5.) at the design match

CDR RFQ AltCDR RFQ Post-CDR RFQ
a. Input Beam Current, mA 140 130 130
b. Input Beam norm rms 0.2 0.25 0.25
emittance, mm.mrad
c. Input energy, MeV 0.100 0.095 0.095
d. Design Strategy EP Conventional EP
e. Optimized Yes (without No Yes (with
multipoles, multipoles,
images) images)
1. % loss > 1 MeV, Ion Source 0.073 0.123 0.081
Input Distribution
2. RF Power, MW ~1.1 ~1.0 ~1.1
3. Peak Field KP Factor 1.7 1.8 1.7
4. Length, m ~12.3 ~12.1 ~8
5. % Accelerated Beam, Ion 89.4 89.9 95.8
Source Input Distribution

6.9.1 Design Conditions, Strategy and Optimization

a. Input Beam Current — The 140 mA design current for the CDA/CDR RFQ was
lowered to 130 mA for the AltCDR RFQ, and also adopted for the Post=CDR RFQ. This
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reflected confidence in obtaining 125 mA accelerated current, requiring ~96.2%
accelerated beam fraction.

The Post-CDR meets this goal, depending on how much the ion-source/LEBT injected
beam resembles the ideal waterbag distribution.

Re-optimization of the CDR RFQ would probably also reach this performance, as might
also an optimization of the AItCDR RFQ

b. Input beam normalized rms emittance — The 0.2 mm.mrad CDA/CDR RFQdesign
input emittance was raised to 0.25 for the AltCDR RFQ, and also adopted for the Post-
CDR RFQ. This reflected a revised estimate of the emittance expected from the ion-
source/LEBT. The larger value should ease space-charge somewhat.

c. Input beam energy — The 100 keV CDA/CDR RFQ input energy was lowered to 95
keV for the AItCDR RFQ based on the ECR ion source performance, and also adopted
for the Post-CDR RFQ. This raises the space-charge at injection, and in general would
result in a shorter RFQ.

Design conditions a.-c. result in the CDR RFQ having the hardest specification.
However, they appear not to result in much difference between the three designs.

d. Design strategy —

CDR RFQ — The CDR RFQ maintains the beam in equilibrium (equipartitioned) from
the end of the shaper to the end of the RFQ. There are no interactions with major
resonances.

AItCDR RFQ — The conventional design strategy results in a long RFQ and in
longitudinal interaction with major resonances.

Post-CDR RFQ — A shorter RFQ that could meet the other specifications with
approximately the same rf power requirement as the CDR design was sought. The Post-
CDR RFQ maintains the beam in equilibrium (equipartitioned) from the end of the
shaper to the end of the RFQ. There are no interactions with major resonances.

e. Optimization -

CDR RFQ — The design was optimized using the 2-term potential description, without
multipole and image forces. Introduction of these forces lowered the accelerated beam
fraction, and therefore a new design was sought.

The simplest re-optimization would have been to keep the rules which result in ~12 m
length, and only re-optimize the aperture at the end of the shaper, perhaps
accompanied by some adjustment of the shaper length and porch. It is known that
slight changes in the aperture and modulation to restore the quadrupole and
acceleration potential terms to their 2-term value will result in essentially the 2-term
performance — this procedure is implemented in PARMTEQM. Probably this re-
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optimization would then result in increased accelerated beam fraction with little change
in the other characteristics.

Instead, a new, shorter design was sought, resulting in the Post-CDR design.

AltCDR RFQ — Not optimized. There is little experience with optimization to these or
other criteria using the conventional design approach, so it is not clear what could be
gained by further work in this direction.

Post-CDR RFQ — The design was optimized using the analytical potential description
including multipole and image forces, seeking shorter length with no compromise of the

other specifications.

6.9.2 Prioritized Design Results
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Fig. 6.9-1. Sensitivity of accelerated beam fraction and %>1MeV-losses to input
emittance. Repeat of fig. 6.8-1; left-to-right CDR, AltCDR, Post-CDR.
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Fig. 6.9-2. Sensitivity of accelerated beam fraction and %>1MeV-losses to input current.
Repeat of fig. 6.8-2; left-to-right CDR, AltCDR, Post-CDR.
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Fig. 6.9-3. Loss patterns for ~ 1M particle Source emittance input distribution, repeat of
Fig. 3.1-3. It is necessary to use a simulation code with canonical (time) coordinates for
accurate loss patterns. Left-to-right CDR, AltCDR, Post-CDR.

Fig. 6.9-4. % losses >1MeV, repeat of figs. 6.8-6,7,8. Left-to-right CDR, AltCDR, Post-CDR.
Produced from 100K particle simulations.

The long, more slowly varying vane profile and resonance-free dynamics of the CDR
RFQ appear to result in low and evenly distributed losses with energies >1 MeV. The
sensitivities with respect to input emittance, current and matching are also the smallest
of the three RFQs.

The conventional AIltCDR RFQ has somewhat higher total losses > 1 MeV, concentrated
between 1 - 3 MeV and less from 3 - 5 MeV, compared to the other designs. This may
be the result of the aperture choke-point discussed in Section 4.3 and 4.4. The lower 3-
5 MeV losses result from the strong transverse focusing in the accelerator section.
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The Post-CDR RFQ design strategy sought shorter length, and uses a varying EP recipe
and shorter shaper. The >1MeV losses at the design point are similar to the other two
designs. The sensitivity is greater that for the CDR RFQ, and similar to the AItCDR
RFQ but for different reasons.

2. RF Power, MW

The rf power of the three design are similar. Note the discussion about the rf power
estimate in Section 7.

3. Peak Field KP Factor

Contrary to what was thought in the RFQ early days, it is not necessary to use the
highest fields feasible without sparking, i.e., the highest KP factor. It is only necessary
to provide enough voltage to achieve an optimum performance. It is easier to match the
LEBT beam to the RFQ input with weaker initial focusing, so the end-of-shaper (EOS)
voltage is a good voltage for the whole shaper. The CDR and AltCDR RFQs rising
voltage from the EOS back to the beginning of the RFQ is not necessary, and results in
wasted rf power and harder input matching (as evidenced from the design input ellipse
matching parameters). The 1.8 KP factor used in the front part of the AItCDR RFQ also
appears unnecessary. An optimization following the lines of the Post-CDR with 1.8 KP
factor was pursued - similar beam performance and length were obtained, but
considerably more rf power was required

As noted, further design optimization work involving the Rho/r0 ratio could be fruitful.
4. Length

The Post-CDR design has two-thirds the length of the other two, with better percentage
of accelerated beam and about the same percent of losses above 1 MeV. There would be
a saving in the initial construction cost of the RFQ. The length is relatively unimportant
in terms of construction and tuning technique.

S. % Accelerated Beam, Ion Source Input Distribution

The percentage of accelerated beam is highest for the Post-CDR design, and re-
optimization of the CDR approach could probably reach this level. As the ion source
should produce at least 140 mA, the percent of accelerated beam is not as important as
the percentage of lost beam >1 MeV. The CDR and AltCDR RFQs have similar
sensitivity of the accelerated beam percentage to the match. The Post CDR RFQ is more
sensitive, as expected from pushing the design toward shorter length.
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Fig. 6.9-5. Accelerated particles from 100K waterbag input distribution, repeat of Figs. 6.8-

6,7,8. Left-to-right CDR, AltCDR, Post-CDR. (Different scale for PostCDR)

6.9.3 Overall Summary and Comment

The Post-CDR design satisfies the beam loss and transmission specifications with

shorter length and no sacrifice in rf power. It appears to be somewhat more sensitive to
input parameter variations than the CDR design, but this should not be an operational
problem in a well-controlled environment. It represents a lower bound on the length

while keeping the rf power low.

Overall, the AItRFQ performance is good, but it is long, and more important, the

longitudinal dynamics involving interaction with strong resonances is troublesome. The
strongly growing longitudinal beam size and emittance do not cause problems in the

RFQ, but may in the following 5 - 40 MeV linac or in the HEBT. They also may be

sensitive to other errors such as vane manufacturing or alignment errors, not studied
here. As the resonance interaction is generic to the conventional approach, it is not
clear that better characteristics could be achieved. It is also not apparent that other

advantages would be gained by some approach to optimization.
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Fig. 6.9.3-1. Repeat of Figs. 6.4-1 and 6.4-2. Rms beam size and emittance comparisons.

The CDR design appears to have lower losses >1 MeV and less sensitivity; higher
transmission can be regained by re-optimization. Using the EOS vane voltage for the
whole shaper would result in some saving of rf power and make input matching even
less sensitive.

Suggestions for further work toward a final design:
1. Pursue the LEBT design to conclusion, and obtain a truly representative input beam
distribution.

The EP design strategy is intrinsically robust.

2. Re-optimize the CDR RFQ as suggested in Section 6.8. This is a relatively minor job,
and would give a bound on the performance of an IFMIF RFQ ~12 meters long. Some
saving in rf power would result.

3. Investigate designs intermediate to the CDR and Post-CDR designs. A somewhat
larger increase in aperture might reduce the >1 MeV loss. The best aperture increase,
synchronous phase and EP/emittance-control rules might be other than the simple
functions used to date - evidence points toward further investigation of very subtle
factors such as adiabaticity. The overall transverse focusing that gives optimum >1
MeV loss and acceleration percentage also has subtleties that require further research,
which might result in rf power savings. Rf power cost saving could easily override
length cost saving. Include investigation of the Rho/r0 factor.
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7. RFQ Vane Voltage, RF Power

7.1 Variable Vane Voltage Profile

Freedom to vary the vane voltage is a powerful tool for the designer. Modern
construction and tuning techniques afford this option. For example, the LEDA RFQ
used tapered vane skirts to vary the voltage. The IFMIF CDR and Post-CDR designs
were checked by experts who have successfully built and operated RFQs with a varying
vane voltage profile [45]. Their view is that the varying voltage profile can be achieved
by the vane design and tuning techniques, and that the power loss per unit length,
while possibly challenging, can also be cooled satisfactorily [40].

7.1.1 The Russian IFMIF CDA Preliminary RFQ Proposal

In this regard and as a conceptually different and interesting design approach, the
preliminary proposal sketched by the Russian IFMIF partner in the IFMIF CDA, Section
2.6, is important [47]. The parameter table is shown in Fig. 7.1.1-1:

Table 2.6.8-1. Parameters of the RFQ-SPRFQ design for IFMIF

Parameters RFQ SPRFQ
Frequency, MHz 175 175
Input energy, MeV 0.1 3.0
Output energy, MeV 30 8.0
Intervane voltage, kV 87. 210.
Characteristic bore radius. mm 4.2 4.2
Aperture radius. mm 4.19-3.20 4.0
Length. m 497 2.4
Input beam current, mA 130 126.2
Transnussion efficiency, % 978 100
Input normalized beam emittance. ® mm mrad 0.6 0.9
Output normalized beam emittance, © mm mrad 0.8 0.9
Surface field, E,., KVem™ 280 310

Fig. 7.1.1-1. Parameter table for 0.1-3.0 MeV and 3.0-8.0 MeV RFQs for IFMIF proposed
by IHEP.

It is stated that “Capacitance is added in a controlled manner through the SPRFQ,
allowing a large increase in the vane voltage, up to factors of 3-5 or more, limited by rf
power loss considerations. The technique allows the SPRFQ to be considerably shorter,
and total rf power losses to be less.

The combined parameters, including the length, are similar to those of the Post-CDR
RFQ design. The IHEP approach, outlined further in [48], pp. 65-77 and including the
two-tank approach, is worthy of further investigation by the IFMIF project -
unfortunately lack of funding prevented this to date.
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7.2 RF Copper Power Consumption

The estimates of the rf power required by the RFQ structure given in Fig. 2.4-9,10 are
comparatively correct, but the actual values present some questions, and require
further attention by the IFMIF design team. These estimates are based on [49], which is
essentially repeated here.

7.2.1 RF Shunt Impedance Estimate

RFQUIK Estimate
The RFQ design code RFQUIK has a formula for shunt impedance:

(Rs RFQUIK, MQm) =
1/(((1.3*10"12*1.25*( (frequency,MHz)*48*10" -
12%((300/ (freq,MHz))/

((cell aperture,m)*
(1+modulation)/(2)))~(1/6))"(3/2)))/0.6)

where rO = aperture(l + modulation)/2; 0.6 is a “fudge factor” to account for
observed differences between theoretical and measured results.

Fig. 7.2.1-1 shows the (Rs RFQUIK) estimate along the IFMIF CDR RFQ
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Fig. 7.2.1-1. RFQUIK estimate for rf shunt impedance Rs along the IFMIF CDR RFQ.

(CuPwr/cell RFQUIK)=
(cell length,m)*(vane voltage, MV)"2/(Rs RFQUIK)

These equations are integrated along the RFQ to get the total copper power estimate:
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Total Copper Power RFQUIK = 1.125 MW

Beam Power
Assume Beam Power = (4.905 MeV)(.132 A)(.95 transmission) = (4.905)(.125) = 620 kW

IAP Estimate
IAP presentation at the EU Monitoring 2 /2003 gives total RFQ power = 1.5 MW; minus
620 kW = 880 kW RFQ copper power.

Saclay Estimate
From Saclay presentations on KEP results,

Main IFMIF RFQ parameters

Parameters Values Parameters Values
Length 12.482 m Synchronous phase -90°— -40°
Frequency 175 MHz Peak field 1.8 Kp
Voltage 130— 101.2 kV Copper power 683.9 kW
Mean aperture (Ro) 6.41— 5.16 Beam power 613.1 kW
Modulation (m) 1.— 1.6 Total power 1297 kW

These IAP and Saclay estimates appear consistent with the RFQUIK estimate without
the 0.6 fudge factor.

Experience with Operating RFQOs

Various formulas are used to estimate the rf power requirements for an RFQ design.
They tend to be more optimistic, that is to give a higher RFQ shunt impedance, Rs, than
the values measured on operating RFQs. This is the case even including the “standard”
assumption that measured Q will be 0.6-0.7 that of the SUPERFISH calculated Q.
These formulas can be summarized as having the form Rs = ~1075/(frequency,
MHz)"(~1.5), but tending to give shunt impedances up to several times higher than
Rs=1075/(f, MHZ)"(3/2).

Shunt impedances for operating RFQs have been collected in the literature and from his
experience with his own RFQs by Alwin Schempp, and updated by the author from the
PAC, EPAC, and LINAC conference proceedings for 2000-2002, as shown in Fig. 6.4.1-2.

The relation Rs=1075/(f,MHz)*(3/2) is compared to the individual fits for 4-rod type
RFQs ( Rs=1074.09496/{20.98306 ) and 4-vane-type RFQs (Rs=1014.45071/{21.241).
It appears that 4-rod and 4-vane RFQs should be fitted separately. It is also clear that
the experimental values should be used to help estimate the rf power that will be
required in a new design.

There is a fairly large spread in the data, probably due to variations in construction
technique that affected the achieved Q value for the structure. For example, the power
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required for the VE BERLIN 4-rod structure is almost twice the amount predicted for by
the 4-rod-type fitted formula.

(rf power per meter, MW) = 1000(vane voltage, MV)"2/(Rs, kQm)

RFQ Shunt Impedance

10* ¢
—»— Rs, kQm - 4-rod type
—o— Rs, kOm - 4-vane type
X ATDAS  XITEP
1000 \ 4-rod-type.Fit.... Y.=.MQ*X"
F (redline) MO 12444 ]
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L X MAXILAC Ro.65121 4
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Fig. 7.2.1-2. Rf shunt impedance data from operating RFQs.
At 175 MHZ, the 4-vane fit gives Rs = 0.0460462 MQm.
Total Copper Power estimate using 4-vane fit = 2.86 MW

The LEDA achieved very good shunt impedance, and represents the RFQ most like
IFMIFs. If we have the confidence to extrapolate from the LEDA data point back to 175
MHz using the slope of the 4-vane fit line, we get Rs = 0.120 MQm. This is close to the
average for the Rs RFQUIK curve in Fig. 6.6.1-1.

Total Copper Power estimate using Rs = 0.120 MQm = 1.1 MW
This is the copper power estimate used in Fig. 2.4-9,10.

Total Power

Total rf power using the above estimates: RFQ copper power ranges from 0.684 - 2.86
MW. Plus beam power, ranges from 1.3 to 3.5 MW. Assume 5% for rf transmission
losses; range is 1.37 to 3.68 MW. Assume that the control margin can be absorbed in
operational output ceiling of 680 kW (as assumed for the DTL) for the diacrode.

The CDR estimate states 3 MW. This is probably adequate.
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Definitions, Questions, Comments

This information was circulated to project participants for comment during preparation
of the CDR; no comment was received; funding precluded further pursuit of the
question with, for instance, the LEDA group.

The IFMIF Project needs further work on the RFQ power requirement.

7.3 Vary Rho/rO Ratio?

For a fixed vane voltage profile, Rho/rO might be varied for lower peak field, as in the
Alternative CDR RFQ. The resulting effect of the different multipole components on the
beam would then have to be checked.

Similarly, if a Kilpatrick limit is used to set the vane voltage profile, a built-in Rho/r0
profile could be entered in LINACS and the design optimized on that basis.

There is so much flexibility in the parameter options that satisfactory beam

performance might be found in combination with some advantage of a varying Rho/r0
profile; the author has not explored this approach.
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8. Simulation Codes

Re-emphasizing the statement above: “A major requirement of the beam-based method
is that the desired design performance be very closely verified by the detailed beam
simulation. This was not lightly achieved, and required extensive development of the
design method to include all of the effects to be simulated, and of the simulation code
itself.”

8.1 The RFQ Design Code LINACSrfq

The resulting design code is named “LINACS,” of which “LINACSrfq” is a subset. It has
also been used to design drift-tube linacs, and coupled-cavity linacs to ~1GeV for
radioactive waste transmutation and other purposes. The underlying space-charge
physics section is applicable to any linac, requiring only the appropriate cell-by-cell
bookkeeping and external field formulation to be applied. As an example of generality, a
2-section linac with frequency jump between sections results in a long beam bunch at
the entrance to the second section, which must then be shortened in a controlled way -
so there is similarity with the dc-to-bunched beam requirement in an RFQ.

The background is given in Section 5, Section 5.3 - Beam-Based Design Procedure, and
accompanying references. The general procedure is apparent in Section 5.3.1
LINACSrfq Design Interface.

The maximum beam radius is determined from Sqrt[5]*(rms beam radius), assuming a
uniform distribution. Using the subroutines of PARMTEQM [19,20], the multipole
terms are applied at this maximum radius, and the image-charge terms are applied at
this maximum radius times the quadrupole flutter factor.

To achieve the required close correspondence to the simulation code results, it was
necessary to include the effect of neighboring bunches in the LINACSrfq design code.

Optimization of the design proceeds as outlined in [7] and Section 5.3.3. Globally, the
frequency is chosen, for which the global space-charge rule to limit the tune
depressions to ~0.4 is useful.

To get started, the following default values should produce a reasonable first design,
aided significantly by the use of the matched plus equipartitioned strategy:

RhooverRO = 0.75;

KPfac = 1.7;

etnrmsgiven = 0.000020;

elnrmsgiven = 0.000040;

EOSaperfac = 4.0;

phistarget = -88.;

bfraction = 0.60;

rmscells = 4;

]
[y
(o]
o
~e

siglint
porch = 60.;
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mainrfgphisrule := TKphisrule;
mainrfqgaperrule := (endbeta = appropriate;
c3 = 1.2;
a[rfq] := atarget*(1 +
c3* ((beta - betastart)/(endbeta -
betastart))”*1.0); );
frontendvrule:=vKP;
mainrfgqvrule :=vKP;
mainrfgemrule := mfree;
mainRFQstrategy := matchEP; ]

It is recommended that the strategy of bringing the beam to equipartition at the end of
the shaper always be followed, as it always produces a reliable result. Many other
strategies have been tested, such as the “conventional” one, but EP at EOS, along with
the bunch formation strategy employed in the shaper, always gives good performance.
The strategy for the main RFQ is then set as desired. The initial design is simulated in
pteqHI, and a reasonable input match must be found.

The power and flexibility of Mathematica© is very useful as a development platform;
eventual reprogramming to obtain faster running speed would be useful for the
optimization process.

An executable version is available to the project.

8.2 The RFQ Simulation Code pteqHI

8.2.1 Development of pteqHI

For the initial development of the RFQ at Los Alamos in 1978-1980, a simulation code
named PARMTEQ was written based on the 2-term potential description of the RFQ
fields. The RFQ description from the “conventional” design procedure provided a input
table of the transverse focusing strength variable called B, the synchronous phase, the
modulation and the voltage as a function of z along the RFQ. The code was based on
assumptions appropriate to the design requirements and computer capabilities of the
time. For example, it used the position along the RFQ as the independent variable
(resulting in non-canonical phase-space variables) and the paraxial approximation in
the beam dynamics computation. The longitudinal phase-space is described by the
phase and energy differences of each particle from the synchronous particle. Later, the
higher-order field terms in the vane potential needed to describe the effects of the vane
shape resulting from actual machining procedures were added, as well as many other
features necessary to the final detailed design and manufacture of a practical RFQ,
resulting in the widely used code PARMTEQM.

In developing a beam-based design procedure based on the envelope equations (and the
equipartitioning equation), it became desirable to achieve a closer agreement between
the design predictions from these equations and the simulation results given by
PARMTEQM. Simply returning to the 2-term description did not suffice. It was also
necessary to return to the more physical choice of time as the independent variable, as
space-charge forces must be computed when the beam particles are at the same time.
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In a procedure where position is the independent variable, it is very difficult to
accurately transform the particles from position to the same time, where the space-
charge computation is made, and then back again to the position, with the accuracy
required to match the design requirement coming from the envelope equations. Also,
and even more important for high-intensity machines where avoidance of beam loss is a
crucial requirement, the details of beam loss are not handled accurately enough in the
bunching and low energy portions of an accelerator (not only an RFQ) when position is
used as the independent variable in the simulation code.

Therefore PARMTEQ was changed to a code named “pteqHI,” first described in [18],
using time as the independent variable for the natural computation of space-charge,
eliminating the paraxial and other approximations, extending to enable simulation of
multiple ion species and charge states simultaneously, and with many other options.
The PARMTEQ r-z mesh PIC method for the space-charge computation and the
PARMTEQM analytic method (before the use of field maps) for multipole and image
effects are incorporated. In the simple 2-term approximation mode but accurate time-
based computation, pteqHI is also designed to be fast and efficient for optimization
studies; however the execution time is presently much slower when the multipole and
image effects are included. The source code is available.

Of course, all input and output pteqHI data files used for the results in this report are
available to the project.

8.2.2 Use of pteqHI

Analysis of the cell-by-cell rms properties of the beam inside the RFQ is nonsense if
particles are included that are already lost or in the process of being lost within the
RFQ. PteqHI requires two full runs for full analysis. Particles lost within the RFQ are
identified in the first run and flagged. In the second run, all the particles are simulated
exactly as on the first run, but rms analysis is performed only on the particles that will
be successfully transmitted to the RFQ output. This method has made it possible to
reliably understand the space-charge physics within the RFQ and to develop the design
code in exact correspondence.

Many options are available in pteqHI.

The code is structured to handle simultaneous distributions of ions; each distribution
carries its own number of particles, input emittance data, charge, mass, current, and
input energy.

The input distributions can be generated as usual from the input parameters in a
number of analytical forms; typically a transverse waterbag and dc longitudinal for the
RFQ, or input particle distribution tables can be read in.

The RFQ cell parameters can be generated using the 2-term potential description or
from multipole coefficient tables provided by LINACSrfq. Image-effect coefficient tables
can also be provided by LINACSrfq.

The acceptance of the structure from the input (at any cell) to a downstream point can
be measured.
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Options are available for the radial and longitudinal loss criteria.

Matrices of runs can be executed in batch mode, varying (for the first distribution listed)
the input emittance alpha, beta or emittance, current, injection energy, and the RFQ
vane voltage level by a vfac multiplying coefficient; in addition the beam current of two
additional distributions can be varied.

Input and output beam transport lines can be added.

Input beam emittance match parameters can be found in a variety of ways.

- PARMTEQM assumes there is a match point just after the radial matching
section, and uses an envelope equation method to compute backward to the RFQ input.
This method yields an adequate match, but it can be considerably improved. PteqHI
can iteratively use the beam itself from the input in to the match point, to minimize the
difference between the specified and actual emittance alphas and betas at the match
region. Either the same alpha and beta are found for the averaged x- and y- behavior, or
separate x- and y- alphas and betas can be found.

- Other match strategies near the beginning of the RFQ have been tested, for
example, minimization of the weighted standard deviation of beam size across a match
region.

- The most reliable match is still found by a transmission matrix, found by
running a batch matrix of input emittance alphas and betas (contamination by other
beams can be included in the background). The transmission as a function of input
ellipse parameters is often complicated [29] (Section 6.8), thus this matrix method is the
most reliable.

At present, no graphics is done inside the code - in the development environment, the
graphics requirement changed daily; it is easy to write output files and do the graphics
separately.

Availability of the source code makes it easy to change or add other options.

8.2.3 Beam Loss Criteria

Particles in the RFQ are determined radially lost if they hit the vane surface. Some
particles also travel between the vane tips out to significant radii. The inaccuracy of the
rf fields outside the circle describing the innermost vane tip was discussed above; and
assuming other factors (such as the space-charge routine) remain the same, the use of
3-D field maps and a criteria that a lost particle hits the vane surface is best. The
accuracy of the 3D maps out to the appropriate particle radii must be established.

PteqHI uses the multipole and image field description of PARMTEQM as described

above. A loss radial loss boundary that describes a typical vane-tip contour near the
axis is generated using a quadrupolar function, as illustrated in Fig. 8.2-1.
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Fig. 8.2-1. Quadrupolar function with +-10° vanetip opening angle, computed at
each step for x- and y- location of actual vane tips.

If a particle strays outward into the inter-vane region, the multipole fields rapidly
become inaccurate and particles can receive very large energy kicks. A particle is
declared radially lost if it hits the quadrupolar function boundary or a radius equal to
1.5 times the location of the outermost vane tip. The particle energy is inspected, and if
it is greater than 1.25 times the synchronous energy, the synchronous energy is
assigned as the energy of the lost particle.

A few particles can also receive non-realistically large energy kicks, or even have
negative energy, although still within the radially accepted region; if this occurs, the
particle is dropped from the simulation and its energy is assigned as the synchronous
energy at that point. Later, these particles are also considered as radially lost at that
position in the RFQ.

Finally, some particles may come nearly to rest and can cause the code to endlessly
loop if not removed. Therefore a lower energy bound of 0.05 times the synchronous
energy is set and particles are dropped from the simulation if their energy drops below
this bound; their energy remains at the bound, and they are later considered as being
lost radially at that position with that energy.

The loss criteria are applied at each time step of the simulation.

8.2.4 Variation with Number of Particles simulated

Tables 8.2-1,2,3 indicate the accelerated beam transmission at the output can be found
with good accuracy even with 5-10K simulated particles. The statistics for the total loss
with energies above 1 MeV are not good for less than 100K simulated particles. The
computing time for 100K-1M particles is still large, so such runs would be made only at
the final design stage.
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Table 8.2-1. CDR RFQ - Variation of transmission with number of particles simulated.

5K WB 10K WB 100K WB 1M WB ~1M Source Emit
% losses >1MeV  [0.0 0.01 0.034 -- 0.073
% Accelerated 90.3 89.4 89.6 - 89.4

Table 8.2-2. AItCDR RFQ - Variation of transmission with number of particles simulated.

5K WB 10K WB 100K WB 1M WB ~1M Source Emit
% losses >1MeV  [0.12 0.05 0.068 0.123
% Accelerated 91.2 91.3 90.9 89.8

Table 8.2-3. PostCDR RFQ - Variation of transmission with number of particles simulated.

5K WB 10K WB 100K WB 1M WB ~1M Source Emit
% losses >1MeV  [0.02 0.08 0.077 0.075 0.081
% Accelerated 97.0 07.1 07.1 07.1 05.8

Tables 8.2-1,2,3 Percent of particles accelerated and % losses with energies above 1 MeV, for
ideal waterbag input distributions with 5K, 10K, 100K and 1M particles, and for the ion source
emittance distribution of ~1M particles rms matched to the RFQ input.
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Fig. 8.2.2. Left - % accelerated particles, 100K waterbag initial distribution; Right - %
accelerated particles, Source Emittance initial distribution.
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Fig. 8.2.2 shows the cell-by-cell transmission of the three RFQs for the 100K waterbag
and Source Emittance distributions.

Figs. 8.2.3-5 show, for the Post-CDR RFQ, the variation in the % of all lost particles vs.
energy and vs. cell number as a function of the number of particles simulated.

Fig. 6.2.6 shows the matching sensitivity results for all three RFQs for 100K particles
(to the left) and 10K particles (to the right). The trends are observable with 10K
particles; the statistics are only adequate at 100K particles, but at present the
computer runs take a long time even with 100K particles. The figures were generated
on a grid of 7 alphas and 5 beta. A Mathematica© interpolation polynomial, which
leaves the values unchanged at the given grid points, was used to fill in the mesh by a
factor of five in each direction.
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0.1

Fig. 8.2-4a,b. Post-CDR RFQ. % of all lost particles vs. energy where lost, expanded
vertical scales. For SK, 10K, 100K, 1M particles, loss of 1 particle is 0.02%, 0.01%,

0.001%, 0.0001%. (400 bins, each 5.05MeV /400 = 0.012625 MeV).
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8.3 Other RFQ Simulation Codes

Comparison to PARMTEQM (versions in which the paraxial approximation has been
removed) show that the overall transmission may be comparable within a few percent,
but that the loss patterns (the distribution and energy of loss particles) differ
significantly. This difference has also been observed in the LEDA RFQ, the most
powerful and longest cw RFQ to date [12,21]. It has not been possible to compare the
LEDA data with a pteqHI simulation; this would be a valuable exercise.

Other groups also made new codes that grew from PARMTEQM but removed many of
the assumptions to achieve better accuracy. These codes used time as the independent
variable, removed the paraxial approximation, and replace the vane potential
description formulas by full 3-D field maps exactly conforming to the metal shape as it
would be manufactured. LIDOS, by the Moscow Radiotechnical Institute, is fully
developed and available commercially, including the source code. The TOUTATIS [24]
code was derived from PARMTEQM with removal of certain approximations, especially
the paraxial, and with 3-D field maps; the reference contains an excellent comparison of
the fields produced in the vane-tip region by PARMTEQM and by the TOUTATIS 3-D
field map method. The PARMTEQM (pteqHI, etc.) analytically expressed fields are really
accurate only in the circle describing the innermost vane-tip, and can have large local
errors outside this region. (The latest PARMTEQM version has 3D field maps, but
unfortunately still has inaccurate space-charge computation by retaining position as
the independent variable.) Beam loss results from the analytical method have been
compared to LIDOS [SOJand TOUTATIS; the overall transmission results are usually
within a few percent; detailed comparison and analysis of the beam loss patterns have
not been done. A number of other codes are also being developed independently.

The space-charge simulation method itself (assuming that the dynamics correctly
assigns the canonical time coordinates to the particles at the space-charge computation
point) is central to many details of the beam-loss pattern. PteqHI, PARMTEQM and
TOUTATIS all use the same underlying r-z mesh PIC method, which is fundamentally
reliable, but which has many details that affect the space-charge computation.
Absolute results are subject to error bars, whose magnitude is extremely difficult to
determine because of uncertainties in the physical and computational modeling.
Relative comparisons between designs might be expected to be trustworthy; however,
there is disconcerting evidence when comparing different codes even on this point, and
detailed comparison of source code is needed.

Source code availability is essential for a project to be able to make informed decisions
about the final modeling for the project. PteqHI and LIDOS source code are available.

The IFMIF project expended a large fraction of the limited resources available in 2004
trying to use the TOUTATIS code to reproduce published results and then work beyond
toward improved RFQ designs. An executable version was available and a single input
datafile was furnished from which the results had been obtained. Execution did not
reproduce the expected transmission. Questions were posed and help requested; finally
a petition was made to the code author, who kindly suggested different setting of
various options in the input file. Unfortunately, the results were still always less than
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the referenced result, and the many other questions were not answered. Therefore
official use by the Project was discontinued, until the code is more fully developed, and
most important - until source code would be made available from which independent
judgments can be made.

The exact transmission found by any of these codes should be treated as indicative, as
each has various sensitivities in its internal methods. Continued work to compare
results between different codes more broadly and deeply than heretofore is highly
recommended - this requires comparison at source code level and devising of
appropriate tests. It is strongly recommended that the project obtain source code for all
important simulation work.
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9. Ion-Source/LEBT Input Beam Modeling

A few notes on the ion source/LEBT:

ECR Ion-Source Status

There was substantial concern during the early years of the IFMIF program about the
reliability of an IFMIF ion source. IFMIF provided support for a thorough engineering
evaluation of the ECR ion source. Several runs accumulating several 1000 hours of cw
operation at ~100mA protons showed that the availability of the ECR source should be
high.

The 140mA deuteron beam performance within the specified emittance has not been
demonstrated, either with deuterons or with ~200mA protons to investigate a scaled
result. See Section 1.1.1.

ListContourPlot[dataheight. PlotRanges — (-0.001. 1}. Contours - 50.
ColorFunction - Huel:

g
(7 —

ListPlot[dataheight[[25]].
[PlotJoined —+ True, FlotRange — A11]

=0 40 so 8o 1 Cross-section at ordinate value = 25.

Fig. 9.1 Raw Data Characteristics of the ECR Ion-Source Emittance Distribution
(see figures, Section 6.6) Right figure has expanded vertical scale.

As noted in Section 1.1.1, this result for ~100mA protons is the only emittance data set
available to the project. The halo appears to be composed of protons. The data set is
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thresholded by an inaccurate (and optimistic) method. The more accurate method
developed by M. Stockli at SNS should be used. For this report, the data set has been
numerically transformed to the input a and p ellipse matching parameters required by
the RFQs. The rms value is also adjusted to equal that of the ideal waterbag
distribution.

CDA Section 2.6.2.10.1 Injector beam

The IGUN output is converted to a particle input appropriate for the TOPKARK code, which is used to
model beam dynamics in a two-solenoid, space-charge-compensated LEBT. The beam radius is kept to less
than half the 6-cm radius of the 15 cm long solenoids, which have a peak on-axis magnetic field of 0.55 T.
The fringe fields are modeled using an analytical expression that agrees well with measurements of
solenoids encased in an iron shield. Roughly 30 % of the halo (3 % of the beam) is scraped inside the
solenoids. The background neutral gas in the LEBT is assumed to provide 98 % space charge
neutralization, implying an effective current of 3 mA. Fluctuations in the source current of + 1 % on a time
scale faster than the neutralization time are assumed to vary the effective current from 1.5 mA to 4.5 mA,
which leads to a time-varying beam mismatch at the RFQ entrance. Although this process is not fully
understood and is difficult to model, the effect is approximated by overlapping the final particle distribution
from three separate simulations using the minimum, average and maximum effective current. This results in
an effective RMS emittance growth of 33 %. Aberrations due to nonlinear magnetic fields and space charge
forces are small compared to this mismatch effect.

LEDA LEBT

An electron ring is needed just before the RFQ input, to compensate for the short
unneutralized section between the end of the LEBT and the beginning of the RFQ vanes.
(LYoung, LINAC’2000, [33])

CDA LEBT - CDA Section 2.6.2.2, Fig. 2.6.2-3

Solemoids
50 /,-f ' ' ‘\z !
wl _
0B3ET
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!J:l | EBE_ - f _\‘-\—“-‘"—\-._‘___ -
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Figure 2.6.2.3, Effect of chazpe compensation oz beam radims in 2 solenoidal LEST.

Fig. 9.2 LEBT outlined in the CDA

92



From an IAP Report.

Extensive new work has been performed by IAP in 2006 under this same EFDA Work
Package.

v \

/

Fig. 9.3 A representative LEBT outlined by IAP

SILHI LEBT

/Users/rajameson/Documents/Folders/IFMIF/\ ACC\ IS:LEBT/IFMIF\
BLM/ECR\ &LEBT/EmMsmtSaclECRLEBT.bmp

Sol. 1 Sol.2 Emittanzmessung
B =013 T Z£100mm  Bia=011T 60 mm

A 4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Fig. 9.4 A LEBT considered by Saclay includes a collimator.

A collimator in the LEBT (also used at SNS) may be helpful for scraping halo beam.
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10. Concluding Remarks

Summary observations and comments are given in Section 6.9.

The careful reader will have noticed various features, such as some oscillation of the
“matched” rms beam profiles. These are the subject of ongoing research, involving
basic issues such as adiabaticity, phase-space mixing and so on. There is also subtle
evidence concerning the role of adiabaticity in the optimization process. The RFQ
remains a very interesting example of general linear accelerator physics.

The simulations reported were performed with a consistent family of codes. Relevant
comparison with other codes has not been possible as their source code is not available.
Certain differences have been noted but are not consistent over a broad range of
designs and parameter range. The exact transmission found by any of these codes
should be treated as indicative, as each has various sensitivities in its internal methods.
Continued work to compare results between different codes more broadly and deeply
than heretofore is highly recommended - this requires comparison at source code level
and devising of appropriate tests. It is strongly recommended that the project obtain
source code for all important simulation work.
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Appendix

Post-CDR RFQ LINACS Summary Table

rfqtvpe= 4 -wane Win= 0.095 Wout= 5. I- 0.13 him= 2Z.0145 g= 1 freqg=
powcuFac= 7.94 EhooverEO= 0,75
vane geonetry= VSINE., mpole= 1 wnpoleterms=- 1 1 1 1 1 1 1 1 image= 0
ckap := VSINEepk [EhooverRO, localls, localem]
EPlimit= 13 9855 EPface 1.7 vEilpatrick - —”““;:;EZ:‘E:;[““
etnrmsgiven= 0.000025 elnrmsgiven= 0.00004
etnrmsgivenmain ;= etnrmsgiven
elnrmsgivenmain ;= [endbeta = 0.073; elnrmsgiven (1 +0. 25 [;ﬁﬁiffffﬁ%;]lj]
Shaper parameters:. EOSaperfac= & phistgt= -88. bfrac= 0.5 ruscells= 4
siglint= 105 porch= 60, setbeginem= 1.12 celldiv= 10
shapervrule = (V[rfq] =N % ]
ffadjrule = ffadj ;= wtfit[m]
ffadjo= 1.
phis rule: Ilfacincr= -1. lfacdist= 12
lgapfac = cl+cZ (= - =E0S)
cl=  3.89408 cZ2= -0.0833333
TEphisrule = (If [phisbw = -20., phis[rfqg] =phisbw, phis[rig] = -20.];)
mainrfgphisrule ;= TEphisrule
wainrfgaperrule ;= (endbeta = 0.073; c3 =1.15;a[rfq]:=aEOS[1+c3[;£§§§§2§%5]1j;]
wainrfgvrule (= (v[rfqg] = vEilpatrick /. {a[rfg] —wastart, en[riqg] - nstart};)
wainrfgemrule = nfree
nfunc = none
wainkFostrategy = matchEP
matchllzer = none
Copperpower= 1.058726 {phase length, rwms phase length, Degrees) 11,1596 24,9837

Post-CDR RFQ PteqHI tapeinput
run 1 0 002 0000O0O0O0OO0O0O0DO
title
IFMIF C2709g3

linac 1 0.095 175. 2.0145 1
tank 1 5. -90 0.1 0 1.0 0 1.0 0 0 1.0 10 1 36 0.0 0.0
zdata -5 -3.44745 0.01 -90. 1. 0.0689503
-2.58559 0.974581 -90. 1. 0.0689503
-1.72372 1.93916 -90. 1. 0.0689503
-0.861862 2.90374 -90. 1. 0.0689503 4
zdata -5
0. 3.86832 -90. 1. 0.0689503
8.61862 4.62525 -90. 1.00814 0.0689503

1

1

17.2372 5.38986 -90. .02966 0.0689503
25.8559 6.15447 -90. .06247 0.0689503
27.5796 6.3074 -89.8473 1.07032 0.0689503
29.3034 6.46033 -89.6496 1.07861 0.0689503
31.0275 6.61328 -89.4519 1.08735 0.0689503

32.752 6.76627 -89.2542 1.09653 0.0689503
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34.4771 6.91931 -89.0564 1.10618
36.203 7.07243 -88.8585 1.11631
37.9301 7.22564 -88.6604 1.12694
39.6587 7.37899 -88.4622 1.1381
41.3892 7.5325 -88.2638 1.14981
43.122 7.68622 -88.0651 1.16212
51.8282 7.67661 -87.772 1.16786
60.6166 7.66451 -87.4101 1.16834
69.5008 7.64954 -86.9795 1.16906
78.4972 7.63126 -86.4643 1.17003
87.6256 7.60939 -85.8441 1.1713
96.9102 7.58035 -85.1046 1.17347
106.381 7.54343 -84.2168 1.17654
116.074 7.49937 -83.139 1.18023
126.037 7.44623 -81.8325 1.18474
136.325 7.38181 -80.2554 1.19034
147.012 7.30324 -78.3666 1.19741
158.186 7.20755 -76.1296 1.20638
169.959 7.09103 -73.5247 1.21768
182.468 6.95024 -70.5596 1.23163
195.875 6.78048 -67.2858 1.24911
210.377 6.58202 -63.7733 1.27016
226.192 6.35517 -60.1325 1.29514
243.566 6.10302 -56.4872 1.32359
262.757 5.83116 -52.9547 1.35513
284.027 5.54597 -49.63 1.38877
307.629 5.25647 -46.5728 1.42307
333.798 4.97457 -43.7905 1.45652
362.737 4.70355 -41.2937 1.48937
394.626 4.44644 -39.0654 1.52072
429.616 4.20712 -37.0709 1.54938
467.829 3.98738 -35.2765 1.57484
509.359 3.78653 -33.6547 1.59777
554.284 3.60132 -32.1874 1.61926
602.67 3.43084 -30.848 1.63904
654.571 3.27422 -29.6138 1.65693
710.03 3.13015 -28.468 1.67317
769.082 2.99719 -27.3972 1.68818
rfgout 1

start 1

stop -1

elimit 0.25 0.25
input -6 -100000 1.2 11. .01491 1.2 11.
180. 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1. 2.0145 130.
output 2 -1 2 0 1 1 1 2000 1
scheff 130.0 0.029 -0.04425 20 40 20

optcon 120000 7 0.9 1.5 .1 1 11.
0000 0000 0000

begin

end

Post-CDR RFQ Cell Table

nc v ws beta ez capa
0 0.069 0.0950 0.0101 0.000 0.00000
1 0.069 0.0950 0.0101 0.000 0.00000
2 0.069 0.0950 0.0101 0.000 0.00000
3 0.069 0.0950 0.0101 0.000 0.00000
4 0.069 0.0950 0.0101 0.000 0.00000
5 0.069 0.0950 0.0101 0.000 0.00003
6 0.069 0.0950 0.0101 0.001 0.00013
7 0.069 0.0950 0.0101 0.002 0.00030
8 0.069 0.0950 0.0101 0.004 0.00053
9 0.069 0.0950 0.0101 0.007 0.00083
10 0.069 0.0950 0.0101 0.010 0.00119
11 0.069 0.0950 0.0101 0.013 0.00162
12 0.069 0.0950 0.0101 0.017 0.00211
13 0.069 0.0950 0.0101 0.021 0.00267
14 0.069 0.0950 0.0101 0.026 0.00330

0.0689503
0.0689503
0.0689503
0.0689503
0.0689503
0.0689503
0.0694543
0.0696384
0.0698553
0.0701113
0.0704176
0.0707951
0.0712555
0.0718093
0.0724813
0.0733035
0.0743186
0.0755799
0.0771432
0.0790632
0.0814188
0.0842767
0.0877114
0.0917385
0.0963772
.101578
0.107253
0.113364
0.119884
0.126704
0.133716
0.140847
0.148117
0.155538
.163053
0.170619
.178223
0.185871

.01491

0.095

11. 1. 0000

phi

-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.

Jay
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.384
.052
.746
.609
.528
.523
.518
.513
.508
.504
.499
.494
.490
.485
.481
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o
w
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.000
.000
.000
.000
.000
.000
.000
.001
.001
.002
.003
.004
.005
.007
.008

SRR WWNDE OO

.010
.975
.939
.904
.868
.937
.014
.090
.167
.243
.319
.396
.472
.549
.625

cl

[=NeleleleleNeNe oo No o l=2=N=)

.000
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862

tl

0.00
0.86
1.72
2.59
3.45
4.31
5.17
6.03
6.89
7.76
8.62
9.48
10.34
11.20
12.07
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.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
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.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0951
.0951
.0951
.0951
.0952
.0952
.0953
.0954
.0954
.0955
.0956
.0957
.0959
.0960
.0961
.0963
.0964
.0966
.0968
.0969
.0971
.0973
.0975
.0976
.0978
.0980
.0982
.0984
.0986
.0988
.0990
.0992
.0994
.0996
.0998
.1000
.1003
.1005
.1007
.1009
.1012
.1014
.1017
.1019
.1022
.1024
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.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104

0.032
0.038
0.045
0.052
0.059
0.067
0.076
0.085
0.095
0.105
0.116
0.128
0.139
0.152
0.165
0.178
0.192
0.207
0.222
0.237
0.253
0.270
0.287
0.305
0.323
0.342
0.361
0.381
0.401
0.422
0.444
0.466
0.488
0.512
0.535
0.560
0.585
0.610
0.637
0.664
0.687
0.687
0.687
0.687
0.687
0.687
0.687
0.688
0.688
0.688
0.688
0.688
0.688
0.689
0.689
0.689
0.689
0.689
0.690
0.690
0.690
0.690
0.691
0.691
0.691
0.692
0.692
0.692
0.692
0.693
0.693

[=Nelelelelele oo oo ool =R« lee e oo oo -2l Nele e le oo HoNo o=l e e Ne e lele oo oo oo o Neo NoNeo No o l=Reo e Ne No}

.00399
.00475
.00557
.00646
.00742
.00844
.00952
.01068
.01190
.01318
.01453
.01595
.01743
.01898
.02059
.02227
.02401
.02583
.02770
.02965
.03165
.03373
.03587
.03808
.04036
.04271
.04513
.04762
.05018
.05281
.05552
.05830
.06116
.06409
.06711
.07021
.07339
.07665
.08001
.08345
.08596
.08603
.08609
.08616
.08624
.08631
.08638
.08646
.08653
.08661
.08669
.08678
.08687
.08695
.08704
.08714
.08723
.08732
.08742
.08752
.08762
.08773
.08783
.08794
.08805
.08816
.08828
.08840
.08852
.08864
.08877

-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-86.
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.4717
.472
.468
.464
.460
.456
.452
.448
.444
.441
.437
.433
.430
.426
.423
.419
.416
.413
.409
.406
.403
.399
.396
.393
.390
.387
.384
.381
.378
.375
.372
.369
.366
.363
.360
.358
.355
.352
.349
.346
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.347
.348
.348
.348
.348
.348
.348
.348
.348
.348
.348
.348
.348
.348
.349
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.010
.011
.013
.015
.017
.020
.022
.024
.027
.030
.032
.035
.038
.041
.045
.048
.051
.055
.059
.062
.066
.070
.074
.079
.083
.087
.092
.097
.101
.106
.111
.116
.122
.127
.132
.138
.144
.150
.156
.162
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.168
.169
.169
.169
.169
.169
.169
.169
.169
.169
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.702
.778
.855
.931
.008
.084
.161
.237
.313
.390
.466
.543
.619
.696
L1772
.849
.925
.002
.078
.155
.231
.307
.384
.460
.537
.613
.690
.766
.843
.919
.996
.072
.149
.226
.302
.379
.456
.533
.609
.686
.685
.684
.684
.683
.682
.681
.680
.679
.678
.677
.676
.674
.673
.672
.671
.670
.668
.667
.666
.665
.663
.662
.660
.659
.657
.656
.654
.653
.651
.650
.648
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.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.863
.863
.863
.863
.864
.864
.864
.865
.865
.866
.866
.867
.868
.868
.869
.870
.871
.871
.872
.873
.874
.875
.875
.876
.877
.878
.879
.880
.881
.882
.882
.883
.884
.885
.886
.887
.888
.889
.891
.892
.893
.894
.895

12.93
13.79
14.65
15.51
16.38
17.24
18.10
18.96
19.82
20.68
21.55
22.41
23.27
24.13
24.99
25.86
26.72
27.58
28.44
29.30
30.17
31.03
31.89
32.75
33.61
34.48
35.34
36.20
37.06
37.92
38.79
39.65
40.51
41.38
42.24
43.11
43.97
44.84
45.70
46.57
47.44
48.31
49.18
50.05
50.92
51.79
52.66
53.53
54.41
55.28
56.16
57.03
57.91
58.79
59.67
60.55
61.43
62.31
63.19
64.08
64.96
65.85
66.73
67.62
68.51
69.40
70.29
71.18
72.07
72.97
73.86



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
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.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
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.1027
.1030
.1032
.1035
.1038
.1041
.1044
.1047
.1050
.1053
.1056
.1059
.1062
.1066
.1069
.1072
.1076
.1080
.1083
.1087
.1091
.1094
.1098
.1102
.1106
L1111
.1115
.1119
.1124
.1128
.1133
.1137
.1142
.1147
.1152
.1157
.1162
.1167
L1173
.1178
.1184
.1190
.1196
.1202
.1208
.1214
.1220
.1227
.1234
.1240
.1247
.1254
.1262
.1269
L1277
.1285
.1292
.1301
.1309
.1317
.1326
.1335
.1344
.1354
.1363
.1373
.1383
.1393
.1404
.1415
.1426
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.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0106
.0106
.0106
.0106
.0106
.0106
.0107
.0107
.0107
.0107
.0107
.0107
.0108
.0108
.0108
.0108
.0108
.0109
.0109
.0109
.0109
.0109
.0110
.0110
.0110
.0110
.0111
.0111
.0111
.0111
.0112
.0112
.0112
.0112
.0113
.0113
.0113
.0113
.0114
.0114
.0114
.0115
.0115
.0115
.0116
.0116
.0116
.0117
.0117
.0117
.0118
.0118
.0118
.0119
.0119
.0120
.0120
.0121
.0121
.0121
.0122
.0122
.0123
.0123

0.693
0.694
0.694
0.695
0.695
0.695
0.696
0.696
0.697
0.697
0.697
0.698
0.698
0.699
0.699
0.700
0.700
0.701
0.701
0.702
0.702
0.703
0.704
0.705
0.705
0.706
0.707
0.708
0.709
0.710
0.711
0.712
0.713
0.714
0.715
0.716
0.717
0.718
0.720
0.721
0.722
0.723
0.724
0.726
0.727
0.728
0.730
0.731
0.732
0.734
0.735
0.736
0.738
0.739
0.741
0.742
0.744
0.745
0.747
0.749
0.750
0.752
0.754
0.756
0.757
0.759
0.761
0.763
0.765
0.767
0.769
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.08889
.08902
.08916
.08929
.08943
.08957
.08971
.08985
.09000
.09015
.09030
.09046
.09061
.09077
.09093
.09110
.09127
.09144
.09163
.09183
.09202
.09224
.09245
.09267
.09290
.09312
.09336
.09360
.09386
.09411
.09437
.09464
.09492
.09520
.09550
.09579
.09610
.09640
.09672
.09704
.09736
.09769
.09802
.09835
.09870
.09905
.09940
.09976
.10013
.10051
.10089
.10129
.10169
.10209
.10251
.10293
.10337
.10381
.10426
.10472
.10519
.10567
.10616
.10666
.10716
.10768
.10821
.10874
.10929
.10986
.11043

-86.
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-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
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-86.
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-85.
-85.
-85.
-85.
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-82.
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-82.
-82.
-81.
-81.
-81.
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-81.
-80.
-80.
-80.
-80.
-80.
-80.
-79.
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.349
.349
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.351
.351
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.351
.352
.352
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.352
.353
.353
.353
.353
.353
.353
.354
.354
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.354
.355
.355
.355
.355
.355
.356
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.356
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.358
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.358
.359
.359
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.360
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.169
.169
.169
.170
.170
.170
.170
.170
.170
.170
.170
.170
.170
.171
.171
.171
.171
.171
.171
.171
.172
.172
.172
.172
.172
.173
.173
.173
.173
.174
.174
.174
.175
.175
.175
.176
.176
.176
177
177
177
.178
.178
.178
.179
.179
.179
.180
.180
.181
.181
.181
.182
.182
.183
.183
.184
.184
.185
.185
.186
.186
.187
.187
.188
.189
.189
.190
.190
.191
.192
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.646
.644
.643
.641
.639
.637
.635
.633
.631
.629
.627
.625
.623
.621
.619
.617
.614
.612
.609
.607
.604
.601
.599
.596
.593
.590
.587
.584
.580
.577
.574
.570
.567
.563
.559
.555
.551
.547
.543
.539
.535
.531
.527
.522
.518
.513
.509
.504
.499
.495
.490
.484
.479
.474
.469
.463
.458
.452
.446
.440
.434
.428
.422
.416
.409
.402
.396
.389
.382
.375
.367
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.896
.897
.898
.900
.901
.902
.903
.905
.906
.907
.909
.910
911
.913
.914
.916
.917
.919
.920
.922
.923
.925
.927
.928
.930
.932
.934
.935
.937
.939
.941
.943
.945
.947
.949
.951
.953
.955
.958
.960
.962
.964
.967
.969
.972
.974
977
.979
.982
.985
.988
.990
.993
.996
.999
.002
.005
.008
.012
.015
.018
.022
.025
.029
.032
.036
.040
.044
.048
.052
.056

74.76
75.65
76.55
77.45
78.35
79.25
80.16
81.06
81.97
82.88
83.78
84.69
85.61
86.52
87.43
88.35
89.27
90.18
91.10
92.03
92.95
93.88
94.80
95.73
96.66
97.59
98.53
99.46
100.40
101.34
102.28
103.22
104.17
105.11
106.06
107.01
107.97
108.92
109.88
110.84
111.80
112.77
113.73
114.70
115.67
116.65
117.63
118.61
119.59
120.57
121.56
122.55
123.54
124.54
125.54
126.54
127.55
128.55
129.57
130.58
131.60
132.62
133.65
134.68
135.71
136.74
137.78
138.83
139.87
140.93
141.98



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
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.074
.074
.074
.074
.074
.074
.074
.074
.074
.075
.075
.075
.075
.075
.075
.075
.075
.076
.076
.076
.076
.076
.076
.076
.077
.077
.077
.077
.077
.077
.078
.078
.078
.078
.078
.079
.079
.079
.079
.079
.080
.080
.080
.080
.081
.081
.081
.081
.082
.082
.082
.082
.083
.083
.083
.084
.084
.084
.085
.085
.085
.086
.086
.086
.087
.087
.087
.088
.088
.088
.089
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.1437
.1448
.1460
.1472
.1485
.1498
.1511
.1524
.1538
.1552
.1566
.1581
.1596
.1612
.1628
.1644
.1661
.1679
.1696
.1715
.1733
.1752
L1772
.1792
.1813
.1834
.1856
.1879
.1902
.1925
.1950
.1975
.2000
.2027
.2054
.2081
.2110
.2139
.2169
.2200
.2232
.2265
.2298
.2333
.2368
.2405
.2442
.2480
.2520
.2560
.2602
.2645
.2689
.2734
.2780
.2828
.2876
.2927
.2978
.3031
.3085
.3141
.3198
.3257
.3318
.3379
.3443
.3508
.3575
.3644
.3714
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.0124
.0124
.0125
.0125
.0126
.0126
.0127
.0127
.0128
.0129
.0129
.0130
.0130
.0131
.0132
.0132
.0133
.0134
.0134
.0135
.0136
.0137
.0137
.0138
.0139
.0140
.0141
.0141
.0142
.0143
.0144
.0145
.0146
.0147
.0148
.0149
.0150
.0151
.0152
.0153
.0154
.0155
.0156
.0158
.0159
.0160
.0161
.0163
.0164
.0165
.0167
.0168
.0169
.0171
.0172
.0174
.0175
.0177
.0178
.0180
.0181
.0183
.0185
.0186
.0188
.0190
.0192
.0193
.0195
.0197
.0199

0.771
0.773
0.775
0.777
0.779
0.782
0.784
0.786
0.789
0.791
0.794
0.796
0.799
0.801
0.804
0.807
0.810
0.813
0.815
0.818
0.821
0.824
0.828
0.831
0.834
0.837
0.841
0.844
0.847
0.851
0.854
0.858
0.861
0.865
0.869
0.872
0.876
0.880
0.884
0.888
0.892
0.896
0.901
0.905
0.909
0.914
0.918
0.923
0.927
0.932
0.936
0.941
0.946
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
1.005
1.011
1.016
1.021
1.026
1.032
1.037
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.11102
.11161
.11223
.11285
.11349
.11415
.11481
.11550
.11619
.11690
.11763
.11837
.11913
.11990
.12069
.12149
.12232
.12316
.12402
.12490
.12579
.12670
.12763
.12859
.12956
.13054
.13155
.13257
.13362
.13468
.13577
.13687
.13800
.13915
.14031
.14151
.14273
.14397
.14524
.14653
.14785
.14920
.15057
.15197
.15339
.15484
.15631
.15781
.15933
.16087
.16243
.16402
.16562
.16727
.16893
.17061
.17232
.17406
.17583
.17762
.17943
.18126
.18313
.18501
.18693
.18886
.19082
.19280
.19480
.19682
.19885

-79.
-79.
-79.
-79.
-79.
-78.
-78.
-78.
-78.
-77.
-77.
-77.
-77.
-77.
-76.
-76.
-76.
-76.
-75.
-75.
-75.
-75.
-74.
-74.
-74.
-74.
-73.
-73.
-73.
-73.
-72.
-72.
-72.
-71.
-71.
-71.
-70.
-70.
-70.
-69.
-69.
-69.
-69.
-68.
-68.
-68.
-67.
-67.
-66.
-66.
-66.
-65.
-65.
-65.
-64.
-64.
-64.
-63.
-63.
-63.
-62.
-62.
-62.
-61.
-61.
-60.
-60.
-60.
-59.
-59.
-59.
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.361
.361
.361
.362
.362
.362
.363
.363
.363
.364
.364
.365
.365
.365
.366
.366
.367
.367
.368
.368
.368
.369
.369
.370
.370
.371
.371
.372
.373
.373
.374
.374
.375
.375
.376
.377
.377
.378
.379
.379
.380
.381
.382
.382
.383
.384
.385
.385
.386
.387
.388
.389
.390
.390
.391
.392
.393
.394
.395
.396
.397
.398
.399
.400
.401
.403
.404
.405
.406
.407
.408
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.192
.193
.194
.194
.195
.196
.197
.197
.198
.199
.200
.201
.202
.203
.203
.204
.205
.206
.207
.208
.210
.211
.212
.213
.214
.215
.216
.218
.219
.220
.222
.223
.224
.226
.227
.229
.230
.232
.233
.235
.236
.238
.240
.242
.243
.245
.247
.249
.251
.253
.255
.257
.259
.261
.263
.266
.268
.270
.272
.275
L2717
.280
.282
.285
.287
.290
.292
.295
.298
.301
.303
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.360
.352
.344
.337
.329
.320
.312
.303
.294
.286
.276
.267
.258
.248
.238
.228
.218
.208
.197
.186
.175
.164
.152
.140
.128
.116
.104
.091
.078
.065
.052
.038
.024
.010
.995
.981
.966
.950
.935
.919
.902
.886
.869
.852
.835
.817
.799
.780
.762
.743
.724
.704
.685
.665
.644
.624
.603
.582
.561
.539
.517
.495
.472
.449
.426
.403
.379
.355
.331
.307
.282

PFRRPRPRRRPRPPRRRPRPRPRRPRPRPPRPRRRERRPRPRRRPRRPRPRRRRPRPRRRRPPRPRRRRPRPRRRRPRPRRRRPRPPRPRRRRPRPRPRRRRRRRRRRRR

.060
.064
.069
.073
.077
.082
.087
.092
.097
.102
.107
112
117
.123
.128
.134
.140
.146
.152
.158
.164
171
177
.184
.191
.198
.205
.212
.219
.227
.235
.243
.251
.259
.267
.276
.284
.293
.302
.312
.321
.331
.340
.350
.361
.371
.382
.393
.404
.415
.426
.438
.450
.462
.474
.487
.500
.513
.526
.539
.553
.567
.581
.596
.610
.625
.641
.656
.672
.688
.704

143.04
144.11
145.17
146.25
147.33
148.41
149.49
150.59
151.68
152.78
153.89
155.00
156.12
157.24
158.37
159.50
160.64
161.79
162.94
164.10
165.26
166.43
167.61
168.79
169.99
171.18
172.39
173.60
174.82
176.05
177.28
178.52
179.77
181.03
182.30
183.57
184.86
186.15
187.45
188.77
190.09
191.42
192.76
194.11
195.47
196.84
198.22
199.62
201.02
202.43
203.86
205.30
206.75
208.21
209.68
211.17
212.67
214.18
215.71
217.25
218.80
220.37
221.95
223.54
225.16
226.78
228.42
230.08
231.75
233.44
235.14



228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
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.089
.090
.090
.090
.091
.091
.092
.092
.093
.093
.094
.094
.094
.095
.095
.096
.096
.097
.097
.098
.098
.099
.099
.100
.101
.101
.102
.102
.103
.103
.104
.104
.105
.106
.106
.107
.107
.108
.108
.109
.110
.110
111
111
.112
.113
.113
.114
.115
.115
.116
.117
.117
.118
.119
.119
.120
.121
.121
.122
.123
.123
.124
.125
.125
.126
.127
.127
.128
.129
.129
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.3786
.3860
.3936
.4014
.4094
.4176
.4260
.4346
.4434
.4524
.4616
.4711
.4808
.4907
.5008
.5112
.5219
.5328
.5439
.5553
.5669
.5788
.5910
.6034
.6161
.6291
.6424
.6559
.6698
.6839
.6983
.7130
.7280
.7433
.7589
.7748
.7910
.8075
.8243
.8414
.8589
.8767
.8948
.9132
.9319
.9510
.9704
.9901
.0102
.0306
.0514
.0724
.0939
.1157
.1378
.1603
.1831
.2063
.2298
.2537
.2779
.3025
.3275
.3528
.3785
.4046
.4310
.4578
.4849
.5125
.5403
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.0201
.0203
.0205
.0207
.0209
.0211
.0213
.0215
.0217
.0220
.0222
.0224
.0226
.0229
.0231
.0233
.0236
.0238
.0241
.0243
.0246
.0248
.0251
.0254
.0256
.0259
.0262
.0264
.0267
.0270
.0273
.0276
.0278
.0281
.0284
.0287
.0290
.0293
.0296
.0299
.0302
.0306
.0309
.0312
.0315
.0318
.0321
.0325
.0328
.0331
.0335
.0338
.0341
.0345
.0348
.0351
.0355
.0358
.0362
.0365
.0369
.0372
.0376
.0380
.0383
.0387
.0390
.0394
.0398
.0401
.0405

1.042
1.048
1.053
1.058
1.063
1.069
1.074
1.079
1.085
1.090
1.095
1.100
1.106
1.111
1.116
1.122
1.127
1.132
1.137
1.142
1.148
1.153
1.158
1.163
1.168
1.172
1.177
1.182
1.186
1.191
1.195
1.200
1.204
1.208
1.212
1.216
1.220
1.224
1.227
1.231
1.235
1.238
1.241
1.245
1.248
1.251
1.254
1.258
1.261
1.264
1.267
1.269
1.272
1.275
1.278
1.281
1.283
1.286
1.288
1.291
1.293
1.295
1.298
1.300
1.302
1.304
1.306
1.308
1.309
1.311
1.313
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.20091
.20298
.20508
.20718
.20932
.21146
.21362
.21581
.21800
.22022
.22245
.22469
.22696
.22925
.23153
.23383
.23616
.23848
.24082
.24316
.24551
.24787
.25024
.25259
.25495
.25729
.25964
.26199
.26433
.26666
.26900
.27132
.27364
.27594
.27824
.28051
.28278
.28503
.28727
.28950
.29171
.29390
.29608
.29825
.30041
.30256
.30469
.30682
.30894
.31104
.31313
.31521
.31728
.31934
.32138
.32340
.32542
.32741
.32940
.33136
.33329
.33523
.33713
.33901
.34088
.34271
.34453
.34633
.34810
.34987
.35160

-58.
-58.
-57.
-57.
-57.
-56.
-56.
-56.
-55.
-55.
-55.
-54.
-54.
-54.
-53.
-53.
-53.
-52.
-52.
-51.
-51.
-51.
-50.
-50.
-50.
-50.
-49.
-49.
-49.
-48.
-48.
-48.
-47.
-47.
-47.
-46.
-46.
-46.
-46.
-45.
-45.
-45.
-44.
-44.
-44.
-44.
-43.
-43.
-43.
-43.
-42.
-42.
-42.
-42.
-41.
-41.
-41.
-41.
-40.
-40.
-40.
-40.
-39.
-39.
-39.
-39.
-39.
-38.
-38.
-38.
-38.
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.410
.411
.412
.413
.415
.416
.417
.419
.420
.421
.423
.424
.426
.427
.429
.430
.432
.433
.435
.436
.438
.440
.441
.443
.445
.446
.448
.450
.452
.453
.455
.457
.459
.461
.462
.464
.466
.468
.470
.472
.474
.476
.478
.480
.482
.484
.486
.488
.490
.492
.494
.496
.499
.501
.503
.505
.507
.509
.512
.514
.516
.518
.521
.523
.525
.527
.530
.532
.534
.537
.539
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.306
.309
.312
.315
.318
.321
.324
.327
.330
.333
.336
.339
.342
.345
.349
.352
.355
.358
.362
.365
.368
.372
.375
.379
.382
.385
.389
.392
.396
.399
.403
.406
.409
.413
.416
.420
.423
.426
.430
.433
.437
.440
.443
.447
.450
.453
.457
.460
.463
.466
.470
.473
.476
.480
.483
.486
.489
.493
.496
.499
.502
.505
.508
.512
.515
.518
.521
.524
.527
.530
.533
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.257
.232
.207
.181
.155
.129
.103
.077
.050
.023
.996
.969
.942
.914
.887
.859
.831
.803
.775
.747
.718
.690
.662
.633
.604
.575
.546
.517
.488
.459
.430
.401
.372
.343
.314
.285
.256
.228
.199
171
.142
.114
.086
.058
.030
.002
.975
.947
.919
.892
.865
.838
.811
.784
.757
.730
.704
.677
.651
.625
.599
.573
.547
.522
.496
.471
.446
.422
.397
.373
.348
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.720
.737
.754
771
.789
.807
.825
.843
.862
.880
.900
.919
.939
.958
.979
.999
.020
.041
.062
.083
.105
.127
.149
.172
.194
.217
.241
.264
.288
.312
.336
.361
.385
.410
.435
.461
.486
.512
.538
.564
.591
.617
.644
.671
.698
.726
.754
.781
.809
.838
.866
.895
.923
.952
.981
.011
.040
.070
.100
.129
.160
.190
.220
.251
.281
.312
.343
.374
.406
.437
.468

236.86
238.60
240.35
242.12
243.91
245.72
247.54
249.39
251.25
253.13
255.03
256.95
258.89
260.85
262.82
264.82
266.84
268.88
270.95
273.03
275.13
277.26
279.41
281.58
283.78
285.99
288.23
290.50
292.79
295.10
297.43
299.79
302.18
304.59
307.02
309.49
311.97
314.48
317.02
319.59
322.18
324.79
327.44
330.11
332.81
335.53
338.29
341.07
343.88
346.72
349.58
352.48
355.40
358.35
361.33
364.34
367.38
370.45
373.55
376.68
379.84
383.03
386.25
389.50
392.79
396.10
399.44
402.81
406.22
409.66
413.13



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
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.130
.131
.132
.132
.133
.134
.134
.135
.136
.137
.137
.138
.139
.139
.140
.141
.142
.142
.143
.144
.144
.145
.146
.147
.147
.148
.149
.150
.150
.151
.152
.153
.153
.154
.155
.156
.156
.157
.158
.159
.159
.160
.161
.162
.162
.163
.164
.165
.165
.166
.167
.168
.168
.169
.170
.171
171
.172
.173
.174
.174
.175
.176
177
177
.178
.179
.180
.181
.181
.182

SR LA DLEAELEAWWWUWLWWWWWWWWWWWWWWWWWWNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRRRRRRRBRRRRRB R B2

.5686
.5972
.6262
.6556
.6853
.7154
.7458
.7767
.8079
.8394
.8714
.9037
.9363
.9694
.0028
.0366
.0707
.1052
.1401
.1754
.2110
.2470
.2834
.3202
.3573
.3948
.4327
.4710
.5096
.5486
.5880
.6278
.6680
.7085
.7495
.7908
.8325
.8746
.9170
.9599
.0031
.0467
.0907
.1351
.1798
.2250
.2705
.3164
.3627
.4094
.4564
.5039
.5517
.5999
.6485
.6975
.7469
.7966
.8467
.8972
.9481
.9994
.0510
.1031
.1555
.2083
.2615
.3151
.3690
.4234
.4781
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.0409
.0412
.0416
.0420
.0424
.0427
.0431
.0435
.0439
.0442
.0446
.0450
.0454
.0458
.0462
.0466
.0469
.0473
.0477
.0481
.0485
.0489
.0493
.0497
.0501
.0505
.0509
.0513
.0517
.0521
.0525
.0529
.0533
.0537
.0541
.0545
.0549
.0553
.0557
.0561
.0565
.0569
.0573
.0577
.0581
.0586
.0590
.0594
.0598
.0602
.0606
.0610
.0614
.0619
.0623
.0627
.0631
.0635
.0639
.0643
.0648
.0652
.0656
.0660
.0664
.0669
.0673
.0677
.0681
.0685
.0690

1.314
1.316
1.317
1.318
1.320
1.321
1.322
1.323
1.324
1.325
1.326
1.327
1.327
1.328
1.329
1.329
1.330
1.330
1.331
1.331
1.332
1.333
1.333
1.333
1.334
1.335
1.335
1.335
1.336
1.336
1.337
1.337
1.338
1.338
1.338
1.339
1.339
1.339
1.340
1.340
1.340
1.340
1.341
1.341
1.341
1.341
1.341
1.341
1.342
1.342
1.342
1.342
1.342
1.342
1.342
1.342
1.342
1.342
1.342
1.341
1.341
1.341
1.341
1.341
1.341
1.341
1.341
1.341
1.340
1.340
1.340
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.35331
.35500
.35666
.35830
.35993
.36153
.36310
.36466
.36618
.36769
.36918
.37064
.37209
.37351
.37492
.37630
.37768
.37903
.38038
.38173
.38304
.38438
.38568
.38696
.38826
.38952
.39077
.39204
.39327
.39449
.39572
.39693
.39812
.39931
.40047
.40163
.40278
.40391
.40503
.40614
.40722
.40830
.40938
.41043
.41149
.41252
.41354
.41456
.41555
.41653
.41751
.41847
.41942
.42036
.42128
.42219
.42311
.42401
.42489
.42576
.42664
.42749
.42834
.42919
.43001
.43083
.43165
.43246
.43325
.43405
.43482

-38.
-37.
-37.
-37.
-37.
-37.
-36.
-36.
-36.
-36.
-36.
-36.
-35.
-35.
-35.
-35.
-35.
-34.
-34.
-34.
-34.
-34.
-34.
-34.
-33.
-33.
-33.
-33.
-33.
-33.
-32.
-32.
-32.
-32.
-32.
-32.
-32.
-31.
-31.
-31.
-31.
-31.
-31.
-31.
-31.
-30.
-30.
-30.
-30.
-30.
-30.
-30.
-30.
-29.
-29.
-29.
-29.
-29.
-29.
-29.
-29.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-28.
-27.
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.541
.544
.546
.548
.551
.553
.555
.558
.560
.563
.565
.568
.570
.572
.575
.577
.580
.582
.585
.587
.590
.592
.595
.597
.600
.602
.605
.607
.610
.612
.615
.617
.620
.622
.625
.628
.630
.633
.635
.638
.640
.643
.646
.648
.651
.653
.656
.659
.661
.664
.666
.669
.672
.674
.677
.680
.682
.685
.687
.690
.693
.695
.698
.701
.703
.706
.709
.711
.714
.717
.719
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.535
.538
.541
.544
.547
.549
.552
.555
.557
.560
.563
.565
.568
.570
.572
.575
.577
.580
.582
.584
.587
.589
.591
.593
.596
.598
.600
.602
.604
.607
.609
.611
.613
.615
.617
.619
.621
.623
.625
.627
.629
.631
.633
.635
.637
.639
.641
.643
.645
.646
.648
.650
.652
.654
.655
.657
.659
.660
.662
.664
.665
.667
.668
.670
.672
.673
.675
.676
.678
.679
.681

WWWWWwWwWwWLwWwWwWwuWwWwLwWwWwuWwWwuWwuwWwWwLwWwWwuWwuWwuWwuLwWwWwuWwWwWwuwWwWwLwWwWwuWwuWwuWwuwWwWwuWwWwwWwuwwwwwwwbs b bbb bbb &S BBD

.324
.301
.2717
.253
.230
.207
.184
.162
.139
.117
.095
.073
.051
.030
.008
.987
.966
.946
.925
.905
.885
.865
.845
.825
.806
.787
.767
.748
.729
.711
.692
.674
.655
.637
.619
.601
.584
.566
.549
.531
.514
.497
.480
.464
.447
.431
.415
.398
.382
.367
.351
.335
.320
.304
.289
.274
.259
.244
.230
.215
.201
.186
.172
.158
.144
.130
.116
.103
.089
.076
.062

ULV ULOULUUUOOUOUOU DSBS BB DD BB DDA EEERDEERPRLVLCLULLLULLWULLOULWLWWLWWLWWWW

.500
.532
.564
.596
.628
.660
.692
.725
.757
.790
.822
.855
.888
.921
.954
.987
.021
.054
.087
.121
.154
.188
.222
.255
.289
.323
.357
.391
.425
.460
.494
.528
.563
.597
.632
.666
.701
.736
.770
.805
.840
.875
.910
.945
.980
.015
.050
.086
.121
.156
.192
.227
.263
.298
.334
.369
.405
.440
.476
.512
.548
.583
.619
.655
.691
727
.763
.799
.835
.871
.907

416.63
420.16
423.72
427.32
430.94
434.60
438.30
442.02
445.78
449.57
453.39
457.25
461.13
465.06
469.01
473.00
477.02
481.07
485.16
489.28
493.43
497.62
501.84
506.10
510.39
514.71
519.07
523.46
527.89
532.35
536.84
541.37
545.93
550.53
555.16
559.83
564.53
569.26
574.03
578.84
583.68
588.55
593.46
598.41
603.39
608.40
613.45
618.54
623.66
628.82
634.01
639.24
644.50
649.80
655.13
660.50
665.90
671.34
676.82
682.33
687.88
693.46
699.08
704.74
710.43
716.16
721.92
727.72
733.55
739.42
745.33



370
371
372
373
374
375
376
377
378
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.183
.184
.184
.185
.186
.187
.187
.188
.189

.5332
.5887
.6445
.7008
.7574
.8145
.8719
.9297
.9878

R DD DD D

.0694
.0698
.0702
.0706
.0711
.0715
.0719
.0723
.0728

[eeNeNeNeNe o X-X=]

1.340
1.340
1.340
1.339
1.339
1.339
1.339
1.339
1.339

CDR RFQ PteqHI tapeinput

run 1 0 0 0 2 0 657 0 0 0 0 657

titl

e

IFMIF KP1.7 CDA Design

tank 1 8.

zdat
0.

8.84
17.6
26.5
35.3
44.2
53.0
61.8
70.7
79.5
88.4
97.3
106.
111.
111
111.
112.
112.
112
116.
125.
134.
143.
153.
162.
172
182.
191.
201.
211
221.
231.
241.
252.
262.
273.
284.
295.
306.
318.
330.
342.
354.
367.
380.
394.

.43560
.43638
.43714
.43790
.43865
.43939
.44013
.44086
.44158

OO OO O0OOOOoOOoO

1.
90. 1.
90. 1.

-90. 1.

90. 1.

1022

62 0.1
255 0.
574 0.
019 0.
59 0.0
293 0.
133 0.
.04119
1.05262
1.0658
1.08098
1.09847
1.11275
1.1141
1.11549
1.11691
1.11749
1.11764
.118 0
1.11865
1.11933
.12005
.12081
1.12162
1.12248
1.1234
.12438
.12543
1.12657
12779
1.12912
.13056
1.13214
1.13387
1.13578
1.13789
1.14024
1.14286
1.1458
1.1491
1.15285
1.1571
1.16194
1.16748
17384

linac 1 0.1 175. 2.01 1
-90 0.1 0 1.0 0 1.0 0 0 1.0
zdata -5 -3.53691 0.01 -90.
-2.65268 1.08371 -
-1.76846 2.15743 -
-0.884228 3.23114
-0.00001 4.30486 -
a -5
4.30486 -90. 1. 0.11
228 4.5083 -90. 1.000
846 4.73437 -90. 1.00
268 4.96044 -90. 1.00
691 5.18651 -90. 1.01
114 5.41259 -90. 1.01
537 5.63866 -90. 1.02
959 5.86473 -90. 1.03
382 6.0908 -89.8884 1
822 6.31691 -89.4945
334 6.54318 -89.1003
004 6.76983 -88.7054
195 6.99715 -88.3094
623 7.15824 -88.0287
.802 7.16284 -88.0207
983 7.16746 -88.0127
165 7.17212 -88.0045
239 7.17399 -88.0013
.257 7.17445 -88.0005
02 7.17026 -87.9514 1
242 7.16205 -87.8626
527 7.15344 -87.7654
878 7.1444 -87.6588 1
299 7.1349 -87.5416 1
793 7.12487 -87.4125
.364 7.11428 -87.2702
018 7.10304 -87.1128
758 7.0911 -86.9385 1
592 7.07838 -86.745 1
.525 7.06478 -86.5298
564 7.05019 -86.29 1.
718 7.03451 -86.0222
995 7.0176 -85.7228 1
406 6.99929 -85.3872
962 6.97941 -85.0106
675 6.95776 -84.5875
562 6.93408 -84.1114
638 6.90813 -83.5754
922 6.87957 -82.9718
437 6.84806 -82.2922
207 6.81317 -81.5274
261 6.77446 -80.6682
631 6.73139 -79.7051
355 6.68339 -78.6287
476 6.62979 -77.4307
041 6.5699 -76.104 1.
108 6.50296 -74.644 1

408.

.18116

-27.8 0.722
-27.7 0.725
-27.6 0.727
-27.5 0.730
-27.4 0.733
-27.3 0.735
-27.2 0.738
-27.1 0.741
-27.0 0.743

RFRRRRPRRRER

.682
.684
.685
.687
.688
.690
.691
.692
.694

10 1 36 0.0 0.0

0.111022
0.111022
0.111022
0.111022
0.111022

06012
100949
0963487
0921491
883002
08476
0814927
0.0784679
0.0756593
0.0730429
0.0705974
0.0683039
0.0667667
0.0667239
0.0666808
0.0666376
0.0666202
0.0666158
.0666544
0.0667309
0.0668111
0.0668956
0.0669847
0.0670789
0.0671788
0.067285
0.0673983
0.0675194
0.0676493
0.0677892
0.0679402
0.0681039
0.0682819
0.0684763
0.0686893
0.0689237
0.0691825
0.0694695
0.069789
0.070146
0.0705465
0.0709975
0.0715071
0.0720847
0.0727412
0.0734892
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.049
.036
.023
.010
.997
.984
.972
.959
.947

oo oo oot L»

.943
.979
.015
.052
.088
.124
.160
.197
.233

751.27
757.25
763.27
769.32
775.41
781.53
787.69
793.89
800.12



422.738 6.42819 -73.0488 1.18959 0.0743432
438.003 6.3448 -71.3204 1.1993 0.0753193

453.984 6.25203 -69.4652 1.21048 0.0764358
470.769 6.1492 -67.4943 1.22335 0.0777127
488.457 6.03578 -65.4236 1.2381 0.0791717

507.16 5.91143 -63.2736 1.25494 0.0808355

526.994 5.77613 -61.0688 1.27403 0.0827273
548.091 5.6302 -58.8366 1.2955 0.0848696
570.586 5.47443 -56.6061 1.31941 0.0872826
594.623 5.31008 -54.4066 1.34572 0.0899823
620.352 5.13888 -52.2666 1.37424 0.0929783
647.923 4.96303 -50.2122 1.40466 0.0962715
677.488 4.78504 -48.266 1.43651 0.0998516
709.193 4.60759 -46.4462 1.46917 0.103697
743.176 4.43332 -44.766 1.50193 0.107774
779.565 4.2646 -43.2331 1.53405 0.112039
818.475 4.10337 -41.85 1.56482 0.116443
860.004 3.95101 -40.6142 1.59366 0.120936
904.235 3.80829 -39.5189 1.62017 0.125471
951.232 3.67543 -38.5539 1.64413 0.130009
1001.05 3.55215 -37.7071 1.66555 0.134524
1053.71 3.43784 -36.9649 1.68461 0.139
1109.25 3.33172 -36.3135 1.70158 0.14343
1167.69 3.23289 -35.7397 1.71682 0.147816
1229.03 3.14053 -35.2316 1.73064 0.152165
1293.27 3.05393 -34.7792 1.74331 0.156482
1360.41 2.97259 -34.3743 1.75494 0.160765
1430.45 2.89626 -34.0116 1.7655 0.165004
1503.39 2.82495 -33.6885 1.77472 0.169171
1579.22 2.75902 -33.4056 1.78206 0.173217
1621.36 2.72586 -33.2708 1.78497 0.175326
1622.15 2.72527 -33.2684 1.78502 0.175364 -1
start 1

stop -1

rfgout 1

elimit 0.25 0.25
input -6 -100000 1.7008 12.7828 .011622 1.7008 12.7828 .011622
180.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1. 2.01 140. 0.100
output 2 -1 2 0 1 1 1 2000 1
scheff 140.0 0.029 -0.04425 20 40 20 1 4

optcon 120000 4 1.1 1.4 .1 3 8. 10. 1. 0000
0000 0000 0000

begin

end

CDR RFQ Cell Table

nc v ws beta ez capa phi a m b cl tl
0 0.111 0.1000 0.0103 0.000 0.00000 -90.0 13.192 1.000 0.010 0.000 0.00
10.111 0.1000 0.0103 0.000 0.00000 -90.0 1.266 1.000 1.085 0.885 0.89
2 0.111 0.1000 0.0103 0.000 0.00000 -90.0 0.898 1.000 2.160 0.885 1.77
3 0.111 0.1000 0.0103 0.000 0.00000 -90.0 0.733 1.000 3.235 0.885 2.66
4 0.111 0.1000 0.0103 0.000 0.00000 -90.0 0.635 1.000 4.310 0.885 3.54
50.111 0.1000 0.0103 0.000 0.00000 -90.0 0.633 1.000 4.325 0.885 4.43
6 0.110 0.1000 0.0103 0.000 0.00000 -90.0 0.630 1.000 4.346 0.885 5.31
7 0.110 0.1000 0.0103 0.000 0.00000 -90.0 0.627 1.000 4.366 0.885 6.20
8 0.109 0.1000 0.0103 0.000 0.00000 -90.0 0.624 1.000 4.386 0.885 7.08
9 0.109 0.1000 0.0103 0.000 0.00000 -90.0 0.621 1.000 4.407 0.885 7.97
10 0.108 0.1000 0.0103 0.000 0.00000 -90.0 0.618 1.000 4.427 0.885 8.85
11 0.108 0.1000 0.0103 0.000 0.00000 -90.0 0.615 1.000 4.448 0.885 9.74
12 0.107 0.1000 0.0103 0.000 0.00000 -90.0 0.613 1.000 4.468 0.885 10.62
13 0.107 0.1000 0.0103 0.003 0.00029 -90.0 0.610 1.001 4.488 0.885 11.51
14 0.106 0.1000 0.0103 0.003 0.00029 -90.0 0.607 1.001 4.509 0.885 12.39
15 0.105 0.1000 0.0103 0.003 0.00029 -90.0 0.604 1.001 4.531 0.885 13.28
16 0.105 0.1000 0.0103 0.004 0.00030 -90.0 0.601 1.001 4.554 0.885 14.16
17 0.104 0.1000 0.0103 0.004 0.00030 -90.0 0.598 1.001 4.577 0.885 15.05
18 0.104 0.1000 0.0103 0.004 0.00030 -90.0 0.595 1.001 4.599 0.885 15.93
19 0.103 0.1000 0.0103 0.007 0.00061 -90.0 0.592 1.002 4.622 0.885 16.82
20 0.103 0.1000 0.0103 0.007 0.00062 -90.0 0.589 1.002 4.644 0.885 17.70
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.102
.102
.101
.101
.100
.100
.100
.099
.099
.098
.098
.097
.097
.096
.096
.095
.095
.095
.094
.094
.093
.093
.093
.092
.092
.091
.091
.091
.090
.090
.089
.089
.089
.088
.088
.088
.087
.087
.087
.086
.086
.085
.085
.085
.084
.084
.084
.083
.083
.083
.082
.082
.082
.081
.081
.081
.081
.080
.080
.080
.079
.079
.079
.078
.078
.078
.078
.077
.077
.077
.076

O OO0 0D O0OO0O OO0 O0ODO0ODO0ODO0ODO0ODO0OO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0ODO0OO0ODO0ODO0ODO0ODODO0OO0ODO0ODO0ODO0ODO0ODO0ODO0ODODO0OO0ODO0ODO0ODODO0ODO0ODO0ODO0ODO0DO0ODO0ODO0ODO0ODODO0OO0ODO0ODO0ODODODO0OODOO0ODOOODOOOOO

.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1000
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1001
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1002
.1003
.1003
.1003
.1003
.1003
.1003
.1003
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.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0104
.0104
.0104

0.007
0.007
0.007
0.011
0.011
0.011
0.015
0.015
0.015
0.015
0.019
0.019
0.019
0.023
0.023
0.026
0.027
0.031
0.031
0.031
0.034
0.035
0.039
0.039
0.043
0.043
0.047
0.051
0.051
0.055
0.055
0.059
0.059
0.063
0.067
0.068
0.071
0.075
0.076
0.079
0.084
0.087
0.087
0.092
0.095
0.100
0.104
0.103
0.108
0.113
0.116
0.120
0.125
0.124
0.129
0.133
0.138
0.141
0.145
0.150
0.153
0.158
0.162
0.165
0.170
0.178
0.183
0.186
0.189
0.194
0.196

[=Nelelelelele oo oo ool =R« lee e oo oo -2l Nele e le oo HoNo o=l e e Ne e lele oo oo oo o Neo NoNeo No o l=Reo e Ne No}

.00062
.00063
.00063
.00096
.00096
.00097
.00131
.00132
.00133
.00134
.00169
.00170
.00172
.00207
.00209
.00245
.00248
.00284
.00287
.00289
.00327
.00329
.00369
.00371
.00410
.00413
.00453
.00494
.00497
.00538
.00543
.00584
.00587
.00629
.00673
.00677
.00720
.00763
.00767
.00813
.00858
.00903
.00908
.00954
.01000
.01046
.01093
.01099
.01150
.01198
.01246
.01295
.01345
.01352
.01402
.01453
.01499
.01550
.01602
.01654
.01707
.01759
.01813
.01867
.01921
.02016
.02072
.02127
.02184
.02240
.02297

-90.
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-90.
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-90.
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-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
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.586
.583
.580
.577
.575
.572
.569
.566
.564
.561
.558
.555
.553
.550
.548
.545
.542
.540
.537
.535
.532
.530
.527
.525
.523
.520
.518
.515
.513
.511
.508
.506
.504
.502
.499
.497
.495
.493
.491
.488
.486
.484
.482
.480
.478
.476
.474
.472
.469
.467
.465
.463
.461
.459
.457
.455
.454
.452
.450
.448
.446
.444
.442
.440
.438
.437
.435
.433
.431
.429
.427

PFRRPRPRPRRRPERPPRPRRRPRPPRRRPRRPRPRPRPRRRPRRPPRPRRRPRRPRRRRPRPPRPRRRPRRPRPRPRPRRRRPRRRRPRPRPRPRRRRPRPRPRPRRRRPRPRPRPRRRRPRPRRRRRRR

.002
.002
.002
.003
.003
.003
.004
.004
.004
.004
.005
.005
.005
.006
.006
.007
.007
.008
.008
.008
.009
.009
.010
.010
.011
.011
.012
.013
.013
.014
.014
.015
.015
.016
.017
.017
.018
.019
.019
.020
.021
.022
.022
.023
.024
.025
.026
.026
.027
.028
.029
.030
.031
.031
.032
.033
.034
.035
.036
.037
.038
.039
.040
.041
.042
.044
.045
.046
.047
.048
.049
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.667
.690
.712
.735
.758
.780
.803
.826
.848
.871
.893
.916
.939
.961
.984
.007
.029
.052
.074
.097
.120
.142
.165
.188
.210
.233
.256
.278
.301
.323
.346
.369
.391
.414
.437
.459
.482
.505
.527
.550
.572
.595
.618
.640
.663
.686
.708
.731
.753
.776
.799
.821
.844
.867
.889
.912
.935
.957
.980
.002
.025
.048
.070
.093
.116
.138
.161
.184
.206
.229
.251
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.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.885
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.886
.887
.887
.887
.887
.887
.887
.887

18.59
19.48
20.36
21.25
22.13
23.02
23.90
24.79
25.67
26.56
27.44
28.33
29.21
30.10
30.98
31.87
32.75
33.64
34.52
35.41
36.29
37.18
38.07
38.95
39.84
40.72
41.61
42.49
43.38
44.26
45.15
46.03
46.92
47.80
48.69
49.57
50.46
51.34
52.23
53.11
54.00
54.88
55.77
56.66
57.54
58.43
59.31
60.20
61.08
61.97
62.85
63.74
64.62
65.51
66.39
67.28
68.16
69.05
69.93
70.82
71.70
72.59
73.48
74.36
75.25
76.13
77.02
77.90
78.79
79.67
80.56



112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
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.076
.076
.076
.075
.075
.075
.075
.074
.074
.074
.074
.073
.073
.073
.073
.072
.072
.072
.072
.071
.071
.071
.071
.070
.070
.070
.070
.069
.069
.069
.069
.068
.068
.068
.068
.068
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
.067
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.1004
.1004
.1004
.1004
.1004
.1005
.1005
.1005
.1006
.1006
.1006
.1007
.1007
.1008
.1008
.1009
.1009
.1010
.1010
.1011
.1012
.1012
.1013
.1014
.1014
.1015
.1016
.1017
.1018
.1019
.1020
.1021
.1022
.1023
.1024
.1025
.1027
.1028
.1029
.1031
.1032
.1034
.1035
.1036
.1038
.1039
.1041
.1042
.1044
.1045
.1047
.1048
.1050
.1051
.1052
.1054
.1055
.1057
.1059
.1060
.1062
.1063
.1065
.1066
.1068
.1069
.1071
.1073
.1074
.1076
.1078
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.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0107
.0107
.0107
.0107
.0107
.0107
.0107
.0107
.0107
.0107

0.200
0.209
0.214
0.216
0.221
0.229
0.235
0.236
0.245
0.250
0.255
0.260
0.265
0.274
0.279
0.284
0.290
0.298
0.303
0.308
0.313
0.322
0.327
0.331
0.341
0.346
0.355
0.358
0.368
0.373
0.382
0.386
0.394
0.400
0.413
0.423
0.425
0.439
0.448
0.467
0.467
0.468
0.469
0.469
0.469
0.469
0.470
0.466
0.466
0.466
0.467
0.470
0.471
0.471
0.471
0.472
0.472
0.472
0.473
0.473
0.473
0.469
0.469
0.470
0.470
0.470
0.474
0.475
0.475
0.474
0.474
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.02348
.02451
.02509
.02568
.02620
.02725
.02786
.02846
.02945
.03011
.03073
.03173
.03237
.03347
.03402
.03513
.03583
.03685
.03752
.03866
.03928
.04043
.04101
.04217
.04339
.04398
.04516
.04628
.04747
.04821
.04934
.05056
.05165
.05294
.05465
.05596
.05707
.05887
.06014
.06275
.06275
.06282
.06289
.06289
.06296
.06296
.06303
.06309
.06309
.06316
.06323
.06371
.06377
.06377
.06384
.06391
.06391
.06398
.06404
.06404
.06411
.06418
.06418
.06424
.06431
.06431
.06486
.06493
.06493
.06482
.06489

-89.
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-89.
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-89.
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-87.
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-87.
-87.
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-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
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-87.
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-87.
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-87.
-87.
-87.
-87.
-87.
-87.
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.426
.424
.422
.420
.419
.417
.415
.413
.412
.410
.408
.407
.405
.403
.402
.400
.398
.397
.395
.393
.392
.390
.389
.387
.385
.384
.382
.381
.379
.3717
.376
.374
.373
.371
.369
.367
.366
.364
.362
.361
.361
.361
.361
.361
.361
.361
.361
.361
.361
.361
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.050
.052
.053
.054
.055
.057
.058
.059
.061
.062
.063
.065
.066
.068
.069
.071
.072
.074
.075
.077
.078
.080
.081
.083
.085
.086
.088
.090
.092
.093
.095
.097
.099
.101
.104
.106
.108
.111
.113
.118
.118
.118
.118
.118
.118
.118
.118
.118
.118
.118
.118
.119
.119
.119
.119
.119
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.119
.119
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.274
.297
.319
.342
.365
.387
.410
.433
.455
.478
.501
.523
.546
.569
.591
.614
.637
.659
.682
.705
.728
.750
.773
.796
.818
.841
.864
.887
.909
.932
.955
.978
.001
.028
.054
.081
.107
.134
.160
.174
.173
.172
.171
.170
.169
.169
.168
.167
.166
.165
.165
.164
.163
.162
.161
.160
.160
.159
.158
.157
.156
.155
.155
.154
.153
.152
.151
.150
.149
.148
.148
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.887
.887
.887
.887
.887
.887
.887
.887
.888
.888
.888
.888
.888
.889
.889
.889
.889
.890
.890
.890
.891
.891
.891
.891
.891
.892
.892
.893
.893
.894
.894
.894
.895
.895
.896
.896
.897
.898
.898
.899
.899
.900
.901
.901
.902
.902
.903
.904
.905
.905
.906
.906
.907
.908
.908
.909
.909
.910
.911
.911
.912
.913
.914
.914
.915
.915
.916
.917
.917
.918
.919

81.45

82.33

83.22

84.10

84.99

85.88

86.76

87.65

88.53

89.42

90.31

91.19

92.08

92.97

93.86

94.74

95.63

96.52

97.41

98.29

99.18
100.07
100.96
101.85
102.74
103.63
104.52
105.41
106.30
107.19
108.08
108.98
109.87
110.76
111.66
112.55
113.44
114.34
115.23
116.13
117.03
117.92
118.82
119.72
120.62
121.52
122.42
123.32
124.22
125.12
126.02
126.93
127.83
128.74
129.64
130.55
131.45
132.36
133.27
134.18
135.09
135.99
136.91
137.82
138.73
139.64
140.55
141.47
142.38
143.30
144.21
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164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
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203
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205
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207
208
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210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
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.067
.067
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.1079
.1081
.1082
.1084
.1086
.1088
.1089
.1091
.1093
.1094
.1096
.1098
.1100
.1101
.1103
.1105
.1107
.1109
.1110
L1112
.1114
.1116
.1118
.1120
L1122
.1124
.1125
L1127
.1129
.1131
.1133
.1135
.1137
.1139
.1141
.1143
.1145
.1147
.1150
.1152
.1154
.1156
.1158
.1160
.1162
.1164
.1167
.1169
L1171
.1173
.1176
.1178
.1180
.1183
.1185
.1187
.1190
.1192
.1194
.1197
.1199
.1202
.1204
.1207
.1209
.1212
.1214
.1217
.1219
.1222
.1225
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.0107
.0107
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0109
.0109
.0109
.0109
.0109
.0109
.0109
.0109
.0109
.0109
.0109
.0110
.0110
.0110
.0110
.0110
.0110
.0110
.0110
.0110
.0110
.0111
.0111
.0111
.0111
.0111
.0111
.0111
.0111
.0111
.0111
.0112
.0112
.0112
.0112
.0112
.0112
.0112
.0112
.0112
.0112
.0113
.0113
.0113
.0113
.0113
.0113
.0113
.0113
.0114
.0114
.0114
.0114
.0114
.0114
.0114
.0114

0.475
0.475
0.471
0.471
0.471
0.472
0.472
0.473
0.473
0.477
0.477
0.477
0.478
0.478
0.474
0.474
0.475
0.475
0.476
0.476
0.476
0.477
0.481
0.481
0.481
0.477
0.478
0.477
0.477
0.477
0.478
0.478
0.479
0.479
0.483
0.479
0.479
0.480
0.480
0.481
0.481
0.482
0.482
0.482
0.482
0.482
0.483
0.483
0.483
0.484
0.484
0.485
0.484
0.484
0.484
0.484
0.484
0.485
0.485
0.486
0.486
0.487
0.487
0.490
0.491
0.495
0.495
0.496
0.496
0.497
0.497
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.06496
.06496
.06503
.06509
.06509
.06516
.06522
.06529
.06529
.06584
.06591
.06591
.06597
.06604
.06610
.06610
.06617
.06623
.06630
.06630
.06636
.06643
.06698
.06705
.06705
.06711
.06718
.06707
.06714
.06714
.06720
.06727
.06733
.06740
.06795
.06795
.06802
.06808
.06815
.06821
.06827
.06834
.06834
.06840
.06846
.06903
.06909
.06915
.06922
.06928
.06934
.06941
.06924
.06930
.06937
.06993
.06999
.07006
.07012
.07018
.07024
.07031
.07037
.07043
.07050
.07106
.07112
.07119
.07125
.07131
.07137

-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
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.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.362
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.363
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
.364
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.120
.120
.120
.120
.120
.120
.120
.120
.120
.121
.121
.121
.121
.121
.121
.121
.121
.121
.121
.121
.121
.121
.122
.122
.122
.122
.122
.122
.122
.122
.122
.122
.122
.122
.123
.123
.123
.123
.123
.123
.123
.123
.123
.123
.123
.124
.124
.124
.124
.124
.124
.124
.124
.124
.124
.125
.125
.125
.125
.125
.125
.125
.125
.125
.125
.126
.126
.126
.126
.126
.126
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.147
.146
.145
.144
.143
.142
.141
.140
.139
.138
.137
.136
.136
.135
.134
.133
.132
.131
.130
.129
.128
.127
.126
.125
.124
.123
.122
.121
.120
.119
.118
.116
.115
.114
.113
.112
111
.110
.109
.108
.107
.106
.105
.103
.102
.101
.100
.099
.098
.096
.095
.094
.093
.092
.090
.089
.088
.087
.086
.084
.083
.082
.081
.079
.078
.077
.075
.074
.073
.071
.070
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.920
.920
.921
.922
.923
.923
.924
.925
.925
.926
.927
.928
.928
.929
.930
.931
.931
.932
.933
.933
.934
.935
.936
.937
.938
.939
.939
.940
.941
.941
.942
.943
.944
.945
.946
.946
.947
.948
.949
.950
.951
.952
.953
.953
.954
.955
.956
.957
.958
.959
.960
.961
.962
.963
.964
.964
.966
.966
.967
.969
.969
.971
.971
.973
.973
.975
.975
977
977
.979
.980

145.13
146.05
146.96
147.88
148.80
149.72
150.64
151.56
152.49
153.41
154.33
155.26
156.18
157.11
158.04
158.96
159.89
160.82
161.75
162.68
163.61
164.54
165.48
166.41
167.34
168.28
169.22
170.15
171.09
172.03
172.97
173.91
174.85
175.79
176.73
177.68
178.62
179.57
180.51
181.46
182.41
183.35
184.30
185.25
186.21
187.16
188.11
189.06
190.02
190.97
191.93
192.89
193.85
194.81
195.77
196.73
197.69
198.65
199.62
200.58
201.55
202.52
203.48
204.45
205.42
206.40
207.37
208.34
209.31
210.29
211.27



234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
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.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.068
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
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.1227
.1230
.1233
.1235
.1238
.1241
.1244
.1246
.1249
.1252
.1255
.1258
.1261
.1264
.1267
.1270
.1273
.1276
.1279
.1282
.1285
.1288
.1292
.1295
.1298
.1301
.1305
.1308
.1311
.1315
.1318
.1322
.1325
.1329
.1332
.1336
.1339
.1343
.1347
.1350
.1354
.1358
.1362
.1366
.1370
.1373
L1377
.1381
.1386
.1390
.1394
.1398
.1402
.1406
L1411
.1415
.1420
.1424
.1428
.1433
.1438
.1442
.1447
.1452
.1456
.1461
.1466
.1471
.1476
.1481
.1486
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.0114
.0115
.0115
.0115
.0115
.0115
.0115
.0115
.0116
.0116
.0116
.0116
.0116
.0116
.0116
.0116
.0117
.0117
.0117
.0117
.0117
.0117
.0117
.0118
.0118
.0118
.0118
.0118
.0118
.0118
.0119
.0119
.0119
.0119
.0119
.0119
.0120
.0120
.0120
.0120
.0120
.0120
.0121
.0121
.0121
.0121
.0121
.0121
.0122
.0122
.0122
.0122
.0122
.0123
.0123
.0123
.0123
.0123
.0124
.0124
.0124
.0124
.0124
.0125
.0125
.0125
.0125
.0125
.0126
.0126
.0126

0.497
0.494
0.493
0.497
0.498
0.498
0.498
0.499
0.495
0.495
0.496
0.500
0.501
0.501
0.501
0.502
0.498
0.499
0.499
0.503
0.504
0.503
0.504
0.500
0.500
0.501
0.505
0.505
0.506
0.507
0.503
0.503
0.504
0.508
0.508
0.509
0.505
0.504
0.505
0.506
0.510
0.510
0.507
0.507
0.508
0.508
0.512
0.513
0.509
0.510
0.511
0.511
0.514
0.510
0.511
0.519
0.520
0.521
0.520
0.521
0.522
0.522
0.523
0.523
0.523
0.523
0.524
0.524
0.524
0.525
0.526
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.07144
.07150
.07146
.07202
.07209
.07215
.07221
.07227
.07233
.07240
.07246
.07309
.07315
.07321
.07327
.07334
.07340
.07352
.07358
.07415
.07421
.07411
.07423
.07429
.07435
.07441
.07505
.07511
.07517
.07529
.07535
.07541
.07553
.07611
.07617
.07629
.07635
.07624
.07636
.07642
.07706
.07712
.07724
.07730
.07736
.07748
.07806
.07818
.07824
.07836
.07847
.07853
.07901
.07907
.07918
.07930
.07936
.07947
.08006
.08018
.08029
.08035
.08047
.08111
.08123
.08112
.08123
.08135
.08200
.08211
.08222

-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
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.364
.364
.365
.365
.365
.365
.365
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.365
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.365
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.365
.366
.366
.366
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.366
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.367
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.126
.126
.126
.127
.127
.127
.127
.127
.127
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.127
.128
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.129
.129
.129
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.130
.130
.130
.130
.130
.130
.130
.131
.131
.131
.131
.131
.131
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.132
.132
.132
.132
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.133
.133
.133
.133
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.134
.134
.134
.134
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.135
.135
.135
.135
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.136
.136
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.136
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.137
.137
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.069
.067
.066
.065
.063
.062
.060
.059
.057
.056
.055
.053
.052
.050
.049
.047
.046
.044
.043
.041
.040
.038
.036
.035
.033
.032
.030
.028
.027
.025
.023
.022
.020
.018
.016
.015
.013
.011
.009
.008
.006
.004
.002
.000
.998
.996
.994
.993
.991
.989
.987
.985
.983
.981
.979
.977
.975
.972
.970
.968
.966
.964
.962
.960
.957
.955
.953
.950
.948
.946
.943
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.981
.982
.983
.984
.985
.986
.987
.988
.989
.991
.992
.993
.994
.995
.996
.998
.999
.000
.001
.002
.003
.005
.006
.007
.009
.010
.011
.012
.014
.015
.016
.018
.019
.021
.022
.023
.024
.026
.027
.029
.030
.032
.033
.035
.036
.037
.039
.040
.042
.044
.045
.047
.048
.050
.052
.053
.055
.056
.058
.060
.062
.063
.065
.067
.068
.070
.072
.074
.075
.077
.079

212.24
213.22
214.20
215.18
216.16
217.15
218.13
219.12
220.10
221.09
222.08
223.07
224.06
225.05
226.04
227.04
228.03
229.03
230.03
231.03
232.03
233.03
234.03
235.03
236.04
237.05
238.05
239.06
240.07
241.08
242.10
243.11
244.13
245.14
246.16
247.18
248.20
249.22
250.25
251.27
252.30
253.33
254.36
255.39
256.42
257.46
258.49
259.53
260.57
261.61
262.65
263.69
264.74
265.78
266.83
267.88
268.93
269.98
271.04
272.09
273.15
274.21
275.27
276.34
277.40
278.47
279.53
280.60
281.68
282.75
283.83



305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
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343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
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.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.069
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.070
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
.071
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.1491
.1497
.1502
.1507
.1513
.1518
.1523
.1529
.1535
.1540
.1546
.1552
.1558
.1564
.1570
.1576
.1582
.1588
.1595
.1601
.1608
.1614
.1621
.1627
.1634
.1641
.1648
.1655
.1662
.1669
.1677
.1684
.1692
.1699
.1707
.1715
.1722
.1730
.1739
.1747
.1755
.1763
L1772
.1781
.1789
.1798
.1807
.1816
.1825
.1835
.1844
.1854
.1863
.1873
.1883
.1893
.1903
.1914
.1924
.1935
.1946
.1957
.1968
.1979
.1991
.2002
.2014
.2026
.2038
.2050
.2063
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.0126
.0126
.0127
.0127
.0127
.0127
.0128
.0128
.0128
.0128
.0129
.0129
.0129
.0129
.0129
.0130
.0130
.0130
.0131
.0131
.0131
.0131
.0132
.0132
.0132
.0132
.0133
.0133
.0133
.0134
.0134
.0134
.0134
.0135
.0135
.0135
.0136
.0136
.0136
.0137
.0137
.0137
.0138
.0138
.0138
.0139
.0139
.0139
.0140
.0140
.0140
.0141
.0141
.0141
.0142
.0142
.0143
.0143
.0143
.0144
.0144
.0145
.0145
.0145
.0146
.0146
.0147
.0147
.0148
.0148
.0148

0.526
0.527
0.527
0.527
0.528
0.528
0.528
0.529
0.529
0.530
0.530
0.531
0.531
0.532
0.533
0.532
0.533
0.533
0.533
0.534
0.535
0.536
0.536
0.536
0.537
0.545
0.545
0.546
0.546
0.547
0.547
0.548
0.549
0.548
0.549
0.550
0.550
0.551
0.551
0.552
0.553
0.552
0.553
0.553
0.554
0.555
0.555
0.556
0.556
0.557
0.561
0.558
0.558
0.571
0.568
0.568
0.568
0.569
0.573
0.570
0.575
0.571
0.572
0.576
0.573
0.577
0.574
0.578
0.574
0.579
0.580
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.08228
.08240
.08304
.08316
.08327
.08322
.08387
.08398
.08409
.08420
.08485
.08497
.08508
.08519
.08530
.08584
.08595
.08607
.08672
.08683
.08699
.08710
.08776
.08787
.08803
.08797
.08868
.08879
.08890
.08961
.08972
.08988
.08999
.09053
.09069
.09080
.09151
.09167
.09178
.09249
.09265
.09259
.09330
.09346
.09361
.09432
.09448
.09464
.09518
.09534
.09605
.09621
.09636
.09707
.09728
.09727
.09798
.09813
.09889
.09905
.09981
.09996
.10000
.10071
.10091
.10162
.10182
.10242
.10257
.10333
.10353

-84.
-84.
-84.
-84.
-84.
-84.
-84.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-79.
-79.
-79.
-79.
-79.
-79.
-79.
-79.
-79.
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.369
.369
.369
.369
.369
.370
.370
.370
.370
.370
.370
.370
.370
.370
.370
.371
.371
.371
.371
.371
.371
.371
.371
.371
.371
.372
.372
.372
.372
.372
.372
.372
.372
.373
.373
.373
.373
.373
.373
.373
.373
.374
.374
.374
.374
.374
.374
.374
.375
.375
.375
.375
.375
.375
.375
.376
.376
.376
.376
.376
.376
.376
.377
.377
.377
.377
.377
.378
.378
.378
.378
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.137
.137
.138
.138
.138
.138
.139
.139
.139
.139
.140
.140
.140
.140
.140
.141
.141
.141
.142
.142
.142
.142
.143
.143
.143
.143
.144
.144
.144
.145
.145
.145
.145
.146
.146
.146
.147
.147
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.148
.148
.148
.149
.149
.149
.150
.150
.150
.151
.151
.152
.152
.152
.153
.153
.153
.154
.154
.155
.155
.156
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.157
.157
.158
.158
.159
.159
.160
.160

[e2NK =)W« NN« We) We) o) o) Ne) e M) W) W e ) W) W) Mo ) W« ) W) W« ) Wi o) o) W) Wi o) Wi o) B« )i e ) Wi o) Wi o) Wi o) i) W@ ) Wi« ) Wil ) Wi« ) Wi o) Wil o) Wi @) Wi o) Wi @) Wi @ ) Wi o) Wi o ) Wi o ) Wi o ) Wi @) Wi @ ) i« ) Wi @ ) Wi @ ) Wi o ) Wi ) Wi @ ) Wi ) Wi @) Wi @ AN e ) Wi o ) Wi @ ) Wi ) Wi @ ) W @ ) Wi @ W@ A W @ A Wi ) Wi @ ) W@ A W@ ) W@ A MK © A 2}

.941
.939
.936
.934
.931
.929
.926
.924
.921
.919
.916
.914
.911
.908
.906
.903
.900
.897
.894
.891
.889
.886
.883
.880
.877
.874
.871
.868
.865
.862
.858
.855
.852
.849
.846
.842
.839
.835
.832
.828
.825
.822
.818
.815
.811
.807
.803
.799
.796
.792
.788
.784
.780
.776
.772
.768
.764
.760
.755
.751
.747
.742
.738
.734
.729
.725
.720
.715
.710
.706
.701
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.081
.083
.085
.087
.089
.091
.092
.095
.097
.099
.101
.103
.105
.107
.109
111
.113
.116
.118
.120
.123
.125
.127
.129
.132
.134
.136
.139
.141
.144
.146
.149
.151
.154
.157
.159
.162
.164
.167
.170
.173
.175
.178
.181
.184
.187
.190
.193
.196
.199
.202
.205
.208
.211
.215
.218
.221
.225
.228
.231
.235
.238
.242
.245
.249
.252
.256
.260
.264
.267
.271

284.90
285.98
287.06
288.15
289.23
290.32
291.41
292.50
293.59
294.69
295.78
296.88
297.98
299.09
300.19
301.30
302.41
303.52
304.64
305.75
306.87
307.99
309.11
310.24
311.37
312.50
313.63
314.76
315.90
317.04
318.18
319.33
320.48
321.63
322.78
323.93
325.09
326.25
327.42
328.58
329.75
330.92
332.10
333.27
334.45
335.64
336.82
338.01
339.20
340.40
341.60
342.80
344.00
345.21
346.42
347.63
348.85
350.07
351.29
352.52
353.75
354.99
356.22
357.47
358.71
359.96
361.21
362.47
363.73
364.99
366.26



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
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417
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419
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421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
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.071
.071
.071
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.072
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
.073
.074
.074
.074
.074
.074
.074
.074
.074
.074
.074
.074
.074
.075
.075
.075
.075
.075
.075
.075
.075
.075
.075
.076
.076
.076
.076
.076
.076
.076
.076
.076
.077
.077
.077
.077
.077
.077
.077
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.2075
.2088
.2101
.2114
.2128
.2141
.2155
.2169
.2183
.2198
.2212
.2227
.2242
.2258
.2273
.2289
.2305
.2321
.2338
.2354
.2371
.2388
.2406
.2424
.2442
.2460
.2479
.2498
.2517
.2536
.2556
.2576
.2597
.2618
.2639
.2660
.2682
.2704
L2727
.2750
.2773
.2796
.2820
.2845
.2869
.2895
.2920
.2946
.2973
.3000
.3027
.3055
.3083
.3111
.3141
.3170
.3200
.3231
.3262
.3294
.3326
.3359
.3392
.3426
.3460
.3495
.3531
.3567
.3604
.3641
.3679
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.0149
.0149
.0150
.0150
.0151
.0151
.0152
.0152
.0153
.0153
.0154
.0154
.0155
.0155
.0156
.0156
.0157
.0157
.0158
.0159
.0159
.0160
.0160
.0161
.0161
.0162
.0163
.0163
.0164
.0165
.0165
.0166
.0167
.0167
.0168
.0169
.0169
.0170
.0171
.0171
.0172
.0173
.0174
.0174
.0175
.0176
.0177
.0177
.0178
.0179
.0180
.0181
.0181
.0182
.0183
.0184
.0185
.0186
.0187
.0188
.0188
.0189
.0190
.0191
.0192
.0193
.0194
.0195
.0196
.0197
.0198

0.580
0.581
0.581
0.590
0.590
0.591
0.592
0.592
0.592
0.593
0.594
0.598
0.594
0.599
0.596
0.600
0.600
0.601
0.601
0.599
0.611
0.611
0.612
0.613
0.617
0.614
0.614
0.618
0.619
0.615
0.620
0.620
0.621
0.630
0.630
0.631
0.634
0.635
0.635
0.637
0.636
0.637
0.637
0.641
0.641
0.651
0.650
0.655
0.655
0.655
0.656
0.654
0.658
0.658
0.661
0.670
0.670
0.671
0.671
0.672
0.676
0.676
0.679
0.679
0.689
0.689
0.689
0.693
0.693
0.694
0.697
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.10429
.10448
.10508
.10528
.10604
.10623
.10699
.10702
.10778
.10802
.10878
.10955
.10962
.11038
.11061
.11142
.11202
.11225
.11306
.11324
.11405
.11469
.11492
.11572
.11653
.11663
.11744
.11824
.11905
.11915
.11995
.12080
.12160
.12170
.12254
.12339
.12407
.12492
.12576
.12601
.12669
.12753
.12837
.12909
.12993
.13081
.13149
.13237
.13324
.13396
.13484
.13512
.13599
.13671
.13817
.13888
.13979
.14066
.14141
.14232
.14323
.14394
.14544
.14618
.14712
.14802
.14877
.15030
.15104
.15198
.15351

-78.
-78.
-78.
-78.
-78.
-78.
-78.
-78.
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=717.
=717.
=717.
=717.
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-76.
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-76.
-76.
-76.
-76.
-76.
-75.
-75.
-75.
-75.
-75.
-75.
-75.
-74.
-74.
-74.
-74.
-74.
-74.
-74.
-73.
-73.
-73.
-73.
-73.
-73.
-72.
-72.
-72.
-72.
-72.
-72.
-71.
-71.
-71.
-71.
-71.
-70.
-70.
-70.
-70.
-70.
-70.
-69.
-69.
-69.
-69.
-69.
-68.
-68.
-68.
-68.
-68.
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.378
.378
.379
.379
.379
.379
.379
.380
.380
.380
.380
.380
.381
.381
.381
.381
.382
.382
.382
.382
.382
.383
.383
.383
.383
.384
.384
.384
.384
.385
.385
.385
.385
.386
.386
.386
.387
.387
.387
.387
.388
.388
.388
.389
.389
.389
.390
.390
.390
.391
.391
.391
.391
.392
.392
.393
.393
.393
.394
.394
.394
.395
.395
.396
.396
.396
.397
.397
.398
.398
.398
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.161
.161
.162
.162
.163
.163
.164
.164
.165
.165
.166
.167
.167
.168
.168
.169
.170
.170
.171
.171
.172
.173
.173
.174
.175
.175
.176
177
.178
.178
.179
.180
.181
.181
.182
.183
.184
.185
.186
.186
.187
.188
.189
.190
.191
.192
.193
.194
.195
.196
.197
.197
.198
.199
.201
.202
.203
.204
.205
.206
.207
.208
.210
.211
.212
.213
.214
.216
.217
.218
.220
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.696
.691
.686
.681
.676
.671
.666
.660
.655
.650
.644
.639
.634
.628
.622
.616
.610
.604
.598
.592
.586
.580
.574
.568
.562
.555
.548
.542
.535
.528
.522
.515
.508
.501
.494
.487
.479
.472
.464
.457
.449
.442
.434
.427
.418
.410
.402
.394
.385
.377
.369
.360
.352
.343
.334
.325
.316
.307
.297
.288
.279
.269
.260
.250
.240
.230
.220
.210
.200
.189
.179
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.275
.279
.283
.287
.291
.295
.299
.304
.308
.312
.317
.321
.325
.330
.335
.339
.344
.349
.354
.358
.363
.368
.373
.378
.383
.388
.394
.399
.404
.410
.415
.421
.426
.432
.438
.444
.450
.456
.462
.468
.474
.480
.486
.493
.499
.506
.513
.519
.526
.533
.540
.547
.554
.561
.569
.576
.583
.591
.599
.607
.614
.622
.630
.638
.646
.655
.663
.672
.680
.689
.698

367.53
368.80
370.08
371.36
372.65
373.94
375.24
376.53
377.84
379.15
380.46
381.77
383.10
384.42
385.75
387.09
388.42
389.77
391.12
392.47
393.83
395.19
396.56
397.93
399.31
400.70
402.08
403.48
404.88
406.28
407.69
409.11
410.53
411.96
413.39
414.83
416.27
417.72
419.18
420.64
422.11
423.59
425.07
426.56
428.05
429.55
431.06
432.57
434.09
435.62
437.16
438.70
440.25
441.80
443.37
444.94
446.51
448.10
449.69
451.29
452.90
454.52
456.14
457.717
459.42
461.06
462.72
464.39
466.06
467.74
469.44



447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
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478
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481
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485
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491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
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.077
.078
.078
.078
.078
.078
.078
.078
.079
.079
.079
.079
.079
.079
.080
.080
.080
.080
.080
.080
.081
.081
.081
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.084
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.085
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.092
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.3718
.3757
.3797
.3838
.3879
.3921
.3964
.4007
.4051
.4096
.4142
.4189
.4236
.4284
.4333
.4383
.4433
.4485
.4537
.4590
.4644
.4699
.4755
.4812
.4870
.4929
.4989
.5050
.5112
.5175
.5239
.5304
.5370
.5437
.5506
.5575
.5646
.5718
.5791
.5866
.5941
.6018
.6096
.6176
.6257
.6339
.6422
.6507
.6594
.6681
.6770
.6861
.6953
.7047
.7142
.7238
.7337
.7436
.7538
.7641
.7745
.7852
.7960
.8070
.8181
.8294
.8409
.8526
.8645
.8765
.8887
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.0199
.0200
.0201
.0202
.0204
.0205
.0206
.0207
.0208
.0209
.0210
.0211
.0213
.0214
.0215
.0216
.0218
.0219
.0220
.0221
.0223
.0224
.0225
.0227
.0228
.0229
.0231
.0232
.0234
.0235
.0237
.0238
.0239
.0241
.0242
.0244
.0246
.0247
.0249
.0250
.0252
.0253
.0255
.0257
.0258
.0260
.0262
.0264
.0265
.0267
.0269
.0271
.0272
.0274
.0276
.0278
.0280
.0282
.0284
.0286
.0288
.0290
.0292
.0294
.0296
.0298
.0300
.0302
.0304
.0306
.0308

0.697
0.707
0.709
0.710
0.707
0.710
0.711
0.713
0.723
0.726
0.727
0.729
0.727
0.729
0.742
0.742
0.742
0.745
0.745
0.748
0.757
0.757
0.761
0.760
0.762
0.766
0.774
0.778
0.777
0.780
0.777
0.789
0.792
0.791
0.796
0.796
0.804
0.807
0.807
0.809
0.811
0.823
0.822
0.822
0.827
0.835
0.835
0.836
0.839
0.850
0.849
0.849
0.853
0.864
0.864
0.865
0.864
0.875
0.876
0.876
0.877
0.888
0.887
0.888
0.899
0.900
0.901
0.910
0.911
0.912
0.913
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.15429
.15522
.15659
.15752
.15829
.15982
.16079
.16215
.16312
.16452
.16548
.16688
.16784
.16923
.17083
.17162
.17322
.17464
.17560
.17701
.17862
.17943
.18100
.18243
.18383
.18542
.18685
.18844
.18986
.19144
.19226
.19371
.19531
.19671
.19874
.20033
.20175
.20337
.20479
.20623
.20839
.20983
.21127
.21285
.21489
.21632
.217717
.21992
.22135
.22337
.22495
.22641
.22841
.23040
.23199
.23400
.23543
.23743
.23945
.24101
.24301
.24501
.24644
.24840
.25055
.25253
.25452
.25592
.25790
.25987
.26184

-67.
-67.
-67.
-67.
-67.
-66.
-66.
-66.
-66.
-66.
-65.
-65.
-65.
-65.
-65.
-64.
-64.
-64.
-64.
-63.
-63.
-63.
-63.
-63.
-62.
-62.
-62.
-62.
-61.
-61.
-61.
-61.
-61.
-60.
-60.
-60.
-60.
-59.
-59.
-59.
-59.
-59.
-58.
-58.
-58.
-58.
-57.
-57.
-57.
-57.
-57.
-56.
-56.
-56.
-56.
-55.
-55.
-55.
-55.
-55.
-54.
-54.
-54.
-54.
-53.
-53.
-53.
-53.
-53.
-52.
-52.
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.399
.399
.400
.400
.401
.401
.401
.402
.402
.403
.403
.404
.404
.405
.405
.406
.406
.407
.407
.408
.408
.409
.409
.410
.411
.411
.412
.412
.413
.413
.414
.415
.415
.416
.417
.417
.418
.418
.419
.420
.420
.421
.422
.422
.423
.424
.425
.425
.426
.427
.427
.428
.429
.430
.430
.431
.432
.433
.434
.434
.435
.436
.437
.438
.438
.439
.440
.441
.442
.443
.444
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.221
.222
.224
.225
.226
.228
.229
.231
.232
.234
.235
.237
.238
.240
.242
.243
.245
.247
.248
.250
.252
.253
.255
.257
.259
.261
.263
.265
.267
.269
.270
.272
.274
.276
.279
.281
.283
.285
.287
.289
.292
.294
.296
.298
.301
.303
.305
.308
.310
.313
.315
.317
.320
.323
.325
.328
.330
.333
.336
.338
.341
.344
.346
.349
.352
.355
.358
.360
.363
.366
.369
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.169
.158
.148
.136
.125
.114
.103
.092
.080
.069
.057
.046
.034
.022
.010
.997
.985
.973
.960
.947
.935
.922
.909
.896
.883
.869
.856
.843
.829
.815
.801
.788
.774
.759
.745
.731
.716
.702
.687
.672
.657
.642
.627
.612
.597
.581
.566
.550
.535
.519
.503
.487
.471
.455
.439
.423
.406
.390
.373
.357
.340
.323
.306
.289
.273
.256
.239
.222
.204
.187
.170

NNONNMNNMNMNNNDMNOMNNNNONNNOMNNNNNNNNNNNNNNNNNNNNNNMNNMNNNMNNNNNMNNNMNNMNONNNNNMNMNNNMNNNNMNNNNNNNRERRRRRRRRPRPRRRPRPREPREREPRERERERRRE

.707
.716
.725
.734
.743
.753
.762
772
.782
.791
.801
.812
.822
.832
.842
.853
.864
.874
.885
.896
.907
.919
.930
.942
.953
.965
977
.989
.001
.013
.026
.038
.051
.064
.077
.090
.103
.116
.130
.144
.157
.171
.185
.200
.214
.228
.243
.258
.273
.288
.303
.318
.334
.349
.365
.381
.397
.413
.430
.446
.463
.480
.497
.514
.531
.549
.566
.584
.602
.620
.638

471.14
472.85
474.56
476.29
478.03
479.78
481.53
483.30
485.07
486.86
488.65
490.46
492.27
494.10
495.93
497.78
499.64
501.50
503.38
505.27
507.17
509.08
511.01
512.94
514.89
516.85
518.82
520.80
522.79
524.80
526.82
528.85
530.89
532.95
535.02
537.10
539.19
541.30
543.42
545.56
547.71
549.87
552.05
554.24
556.45
558.67
560.90
563.15
565.41
567.69
569.99
572.30
574.62
576.96
579.32
581.69
584.08
586.48
588.90
591.34
593.80
596.27
598.75
601.26
603.78
606.32
608.88
611.45
614.04
616.65
619.28



518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
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.093
.093
.093
.094
.094
.094
.095
.095
.095
.096
.096
.096
.097
.097
.097
.098
.098
.099
.099
.099
.100
.100
.100
.101
.101
.101
.102
.102
.103
.103
.103
.104
.104
.105
.105
.105
.106
.106
.107
.107
.108
.108
.108
.109
.109
.110
.110
.110
111
111
.112
.112
.113
.113
.114
.114
.114
.115
.115
.116
.116
.117
.117
.118
.118
.118
.119
.119
.120
.120
.121
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.9012
.9138
.9266
.9396
.9528
.9661
.9797
.9935
.0075
.0217
.0361
.0508
.0656
.0807
.0959
.1114
L1271
.1430
.1592
.1756
.1922
.2090
.2261
.2434
.2610
.2787
.2968
.3150
.3335
.3522
.3712
.3905
.4100
.4297
.4497
.4699
.4904
.5111
.5321
.5534
.5749
.5967
.6187
.6410
.6636
.6864
.7095
.7328
.7564
.7803
.8044
.8289
.8535
.8785
.9037
.9292
.9549
.9810
.0072
.0338
.0607
.0878
.1152
.1428
.1707
.1989
.2274
.2561
.2851
.3144
.3440
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.0310
.0312
.0314
.0317
.0319
.0321
.0323
.0326
.0328
.0330
.0333
.0335
.0337
.0340
.0342
.0344
.0347
.0349
.0352
.0354
.0357
.0359
.0362
.0364
.0367
.0369
.0372
.0375
.0377
.0380
.0383
.0385
.0388
.0391
.0393
.0396
.0399
.0402
.0404
.0407
.0410
.0413
.0416
.0418
.0421
.0424
.0427
.0430
.0433
.0436
.0439
.0442
.0445
.0448
.0451
.0454
.0457
.0460
.0463
.0466
.0469
.0472
.0475
.0478
.0481
.0484
.0487
.0490
.0494
.0497
.0500

0.924
0.925
0.926
0.934
0.935
0.936
0.947
0.944
0.945
0.956
0.954
0.956
0.967
0.965
0.966
0.976
0.974
0.985
0.984
0.985
0.993
0.995
0.993
1.003
1.001
1.002
1.011
1.009
1.020
1.019
1.017
1.027
1.025
1.034
1.034
1.032
1.040
1.039
1.050
1.047
1.056
1.054
1.052
1.062
1.061
1.069
1.066
1.064
1.072
1.071
1.078
1.076
1.084
1.081
1.088
1.086
1.084
1.093
1.090
1.098
1.096
1.103
1.101
1.108
1.104
1.102
1.109
1.107
1.112
1.110
1.117
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.26396
.26591
.26785
.26981
.271717
.27371
.27565
.27760
.27953
.28147
.28340
.28587
.28778
.28969
.29159
.29351
.29541
.29731
.29974
.30162
.30350
.30591
.30782
.30970
.31159
.31348
.31588
317717
.31963
.32202
.32389
.32573
.32745
.32981
.33164
.33349
.33531
.33765
.33948
.34115
.34346
.34526
.34706
.34886
.35114
.35280
.35458
.35634
.35811
.36036
.36200
.36375
.36548
.36721
.36883
.37056
.37227
.37447
.37606
.37776
.37947
.38116
.38272
.38440
.38561
.38727
.38883
.39049
.39214
.39368
.39532

-52.
-52.
-52.
-51.
-51.
-51.
-51.
-51.
-50.
-50.
-50.
-50.
-50.
-49.
-49.
-49.
-49.
-49.
-48.
-48.
-48.
-48.
-48.
-47.
-47.
-47.
-47.
-47.
-46.
-46.
-46.
-46.
-46.
-46.
-45.
-45.
-45.
-45.
-45.
-45.
-44.
-44.
-44.
-44.
-44.
-44.
-44.
-43.
-43.
-43.
-43.
-43.
-43.
-42.
-42.
-42.
-42.
-42.
-42.
-42.
-41.
-41.
-41.
-41.
-41.
-41.
-41.
-41.
-40.
-40.
-40.
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.444
.445
.446
.447
.448
.449
.450
.451
.452
.453
.454
.455
.456
.457
.458
.459
.460
.461
.462
.463
.464
.465
.466
.467
.468
.469
.470
.471
.472
.473
.474
.475
.4717
.478
.479
.480
.481
.482
.483
.485
.486
.487
.488
.489
.490
.492
.493
.494
.495
.496
.498
.499
.500
.501
.503
.504
.505
.506
.508
.509
.510
.511
.513
.514
.515
.516
.518
.519
.520
.522
.523
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.372
.375
.378
.381
.384
.387
.390
.393
.396
.399
.402
.406
.409
.412
.415
.418
.421
.424
.428
.431
.434
.438
.441
.444
.447
.450
.454
.457
.460
.464
.467
.470
.473
4717
.480
.483
.486
.490
.493
.496
.500
.503
.506
.509
.513
.516
.519
.522
.525
.529
.532
.535
.538
.541
.544
.547
.550
.554
.557
.560
.563
.566
.569
.572
.574
.577
.580
.583
.586
.589
.592
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.152
.134
.117
.100
.083
.065
.048
.030
.012
.994
.976
.958
.941
.923
.906
.888
.870
.852
.834
.816
.798
.780
.762
.745
.727
.710
.692
.674
.656
.638
.620
.602
.585
.568
.551
.533
.516
.498
.480
.463
.445
.427
.411
.394
.378
.361
.344
.327
.310
.293
.275
.258
.243
.227
.211
.195
.179
.162
.146
.130
.113
.097
.082
.067
.052
.037
.022
.006
.991
.975
.960
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.657
.675
.694
.713
.732
.751
.770
.789
.809
.829
.848
.869
.889
.909
.929
.950
.971
.992
.013
.034
.055
.077
.098
.120
.142
.164
.186
.209
.231
.254
.276
.299
.322
.345
.369
.392
.416
.439
.463
.487
.511
.535
.559
.584
.608
.633
.658
.683
.708
.733
.758
.783
.808
.834
.860
.885
2911
.937
.963
.989
.015
.042
.068
.094
.121
.148
.174
.201
.228
.255
.282

621.93
624.59
627.28
629.98
632.70
635.44
638.20
640.98
643.78
646.60
649.43
652.29
655.17
658.07
660.98
663.92
666.88
669.86
672.87
675.89
678.93
682.00
685.08
688.19
691.32
694.48
697.65
700.85
704.07
707.31
710.57
713.86
717.17
720.50
723.86
727.24
730.64
734.07
737.52
740.99
744.49
748.01
751.56
755.13
758.73
762.35
765.99
769.66
773.35
777.07
780.82
784.59
788.38
792.20
796.05
799.92
803.82
807.74
811.69
815.67
819.67
823.70
827.75
831.83
835.94
840.07
844.23
848.42
852.63
856.87
861.14



589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
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.121
.122
.122
.122
.123
.123
.124
.124
.125
.125
.126
.126
.127
.127
.127
.128
.128
.129
.129
.130
.130
.131
.131
.132
.132
.132
.133
.133
.134
.134
.135
.135
.136
.136
.137
.137
.137
.138
.138
.139
.139
.140
.140
.141
.141
.141
.142
.142
.143
.143
.144
.144
.145
.145
.145
.146
.146
.147
.147
.148
.148
.148
.149
.149
.150
.150
.151
.151
.152
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.3738
.4039
.4343
.4649
.4958
.5269
.5584
.5900
.6220
.6543
.6868
.7196
.7526
.7859
.8195
.8533
.8874
.9217
.9563
.9912
.0263
.0617
.0974
.1333
.1694
.2059
.2425
.2794
.3166
.3541
.3918
.4297
.4679
.5063
.5450
.5839
.6231
.6625
.7022
L7421
.7822
.8227
.8633
.9042
.9453
.9866
.0282
.0700
L1121
.1544
.1970
.2398
.2828
.3260
.3695
.4132
.4571
.5013
.5457
.5903
.6352
.6803
.7256
L7712
.8169
.8629
.9091
.9556
.0022
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.0503
.0506
.0509
.0513
.0516
.0519
.0522
.0525
.0529
.0532
.0535
.0538
.0542
.0545
.0548
.0551
.0555
.0558
.0561
.0565
.0568
.0571
.0574
.0578
.0581
.0584
.0588
.0591
.0594
.0598
.0601
.0604
.0608
.0611
.0614
.0618
.0621
.0625
.0628
.0631
.0635
.0638
.0641
.0645
.0648
.0652
.0655
.0658
.0662
.0665
.0668
.0672
.0675
.0679
.0682
.0685
.0689
.0692
.0696
.0699
.0702
.0706
.0709
.0713
.0716
.0719
.0723
.0726
.0730

1.115
1.120
1.118
1.114
1.120
1.118
1.125
1.121
1.126
1.124
1.129
1.127
1.131
1.128
1.126
1.131
1.127
1.133
1.130
1.134
1.131
1.137
1.134
1.137
1.135
1.132
1.136
1.133
1.138
1.133
1.139
1.136
1.139
1.136
1.142
1.137
1.134
1.137
1.135
1.140
1.134
1.140
1.137
1.139
1.137
1.132
1.137
1.134
1.137
1.135
1.139
1.134
1.138
1.134
1.131
1.136
1.131
1.136
1.132
1.136
1.133
1.128
1.132
1.128
1.132
1.129
1.132
1.129
1.133
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.39695
.39800
.39964
.40125
.40230
.40392
.40551
.40656
.40816
.40974
.41077
.41234
.41346
.41449
.41605
.41716
.41862
.41972
.42082
.42227
.42336
.42435
.42543
.42651
.42794
.42901
.43008
.43106
.43212
.43309
.43414
.43519
.43615
.43720
.43824
.43919
.44024
.44120
.44225
.44329
.44381
.44485
.44580
.44640
.44743
.44837
.44940
.44991
.45093
.45194
.45245
.45345
.45395
.45495
.45554
.45646
.45704
.45795
.45894
.45943
.46041
.46098
.46147
.46244
.46301
.46349
.46446
.46494
.46591

-40.
-40.
-40.
-40.
-40.
-40.
-39.
-39.
-39.
-39.
-39.
-39.
-39.
-39.
-39.
-39.
-38.
-38.
-38.
-38.
-38.
-38.
-38.
-38.
-38.
-38.
-38.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-37.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-36.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
-35.
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.524
.526
.527
.528
.530
.531
.532
.534
.535
.536
.538
.539
.540
.542
.543
.544
.546
.547
.548
.550
.551
.553
.554
.555
.557
.558
.559
.561
.562
.564
.565
.566
.568
.569
.570
.572
.573
.575
.576
.577
.579
.580
.582
.583
.584
.586
.587
.589
.590
.591
.593
.594
.596
.597
.598
.600
.601
.603
.604
.606
.607
.608
.610
.611
.612
.614
.615
.617
.618
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.595
.597
.600
.603
.605
.608
.611
.613
.616
.619
.621
.624
.626
.628
.631
.633
.636
.638
.640
.643
.645
.647
.649
.651
.654
.656
.658
.660
.662
.664
.666
.668
.670
.672
.674
.676
.678
.680
.682
.684
.685
.687
.689
.690
.692
.694
.696
.697
.699
.701
.702
.704
.705
.707
.708
.710
711
.713
.715
.716
.718
.719
.720
.722
.723
.724
.726
L7217
.729
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.945
.931
.917
.903
.889
.874
.860
.845
.831
.816
.802
.789
.776
.763
.750
.737
.723
.710
.696
.683
.670
.658
.645
.633
.621
.609
.596
.584
.571
.558
.547
.535
.524
.513
.501
.490
.478
.467
.455
.443
.432
.422
.412
.401
.390
.380
.369
.358
.348
.337
.327
.317
.307
.297
.287
.278
.268
.258
.248
.237
.228
.219
.210
.201
.191
.182
.173
.163
.154
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.309
.336
.364
.391
.418
.446
.473
.501
.528
.556
.584
.612
.639
.667
.695
.723
.751
.780
.808
.836
.864
.892
.921
.949
.978
.006
.034
.063
.092
.120
.149
177
.206
.235
.263
.292
.321
.350
.379
.407
.436
.465
.494
.523
.552
.581
.610
.639
.668
.697
.726
.755
.784
.813
.842
.871
.900
.929
.958
.987
.016
.045
.074
.103
.132
.161
.191
.220
.249

865.43
869.75
874.10
878.48
882.88
887.31
891.77
896.26
900.77
905.31
909.88
914.48
919.10
923.75
928.43
933.14
937.88
942.64
947.44
952.26
957.11
961.98
966.89
971.82
976.78
981.77
986.79
991.84
996.92
1002.02
1007.15
1012.32
1017.51
1022.73
1027.97
1033.25
1038.55
1043.89
1049.25
1054.64
1060.06
1065.51
1070.99
1076.50
1082.03
1087.60
1093.19
1098.81
1104.47
1110.15
1115.86
1121.59
1127.36
1133.16
1138.98
1144.84
1150.72
1156.64
1162.58
1168.55
1174.55
1180.58
1186.63
1192.72
1198.84
1204.98
1211.16
1217.36
1223.59



AltCDR RFQ PteqHI tapeinput

run 1 0 0 0 2 0583 00005830000

title

linac 1 0.095 175. 2.0145 1.0

tank 1 5.00 -90 0.1 0 1.0 0 1.0 0 0 1.0 10 1 36 0.0 0.0

zdata -5
-5.1712 0.001 -90.000 1.0000 0.13000
-4.3093 0.80202 -90.000 1.0000 0.13000
-3.4474 1.6040 -90.000 1.0000 0.13000
-2.5856 2.4060 -90.000 1.0000 0.13000
-1.7237 3.2081 -90.000 1.0000 0.13000
-0.86186 4.0101 -90.000 1.0000 0.13000
-1.0000e-05 4.8121 -90.000 1.0000 0.13000 6

zdata -5
0. 4.81206 -90. 1. 0.13
20.685 5.07536 -90. 1.0064 0.12416
40.508 5.31758 -90. 1.0174 0.11715
60.331 5.57232 -90. 1.0339 0.11025
80.153 5.8138 -90. 1.0559 0.10407
100.84 6.01424 -90. 1.0808 0.099212
120.66 6.11768 -90. 1.0969 0.096779
130.14 6.12881 -90. 1.0987 0.096525
154.36 6.12872 -86.867 1.0996 0.096525
205.94 6.12687 -85.479 1.1065 0.097179
220.23 6.12646 -84.836 1.1089 0.097386
240.91 6.12537 -83.532 1.1134 0.097757
260.46 6.12354 -81.78 1.119 0.098209
281.06 6.12166 -79.257 1.1271 0.098592
300.69 6.11933 -76.128 1.1381 0.099175
320.57 6.11385 -72.261 1.154 0.099827
340.91 6.10588 -67.76 1.1771 0.10064
360.31 6.09597 -63.229 1.2083 0.10169
380.15 6.0749 -58.656 1.2524 0.10286
400.44 6.03649 -54.313 1.3138 0.10368
421.09 5.97769 -50.431 1.398 0.10405
441.87 5.89192 -47.136 1.5113 0.10401
451.87 5.82667 -45.763 1.5792 0.10381
457.07 5.89002 -45.101 1.5983 0.10374
519.54 5.815 -40.315 1.5983 0.10307
539.87 5.79564 -40.006 1.5983 0.10284
591.17 5.75761 -40.006 1.5983 0.10236
639.1 5.7369 -40.006 1.5983 0.10211
690.39 5.71948 -40.006 1.5983 0.10189
740.17 5.7085 -40.006 1.5983 0.10176
792.47 5.69931 -40.006 1.5983 0.10165
842.08 5.6925 -40.006 1.5983 0.10157
893.6 5.68658 -40.006 1.5983 0.1015
941.52 5.68165 -40.006 1.5983 0.10144
990.88 5.67689 -40.006 1.5983 0.10138
1041.6 5.67285 -40.006 1.5983 0.10133
1093.7 5.66948 -40.006 1.5983 0.10129
1141.2 5.6669 -40.006 1.5983 0.10126
1189.6 5.66438 -40.006 1.5983 0.10123 -1

start 1

stop -1

rfgout 1

elimit 0.25 0.25

input -6 -100000 2.362 14.218 .01491 2.362 14.218 .01491
180.0 0.000 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1. 2.0145 130.0 0.095

output 2 -1 2 0 1 1 1 2000 1

scheff 130.0 0.029 -0.04425 20 40 20 1 6

optcon 120000 4 1.1 1.4 .1 3 8. 10. 1. 00O00O0

0000 00O00O0 00O00O

begin

end

AltCDR RFQ Cell Table
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.130
.130
.130
.130
.130
.130
.130
.130
.130
.129
.129
.129
.129
.128
.128
.128
.128
.127
.127
.127
.127
.126
.126
.126
.126
.125
.125
.125
.125
.124
.124
.124
.124
.123
.123
.123
.122
.122
.122
.121
.121
.121
.121
.120
.120
.120
.119
.119
.119
.118
.118
.118
.117
.117
.117
.117
.116
.116
.116
.115
.115
.115
.114
.114
.114
.114
.113
.113
.113
.112

[eNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoloNoNoNoNoNoNo o NoNoNoNoNoNoNoNo o No o NoNoNoNoNoNolo NoNoNoNoNoNo oo No oo NoNoNo NoNoNoNoNo N ol e R

n

.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0950
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0951
.0952
.0952
.0952
.0952
.0952
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ez

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.004
0.004
0.004
0.007
0.007
0.007
0.007
0.011
0.011
0.011
0.011
0.015
0.015
0.015
0.019
0.019
0.019
0.019
0.023
0.023
0.023
0.023
0.027
0.027
0.031
0.031
0.035
0.035
0.039
0.039
0.042
0.043
0.047
0.047
0.051
0.051
0.055
0.055
0.059
0.059
0.059
0.063
0.063
0.067
0.067
0.072
0.076
0.080
0.080
0.084
0.088
0.088
0.092
0.096
0.100
0.101
0.105
0.109
0.109
0.114
0.117

capa
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.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00024
.00024
.00024
.00024
.00049
.00049
.00050
.00050
.00075
.00075
.00076
.00076
.00102
.00102
.00103
.00129
.00129
.00130
.00131
.00157
.00158
.00159
.00159
.00187
.00188
.00215
.00216
.00244
.00246
.00273
.00275
.00303
.00305
.00334
.00336
.00365
.00367
.00396
.00399
.00428
.00431
.00432
.00464
.00465
.00497
.00498
.00530
.00561
.00594
.00596
.00629
.00660
.00664
.00696
.00730
.00762
.00767
.00799
.00834
.00837
.00872
.00905

phi

-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
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.090
.592
.126
.919
.796
.712
.650
.649
.647
.646
.644
.643
.641
.640
.639
.637
.636
.634
.633
.632
.630
.629
.627
.626
.625
.623
.622
.621
.619
.618
.617
.615
.613
.612
.610
.609
.607
.606
.604
.603
.601
.600
.598
.597
.595
.594
.592
.591
.589
.588
.586
.585
.583
.582
.580
.579
.577
.576
.574
.573
.571
.570
.568
.567
.565
.564
.562
.561
.559
.558
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.000
.000
.000
.000
.000
.000
.000
.000
.001
.001
.001
.001
.002
.002
.002
.002
.003
.003
.003
.003
.004
.004
.004
.005
.005
.005
.005
.006
.006
.006
.006
.007
.007
.008
.008
.009
.009
.010
.010
.011
.011
.012
.012
.013
.013
.014
.014
.015
.015
.015
.016
.016
.017
.017
.018
.019
.020
.020
.021
.022
.022
.023
.024
.025
.025
.026
.027
.027
.028
.029
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.001
.802
.604
.406
.208
.010
.812
.823
.834
.845
.856
.867
.878
.889
.900
.911
.922
.933
.944
.955
.966
.977
.988
.999
.010
.021
.031
.042
.053
.064
.075
.086
.096
.107
.117
.128
.139
.149
.160
.170
.181
.191
.202
.212
.223
.233
.244
.254
.265
.275
.286
.297
.307
.318
.329
.340
.351
.362
.373
.384
.395
.406
.417
.428
.439
.450
.462
.473
.484
.495
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.000
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.862
.863
.863
.863
.863
.863
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0.00

0.86

1.72

2.59

3.45

4.31

5.17

6.03

6.89

7.76

8.62

9.48
10.34
11.20
12.07
12.93
13.79
14.65
15.51
16.38
17.24
18.10
18.96
19.82
20.68
21.55
22.41
23.27
24.13
24.99
25.86
26.72
27.58
28.44
29.30
30.17
31.03
31.89
32.75
33.61
34.47
35.34
36.20
37.06
37.92
38.78
39.65
40.51
41.37
42.23
43.09
43.95
44.82
45.68
46.54
47.40
48.26
49.13
49.99
50.85
51.71
52.57
53.44
54.30
55.16
56.02
56.88
57.74
58.61
59.47



112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
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.112
.112
111
111
111
111
.110
.110
.110
.109
.109
.109
.109
.108
.108
.108
.108
.107
.107
.107
.106
.106
.106
.106
.105
.105
.105
.105
.104
.104
.104
.104
.103
.103
.103
.103
.103
.102
.102
.102
.102
.102
.101
.101
.101
.101
.101
.100
.100
.100
.100
.100
.099
.099
.099
.099
.099
.099
.099
.099
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.097
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.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0952
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0953
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0954
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
.0955
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.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101

0.122
0.122
0.126
0.130
0.131
0.135
0.139
0.143
0.148
0.151
0.156
0.160
0.165
0.168
0.173
0.178
0.178
0.181
0.186
0.191
0.194
0.199
0.203
0.208
0.211
0.216
0.221
0.225
0.228
0.233
0.238
0.242
0.244
0.249
0.255
0.259
0.264
0.266
0.271
0.275
0.280
0.285
0.287
0.291
0.297
0.302
0.310
0.312
0.317
0.322
0.326
0.331
0.333
0.338
0.339
0.342
0.347
0.352
0.352
0.357
0.357
0.358
0.363
0.367
0.368
0.372
0.376
0.381
0.381
0.386
0.386
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.00941
.00944
.00981
.01014
.01021
.01055
.01092
.01127
.01165
.01199
.01238
.01273
.01308
.01348
.01384
.01424
.01428
.01464
.01505
.01542
.01583
.01620
.01657
.01700
.01737
.01780
.01818
.01856
.01900
.01938
.01976
.02015
.02053
.02092
.02138
.02177
.02216
.02256
.02296
.02335
.02375
.02415
.02456
.02496
.02544
.02585
.02659
.02700
.02741
.02782
.02824
.02866
.02907
.02949
.02958
.02991
.03034
.03076
.03076
.03119
.03152
.03161
.03204
.03237
.03247
.03280
.03323
.03367
.03367
.03410
.03443

-90.
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-90.
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-90.
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-90.
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-90.
-90.
-90.
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-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
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-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
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.556
.555
.553
.552
.550
.549
.547
.546
.544
.543
.541
.540
.539
.537
.536
.534
.533
.532
.530
.529
.527
.526
.525
.523
.522
.520
.519
.518
.516
.515
.514
.513
.512
.511
.509
.508
.507
.506
.505
.504
.503
.502
.501
.500
.498
.497
.496
.495
.494
.493
.492
.491
.490
.489
.488
.488
.487
.486
.486
.485
.485
.484
.483
.483
.482
.482
.481
.480
.480
.479
.479
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.030
.030
.031
.032
.032
.033
.034
.035
.036
.037
.038
.039
.040
.041
.042
.043
.043
.044
.045
.046
.047
.048
.049
.050
.051
.052
.053
.054
.055
.056
.057
.058
.059
.060
.061
.062
.063
.064
.065
.066
.067
.068
.069
.070
.071
.072
.074
.075
.076
.077
.078
.079
.080
.081
.081
.082
.083
.084
.084
.085
.086
.086
.087
.088
.088
.089
.090
.091
.091
.092
.093
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.506
.517
.528
.539
.550
.561
.572
.583
.593
.604
.614
.625
.635
.646
.656
.667
.677
.688
.698
.709
.719
.730
.740
.751
.761
.772
.782
.793
.803
.814
.822
.831
.839
.847
.856
.864
.872
.881
.889
.897
.906
.914
.922
.931
.939
.947
.956
.964
.972
.981
.989
.998
.006
.014
.019
.023
.028
.032
.037
.041
.046
.050
.055
.059
.064
.068
.073
.077
.082
.086
.091
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.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.863
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864
.864

60.33
61.19
62.05
62.92
63.78
64.64
65.50
66.36
67.23
68.09
68.95
69.81
70.67
71.53
72.40
73.26
74.12
74.98
75.84
76.71
77.57
78.43
79.29
80.15
81.01
81.88
82.74
83.60
84.46
85.32
86.19
87.05
87.91
88.77
89.63
90.50
91.36
92.22
93.08
93.94
94.80
95.67
96.53
97.39
98.25
99.11
99.98
100.84
101.70
102.56
103.42
104.29
105.15
106.01
106.87
107.73
108.59
109.46
110.32
111.18
112.04
112.90
113.77
114.63
115.49
116.35
117.21
118.08
118.94
119.80
120.66



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
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.097
.097
.097
.097
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.097
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.097
.097
.097
.097
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.097
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.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
.097
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.0955
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0956
.0957
.0957
.0958
.0958
.0959
.0959
.0960
.0961
.0962
.0963
.0964
.0965
.0966
.0967
.0969
.0970
.0972
.0973
.0975
.0976
.0978
.0980
.0982
.0984
.0986
.0988
.0990
.0992
.0994
.0996
.0999
.1001
.1003
.1005
.1007
.1010
.1012
.1014
.1017
.1019
.1021
.1024
.1026
.1029
.1031
.1034
.1036
.1039
.1041
.1044
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.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0101
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0102
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0103
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0104
.0105
.0105
.0105
.0105
.0105
.0105
.0105
.0105

0.387
0.392
0.396
0.401
0.401
0.406
0.406
0.406
0.406
0.409
0.411
0.411
0.411
0.411
0.411
0.414
0.414
0.414
0.414
0.414
0.415
0.415
0.415
0.415
0.415
0.416
0.416
0.416
0.416
0.416
0.416
0.417
0.417
0.418
0.414
0.414
0.414
0.415
0.416
0.416
0.416
0.422
0.423
0.423
0.424
0.420
0.421
0.421
0.422
0.422
0.423
0.424
0.428
0.429
0.425
0.425
0.426
0.427
0.427
0.428
0.429
0.433
0.434
0.431
0.430
0.431
0.431
0.432
0.433
0.437
0.438
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.03454
.03497
.03531
.03574
.03574
.03619
.03619
.03619
.03619
.03652
.03663
.03663
.03663
.03663
.03663
.03696
.03696
.03696
.03696
.03696
.03702
.03702
.03702
.03702
.03702
.03708
.03708
.03708
.03714
.03714
.03714
.03720
.03720
.03726
.03726
.03732
.03732
.03738
.03744
.03750
.03750
.03801
.03807
.03813
.03819
.03819
.03825
.03831
.03836
.03842
.03848
.03854
.03894
.03900
.03906
.03906
.03911
.03917
.03923
.03934
.03940
.03981
.03987
.03992
.03987
.03993
.03999
.04004
.04011
.04052
.04058

-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-90.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-89.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-88.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-87.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
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.478
.4717
.4717
.476
.476
.475
.475
.475
.475
.475
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.474
.473
.473
.473
.473
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.473
.473
.474
.474
.474
.474
.474
.474
.474
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.093
.094
.095
.096
.096
.097
.097
.097
.097
.098
.098
.098
.098
.098
.098
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.101
.101
.101
.101
.101
.101
.101
.101
.101
.102
.102
.102
.102
.102
.102
.102
.102
.103
.103
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.095
.100
.104
.109
.113
.118
.119
.120
.121
.122
.123
.124
.125
.126
.127
.128
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.129
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
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.864
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.865
.866
.866
.866
.867
.867
.868
.868
.869
.869
.870
.870
.871
.872
.872
.873
.874
.874
.875
.876
.877
.878
.879
.880
.881
.882
.882
.884
.885
.886
.886
.887
.889
.890
.890
.892
.893
.893
.895
.896
.897
.898
.899
.900
.901
.902
.903

121.52
122.38
123.25
124.11
124.97
125.83
126.69
127.56
128.42
129.28
130.14
131.00
131.86
132.73
133.59
134.45
135.31
136.17
137.04
137.90
138.76
139.62
140.49
141.35
142.21
143.08
143.94
144.81
145.67
146.54
147.40
148.27
149.13
150.00
150.87
151.73
152.60
153.47
154.34
155.21
156.08
156.96
157.83
158.70
159.58
160.45
161.33
162.20
163.08
163.96
164.84
165.72
166.60
167.49
168.37
169.25
170.14
171.03
171.91
172.80
173.69
174.58
175.47
176.37
177.26
178.15
179.05
179.95
180.84
181.74
182.64



212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
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259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
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.097
.097
.097
.097
.097
.097
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.097
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.097
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.097
.097
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.097
.098
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.098
.098
.098
.098
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.098
.098
.098
.098
.098
.098
.098
.098
.098
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.1046
.1049
.1052
.1054
.1057
.1060
.1063
.1065
.1068
.1071
.1074
.1077
.1080
.1083
.1086
.1089
.1092
.1095
.1098
.1101
.1104
.1107
.1110
.1113
.1116
.1120
.1123
.1126
.1130
.1133
.1136
.1140
.1143
.1147
.1150
.1154
.1157
.1161
.1165
.1169
L1172
.1176
.1180
.1184
.1188
.1192
.1196
.1200
.1205
.1209
.1213
.1218
.1222
.1227
.1231
.1236
.1241
.1245
.1250
.1255
.1260
.1265
L1271
.1276
.1281
.1287
.1292
.1298
.1303
.1309
.1315
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.0106
.0106
.0106
.0106
.0106
.0106
.0106
.0107
.0107
.0107
.0107
.0107
.0107
.0107
.0108
.0108
.0108
.0108
.0108
.0108
.0108
.0109
.0109
.0109
.0109
.0109
.0109
.0110
.0110
.0110
.0110
.0110
.0110
.0111
.0111
.0111
.0111
.0111
.0111
.0112
.0112
.0112
.0112
.0112
.0113
.0113
.0113
.0113
.0113
.0114
.0114
.0114
.0114
.0114
.0115
.0115
.0115
.0115
.0115
.0116
.0116
.0116
.0116
.0117
.0117
.0117
.0117
.0118
.0118
.0118
.0118

0.434
0.436
0.436
0.437
0.438
0.438
0.443
0.439
0.440
0.441
0.442
0.442
0.444
0.444
0.445
0.445
0.447
0.447
0.448
0.449
0.450
0.446
0.451
0.452
0.453
0.453
0.455
0.451
0.452
0.453
0.458
0.459
0.459
0.457
0.457
0.458
0.459
0.463
0.465
0.461
0.462
0.464
0.464
0.469
0.466
0.467
0.470
0.470
0.475
0.472
0.473
0.474
0.480
0.485
0.482
0.483
0.484
0.485
0.490
0.487
0.489
0.490
0.495
0.492
0.493
0.494
0.495
0.497
0.498
0.499
0.504
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.04064
.04077
.04083
.04089
.04095
.04101
.04143
.04149
.04162
.04168
.04174
.04180
.04193
.04199
.04241
.04247
.04260
.04266
.04272
.04278
.04291
.04297
.04339
.04352
.04358
.04364
.04376
.04383
.04389
.04401
.04444
.04457
.04463
.04475
.04481
.04487
.04500
.04543
.04555
.04562
.04574
.04586
.04592
.04642
.04648
.04661
.04686
.04692
.04742
.04754
.04761
.04773
.04785
.04836
.04848
.04854
.04867
.04879
.04930
.04942
.04954
.04967
.05018
.05030
.05043
.05055
.05067
.05125
.05137
.05149
.05201

-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-86.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-85.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-84.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
-83.
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.103
.103
.103
.103
.103
.103
.104
.104
.104
.104
.104
.104
.104
.104
.105
.105
.105
.105
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.105
.105
.105
.106
.106
.106
.106
.106
.106
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.106
.107
.107
.107
.107
.107
.107
.107
.108
.108
.108
.108
.108
.108
.109
.109
.109
.109
.109
.110
.110
.110
.110
.110
.111
.111
.111
.111
.111
.112
.112
.112
.112
.113
.113
.113
.113
.113
.114
.114
.114
.115
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.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.128
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
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.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.127
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.126
.125
.125
.125
.125
.125
.125
.125
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.904
.906
.907
.908
.909
.910
.912
.913
.914
.915
.916
.918
.919
.920
.921
.923
.924
.925
.927
.928
.929
.930
.932
.933
.934
.936
.937
.938
.940
.941
.942
.944
.945
.947
.948
.950
.951
.953
.954
.956
.957
.959
.961
.962
.964
.965
.967
.969
.971
.972
.974
.976
977
.979
.981
.983
.985
.987
.989
.991
.993
.995
.997
.999
.001
.003
.005
.007
.009
.012
.014

183.55
184.45
185.35
186.26
187.16
188.07
188.98
189.89
190.80
191.71
192.62
193.54
194.45
195.37
196.29
197.21
198.13
199.05
199.97
200.90
201.82
202.75
203.68
204.61
205.54
206.47
207.40
208.34
209.28
210.21
211.15
212.09
213.04
213.98
214.92
215.87
216.82
217.717
218.72
219.67
220.62
221.58
222.54
223.50
224.46
225.42
226.38
227.35
228.31
229.28
230.25
231.23
232.20
233.18
234.15
235.13
236.11
237.10
238.08
239.07
240.06
241.05
242.04
243.04
244.03
245.03
246.04
247.04
248.04
249.05
250.06



283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
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325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

=Nl NN NeoNoNoE-N-NeNe oo oo Eo RN o No o Mo E=R=Noo o NoNe o N RN Neo o R Re No o R N N No E=R= =N e N N No Mo X=E-Nee e e No o No N R Ne N N X =]

.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.098
.099
.099
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.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.099
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
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.1321
.1327
.1333
.1339
.1346
.1352
.1359
.1366
.1372
.1379
.1386
.1394
.1401
.1408
.1416
.1424
.1432
.1440
.1448
.1456
.1465
.1473
.1482
.1491
.1501
.1510
.1520
.1530
.1540
.1550
.1560
.1571
.1582
.1593
.1604
.1616
.1627
.1639
.1652
.1664
.1677
.1691
.1704
.1718
.1732
.1747
.1761
1777
.1792
.1808
.1824
.1841
.1858
.1875
.1893
.1911
.1930
.1949
.1969
.1989
.2010
.2031
.2053
.2076
.2099
.2122
.2146
.2171
.2196
.2222
.2249
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.0119
.0119
.0119
.0119
.0120
.0120
.0120
.0121
.0121
.0121
.0122
.0122
.0122
.0123
.0123
.0123
.0124
.0124
.0124
.0125
.0125
.0125
.0126
.0126
.0126
.0127
.0127
.0128
.0128
.0129
.0129
.0129
.0130
.0130
.0131
.0131
.0132
.0132
.0133
.0133
.0134
.0134
.0135
.0135
.0136
.0136
.0137
.0138
.0138
.0139
.0139
.0140
.0141
.0141
.0142
.0143
.0143
.0144
.0145
.0146
.0146
.0147
.0148
.0149
.0150
.0150
.0151
.0152
.0153
.0154
.0155

0.502
0.503
0.504
0.510
0.507
0.508
0.513
0.510
0.512
0.514
0.515
0.516
0.518
0.519
0.520
0.522
0.523
0.525
0.531
0.528
0.530
0.535
0.533
0.539
0.540
0.542
0.544
0.541
0.547
0.551
0.556
0.558
0.561
0.563
0.565
0.567
0.569
0.575
0.572
0.578
0.577
0.583
0.585
0.587
0.589
0.595
0.593
0.595
0.601
0.601
0.607
0.609
0.611
0.618
0.620
0.622
0.629
0.631
0.633
0.643
0.650
0.652
0.655
0.657
0.659
0.666
0.669
0.672
0.679
0.681
0.687
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.05220
.05232
.05244
.05303
.05315
.05327
.05386
.05398
.05416
.05434
.05487
.05506
.05524
.05577
.05596
.05614
.05674
.05692
.05752
.05770
.05788
.05848
.05873
.05933
.05951
.06012
.06036
.06054
.06121
.06145
.06206
.06230
.06312
.06336
.06403
.06427
.06495
.06563
.06587
.06655
.06685
.06753
.06828
.06851
.06926
.07001
.07030
.07105
.07181
.07225
.07300
.07381
.07457
.07539
.07620
.07696
.077717
.07859
.07946
.08043
.08124
.08212
.08300
.08387
.08469
.08562
.08650
.08753
.08895
.08988
.09126

-83.
-83.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-82.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-81.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-80.
-79.
-79.
-79.
-79.
-79.
-79.
-78.
-78.
-78.
-78.
-78.
-78.
-77.
-77.
-77.
-77.
-77.
-76.
-76.
-76.
-76.
-76.
-75.
-75.
-75.
-75.
-75.
-74.
-74.
-74.
-74.
-73.
-73.
-73.
-73.
-72.
-72.
-72.
-72.
-71.
-71.
-71.
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.473
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.473
.473
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.472
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.472
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.471
.471
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.471
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.470
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.470
.470
.470
.469
.469
.469
.469
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.115
.115
.115
.116
.116
.116
.117
.117
.117
.117
.118
.118
.118
.119
.119
.119
.120
.120
.121
.121
.121
.122
.122
.123
.123
.124
.124
.124
.125
.125
.126
.126
.127
.127
.128
.128
.129
.130
.130
.131
.131
.132
.133
.133
.134
.135
.135
.136
.137
.137
.138
.139
.140
.141
.142
.143
.144
.145
.146
.147
.148
.149
.150
.151
.152
.153
.154
.155
.157
.158
.160
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.125
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.125
.124
.124
.124
.124
.124
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.124
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.124
.123
.123
.123
.123
.123
.123
.123
.123
.123
.123
.122
.122
.122
.122
.122
.122
.122
.122
.122
.122
.121
.121
.121
.121
.121
.121
.121
.120
.120
.120
.120
.120
.120
.120
.120
.119
.119
.119
.118
.118
.118
.117
.117
.117
.116
.116
.116
.115
.115
.115
.114
.114
.113
.113
.112
.112
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.016
.019
.021
.023
.026
.028
.031
.033
.036
.038
.041
.044
.047
.049
.052
.055
.058
.061
.064
.067
.070
.073
.076
.080
.083
.087
.090
.094
.097
.101
.104
.108
112
.116
.120
.124
.128
.132
.136
.141
.145
.150
.154
.159
.164
.169
.173
.179
.184
.189
.194
.200
.205
.211
.217
.222
.228
.234
.241
.247
.254
.260
.267
.274
.281
.288
.295
.303
.310
.318
.326

251.08
252.09
253.11
254.13
255.15
256.17
257.20
258.23
259.26
260.30
261.33
262.37
263.42
264.46
265.51
266.56
267.62
268.67
269.73
270.80
271.86
272.93
274.00
275.08
276.16
277.24
278.33
279.42
280.51
281.61
282.71
283.81
284.92
286.03
287.14
288.26
289.39
290.52
291.65
292.78
293.92
295.07
296.22
297.37
298.53
299.70
300.87
302.04
303.22
304.40
305.59
306.79
307.99
309.19
310.41
311.62
312.85
314.08
315.31
316.55
317.80
319.06
320.32
321.59
322.86
324.14
325.43
326.73
328.04
329.35
330.67



354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
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373
374
375
376
377
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379
380
381
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383
384
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400
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403
404
405
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407
408
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410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
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.100
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.100
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L2277
.2305
.2334
.2364
.2395
.2426
.2459
.2492
.2526
.2562
.2598
.2635
.2673
.2712
.2753
.2795
.2838
.2882
.2928
.2975
.3023
.3073
.3124
.3177
.3231
.3287
.3345
.3404
.3466
.3529
.3595
.3662
.3732
.3803
.3877
.3953
.4032
.4113
.4197
.4284
.4373
.4466
.4561
.4659
.4761
.4865
.4973
.5085
.5200
.5319
.5442
.5570
.5701
.5836
.5976
.6120
.6269
.6422
.6581
.6745
.6915
.7090
L7271
.7457
.7649
.7847
.8051
.8262
.8479
.8703
.8932

[eNeNeNeNeNeNoNoNo o E=-NeNoNe oo No Xe Ro NN o X No o =R Neo o o No No o No RN Neo o N No No No R - Ne Neo No No N Neo No o X=Ne oo No X Ne No X=N=Ne oo N No No N No X =]

.0156
.0157
.0158
.0159
.0160
.0161
.0162
.0163
.0164
.0165
.0166
.0168
.0169
.0170
.0171
.0173
.0174
.0175
.0177
.0178
.0179
.0181
.0182
.0184
.0186
.0187
.0189
.0190
.0192
.0194
.0196
.0198
.0199
.0201
.0203
.0205
.0207
.0209
.0211
.0214
.0216
.0218
.0220
.0223
.0225
.0228
.0230
.0233
.0235
.0238
.0241
.0244
.0246
.0249
.0252
.0255
.0258
.0262
.0265
.0268
.0271
.0275
.0278
.0282
.0285
.0289
.0293
.0297
.0301
.0304
.0308

0.690
0.698
0.700
0.707
0.709
0.716
0.720
0.726
0.740
0.743
0.749
0.752
0.759
0.769
0.776
0.778
0.788
0.796
0.798
0.808
0.815
0.829
0.835
0.842
0.847
0.860
0.866
0.879
0.889
0.895
0.903
0.912
0.930
0.939
0.948
0.957
0.968
0.982
0.994
1.004
1.015
1.029
1.040
1.049
1.072
1.081
1.094
1.108
1.126
1.141
1.156
1.170
1.189
1.202
1.216
1.230
1.244
1.260
1.282
1.302
1.323
1.336
1.356
1.370
1.391
1.405
1.425
1.444
1.463
1.483
1.486
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.09219
.09384
.09477
.09626
.09720
.09869
.09984
.10139
.10288
.10392
.10547
.10718
.10873
.11085
.11257
.11417
.11634
.11811
.11976
.12194
.12376
.12594
.12763
.13003
.13225
.13505
.13749
.14029
.14331
.14579
.14862
.15163
.15398
.15704
.15997
.16307
.16670
.17068
.17435
.17859
.18229
.18651
.19024
.19449
.19874
.20301
.20732
.21264
.21799
.22357
.22946
.23507
.24097
.24660
.25245
.25832
.26435
.27185
.27983
.28728
.29520
.30255
.31053
.31825
.32640
.33445
.34399
.35326
.36261
.37138
.37699

-70.
-70.
-70.
-70.
-69.
-69.
-69.
-68.
-68.
-68.
-67.
-67.
-67.
-66.
-66.
-66.
-65.
-65.
-65.
-64.
-64.
-64.
-63.
-63.
-62.
-62.
-62.
-61.
-61.
-61.
-60.
-60.
-59.
-59.
-59.
-58.
-58.
-57.
-57.
-57.
-56.
-56.
-56.
-55.
-55.
-54.
-54.
-53.
-53.
-53.
-52.
-52.
-52.
-51.
-51.
-50.
-50.
-50.
-49.
-49.
-49.
-48.
-48.
-47.
-47.
-47.
-46.
-46.
-46.
-45.
-45.
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.469
.468
.468
.468
.468
.468
.467
.467
.467
.467
.467
.466
.466
.466
.465
.465
.465
.464
.464
.464
.463
.463
.463
.462
.462
.462
.461
.461
.460
.459
.459
.458
.458
.457
.457
.456
.455
.455
.454
.453
.452
.451
.450
.449
.448
.447
.446
.445
.444
.442
.441
.439
.438
.436
.435
.434
.432
.430
.428
.426
.424
.422
.419
.417
.415
.413
.410
.408
.405
.402
.399
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.161
.163
.164
.166
.167
.169
.170
.172
.174
.175
177
.179
.181
.184
.186
.188
.191
.193
.195
.198
.200
.203
.205
.208
.211
.215
.218
.222
.226
.229
.233
.237
.240
.244
.248
.252
.257
.263
.268
.274
.279
.285
.290
.296
.302
.308
.314
.322
.330
.338
.347
.355
.364
.372
.381
.390
.399
.411
.424
.436
.449
.461
.474
.487
.501
.515
.532
.549
.566
.582
.591
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.111
.111
.110
.110
.109
.109
.108
.108
.107
.107
.106
.105
.105
.104
.103
.102
.102
.101
.100
.099
.098
.098
.097
.096
.095
.093
.091
.089
.088
.086
.084
.082
.081
.079
.077
.075
.072
.068
.065
.062
.058
.055
.051
.047
.044
.040
.036
.031
.025
.019
.014
.008
.002
.996
.989
.983
.977
.968
.958
.949
.939
.930
.920
.910
.900
.889
.872
.856
.839
.835
.867
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.334
.342
.351
.359
.368
.377
.387
.396
.405
.415
.425
.435
.446
.456
.467
.478
.490
.501
.513
.525
.537
.550
.563
.576
.589
.603
.617
.631
.646
.661
.676
.692
.708
.724
.741
.758
.775
.793
.811
.830
.849
.868
.888
.908
.929
.950
.972
.994
.016
.039
.062
.087
111
.136
.161
.187
.214
.240
.268
.296
.325
.354
.384
.414
.445
.476
.508
.541
.574
.608
.642

332.00
333.33
334.68
336.03
337.40
338.77
340.15
341.54
342.94
344.34
345.76
347.19
348.63
350.08
351.54
353.01
354.50
355.99
357.49
359.01
360.54
362.09
363.64
365.21
366.79
368.39
369.99
371.62
373.25
374.91
376.58
378.26
379.96
381.67
383.41
385.15
386.92
388.70
390.50
392.32
394.16
396.02
397.90
399.80
401.71
403.65
405.61
407.60
409.60
411.63
413.68
415.75
417.85
419.97
422.12
424.29
426.49
428.72
430.97
433.26
435.56
437.90
440.27
442.67
445.10
447.56
450.05
452.57
455.13
457.72
460.35



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
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.104
.104
.104
.104
.104
.104
.104
.104
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.103
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
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.9164
.9399
.9635
.9872
.0111
.0350
.0591
.0833
.1076
.1320
.1565
.1812
.2059
.2308
.2558
.2809
.3061
.3314
.3568
.3823
.4079
.4337
.4595
.4853
.5111
.5370
.5629
.5889
.6148
.6408
.6668
.6927
.7187
.7447
.7707
.7967
.8227
.8487
.8747
.9007
.9267
.9528
.9788
.0048
.0309
.0569
.0830
.1090
.1351
.1612
.1872
.2133
.2394
.2655
.2916
.3176
.3437
.3698
.3959
.4220
.4481
.4743
.5004
.5265
.5526
.5787
.6048
.6310
.6571
.6832
.7094
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.0312
.0316
.0320
.0324
.0328
.0332
.0336
.0340
.0343
.0347
.0351
.0355
.0358
.0362
.0366
.0369
.0373
.0376
.0380
.0384
.0387
.0391
.0394
.0398
.0401
.0404
.0408
.0411
.0415
.0418
.0421
.0424
.0428
.0431
.0434
.0437
.0440
.0444
.0447
.0450
.0453
.0456
.0459
.0462
.0465
.0468
.0471
.0474
.0477
.0480
.0482
.0485
.0488
.0491
.0494
.0497
.0499
.0502
.0505
.0508
.0510
.0513
.0516
.0518
.0521
.0524
.0526
.0529
.0532
.0534
.0537

1.485
1.469
1.454
1.440
1.425
1.412
1.398
1.385
1.362
1.349
1.336
1.324
1.315
1.303
1.290
1.282
1.270
1.262
1.250
1.239
1.231
1.220
1.212
1.201
1.193
1.186
1.175
1.168
1.157
1.150
1.143
1.136
1.127
1.120
1.113
1.106
1.100
1.080
1.073
1.067
1.061
1.055
1.048
1.042
1.036
1.030
1.024
1.018
1.012
1.007
1.003
0.997
0.992
0.986
0.981
0.975
0.972
0.966
0.961
0.956
0.952
0.947
0.942
0.939
0.934
0.929
0.925
0.921
0.916
0.913
0.908
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.38147
.38241
.38333
.38420
.38508
.38599
.38689
.38772
.38854
.38933
.39007
.39079
.39148
.39213
.39278
.39339
.39398
.39454
.39509
.39562
.39612
.39658
.39702
.39747
.39790
.39831
.39871
.39909
.39945
.39982
.40021
.40059
.40096
.40132
.40166
.40199
.40232
.40264
.40295
.40325
.40353
.40381
.40408
.40435
.40461
.40485
.40509
.40533
.40556
.40579
.40599
.40621
.40641
.40661
.40680
.40699
.40718
.40736
.40752
.40770
.40786
.40802
.40818
.40833
.40848
.40862
.40877
.40893
.40908
.40924
.40938

-45.
-44.
-44.
-44.
-44.
-44.
-43.
-43.
-43.
-43.
-42.
-42.
-42.
-42.
-41.
-41.
-41.
-41.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
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.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
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.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
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.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
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.889
.886
.883
.879
.876
.873
.869
.866
.862
.859
.855
.851
.848
.844
.840
.836
.833
.829
.825
.821
.817
.813
.810
.807
.804
.800
.797
.794
.792
.789
.786
.784
.781
.778
.775
.773
.770
.767
.764
.761
.759
.756
.755
.753
.751
.750
.748
.746
.744
.743
.741
.739
.737
.736
.734
.733
.731
.730
.729
.727
.726
.724
.723
.721
.720
.719
.718
.717
.716
.715
.714
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.676
.710
.744
7717
.811
.844
.877
.909
.942
.974
.006
.038
.069
.101
.132
.163
.194
.225
.255
.286
.316
.346
.376
.406
.435
.465
.494
.523
.551
.580
.608
.636
.663
.691
.718
.746
.773
.799
.826
.852
.879
.905
.931
.956
.982
.007
.033
.058
.083
.107
.132
.157
.181
.205
.229
.253
.2717
.301
.324
.348
.371
.394
.417
.440
.463
.486
.508
.531
.553
.576
.598

463.00
465.69
468.42
471.18
473.97
476.79
479.65
482.54
485.47
488.43
491.41
494.44
497.49
500.57
503.69
506.84
510.01
513.22
516.46
519.73
523.04
526.37
529.72
533.11
536.53
539.98
543.45
546.96
550.49
554.05
557.64
561.26
564.91
568.58
572.28
576.01
579.76
583.55
587.36
591.19
595.05
598.94
602.86
606.80
610.76
614.75
618.77
622.81
626.88
630.97
635.08
639.23
643.39
647.58
651.79
656.03
660.29
664.58
668.89
673.22
677.58
681.96
686.36
690.79
695.23
699.71
704.20
708.72
713.26
717.82
722.40



496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
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.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.102
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
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.7355
.7616
.7878
.8139
.8401
.8662
.8924
.9186
.9447
.9709
.9970
.0232
.0494
.0756
.1017
.1279
.1541
.1803
.2065
.2327
.2588
.2850
.3112
.3374
.3636
.3898
.4160
.4422
.4684
.4947
.5209
.5471
.5733
.5995
.6257
.6519
.6782
.7044
.7306
.7568
.7831
.8093
.8355
.8617
.8880
.9142
.9405
.9667
.9929
.0192
.0454
.0716
.0979
.1241
.1504
.1766
.2029
.2291
.2554
.2816
.3079
.3341
.3604
.3866
.4129
.4391
.4654
.4916
.5179
.5442
.5704
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.0539
.0542
.0544
.0547
.0550
.0552
.0555
.0557
.0560
.0562
.0565
.0567
.0569
.0572
.0574
.0577
.0579
.0581
.0584
.0586
.0589
.0591
.0593
.0596
.0598
.0600
.0603
.0605
.0607
.0609
.0612
.0614
.0616
.0618
.0621
.0623
.0625
.0627
.0630
.0632
.0634
.0636
.0638
.0641
.0643
.0645
.0647
.0649
.0651
.0653
.0656
.0658
.0660
.0662
.0664
.0666
.0668
.0670
.0672
.0674
.0676
.0678
.0681
.0683
.0685
.0687
.0689
.0691
.0693
.0695
.0697

0.905
0.900
0.897
0.892
0.888
0.885
0.880
0.878
0.873
0.870
0.866
0.863
0.860
0.856
0.853
0.849
0.846
0.844
0.839
0.837
0.833
0.830
0.828
0.824
0.821
0.818
0.814
0.812
0.809
0.807
0.803
0.801
0.798
0.796
0.792
0.782
0.780
0.777
0.774
0.771
0.769
0.767
0.764
0.761
0.759
0.757
0.754
0.752
0.750
0.748
0.744
0.742
0.740
0.738
0.736
0.734
0.732
0.730
0.727
0.725
0.723
0.721
0.718
0.716
0.714
0.712
0.710
0.708
0.706
0.704
0.702
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.40953
.40967
.40981
.40994
.41007
.41021
.41034
.41046
.41058
.41071
.41082
.41094
.41105
.41116
.41128
.41138
.41149
.41159
.41169
.41179
.41189
.41198
.41208
.41217
.41226
.41235
.41244
.41252
.41260
.41269
.41276
.41285
.41292
.41300
.41308
.41315
.41322
.41329
.41336
.41343
.41350
.41356
.41363
.41369
.41375
.41382
.41388
.41394
.41400
.41406
.41411
.41417
.41423
.41429
.41435
.41441
.41447
.41453
.41459
.41464
.41470
.41475
.41481
.41486
.41491
.41497
.41502
.41507
.41512
.41517
.41522

-40.
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-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
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.397
.397
.397
.397
.397
.397
.397
.397
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.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
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.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598

v ooooaoaoaun

.713
.712
.710
.709
.708
.708
.707
.706
.705
.704
.703
.703
.702
.701
.700
.699
.698
.698
.697
.696
.696
.695
.694
.694
.693
.692
.692
.691
.691
.690
.689
.689
.688
.687
.687
.686
.686
.685
.685
.684
.684
.683
.682
.682
.681
.681
.680
.680
.679
.679
.678
.678
.677
.677
.676
.676
.675
.675
.674
.674
.673
.673
.672
.672
.672
.671
.671
.671
.670
.670
.669

v UUOUUUUOUUUOUUOUOOUOUOOOCO OO0 OO E BB DD BB DD BB DD DD D DD

.620
.642
.664
.686
.707
.729
.750
772
.793
.814
.835
.856
.877
.898
.919
.939
.960
.981
.001
.021
.041
.062
.082
.102
.122
.142
.161
.181
.201
.220
.240
.259
.278
.298
.317
.336
.355
.374
.393
.412
.431
.449
.468
.487
.505
.524
.542
.561
.579
.597
.615
.633
.651
.669
.687
.705
.723
.741
.759
.776
.794
.812
.829
.846
.864
.881
.899
.916
.933
.950
.967

727.01
731.63
736.28
740.96
745.65
750.37
755.10
759.86
764.64
769.44
774.26
779.10
783.97
788.85
793.76
798.69
803.63
808.60
813.59
818.60
823.62
828.67
833.74
838.83
843.94
849.07
854.22
859.39
864.57
869.78
875.01
880.26
885.52
890.81
896.11
901.44
906.78
912.14
917.52
922.92
928.34
933.78
939.24
944.71
950.20
955.72
961.25
966.79
972.36
977.95
983.55
989.17
994.81
1000.47
1006.15
1011.84
1017.55
1023.28
1029.03
1034.80
1040.58
1046.38
1052.20
1058.03
1063.88
1069.75
1075.64
1081.55
1087.47
1093.41
1099.37



567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
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.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101
.101

[ e T i Sl Sl S

.5967
.6230
.6492
.6755
.7018
.7280
.7543
.7806
.8068
.8331
.8594
.8857
.9119
.9382
.9645
.9908
.0170

[=NeNeNeNoNoNoNo X E-NeoNeoNeo e N X=]

.0699
.0701
.0703
.0705
.0707
.0709
.0710
.0712
.0714
.0716
.0718
.0720
.0722
.0724
.0726
.0728
.0730

0.701
0.699
0.697
0.695
0.693
0.691
0.690
0.688
0.686
0.685
0.683
0.681
0.679
0.677
0.675
0.674
0.672

[=NeeleleleNeNoNe o ool =R NeNol

.41527
.41531
.41536
.41540
.41545
.41549
.41554
.41558
.41563
.41567
.41571
.41575
.41579
.41583
.41587
.41591
.41595

-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.
-40.

[=NeNeNeNoNoNoNoXoE-Ne o Neo XN Neo X
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[=NeleleleleNeNoNe o ool =Rl Nol

.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
.397
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.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598
.598

oo oo oooun

.669
.669
.668
.668
.668
.667
.667
.667
.667
.666
.666
.666
.665
.665
.665
.664
.664

(o)X« Ne) o) We) W) e ) We) Ne) o) e Ie) W o) I o) W o) W 6]

.984
.001
.018
.035
.052
.069
.086
.102
.119
.136
.152
.169
.185
.202
.218
.235
.251

1105.34
1111.33
1117.34
1123.36
1129.40
1135.46
1141.54
1147.63
1153.74
1159.86
1166.00
1172.16
1178.34
1184.53
1190.74
1196.96
1203.20



