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SUMMARY 

The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward 
the overarching goal to develop more efficient separation methods for actinides in support of the United 
States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been 
emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel 
recycle options mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved 
in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs 
lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as 
ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are 
organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to 
form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) 
oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing 
an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N 
donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion 
exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether 
new extractants and complexants and theory-based experimental data interpretation. Within these tasks, 
two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state 
and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent 
phase. Solvent extraction represents the primary separation method employed, though ion exchange and 
crystallization play an important role. Highlights of accomplishments include: 

• Confirmation of the first-ever electrolytic oxidation of Am(III) in a noncomplexing aqueous solution 
and submission of this scientific breakthrough as a paper in Science; 

• The first-ever co-crystallization of Am(VI) with UO2(NO3)2⋅6H2O, opening the door to a new 
approach for separating hexavalent actinides as a group; 

• Results showing that three potentially problematic metals will not present risk in ALSEP; 

• Improvement in ALSEP contactor stripping kinetics to acceptable performance; 

• A comparison of centrifugal contactors vs mixer-settlers showing the former performs better in 
ALSEP stripping; 

• Synthesis of new mixed N,O-donor extractants with enhanced solubility and strength for selective 
trivalent actinide extraction; 

• Development of computational methods showing promise in prediction of the selectivity of new 
extractants for trivalent actinides vs lanthanides; 

• An order-of-magnitude improvement in aqueous Am/Eu complexation selectivity of an alternative 
macrocyclic stripping agent for ALSEP, potentially enabling an option for an Am product stream free 
from both Ln and Cm. 

• An alternative aqueous combination of dipicolinate complexant and malonate buffer that may present 
options for ALSEP and TALSPEAK (Trivalent Actinide-Lanthanide Separations by Phosphorus-
reagent Extraction from Aqueous Komplexes) type separations. 

The ALSEP concept is advancing toward a benchtop flowsheet demonstration planned for FY 2016, and a 
bench-scale test bed at Idaho National Laboratory (INL) will be employed to demonstrate at least one 
tandem Am oxidation and separation concept. This report outlines the goals of the STAAR, significance 
of achieving these goals, STAAR organization around the above aims and questions, recent highlights, 
and future directions. The report also includes a listing of publications, reports, patents, and dissertations.  
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SIGMA TEAM FOR ADVANCED ACTINIDE RECYCLE  
FY 2015 ACCOMPLISHMENTS AND DIRECTIONS 

 

1. INTRODUCTION 
The overarching goal of the Sigma Team for Advanced Actinide Recycle (STAAR), which prior to mid 
FY 2015 was named the Sigma Team for Minor Actinide Separation (STMAS), is to develop more 
efficient separation methods for actinides in support of the USDOE Office of Nuclear Energy objective of 
sustainable fuel cycles [USDOE, 2010a]. The STMAS was originally formed to bring together a multi-
disciplinary team of researchers from across the DOE complex and academia that would work 
collaboratively to address the difficult technical challenges associated with developing robust processes 
for the separation of minor actinides (MAs, taken in the present context to mean Am and Cm) from 
lanthanides  [Moyer, 2009, 2010]. The original charter included a secondary objective to devise an 
efficient separation of Am from Cm, but efforts in this direction have been discontinued. In the past 
several years, a systems options study in the Materials Recovery and Waste Forms Development 
(MRWFD) program outlined the merits of full actinide recycle in terms of a future sustainable fuel cycle 
based on fast reactors with or without thermal reactors [Wigeland et al, 2010, 2014]. A more recent 
extension of that study examined differences in U/Pu and U/TRU (TRansUranics) recycle schemes, 
concluding that both are of interest for future development while recognizing the greater development 
challenge associated with U/TRU recycle [Wigeland et al, 2015; Wigeland, in preparation]. Going 
forward into FY 2016, the study results have prompted us to broaden the scope of the Sigma Team to 
include actinide recycle generally vs exclusive focus on recycle of the MAs, and a corresponding change 
for the Sigma Team name to STAAR has been adopted. Given the research momentum from the past few 
years in the Sigma Team and the greater technical challenges of MA separation, STAAR will continue its 
efforts toward a more robust, more efficient actinide/lanthanide (An/Ln) separation process. However, 
needs for U/TRU recycle are already being considered, with initial venturing toward a group An 
separation, a theme that will likely expand in future years.  

The overall effort within STAAR is carried out within the paradigm of aqueous reprocessing of used 
oxide nuclear fuel dissolved in nitric acid. The prime question being addressed deals with principles of 
selectivity through various means including aqueous-phase complexation, use of soft-donor extractants, 
higher oxidation states of americium, ion exchange, and crystallization/dissolution processes. Closed 
process cycles employing robust separation agents are sought that function under practical conditions 
relevant to future technology implementation. While the first years of the STAAR largely entailed the 
pursuit of science behind germinating technology concepts, the scope of the program has advanced to 
include the development of functional separations systems, testing, and bench-scale demonstration. 
Demonstration activities employ simulated feeds using small-scale, continuous prototype equipment. 
Given that an array of previously matured separation technologies for MA separations had been brought 
successfully through demonstrations in the context of the UREX+ (Uranium Extraction Plus) suite of 
processes [Regalbuto, 2011; Gelis, 2009; Laidler, 2008], the overarching question now before us is not 
the feasibility of separating MAs, but rather the efficiency and economy with which these separations can 
be achieved toward a manageable and affordable fuel cycle. The magnitude of this problem will require 
unprecedented simplification and compaction of separations processes, preferably eliminating and 
combining steps. It is anticipated that this will entail new chemistry and likely altogether new separation 
agents. 
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2. SIGNIFICANCE 
The major long-term benefit of this research is expected to be a significant simplification of aqueous 
actinide separations, leading to overall better economics, improved reliability, and increased acceptability 
of nuclear fuel recycle. At the same time, the improved fuel-cycle technology should be safer, produce 
less waste, and support the purposes of nonproliferation. In fulfilling such needs, this research serves the 
"Develop Sustainable Nuclear Fuel Cycles" objective of the USDOE Fuel Cycle Research and 
Development (FCRD) program as described in the Nuclear Energy Roadmap [USDOE, 2010a]. More 
specifically, the implementation of the roadmap by FCRD relies heavily on a robust research and 
development (R&D) program to address MA separations as one of two grand challenges in the area of 
separations [USDOE, 2010b].  

In addition to providing for better economics and process performance, improvements in actinide 
separations technologies resulting from this research will create a broad spectrum of options for crafting 
future fuel cycles that meet societal needs for clean and safe energy. The time horizon for implementation 
of a sustainable nuclear fuel cycle in the US and therefore for realization of the impact of this research 
may be considered to be many decades [Wigeland et al., 2014; Golay, 2015; NNL, 2013]. Over this time 
period, the fabric of science and society will shift markedly. New science and technology will be 
imported into the development of new fuel-cycle technologies in unanticipated and powerful ways. 
Changes in sociopolitical requirements will undoubtedly inspire as well as constrain the course of future 
fuel-cycle implementation. It is widely thought, as indicated by the theme of the recent Global 2015 
conference, that nuclear energy will be part of the solution to reducing future CO2 emissions [Paillere and 
Kepler, 2015; Van Den Durpel, 2015; Golay, 2015]. In fact, as coal utilization is actually at present the 
fastest growing component of world electrical energy production, the need for clean energy grows more 
critical with each passing year, driving a favorable shift in public opinion of nuclear energy. In view of 
the changing future landscape over many decades with attendant large uncertainties, it is clear that a 
major objective for R&D on nuclear fuel cycles is the reduction of risk by offering alternatives and 
making options available [Golay, 2015]. Accordingly, STAAR research is designed to present a broad set 
of future technology choices.  

A recent evaluation of systems options by the USDOE for a sustainable future nuclear fuel cycle 
[Wigeland et al, 2010, 2014] underscores the need for actinide separations. The evaluation considered a 
multitude of nuclear fuel-cycle options, narrowing the choices to four best fuel cycles involving 
continuous recycle of either U/Pu or U/TRU with new natural uranium (no enrichment) in fast critical 
reactors or in both fast and thermal critical reactors. Any of these four options results in dramatic 
improvements vs the current once-through system, including more than an order of magnitude decrease in 
wastes requiring geologic disposal, more than three orders of magnitude reduction in uranium and 
thorium disposal, and more than two orders of magnitude increase in resource utilization. Similar 
conclusions have been reached by other investigators, representing an international consensus [Chabert, et 
al., 2015; Salvatores and Palmiotti, 2011; Kagramanyan, et al., 2015; Poinssot et al., 2015]. 

While the USDOE systems options study thus recognizes the value of actinide recycle in general, a 
follow-on study has been raising the question of whether U/TRU recycle offers benefits over U/Pu 
recycle [Wigeland et al, 2015; Wigeland, in preparation]. In fact, there has been a lively discussion on the 
need and methods for MA partitioning and transmutation (P&T) for over two decades as shown, for 
example, in the series of proceedings of the Organization for Economic Cooperation and Development 
(OECD) Partitioning and Transmutation (P&T) Exchange Meetings [OECD, 2010, 2012]. Relatively 
minor, though not negligible, benefit in energy utilization is expected from MA recycle. Rather, the 
international research community has anticipated the benefit of MA recycle as mainly being felt in the 
back end of a fuel cycle, particularly in reducing the effects of heating on repository performance and in 
minimizing radiotoxicity [Salvatores and Palmiotti, 2011; Tachimori and Morita, 2010; Hill, 2010, 2011; 
Boullis, 2008; Arm et al., 2008; Todd and Wigeland, 2006; Nash et al., 2006; Romary and Grygiel, 2015; 
Poinssot et al., 2015]. The importance of these factors and the extent to which their associated benefits 
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can be realized depends on the design and siting of a repository. As discussed below, criteria for 
repository selection include technical as well as societal considerations [Carelli, 2011; Poinssot et al., 
2015; OECD, 2011; NNL, 2013], which may not lead to coincident preferences [Golay, 2015]. Consent-
based siting is in fact a major recommendation of the President's Blue Ribbon Commision [Blue Ribbon 
Commission, 2012], which injects definite societal input into fuel cycle design.  

The benefit of reduced heat generation of nuclear waste due to MA recycle depends on repository design 
and siting. A significant beneficial increase in waste loading capacity is expected for certain geological 
characteristics, for example, in the cases of clay, granite, or volcanic tuft formations [OECD, 2011]. With 
no separations whatsoever, as would be the case with the once-through option, the heat load on a geologic 
repository out to 2000 years is dominated by 241Am (t1/2 = 433 y) after the fission products have decayed 
sufficiently (75 y) [Wigeland et al., 2006]. Given that heat loading directly determines the storage 
capacity of a repository, removal of 241Am alone has clear benefit for increasing storage capacity, 
reducing repository size, or permitting a lower repository operating temperature. Estimates of such 
benefits have been given for the case of Yucca Mountain [Wigeland et al., 2006], which can be used as an 
illustrative example. Accordingly, a 4.3–5.4 fold increase in waste loading would be expected for 90–
99.9% removal of Am, assuming equal removal efficiency of Pu. A maximum 225-fold increase in waste 
loading would be expected upon removal of 99.9% of the Pu, Am, and Cm, along with the fission 
products Cs and Sr. However, other choices of repository design, such as deep borehole, could possibly 
reduce or even eliminate the problems associated with heat load [Wigeland et al, 2015; Wigeland, in 
preparation; Salvatores and Palmiotti, 2011; OECD, 2011].  

Without a compelling case for increased repository capacity due to reduced heat generation, is the 
technical case for U/TRU recycle weakened? If the main advantage of MA recycle is minimized, then the 
question of the benefit of a U/TRU recycle in the case of such a repository choice would seem to turn on 
the added cost of R&D and possibly additional implementation costs [Wigeland et al, 2015; Wigeland, in 
preparation; NNL, 2013]. However, the costs of R&D can be paid back multifold by the future cost 
reductions in fuel recycle due to that same R&D. Further, game-changing R&D breakthroughs can 
potentially eliminate implementation costs of MA recycle by transforming the entire actinide separations 
process. The timeline is long for developing, testing, and implementing a new repository, for adopting 
and gaining public acceptance for a sustainable fuel cycle, and for transitioning to a sustainable fuel cycle 
[Passerini et al., 2015; NNL, 2013]. Chances are high that game-changing R&D will occur. The message 
therefore emerging from the MA separations debate seems to be a resounding research challenge to find 
new, more efficient actinide separations methods that can create new, attractive options for sociopolitical 
decision-making. 

Repository benefits of MA partitioning and transmutation also include decreased overall repository 
radiotoxicity and decreased radiotoxicity lifetime, goals that also promote public acceptance of nuclear 
energy [Carelli, 2011; Poinssot et al., 2015; OECD, 2011]. While decreased radiotoxicity of a repository 
is itself thought to have limited impact on repository performance, reduction of risk is recognized in terms 
of disruptive events due, for example, to geologic phenomena and human intrusion [Salvatores, 2011]. 
Again, such a benefit disappears with certain repository design, such as deep borehole, and use of 
appropriate barriers, weakening the technical argument for MA separation on the basis of reduced 
radiotoxicity [Salvatores, 2011; Wigeland et al, 2015; Wigeland, in preparation; NNL, 2013]. Thus, the 
technical benefits of reduced radiotoxicity are debatable. By contrast, sociopolitical benefits are 
compelling. Public dialog on the nuclear fuel cycle in Europe and elsewhere has shown that society tends 
to be most concerned with nuclear safety and waste disposal [Poinssot et al., 2015; Ouzounian and Farin, 
2015; Wallard et al., 2012]. With regard to the latter, the longevity of the waste and its radiotoxicity over 
timescales greater than the history of human civilization give considerable weight to the desirability of 
reducing the MA content of waste placed in a geologic repository. It therefore makes sense to provide the 
public with options that accomplish this goal, especially if through R&D it can be accomplished with 
little or no additional cost. 
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Specific actinide separation problems of interest include not only separation of MAs from fission 
products (FPs), but also separation of MAs from lanthanides. Given that an effective chemistry already 
exists for manipulating Np in contemporary solvent-extraction systems employing tri-n-butyl phosphate 
(TBP), the need for Np separations research therefore seems relatively less urgent than the need for Am 
and Cm separations research. On the other hand, An/Ln or Am/Cm separations have been especially 
difficult because the chemistry of their common trivalent oxidation states is very similar. Although we 
can point to significant progress, a fully satisfactory solution has not yet been found [Hill, 2010, 2011]. 
An efficient An/Ln separation is important because the lanthanides are strong thermal neutron absorbers 
and thus cannot be recycled in light-water reactor fuel, though fast-reactor fuel is somewhat more 
tolerant. The need for a separation of Am from Cm has been debated but appears either doubtful or of 
limited benefit. On the one hand, it has been argued as a needed process option [Pillon, 2003; Laidler, 
2008], as Cm presents difficulties in fuel fabrication due to the greater shielding requirements. On the 
other hand, this is not a universally agreed upon opinion [Arm, 2008], as Cm will impact repository 
performance, and its separation would ostensibly entail another separation process, adding overall 
complexity. As STAAR results show, however, the option of an Am-Cm split would not necessarily add 
any additional processing steps, regardless of its merits. 

The most straightforward scenario for MA separation from lanthanides in STAAR strategy follows a co-
decontamination flowsheet such as UREX+ [Regalbuto, 2010] or co-decontamination [Herbst, 2011; 
Law, 2013] flowsheet in which MA separation must be performed on a highly acidic raffinate stream 
from which U, Pu, and Np have already been removed. A major advance by itself would be a one-step 
An/Ln separation [Hill, 2010, 2011; Lumetta et al., 2010a,b]. Two of the most selective solvent-extraction 
methods were incorporated into the framework of the UREX+ suite in the form of the TRUEX-
TALSPEAK (Transuranic Extraction-Trivalent Actinide-Lanthanide Separations by Phosphorus-reagent 
Extraction from Aqueous Komplexes) tandem processes or the TRUEX-SANEX (Selective Actinide 
Extraction) tandem processes using Cyanex® 301 as the SANEX extractant [Regalbuto, 2011]. 
Demonstrations showed a successful separation of Am and Cm from Ln using either technology. On the 
other hand, both approaches require two separate processes using disparate solvents and chemistries, and 
Cyanex® 301 is unstable at practical nitric acid concentrations. Both technologies present major 
challenges in process control, that is, robustness. These challenges involve narrow processing envelopes, 
complex chemistry, empirical knowledge bases with limited understanding, reagent stability, voluminous 
effluent streams, and unknown impacts on downstream processes and waste disposition. Control of pH 
has been especially problematic for TALSPEAK and related systems employing aqueous-phase buffers 
and complexants, as distribution ratios are not constant over the expected operating range. Despite these 
already known challenges, the demonstrations of these technologies confirm the selectivity principles 
employed, which are outlined further below. Thus, appropriate extractants and aqueous-phase 
complexants can discriminate between An(III) and Ln(III), and a solution to developing a suitable 
technology should therefore be within the reach of research that can successfully address the major 
shortcomings. Given the evident challenge of the task, however, it is also clear that the prior 
understanding of extraction mechanisms and molecular behavior has been inadequate to generate the 
needed breakthrough. In the long term, a very attractive though ambitious MA separation meeting both 
STAAR aims simultaneously would be one in which Am and Cm are separated together in a single 
stream, thereby simplifying the MA separation overall. Optionally, a co-extraction followed by selective 
stripping could provide separate Am and Cm streams if desired. Potentially such a process could replace 
three separate processes with one process, with a high degree of potential flowsheet simplification. If Pu 
and Np could also be co-extracted with Am and Cm followed by stripping of all, or certain combinations 
of, these actinides, the landscape of fuel recycle could be even further simplified.  

As described above, a clear need to simplify separations in fuel recycle is universally recognized. 
Although the successful demonstrations of UREX+ [Regalbuto, 2011; Gelis, 2009; Laidler 2008] 
increased overall confidence in our ability to reprocess used light-water reactor fuel at a commercial scale 
to meet a variety of potential objectives, the level of complexity and projected cost of deploying multiple 
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process steps was unprecedented. Whether to separate the MAs in the first place and what types of 
streams the MAs are best suited to fuel fabrication or waste disposal must be a result of a comprehensive 
fuel-cycle systems analysis. While such guidance is being formulated, a chemical toolbox approach has 
been undertaken by STAAR under the philosophy that the chemical understanding in the context of 
potential separation methods will be available for exploitation as systems goals are more clearly defined. 
At the most fundamental level, the major product of STAAR effort is intended to be a family of chemical 
principles and corresponding test data enabling the design of efficient Am and Cm separation processes, 
one or more of which will be demonstrated at the laboratory scale. 

 

3. APPROACH 
3.1 Technical Strategy 
As shown in Figure 1, dual strategies for Am separation are being pursued by STAAR based on either 
complexation or the higher oxidation states of Am [Moyer et al., 2015]. Complexation presents particular 
challenges in that the trivalent 4f and 5f elements have very similar bonding characteristics, dominated by 
electrostatics with negligible ligand-field stabilization effects. For Am(III)/Cm(III) separations, the ionic 
radii differ very slightly, and these fall within the much wider size range of the lanthanides. Regarding the 
second strategy, the higher oxidation states of Am that can be exploited require aggressively high 
oxidation potentials and are unstable once formed [Runde, 2011]. Both strategies can be used in either 
phase of a separation system. For example, by use of the extractant di-2-ethylhexylphosphoric acid 
(HDEHP), which is slightly selective for Ln(III), and addition of the An(III)-selective complexant 
diethylenetriaminepentaacetic acid (DTPA) to the aqueous phase, the Ln(III) are rendered significantly 
more extractable than An(III). This principle can be made to operate in an extraction of Ln(III) away from 
 

 
Figure 1. Strategies for achieving selectivity in two-phase separation systems. 
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Am(III) (TALSPEAK) or in stripping Am(III) from extracted Ln(III) (reverse TALSPEAK). 
Alternatively, the actinide-selective complexant can be the extractant, as is the approach in the SANEX 
processes. One could employ the same ideas in the use of inorganic ion exchangers. For example, an 
inorganic exchanger with affinity for both An(III) and Ln(III) is used in the presence of an appropriate 
aqueous-phase complexant that has an affinity for An(III) vs Ln(III), such that only the Ln(III) are 
removed from the feed stream. Or the complexant can be added to the eluent after the combined uptake of 
Am(III) and Ln(III) to selectively desorb the Am(III). Complexation strategies can be sophisticated, 
taking advantage of subtle effects due to even small differences in ionic radii. Manipulation of the Am 
oxidation state is in principle a powerful approach for a selective Am separation, either in the context of 
solvent extraction or ion exchange, but the very high oxidation potentials required for oxidation of 
Am(III) to Am(V) and Am(VI) [Runde, 2011] present a formidable challenge.  

The major questions being pursued within the dual strategy described above naturally sort themselves as 
follows: 

1. Can aqueous complexation provide sufficient discrimination and operational control? 

2. Can the higher oxidation states of americium be formed and stabilized for separation? 

3. Can soft-donor extractants be made sufficiently robust and effective under desired conditions? 

4. Does ion exchange have the selectivity and robustness to operate effectively? 

In most cases, research inquiry focuses on obtaining the desired An/Ln selectivity. However, in some 
cases, selectivity is often not so much in question as such issues as robustness, ability to operate under 
expected conditions, kinetics, etc. For example, ion-exchange materials have not been strong enough nor 
stable enough under acidic conditions, and soft-donor extractants like bistriazinylpyridines (BTPs) have 
presented stability issues of their own.  

The scope for STAAR consists of five tasks as follows:  
1. ALSEP Development. This task supports the development and testing of a flowsheet that can be 

demonstrated in FY 2017 for extraction of a simulated high-level raffinate. Scope entails 
investigations of metal ion interferences, phase phenomena, efficiency of aqueous complexants for 
stripping, batch extraction of real dissolved fuel, single-stage contactor performance, optimal 
scrubbing conditions, fission-product partitioning, as well as fundamental aspects.  

2. Americium Oxidation. This task serves to advance the understanding of the production, stabilization, 
and separation of Am(VI) leading to successful testing in FY 2016 of tandem oxidation and extraction 
in a centrifugal contactor. Oxidation of Am(III) with Ag-catalyzed ozone is being optimized, and 
alternative oxidants are being investigated, including chemical and electrochemical methods. 
Extraction tests are performed to determine the efficacy of Am extraction, and alternative extractants, 
such as butyramides, which appear to not reduce Am as quickly as phosphorus-containing ligands are 
also investigated. Am(VI) stability and auto-reduction kinetics are being examined, and co-
crystallization of Am(VI) with U(VI) and other An(VI) is being tested. 

3. Selective Trivalent Actinide Extraction. This task entails development of solvents capable of selective 
removal of trivalent actinides from high-level raffinate. The major thrust is the synthesis of new 
mixed-donor extractants that are soluble in aliphatic diluents and testing of their behavior as 
extractants for Am(III) from trivalent lanthanides. In another thrust, triazinyl-pyridine type extractants 
are being examined, in particular to characterize their extraction behavior, including selectivity, acid 
dependence, third-phase formation, and kinetics. A study of dithiophosphinic acid extractants is being 
closed out. 

4. Inorganic Ion Exchange. This task evaluates the performance of actinide separation concepts 
involving inorganic ion exchangers in conjunction with manipulating the oxidation state of americium 
to effect selective actinide separations from lanthanides. This activity also supports the testing of new 
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sorbent materials developed under a Nuclear Energy University Programs (NEUP) project at Texas 
A&M University.  

5. Computational Molecular Design. This task supports the other STAAR tasks with appropriate 
molecular computations, both to accelerate experimental work and to facilitate correct data 
interpretation. In turn, experimental results are used to validate the computational models. Specific 
scope focuses on development of a computational model for predicting Am(III)/Ln(III) selectivity, 
design of mixed-donor extractants, and investigation of new polyaminocarboxylate complexants for 
use in ALSEP stripping.  

In general, pursuing the above strategy requires a team effort often involving more than one laboratory, 
bringing together diverse resources and expertise. Administratively, work packages are laboratory-
centered but can involve a combination of the five tasks enumerated above. Principal investigators (PIs) 
from six national laboratories and one university were involved in addressing the above questions in FY 
2014, as reported in the corresponding annual reports cited in the Sigma Team Publications and Reports 
section. The participants are listed in Table 1 together with the questions that their projects are primarily 
concerned with. It should be noted that each PI leads a team of collaborators, some through subcontract, 
whose contributions are properly acknowledged in the corresponding annual reports. Questions are 
crosscutting, as shown in the middle column of Table 1. The composition of the STAAR was selected 
based on the experience of the PIs in conducting both basic and applied research, having demonstrated 
success in employing the results of basic research in technology development and in collaborating with 
engineers in scale-up and implementation. All specialize in separation science and technology, with 
backgrounds in solvent extraction, resin ion exchange, inorganic ion exchange, crystallization, and 
dissolution techniques.  

 

Table 1. Participating Institutions and PIs in the Sigma Team for Advanced Actinide Separations in FY 
2015 

Institution Tasks Lead PI 

Argonne National Laboratory (ANL) #1 Mark P. Jensena 
Argonne National Laboratory #1 Artem V. Gelis 
Idaho National Laboratory (INL) #2 Bruce J. Mincher 
Idaho National Laboratory (INL) #3 Dean R. Petermanb 
Los Alamos National Laboratory (LANL) #2 George S. Goff 
Oak Ridge National Laboratory (ORNL) #5 Vyacheslav Bryantsev 
Oak Ridge National Laboratory (ORNL) #3 Lætitia H. Delmau 
Pacific Northwest National Laboratory (PNNL) #1, #2 Gregg J. Lumetta 
Savannah River National Laboratory (SRNL) #2, #4 David T. Hobbs 
Washington State University (WSU) #1, #3 Kenneth L. Nashc 

aNow at Colorado School of Mines. Project completed in December 2014; seeking NEUP funding. 
bProject completed in September 2015. 
cProject completed in September 2014, continued on carryover till August 2015; seeking NEUP 
funding. 
 

University subcontracts were not renewed in FY 2015 to accommodate FCRD preference for funding 
academic investigators through Nuclear Energy University Programs (NEUP). However, the university 
collaborators were still functioning as performers as project accounts were depleted during the year. At 
least one university collaborator has succeeded in obtaining funds through the proposal-driven process 
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used by NEUP. Other collaborators have already submitted proposals to, or are in the process of 
submitting proposals under NEUP. Given that NEUP funding is highly competitive, the transition of all of 
our academic collaborators to NEUP projects will likely not be completely successful. Potential impact to 
STAAR scope and planning will be assessed and managed late in FY 2016 as the next NEUP proposal 
cycle is concluded. 

3.2 Science-Based Approach 
Motivated by the applied goals described above, a hypothesis-driven approach is taken, drawing from 
fundamental principles to address the most significant questions standing as barriers to progress. As one 
of its first tasks, the STAAR defined what these questions are, as generalized above [Moyer, 2009, 2010]. 
Some projects have matured sufficiently to begin to address how the basic principle, now largely 
substantiated, can be subjected to greater levels of complexity and process requirements. For example, 
now we know that Am can be oxidized and then separated in batch tests. Can we combine the steps in an 
integrated test? In FY 2014, we showed the answer is yes. Now, the questions advance to improving upon 
the oxidation methodology toward practical systems. A conceptual cycle of hypothesis and testing 
illustrating this iterative process is depicted in Figure 2 [Moyer, 2010]. Based upon the knowledge base 
available in any given project, the cycle entails formation of hypotheses associated with questions, 
leading to corresponding experimental thrusts to test the hypotheses. As pertains to the STAAR effort, the 
input of theory is stressed as playing a key role in each step under the expectation of a significant savings 
in effort by decreasing empiricism. Subsequent cycles continue to advance toward the maturation of the 
technology concept, one question after another driving the cycles to a successful technology. After six 
years of effort, the maturation process in STAAR is clearly evident as will be highlighted below.  

 
Figure 2. Cycle of hypothesis and testing accelerated by theory. 
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4. Highlights OF research progress 
Highlights of STAAR accomplishments in FY 2015 are provided in this section as distilled from the 
annual reports of individual principal investigators of the STAAR. These highlights have been collected 
in a preliminary report [Moyer, 2015b] for use as input to the annual report on accomplishments of the 
MRWFD program. See these reports for a more complete account of research progress. A comprehensive 
listing of Sigma Team publications, reports, patents, and dissertations is given in Section 7. 

4.1 Electrochemical Oxidation of Americium 
C. Dares, and T. J. Meyer (UNC-CH), B. J. Mincher (INL) 

We have confirmed our initial results on the electrochemical oxidation of americium reported in FY 2014 
[Dares et al., 2014] and have expanded our understanding of this exciting, first ever oxidation of Am(III) 
at an electrode in a noncomplexing acidic aqueous medium [Dares et al., 2015]. If an electrochemical 
approach to generating the higher oxidation states of Am in nitric acid media can be made practical, it 
would enable subsequent americium separations while avoiding the addition of chemical oxidants and 
corresponding increase in high-level waste mass. Challenges include understanding and controlling the 
molecular redox processes that occur at the electrode surface and stabilizing the resulting Am(V) and 
Am(VI) oxidation products to the thermodynamically favorable parasitic oxidation of water. 

The electrolysis makes use of a high surface-area, fluoride-doped tin oxide electrode coated with 
nanoparticles of tin-doped indium oxide (nITO). Experiments were designed to test the hypothesis that 
binding of Am(III) at the electrode surface facilitates electron transfer to the electrode. Figure 3 illustrates 
the attachment of an americium-selective terpyridine ligand to the nITO surface. At an anodic potential of 
2.25 V vs Ag/AgCl, Am(III) at 84 µM in 0.1 M nitric acid and 0.95 M sodium nitrate oxidizes over 13 h 
to 36% Am(VI) and 54% Am(V) as observed by electronic spectroscopy (Figure 4). The yield of Am(VI) 
improves to 53% with 40% Am(V) at 2.7 V and 1.84 mM Am(III) after 7 h, the highest yield observed to 
date. Control electrolysis at 1.8–2.7 V for nITO without attached ligands gives no oxidation of Am(III); 
interestingly, the underivatized nITO degrades after an hour of oxidizing conditions, while the derivatized 
nITO is more robust. In view of the control results, the observed two-electron oxidation of Am(III) is 
thought to support the hypothesis of facilitated electron transfer by coordination of Am(III) to the surface-
bound terpyridine ligand. Systematic investigations will be carried out in the future to understand 
conditions that lead to electrochemical oxidation of Am(III) to Am(V) or Am(VI) with subsequent 
separation from a relevant waste composition.  

 

     
 
Figure 3. A terpyridine ligand bound to an indium tin oxide particle on an electrode surface via a 
phosphonic acid linker. 
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Figure 4. Concentration of Am species in solution (left) as measured by visible spectroscopy in a 50 cm 
waveguide (right) over time during a controlled-potential electrolysis of initially 84 µM Am(III) at 2.25 V 
vs Ag/AgCl. The working electrode was a ligand-modified high-surface-area nITO, with a Pt foil counter 
electrode and a Ag/AgCl wire reference electrode. The aqueous electrolyte was 0.1 M nitric acid and 0.95 
M sodium nitrate. (Right) Initial and final electronic spectra measured in a 1 cm path-length cuvette and 
modeled with Gaussian functions. 
 

4.2 Co-crystallization of Actinyl Nitrates 
J. D. Burns and B. A. Moyer (ORNL) 

The first ever co-crystallization of Am(VI) with UO2(NO3)2⋅6H2O has been achieved. The result opens 
the door to a new approach of used nuclear fuel recycling where the bulk of the U, Np, Pu, and Am can 
all be removed from the waste stream together using a single technique without use of organic solvents. 
The hexavalent dioxo cations of Np, Pu, and Am have all been co-crystallized with UO2(NO3)2⋅6H2O in 
near proportion by a simple reduction in temperature, while the tri- and tetravalent states are only slightly 
removed from solution. In the co-crystallized form, 
the Am(VI) shows a much greater stability, with no 
reduction observed after 13 d, while in solution over 
50% is reduced after only 10 d.  

Americium(VI) proves to be stable in the presence 
of uranyl nitrate. A sample of Am(VI) was prepared 
with NaBiO3, and the spectrum was observed for 10 
d (see Figure 5). For the first 66 h, no change was 
observed in the Am(VI) absorption band at 1000 
nm. After 10 d roughly 53% of the Am(VI) had 
become reduced to Am(III). Thus, under simple 
conditions using bismuthate as oxidant, Am(VI) is 
expected to persist long enough for subsequent co-
crystallization steps. 

Co-crystallization was demonstrated with a freshly 
prepared Am(VI) sample consisting of 0.84 M [UO2

2+] and 
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0.31 mM [Am(VI)]. Once cooled to 3–4 °C, the mother liquor was separated from the crystals by 
decantation rather than filtration to avoid any reduction due to the filters; however, it should be noted that 
decantation does not allow for a separation that is as complete as filtration. The electronic spectrum 
showed 32.0% of UO2

2+ and 31.0% of the Am(VI) had been removed from solution. Gamma 
spectroscopy showed a similar amount of 34.9% of the 243Am activity to be in the crystals. 

Americium(VI) is stable in the crystals. Upon redissolution of the crystals after 13 d, the spectra revealed 
87% Am(VI) with ~13% Am(III), consistent with the known incomplete separation of the crystals from 
the initial mother liquor. Whereas Am(VI) gradually reduces to Am(III) in the presence of UO2(NO3)2, 
little or no reduction of the Am(VI) occurs in the crystals before dissolution. Crystals from Np(VI) and 
Pu(VI) co-crystallization experiments were also dissolved and showed similar results as the Am(VI). 

Table 2 summarizes the results from separate co-crystallization experiments of U(VI) with with Am(III), 
Pu(VI), Np(VI), Pu(VI), and Am(VI). For the lower valence ions Am(III) and Pu(VI), the relative amount 
removed from solution was roughly an order of magnitude lower than that of U(VI), while the An(VI) 
ions were removed in near proportion to the U(VI). These ratios indicate that the process of removing 
An(VI) ions from solution is a co-crystallization mechanism rather than just a co-precipitation 
mechanism, with a strong indication of the An(VI) dioxo cation replacing itself for a UO2

2+ in the lattice 
structure of UO2(NO3)2⋅6H2O. 

 

Table 2. Ratios of the percent precipitation of different TRU species with respect to UO2
2+ 

TRU Species % Precipitation Ratio 
U TRU U:TRU 

Am(III) 71.5 6.4 11.2 
Pu(IV) 41.2 4.1 10.0 
Np(VI) 70.5 73.6 0.96 

 
82.9 82.0 1.01 

Pu(VI) 29.9 28.0 1.07 

 
79.8 73.4 1.09 

Am(VI) 32.0 31.0 1.03 
 
 

4.3 ALSEP Process Development for An/Ln Separation 
4.3.1 General Process Description 

G. J. Lumetta (PNNL) and A. V. Gelis (ANL) 

The Actinide-Lanthanide SEParation (ALSEP) process concept [Gelis and Lumetta, 2014; Lumetta et al., 
2014a] has matured toward a bench-scale test in engineering equipment targeted for FY 2017. ALSEP 
combines an acidic extractant with a neutral chelating extractant to yield a single hybrid process for 
recovering the trivalent MA elements Am and Cm from acidic high-level waste raffinate. The raffinate is 
assumed to be generated by an initial co-decontamination step that removes the bulk of the U, Pu, and Np, 
as defined in a recent case study [Law et al., 2013]. This single process has the potential to replace two 
separate processes previously required to achieve this separation, thus significantly simplifying a closed 
fuel-cycle [Lumetta et al., 2010]. The ALSEP approach involves 1) co-extracting the trivalent actinides 
(An) and lanthanides (Ln), 2) selectively stripping the actinides from the loaded organic solvent, and 3) 
stripping the lanthanides and other fission products from the solvent. The neutral extractant serves to co-
extract the trivalent An and Ln from nitric acid solutions, while the acidic extractant serves to hold the 
trivalent Ln in the organic phase while the An are selectively stripped into a carboxylate-buffered solution 
containing a polyaminocarboxylate complexant (Figure 6). Research has compared the effectiveness of 
combinations of various candidate extractants, complexants, and buffers [Gelis and Lumetta, 2014; 
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Lumetta et al., 2014a; Braley et al., 2013; Lumetta et al., 2013; Tkac et al., 2012; Lumetta et al., 2011; 
Lumetta et al., 2010]. Efforts in FY 2015 dealt with overcoming the unwanted extraction of certain fission 
products and with improving the kinetics of stripping in the ALSEP process. 

 

 
Figure 6. Component extractants and aqueous components used in the ALSEP process. 

 

4.3.2 Progress in ALSEP Chemical Development 
G. J. Lumetta, E. L. Campbell, A. J. Casella, G. Hall, T. G. Levitskaia, F. N. Smith, and G. Carter 
(PNNL) 

Technical risks and uncertainties have been addressed in FY 2015, including: 1) management of 
zirconium, 2) management of molybdenum, 3) unknown behavior of ruthenium, 4) unknown behavior of 
iron, and 5) slow stripping of americium from the loaded ALSEP solvent. Efforts have focused on a 
solvent combination consisting of 0.05 M N,N,N',N'-tetra(2-ethylhexyl)diglycolamide (T2EHDGA) 
combined with 0.75 M 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) dissolved in 
n-dodecane. 

Problems from three potentially problematic metals can likely be avoided. Zirconium is strongly extracted 
from nitric acid solutions into the ALSEP solvent. Addition of the complexing agent trans-1,2-
diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) into the aqueous feed solution completely 
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suppresses the Zr extraction, which can greatly simplify the downstream portions of the ALSEP 
flowsheet. For this reason, it is recommended that CDTA be added to the ALSEP feed. Ruthenium(III) is 
not appreciably extracted into the ALSEP solvent, so it is anticipated that Ru will easily be routed to the 
high-level waste raffinate from the ALSEP process. However, iron(III) is appreciably extracted from 
nitric acid solutions into the ALSEP solvent. Addition of CDTA reduces the Fe extraction somewhat, but 
the equilibrium Fe distribution ratios (D) are well above 1 at nitric acid concentrations in the extraction 
operating range for ALSEP (≥2 M HNO3). Fortunately, the Fe extraction is slow. It therefore seems likely 
that little Fe extraction would occur during the short contact time experienced in a centrifugal contactor. 
If this proves to be the case, then Fe extraction will not pose a significant problem in implementing 
ALSEP. 

A mixer-settler and a 2-cm centrifugal contactor were directly compared for the Am stripping operation in 
the ALSEP system. This experiment suggested that, under the conditions examined, there is no advantage 
to using the mixer-settler rather than the centrifugal contactor. Other solutions to the slow Am stripping 
are required before an ALSEP demonstration can be achieved. 

Certain fundamental aspects of the ALSEP chemistry are being explored. This includes investigating the 
extraction mechanism through systematic examination of Eu(III) extraction by T2EHDGA, and 
theoretical calculation of relevant Nd(III) absorption spectra. Measurement of the Eu(III) distribution 
ratio for extraction from HNO3 solution as a function of the organic-phase T2EHDGA concentration 
suggests that three T2EHDGA ligands coordinate to Eu(III) in the extracted species. However, the 
dependence of the Eu(III) distribution ratio on the HNO3 concentration is complex and requires further 
study. Progress is being made in applying time-dependent density functional theory calculations to 
interpretation of Nd absorption spectra. Near term, the methodology is being worked out to simulate the 
electronic absorption spectrum of Nd3+ ion in aqueous solution. Once perfected, the method will be 
extended to calculate the spectra of proposed organic-phase Nd complexes relevant to the ALSEP system. 

 

4.3.3 Improving the Stripping Efficiency of ALSEP 
A. V. Gelis and M. A. Brown (ANL) 

Experiments on the partitioning of the fission products, lanthanides, and americium using a 2-cm ANL 
centrifugal contactor and a mixer-settler provided valuable information on process dynamics. It has been 
found that the kinetics of co-extraction of Am and Ln from a PUREX-type simulated raffinate are fast. 
The Am partitioning compares with batch tests, and no issues with fission products and Ln partitioning 
have been observed. Molybdenum can be scrubbed from the solvent without any issues.  
 
In contrast, the selective stripping of Am from Ln in the loaded solvent is slow using a buffered solution 
in a pH range between 2.5 and 3.5 containing either diethylenetriaminepentaacetic acid (DTPA) or 
hydroxyethylenediaminetriacetic acid (HEDTA) complexing agents. The kinetic behavior results in a loss 
of stripping selectivity, which improves as the flow rate decreases or temperature increases. HEDTA 
promotes a faster Am back extraction rate than does DTPA. Stripping efficiency improves further when 
the extraction is conducted at longer contact time in a modified 2-cm centrifugal contactor with an 
extended mixing zone. For this work, a newly designed housing was 3D-printed in stainless steel, while 
the standard 2-cm rotor/motor assembly was used. A minimum separation factor (SF) of 10 for Nd/Am 
and Pm/Am pairs has been demonstrated numerous times under different chemical conditions at both 
ambient and elevated temperatures (Figure 7). The SFs for the remaining lanthanides are in the 12 to 90 
range. The latest modifications of the contactor housing provided even higher SFs due to the increased 
residence time in the mixing zone. If HEDTA/citrate buffered solution is used, a SF (Nd/Am) of 16 is 
achieved. Comparison tests of a mixer-settler and standard 2-cm centrifugal contactors, conducted at 
PNNL, indicate that due to various reasons none of devices provides sufficient interfacial mass-transfer 
stage efficiency to accomplish satisfactory Ln/Am separation step. 
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Figure 7. Separation factors for Ln(III)/Am(III) and distribution ratios of Am(III) at the Am-strip step 
using a modified centrifugal contactor with increased mixing residence time. Organic phase: 0.045 M 
T2EHDGA/0.6 M HEH[EHP]. Aqueous phase: 0.125 M HEDTA/0.2 M citrate, pH 2.81. T = 21 ± 2°C. 
 

4.4 Aqueous Complexes for Size-Based Actinide Separation 
M. P. Jensen and R. Chiarizia (ANL) 

Separating Cm from other minor actinides (MAs) may be desirable for advanced nuclear fuel cycles 
involving actinide partitioning and transmutation because the reduced radiation would simplify fuel 
fabrication and reduce the buildup of transcurium actinides in subsequent transmutation cycles [Pillon, 
2003]. Separating Am from Cm was de-emphasized as a Sigma Team goal in FY 2015, but studies of 
approaches to increase the An(III)-Ln(III) selectively of our sterically constrained complexants for 
Am/Cm separation continued until December 2015. In FY 2014, we reported a method to selectively strip 
Am from Cm in a modified ALSEP system using the aqueous ligand bp18c6 (Figure 8). This approach 
offers the major advantage that a separate unit operation does not need to be devoted to an Am-Cm 
separation; rather, ALSEP chemistry can be modified to deliver a Cm-free Am product. As described in a 
recent publication, Am stripping kinetics with bp18c6 are favorable, and the necessary discrimination 
between Am and the light lanthanides can be achieved in the ALSEP loading stages [Jensen et al., 2015]. 

In FY 2015 we greatly enhanced the Am/lanthanide selectivity of the base bp18c6 ligand in a modified 
ALSEP process. Prior quantum chemical studies of An and Ln complexes of bp18c6 [Jensen et al. 2014] 
revealed different roles for the two types of nitrogen donor atoms in bp18c6. On one hand, the tertiary 
nitrogen atoms in the crown ether ring are central to the size-selectivity of the ligand. On the other hand, 
the pyridine nitrogen atoms in the picolinic acid arms are central to the An(III)/Ln(III) selectivity 
observed for bp18c6 because they form notably more covalent bonds with An(III) cations. Based on this 
knowledge, two bp18c6 derivatives we expected to possess improved actinide/lanthanide selectivity 
(Figure 6) were designed, synthesized, and screened for both Am/Cm selectivity and An/Ln selectivity. 
Our hypothesis was correct. Substitution of hydroxy or methoxy groups on the pyridine rings 
substantially improved the Eu/Am selectivity under conditions representing the Am stripping stages. In 
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particular, methoxy substitution increased selectivity by more than an order of magnitude over the base 
bp18c6 ligand without significantly altering the size-based Am/Cm selectivity (Table 3). This implies 
potential for tuning the bonding in the bp18c6 framework to further simplify selective Am recovery in the 
ALSEP framework. 

 

 
Figure 8. Structures of sterically constrained macrocyclic ligands under study: N,N’-bis[(6-carboxy-2-
pyridyl)methyl]-4,13-diaza-18-crown-6 (bp18c6) and two new derivatives tested in FY 2015. 

 

 

Table 3. Separation factors of bp18c6 derivatives as Am stripping agents for a modified ALSEP process 

 SFEu/Am = DEu/DAm SFCm/Am = DCm/DAm 

bp18c6 460 5.5 

bp18c6-OH 1400 6.0 

bp18c6-OMe               1.1 × 104 6.0 

 

 

4.5 Fundamental Chemistry of TALSPEAK-Based Systems 
K. L. Nash (WSU) 

In a 1974 review of trivalent Ln-An separations, Boyd Weaver (developer of the TALSPEAK process) 
articulated the philosophy of his approach to accomplishing this challenging separation with the 
observation that (after years of seeking actinide-selective extractants) “…the separation was only 
accomplished by drastically altering the aqueous phase…” Broadly considered, most An(III)/Ln(III) 
solvent extraction/ion exchange based separations under investigation globally (e.g., GANEX, DIAMEX-
SANEX, TRUSPEAK, ALSEP) are based on this approach and the application of pH-buffered actinide-
selective N-donor stripping agents. This investigation has focused from the beginning on advancing the 
fundamental science that underpins TALSPEAK-like separations of the MAs from fission-product 
lanthanides. The increased understanding that has been gained regarding TALSPEAK-based separations 
[Nash, 2015] has effectively enabled the development of Advanced TALSPEAK and ALSEP systems. 

TALSPEAK-like separations are those systems based on the use of actinide-selective aqueous 
polyaminopolycarboxylate complexants like DTPA. As recently reviewed [Nash, 2015], it has been 
demonstrated that conventional TALSPEAK (based on lactate buffers, HDEHP/diisopropylbenzene, and 
DTPA) is characterized by complex interactions that reduce predictability of system performance. These 
interactions give rise to the impractical steep pH dependence that defines conventional TALSPEAK 
separations. Insights developed in the WSU investigations have led to the Advanced TALSPEAK system 
based on the phosphonate (HEH[EHP]) analog to the TALSPEAK extractant HDEHP matched to a 
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weaker holdback reagent and potentially a different buffer. The combination dramatically reduces the 
need for a concentrated buffer, improves predictability of TALSPEAK separations, and almost 
completely eliminates the pH dependence. The Advanced TALSPEAK concept and the introduction of 
HEH[EHP] led to the ALSEP combined process concept (see above). 

Current research has focused on 1) alternative buffers (specifically malonate) for Advanced TALSPEAK, 
2) dipicolinate derivatives as alternatives to conventional polyaminopolycarboxylate holdback reagents, 
and 3) a mixed-extractant system based on equimolar mixtures of the commercially available extractants 
Cyanex 923 and HEH[EHP] (commercially available as PC-88A, Ionquest 801) combined with a glycine 
buffer and various actinide selective holdback reagents. The latter system, TALSPEAK-MME (Mixed 
Monofunctional Extractants), enables efficient and rapid extraction of Ln(NO3)3/An(NO3)3 from 1 M 
HNO3 media, conditioning to pH 2.5 using a glycine buffer, and selective removal of Am3+ with a 
glycine-buffered HEDTA or triethylenetetraminehexacetic acid solution with a (not fully optimized) 
group SF of 10. An example of a new dipicolinate derivative applied as an actinide-selective stripping 
agent in the TALSPEAK-MME system is shown in Figure 9. 
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Figure 9. Application of actinide stripping agent in TALSPEAK-MME Ln/Am separation system. 
Aqueous phase: 7.01 mM N-methylpiperidine dipicolinic acid, 0.1 M glycine, pH 2.55. Organic phase: 
0.4 M (HEH)EHP and 0.4 M Cyanex 923 in n-dodecane. 
 

A recent advance was the demonstration that an alternative buffer, malonate, was applicable in 
TALSPEAK-like systems. An investigation of the basic extraction chemistry of the 
malonate/HEDTA/HEH[EHP]-dodecane system has established the potential to produce acceptable 
Ln/Am SFs at pH 2.5 with rapid extraction kinetics and a flat separation vs. pH profile. Toward a more 
thermodynamic understanding, spectrophotometric investigations conducted at PNNL (Figure 10) 
revealed the formation of mixed Ln(Mal)(HEDTA) complexes in the aqueous phase of a malonate-based 
Advanced TALSPEAK system. The principal issue with this system is that La3+ is relatively poorly 
extracted, possibly resulting in some La contamination of the Am product (also observed in ALSEP 
separations). Separation of Am from strongly neutron absorbing Nd, Sm, Eu, and Gd is significantly 
better.  
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Figure 10. Luminescence (Eu3+) and absorption (Am3+) spectroscopy determination of thermodynamic 
parameters confirming the existence of mixed M(Mal)(HEDTA)2– complexes in malonate buffered 
Advanced TALSPEAK. Left: 99.8 mM HEDTA titrated into 1.98 mM Eu3+, 0.500 M malonate. Right: 
25.0 mM HEDTA titrated into 0.818 mM Am3+, 0.600 M malonate. 

 

4.6 Mixed-Donor Extractants 
S. Jansone-Popova, V. Bryantsev, F. V. Sloop, Jr., R. Custelcean, and B. A. Moyer (ORNL) 

Two new classes of mixed N,O-donor ligands have been identified for effective An(III)/Ln(III) separation 
(Figure 11, A). Bidentate ligand 6 and tetradentate ligand 7 possess N-heterocycle (triazole, 
phenanthroline) linked with δ-lactam unit(s). Both ligands are highly preorganized (rigid cyclic amide vs 
acyclic amide), leading to stronger binding of trivalent Ln and An ions.  

 

 
Figure 11. New bidentate and tetradentate mixed N,O-donor ligands. 

 

Judicious selection of synthetic manipulations allows for introduction of long aliphatic substituents 
around the backbones in 6 and 7 that improve the solubility of the ligands in nonpolar solvents. Multi-step 
syntheses were used to prepare ligands 8 through 12 with good overall yields (Figure 11, B). We have 
established through experiment that the unsaturated ligands 9 and 12 are more soluble in nonpolar 
solvents (n-dodecane) than their corresponding saturated counterparts (8, 10, and 11). Additionally, tests 
employing 3 M HNO3 revealed much higher stability of saturated series (ligands 8, 10, and 11 proved to 
be quite robust) compared to the unsaturated ones; this is mainly attributed to the absence of easily 
oxidizable benzylic C–H bonds in former case.  
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Next, all new ligands were tested as extracting agents for the selective separation of An(III) from Ln(III) 
ions. The small quantities of the compounds available limited the experiments to a single set of 
conditions, and thus, the influence of kinetics, nitric acid concentration, etc. cannot be fully appreciated at 
this early stage. Nevertheless, the initial results are encouraging overall. Representative preliminary 
extraction results are combined in Table 4. Bidentate ligands 8 and 9 were found to be very poor 
extractants in 1,2-dichloroethane and nitrobenzene under both high acidity and low acidity/high ionic 
strength conditions. Conversely, saturated tetradentate phenanthroline–based ligands 10 and 11 proved to 
be very strong extractants of both Am(III) and Eu(III) ions when tested at 1 mM concentrations under 
both high acidity and low acidity/high ionic strength conditions using 1,2-dichloroethane and 
nitrobenzene as the solvent. However, the SFs were quite low. Relatively high solubility of the 
unsaturated tetradentate phenanthroline–based ligand 12 permitted use of n-dodecane as an organic 
solvent. Ligand 12 exhibited excellent SFs in all solvents under high acidity/low ionic strength conditions 
with the highest SF of An(III) over Ln(III) of 65. 

 

Table 4. Preliminary distribution ratios and SFs of Am(III)/Eu(III) using ligands 10, 11, and 12 

Ligand, 
(1mM) Solvent Aqueous Phase DAm DEu SF 

10 Nitrobenzene 1 M HNO3 9333 2909 3.2 

11 Nitrobenzene 0.1 mM HNO3 + 7 M 
LiNO3 

581 479 1.2 

12 

1,2-Dichloroethane 1 M HNO3 2.5 0.06 42 

Nitrobenzene 1 M HNO3 0.83 0.01 59 

n-Dodecane 1 M HNO3 0.05 <0.01 65 

 

The crystal structure of 11 complexed with Eu(NO3)3 was obtained (Figure 12). The ligand binds Eu3+ ion 
via two phenanthroline N-atoms and two amide O-atoms, and three bidentate nitrate anions complete the 
coordination sphere, yielding a charge-neutral complex [Eu(11)(NO3)3)]. UV-vis titration experiments 
performed in methanol confirmed the formation of a 1:1 complex between ligand 11 and Eu(NO3)3. 

 
 Figure 12. Crystal structure of extractant 11 with Eu(NO3)3. 

Eu(NO3)3•6H2O 

MeOH, R.T. 
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4.7 Theoretical prediction of Am(III)/Eu(III) selectivity 
V. S. Bryantsev and B. P. Hay (ORNL) 

Establishing a reliable computational protocol for predicting the thermodynamics of binding An(III) and 
Ln(III) can provide valuable insights into their solution chemistry and open up new opportunities for the 
use of theory to guide design of novel ligands for An(III)/Ln(III) separation. To address this question, we 
examined the ability of several density functional theory (DFT) methods to predict Am(III)/Eu(III) 
selectivity with six oxygen, mixed oxygen-nitrogen, and sulfur donor ligands, as observed in liquid-liquid 
extraction and aqueous-phase selective complexation studies. Am(III)/Eu(III) selectivities were calculated 
as the differences in complexation energies between the extractants and metal ions: 

Am[(H2O)9]3+
(aq) + Eu(L)n(NO3)3(org) ⇌ Am(L)n(NO3)3(org) + Eu[(H2O)]9

3+
(aq),  ΔΔGext(Am/Eu)       (1a)  

ΔΔGext(Am/Eu) = ΔGext(Am) − ΔGext(Eu)                                                                                         (1b)   

The results established that certain diffuse density functionals are capable of correctly predicting the 
selectivity differences among several ligands. The composition of the extracted species used in the 
calculations is consistent with the proposed stoichiometry of the organic-phase complexes. Selectivities 
estimated as ΔΔGext(Am/Eu) values were obtained by combining our best estimates of the gas-phase free 
energies with implicit solvent corrections for both the aqueous and organic phase included. Table 5 shows 
that our computational protocol is able to reproduce higher affinity of the mixed N,O-donor and S-donor 
ligands for Am(III) over Eu(III) and rank-order their separation ability.  

 

Table 5. Calculated and measured selectivities in the solvent extraction of Am3+ and Eu3+ (kcal/mol)a  

Complex Calc Expt 

M(H2O)4(NO3)3 

M(1)2(NO3)3 

M(2)3 

0.861 

–2.23 

–3.97 

~0 

–1.53 

–6.82 
aComputed selectivities are obtained as the changes in the free energies for reaction 1a (ΔΔGext(Am/Eu)). 
1 is 7-methyl-8-hydroxyquinolinol, and 2 is bis(o-trifluoromethylphenyl)dithiophosphinic acid. 

 

Further validation of our theoretical model was carried out by comparison of the predicted and measured 
relative complexation energies of Am3+ and Eu3+ in the aqueous phase. Ligands with O- (oxalate), mixed 
N,O- (dipicolinate), and N-donor (ADPTZ) atoms were included (Figure 13). A competitive 
complexation of Am3+ and Eu3+ ions with these ligands was modeled according to reaction (2): 

[Am(H2O)9]3+ + [Eu(ligand)(H2O)n]m+ = [Am(ligand)(H2O)n]m+ + [Eu(H2O)9]3+                               (2a) 

ΔΔGcompl(Am/Eu) = ΔGcompl(Am) – ΔGcompl(Eu)                                                                                (2b)   

Several initial geometries were built by substituting two and three water molecules in [M(H2O)9]3+ by the 
corresponding bidentate and tridentate ligands, respectively. Adding two additional water molecules to 
solvate dianionic ligands was deemed necessary to stabilize each cluster in the nine-coordinate geometry. 
With these considerations, the results shown in Table 6 demonstrate that our theoretical prediction of 
aqueous complexation agrees closely with experimental measurements, reproducing the selectivity of 
‘hard’ O-donor ligands for Eu3+ and ‘softer’ polyazine ligands for Am3+. 

 



 Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions 
 September 30, 2015 

 

20 

 
Figure 13. Optimized structures for aqueous 1:1 metal ion-ligand complexes stabilized in the nine-
coordinate geometry  

  

Table 6. Predicted and experimental differences in complexation free energies of O- and N-donor ligands 
with Am3+ and Eu3+ ions in aqueous solution (kcal/mol)a  

Complex Calc Expt 

Oxalate 

Dipicolinate 

ADPTZ 

1.60 

0.89 

–1.91 

0.20 

0.0 

–1.72 
aComputed selectivities are obtained as the changes in the free energies for reaction 2a 
(ΔΔGcompl(Am/Eu)). 

 

Building upon the results obtained in FY 2015, in the next research cycle we will further examine several 
types of models for their ability to reproduce An(III)/Ln(III) selectivities for a larger set of ligands, 
including heterocyclic N-donor and mixed N,O-donor ligand. The most accurate computational scheme 
will be applied to estimate the selectivity of novel mixed oxygen-nitrogen donor ligands formed by 
covalently linking a heterocycle with an amide group (see above).  

 

5. FUTURE PROGRESS 
In the coming two years, the Sigma Team will likely move towards a laboratory-scale demonstrations of 
americium separation. While it remains to define the requirements of the test, it is anticipated that it will 
likely entail a demonstration flowsheet of Am separation with simulated feed using prototype small-scale 
engineering equipment in FY 2017. Based on the progress to date, ALSEP is the most mature technology 
concept, and planning is moving ahead to finalize an ALSEP flowsheet and design a demonstration. 
Problems to be first solved in FY 2016 include mainly improving the kinetics of stripping. 

Promising technology concepts will be further matured in FY 2016. Systems of interest overall will 
include mainly acidic media, especially >1 M HNO3. Testing of Am oxidation followed by extraction in a 
tandem centrifugal contactor will continue with candidate oxidation and extraction systems. Two possible 
tests include a second cycle of Am oxidation and extraction with sodium bismuthate and possibly the 
effectiveness of Cu(III) periodate as an oxidant; a decision point will move forward one of the candidates. 
Developing the catalyzed ozone oxidation followed by extraction will be a priority. Soft-donor extractants 

[Am(oxalate)(H2O)9]+ [Am(dipicolinate)(H2O)8]+ [Am(ADPTZ)(H2O)5]+ 
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will be further developed and matured, including mixed N,O-donor extractants and bistriazinyl type 
extractants. Issues to be tackled include synthesis, stability to chemical degradation, solubility, kinetics, 
selectivity, and closing the extract/scrub/strip solvent cycle.  

Even as efforts become more applied in some projects, the Sigma Team will maintain its science-based 
approach overall, as we seek understanding of the underlying chemical principles in hypothesis-driven 
inquiry. An understanding of the chemical and radiolytic stability of extractants and complexants will be 
sought, along with identifying conditions for extraction from molar nitric acid. Radiolytic stability of the 
higher oxidation states of Am will be characterized, and various chemical and electrochemical methods 
for Am oxidation will be investigated. The kinetics of oxidation Am(V) and Am(VI) will be elucidated 
along with pathways and rates of reduction. Speciation of extraction will be characterized more fully for 
TALSPEAK-like systems including ALSEP and soft-donor extractants. A dedicated effort to 
computationally design and test a new family of mixed-donor extractants for An/Ln separation will entail 
new ligand design, synthesis of candidate compounds, and experimental testing. Computations will also 
be directed at understanding actinide selectivity in soft-donor extractants and complexants. 

In summary, it is clear that STAAR has established a world-class research effort with novel results of 
lasting scientific value and significant potential technological impact. A total of 87 open-literature 
publications have been issued, together with 10 graduate-student dissertations, 1 patent, and 3 patent 
applications. In the future, the Sigma Team will continue its efforts to conceive, develop, and mature new 
concepts for the selective separation of MA from lanthanides, employing science-based inquiry to 
strengthen and accelerate research.  
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