ORNL/TM-2015/532

Warthog: A MOOSE-Based Application
for the Direct Code Coupling of BISON
and PROTEUS (MS-150R04010310)

Alexander J. McCaskey

Approved for public release. Stuart Slattery
Distribution is unlimited. Jay Jay BiIIings
September 2015

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.fedworld.gov

Website: http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information

PO Box 62

Oak Ridge, TN 37831

Telephone: 865-576-8401

Fax: 865-576-5728

E-mail: report@osti.gov

Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2015/532

Computer Science and Mathematics Division

Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and
PROTEUS (MS-150R04010310)

Alexander J. McCaskey
Stuart Slattery
Jay Jay Billings

Date Published: September 2015

Prepared by
OAK RIDGE NATIONAL LABORATORY
P.O. Box 2008
Oak Ridge, Tennessee 37831-6285
managed by
UT-Battelle, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

CONTENTS

Page

LISTOF FIGURES e e e e e s s 4
EXECUTIVE SUMMARY e e e e e e 5
INTRODUCTION e e e e e e e e s e s 6
NEAMS FRAMEWORK TECHNOLOGIES 7
SHARP . . . e 7
MOOSE . . . e e 8
WARTHOG 10
BISON . . . e e 10
PROTEUS Core Neutronics o v v v v ittt e et e e e e e e e e 10
Warthog Architecture o e e e 11
DataTransferKit o 12
DTK Data Transfer Concepts o ittt 12

libMesh Adapters 15

MOAB Adapters e e e e e e e 16

L2 Projection e e e 17

DTK Integration and Verification Tests 18
LibmeshMoabTransfer Black Box Solution Transfer 19
Warthog-BISON Coupling Mechanism it 21
Integration with the NEAMS Integrated Computational Environment 22
Current Software Coupling Results 25
Future Work and Directions L e e e 25
Conclusion L e e 27
Acknowledgements L L e e e 28
REFERENCES e e 29

Figures
1

10

LIST OF FIGURES

Overall SHARP design, showing a strong dependency on the MOAB mesh database to
promote coupling between disparate physicsmodules.
High-level view of the MOOSE architecture [13]. MOOSE provides extensible

sub-systems for physics components, boundary conditions, materials, and analysis tools,
justtoname afew. L. L e e e e
A view of the tree-like design of MOOSE’s MultiApp system [12]. Each MultiApp solve
consists of a master application that drives the overall solve, with sub-applications
contributing solutions of individual physics of interest.
A high-level view of the Warthog Architecture in the Unified Modeling Language

(UML). This diagram demonstrates the class hierarchies developed by Warthog, with
MoabCodeExecutioner subclassing Transient and having an IMoabCode reference, and
Proteus realizing the IMoabCode interface and using the PROTEUS SN2ND Fortran
SUDroOutines.
The LibmeshMoabTransfer architecture in UML (left) with a sequence diagram

describing its use in Warthog (right). Lo
Code used by LibmeshMoabTransfer to execute MOAB to libMesh solution transfers.

This code takes solution data on a moab::ParallelComm instance and maps it to a
libMesh::Mesh instance. e
High-level flow for a given Warthog execution (left) and example MOOSE input file

blocks for enabling BISON-PROTEUS coupling with Warthog (right).
A view of a MOOSE Workflow Item for interacting with a Warthog simulation. NiCE
provides embedded views of the mesh and solution using Vislt or Paraview, and provides

a graphical tree view for creating a Warthog inputfile.
A view of NiCE tools for actual Warthog development. NiCE provides code editing tools,
aswell as versioncontrol with Git. L o
A view of the power density result for PROTEUS (left) and its mapped solution to the
BISON fuel pin mesh (right). e

EXECUTIVE SUMMARY

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of
Energy’s Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and
future advanced nuclear reactor designs. This toolkit provides these technologies organized across product
lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling,
and high-level workflow management. The Fuels Product Line and the Reactor Product line provide
advanced computational technologies that serve each respective field well, however, their current lack of
integration presents a major impediment to future improvements of simulation solution fidelity. There is a
desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from
both to improve NEAMS modeling and simulation technologies.

This report will detail a new effort to provide this Product Line interoperability through the
development of a new application called Warthog. This application couples the BISON Fuel Performance
application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors
Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall
solution fidelity of nuclear fuel simulations. To acheive this, Warthog leverages as much prior work from
the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE
and SHARP frameworks, and the libMesh and MOAB mesh data formats.

The remainder of this report will describe this work in full. We will begin with a detailed look at the
individual NEAMS framework technologies used and developed in the various Product Lines, and the
current status of their interoperability. We will then introduce the Warthog application: its overall
architecture and the ways it leverages the best existing tools from accross the NEAMS toolkit to enable
BISON-PROTEUS integration. Furthermore, we will show how Warthog leverages a tool known as
DataTransferKit to seamlessly enable the transfer for solution data between disparate frameworks and
mesh formats. To end, we will demonstrate tests for the direct software coupling of BISON and PROTEUS
using Warthog, and discuss current impediments and solutions to the construction of physically realistic
input models for this coupled BISON-PROTEUS system.

INTRODUCTION

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of
Energy’s Office of Nuclear Energy has successfully endeavored to provide a usable and advanced toolkit
for the modeling and simulation of nuclear fuels and reactors. This effort has resulted in two
comprehensive frameworks that developers can build upon to provide advanced simulation technologies for
various aspects of a running nuclear reactor. Over the years of this development, the program has evolved
into an organizational structure that is based on Product Lines for Fuels (Fuels Product Line, FPL),
Reactors (Reactors Product Line, RPL), and Integration (Integration Product Line, IPL), with each
providing, or using, a developed framework that best fits its needs. In a sense, the development of these
frameworks has approached the same problem from two different perspectives: the Multiphysics Object
Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) provides a
multiphysics framework with a "top-down’ development approach, while the SHARP Nuclear Reactor
Framework from Argonne National Laboratory (ANL) and the RPL provides a multiphysics framework
with a focus on "bottom-up’ development. Both of these are equally valid approaches to the problem of
multi-physics, coupled simulations of nuclear technology, but their disparate development has resulted in
framework components that are difficult to mix and match. Components built on top of MOOSE are
difficult to integrate and use in SHARP, and vice versa.

There is a strong desire in the NEAMS community to see this communication and coupling barrier
between disparate framework components broken, and in doing so, enable the coupled use of the best
components from one framework with those from the other. A specific example of this desire is for
improved neutronics modeling in multi-physics fuels performance modeling. NEAMS has invested heavily
in both a new fuels performance application called BISON (an application built on top of the MOOSE
framework), and in a core neutronics application called PROTEUS (a stand-alone application utilized in the
SHARP framework). Both of these applications represent the state-of-the-art in their representative fields
and are major investments for the program. Currently, BISON lacks high-fidelity fission source feedback,
relying primarily on experimentally-validated power profile piece-wise functions to stand in for a
high-fidelity neutronics power calculation. It would be hugely beneficial to couple BISON to the
best-from-SHARP core neutronics application, PROTEUS, but the mechanism for doing so is difficult and
complex because both are based on incompatible frameworks. The purpose of this work is to develop the
software tools necessary to efficiently and directly couple BISON and PROTEUS. This work will enable
the interoperability of components from MOOSE/libMesh with components from SHARP/MOAB.

This report will demonstrate a viable, and efficient mechanism for this cross-framework coupling
necessary to further increase overall solution fidelity from NEAMS toolkit components. We will detail a
new MOOSE-based application called Warthog that wraps a PROTEUS neutronics calculation and maps
solution data from PROTEUS to MOOSE/BISON through a solution-transfer library from Oak Ridge
National Laboratory called DataTransferKit (DTK). To start, this report will discuss the individual
frameworks in NEAMS, and the BISON and PROTEUS components. Then we will detail what DTK is and
how it can be used in concert with a given application for solution transfer between differing mesh
discretizations, as well as incompatible mesh libraries and data structures. We will then detail Warthog, and
discuss how it leverages DTK and a wide array of existing NEAMS technologies to successfully couple
BISON and PROTEUS into a cohesive whole. We will end with preliminary software coupling results and
a look at future work geared at utilizing Warthog for physically realistic reactor models.

Physics(1) - Physics(N)
A A

MOAB

Visualization _ _ ,
(mesh manipulation, solution storage)

MBCoupler

Driver COUPE Library ‘

A
\J

PETSc
(vector & matrix operations)

Fig. 1. Overall SHARP design, showing a strong dependency on the MOAB mesh database to
promote coupling between disparate physics modules.

NEAMS FRAMEWORK TECHNOLOGIES

SHARP

The SHARP Nuclear Reactor Multiphysics framework is a tool designed and developed primarily at
Argonne National Laboratory (ANL) that provides a *bottom-up’ multi-physics framework coupling
strategy: it focuses on coupling existing verified and validated nuclear reactor physics codes. It provides a
framework for total reactor core simulations by coupling existing thermal hydraulics, core neutronics, and
structural mechanics physics codes. In its current state, SHARP couples NEK5000 [7], PROTEUS [17],
and DIABLO [6] for thermal hydraulics, neutronics, and structural mechanics, respectively.

The difficulty inherent to coupling existing physics codes is two-fold: (1) each physics code relies on
internal mesh data structures that do not easily map to other physics codes, and (2) each physics potentially
operates on different spatial discretizations, which makes it difficult to exchange solution data in an efficient
manner. To overcome these difficulties, SHARP relies on a coupling library called CouPE (Coupled
Physics Environment) [15], developed as part of the Integration Product Line, to control and drive the
overall multiphysics solve and handle solution transfers between physics applications. CouPE provides an
intermediate mesh representation built on top of MOAB (Mesh-Oriented datABase) [19] to efficiently map
each physics code’s internal mesh representation to the other physics code in a given coupled solve. In a
given iteration, CouPE executes a physics code and transfers its solution data to the intermediate MOAB
instance, which is then pushed to the next physics code in the coupled solve. To overcome potential
differing spatial representations, CouPE uses MBCoupler, a tool built on top of MOAB that interpolates
solution data between different mesh discretizations. See Figure 1 for a high-level view of this architecture.

In this manner, SHARP is able to successfully couple existing physics codes and execute large
multiphysics, coupled solves for advanced nuclear reactors. The burden of the work is simply the
development of a MOAB adapter code that takes each physics code’s mesh representation to MOAB and
vice versa.

Application

Heat Fluid Flow Salid Steel o, Parous

Conduction Mechanics

Cross
Reaction
Network

Auxiliary Physics Custom Interface
Velocity

MOOSE
L1 | = o
Transient
_ _ i

Porosity

Velocity

Vacuum

Fig. 2. High-level view of the MOOSE architecture [13]. MOOSE provides extensible sub-
systems for physics components, boundary conditions, materials, and analysis tools, just to name a
few.

MOOSE

The Multiphysics Object Oriented Simulation Environment (MOOSE) is primarily developed and
maintained at Idaho National Laboratory (INL) under the NEAMS Integration Product Line. MOOSE
provides a top-down’ framework for the development of coupled multiphysics applications based on the
finite element and Jacobian Free Newton Krylov (JENK) methods in a quick and efficient manner [8].
MOOSE is written in C++ and relies heavily on advanced object-orientation to provide a large collection
of extensible systems that perform tasks such as executing an overall solve, reading and writing meshes,
declaring pieces of physics, and defining materials, just to name a few. See Figure 2 for a high-level view
of MOOSE’s extensible systems. The overall goal of MOOSE is to provide the tools necessary that allow
the research to plug-and-play different physics, materials, solve types, etc. for a given system, and in doing
so, facilitate overall research in a quick and efficient manner. To properly understand how Warthog
leverages as much as possible from the MOOSE framework, we will now highlight a few objects in the
framework’s object heirarchy that Warthog builds on top of to enable BISON and PROTEUS coupling.

At the root of MOOSE’s object inheritance tree is the MooseObject. All extensible systems in MOOSE
inherit from this object, and in doing so, pick up a very useful property: the ability to be dynamically
created from a string declaration in an input file using MOOSE’s custom factory pattern. This enables the
overall extensibility of MOOSE as it allows users to declare new sub-systems through a simple ASCII text
declaration in an input file.

Primary amongst MOOSE’s extensible systems is the MooseApp class. Users of MOOSE who wish to

MultiApp 3

Sub-a Sub-a Sub-app || Sub-app
3-1 3-2 4-1 4-2

Fig. 3. A view of the tree-like design of MOOSE’s MultiApp system [12]. Each MultiApp
solve consists of a master application that drives the overall solve, with sub-applications contribut-
ing solutions of individual physics of interest.

MultiApp 4

create a new physics application simply create a new MooseApp subclass for their MOOSE-based physics
application. For example, BisonApp is a subclass of MooseApp for the BISON Fuel Performance
MOOSE-based application. Each new MooseApp can register or declare extensions for other parts of the
MOOSE framework, such as the registration of new physics Kernels or Material properties. Another key
extensible system in MOOSE is the Executioner class, which acts to direct the entire solve for a given
multiphysics simulation. There are a number of different types of default Executioners: Steady for
steady-state solves, Transient for time-dependent solves, and PetscTSExecutioner (for use of the PETSc TS
object in MOOSE) are just a few.

MOGOSE provides an extensible system for coupling disparate physics codes that are provided as
MOOSE-based applications. The MultiApps system lets users of MOOSE define a simulation that uses
physics contributions from any number of existing MOOSE-based applications, for example coupling
BISON to the MARMOT microscale fuel modeling code. This system is designed as a N-ary tree of
MooseApps, with the root being the application executing the master solve (Fig. 3). This tree-like structure
enables MOOSE to execute solves using loosely-coupled operator split or tightly-coupled picard iteration
methods. In addition to the MultiApp system, MOOSE provides a corresponding Transfers system that
enables the transfer of solution fields between MultiApp solves. This system is extensible, and provides
transfer algorithms like L, projection and interpolation by default [9].

With the above mentioned extensible systems, and many more, MOOSE enables the rapid development
of finite-element JFNK coupled, multiphysics applications. To standup a new application, one simply
creates a new MooseApp, registers any new objects created for the simulation (new physics Kernels,
Materials, etc., and of course, one could use any of the many existing objects), constructs the input file for a
given execution, then start using that application.

WARTHOG

The goal of the Warthog application is two-fold: (1) to enable the direct code coupling of BISON and
PROTEUS to improve overall solution fidelity, and (2) to leverage as much existing work as possible from
the extensive NEAMS toolkit into one cohesive whole. This second point is important, the work done over
the years by NEAMS developers has been tremendous, and relying on that work when possible efficiently
facilitates the rapid development of any potential BISON-PROTEUS coupled application.

There is a strong desire in the NEAMS community to see the direct code coupling of PROTEUS and
BISON. First and foremost, this coupled capability will provide an accurate power density feedback for the
overall BISON thermomechanics solve, therefore improving overall solution fidelity. Besides this, the
desire to see these applications coupled also stems from the desire to see the best from the Reactors and
Fuels Product Lines working in concert to provide a rich tool for nuclear fuel studies. The program benefits
immensely from the connection of these disparate and separate efforts as it shows that tools from MOOSE
and SHARP/CouPE can be interoperable.

Aside from relying on the BISON and PROTEUS applications themselves, Warthog builds on top of a
number of existing technologies from NEAMS. Warthog utilizes the MOAB, libMesh, MOOSE, and the
primarily CASL-developed DataTransferKit. The remainder of this section will detail how each of these
technologies enables Warthog’s direct code coupling of BISON and PROTEUS.

BISON Fuel Performance

The BISON Fuel Performance application is a MOOSE-based application authored primarily at Idaho
National Laboratory. It is a C++, parallel solver for coupled thermomechanics and species diffusion in
nuclear fuel rods. BISON seeks to solve the following equations in a fully-coupled manner:

oT dF

4 V.q-e— = 1
pC”ar+ =€ g 0, (D
ocC
— +V-J+AC-S =0, ()
ot

V.o+pf =0, 3)

where the first equation models heat conduction with T', p, C), q, e, and F being the temperature, density,
and specific heat, heat flux, energy per fission, and volumetric fission rate, respectively [21]. The second
equation models species conservation, where C, 4, J, and S are concentration, radioactive decay constant,
mass flux, and source rate, respectively. The third equation is Cauchy’s equation and models momentum
conservation, with o and f the stress tensor and body force per unit mass, respectively.

BISON has been applied to a wide range of fuel types, including metallic rod, TRISO particle fuel,
LWR fuels, and plate fuel. As an application built on top of the MOOSE framework, BISON provides a
MooseApp subclass that registers specialized MOOSE Kernels, Materials, and Boundary Conditions.

PROTEUS Core Neutronics

The PROTEUS Core Neutronics application is primarily developed at Argonne National Laboratory
(ANL) as part of the NEAMS Reactors Product Line. It is written in Fortran 90 with C preprocessor
definitions, and uses an even-parity discrete ordinates approximation (SN2ND) to solve the steady-state
neutron transport equation [17]. It runs on a variety of architectures, and scales from a couple cores on a

10

laptop, to over 10° cores on a machine such as Mira at ANL. It relies heavily on PETSc matrices and
vectors to acheive this parallelism and provide such scalability.

Crucially, PROTEUS provides conversion code to map its internal mesh data structures to MOAB, and
vice versa. This functionality was developed as part of work done to integrate PROTEUS into SHARP and
CouPE, and enables the use of PROTEUS coupled to NEK5000 and DIABLO. It is this MOAB mesh layer
that will quickly and efficiently enable solution communication between BISON and PROTEUS.

Warthog Architecture

The coupling of various applications to BISON has been done before [10]. BISON has successfully
been coupled to applications like MARMOT, RattleSnake, and RELAP-7. To acheive this coupling, the
MultiApps and Transfers system was utilized to provide both loose and tight coupling strategies. The
success of these past code coupling attempts provides a key insight for the coupling of PROTEUS and
BISON - utilize the MultiApps system to enable their coupling. However, to do that, we need to provide
PROTEUS to the MultiApps system in way that it expects, i.e., as a MOOSE-based application.

Warthog provides just that - it is a MOOSE-based application that executes a PROTEUS steady-state
solve. It acts as a wrapper for PROTEUS that makes it compatible with the rest of the MOOSE ecosystem.
A high-level view of the Warthog architecture is shown in Figure 4. The first thing to note is that Warthog
enters into the MOOSE framework by providing a new MooseApp object called WarthogApp. This enables
the creation of a new MOOSE-based application that can declare or register any number of
MOOSE-system extensions. Specifically, Warthog registers a new Transient Executioner, called
MoabCodeExectioner, as well as realizations of a new interface called IMoabCode.

] Moose::Executioner «interface»
| Moose::MooseApp [7] IMoabCode
"I & init () £ Moose::MooseObject
grun() & solveStep () @ initialize () [
fa &5 preSolve ()

& solve ()
&5 postSolve ()

— - & finalize ()

- Moose::Transient piy

i

Hwarthog | e, | = MoabCodeExecutioner

! Proteus £ SN2ND_Fortran

Fig. 4. A high-level view of the Warthog Architecture in the Unified Modeling Language
(UML). This diagram demonstrates the class hierarchies developed by Warthog, with MoabCode-
Executioner subclassing Transient and having an IMoabCode reference, and Proteus realizing the
IMoabCode interface and using the PROTEUS SN2ND Fortran subroutines.

The IMoabCode interface provides a communication protocol for Warthog and external MOAB-based
physics applications, such as PROTEUS. This interface was created to enable the integration with BISON
of not only PROTEUS, but potentially NEK5000 and DIABLO. It provides methods that any MOAB-based
physics codes should be able to implement to efficiently execute a given solve and transfer data to and from
MOOSE. Importantly, this interface subclasses the MooseObject class, and in doing so picks up the use of

11

the MOOSE factory system. So, creating a new realization of IMoabCode is as simple as declaring that
realization as a string in the Warthog input file.

The MoabCodeExecutioner subclasses the behaviour of a Transient Executioner to provide custom init
and solveStep methods that initialize and execute an IMoabCode realization, respectively. It acts to drive
the entire IMoabCode execution by invoking the correct methods to initialize, solve, and finalize a given
MOAB-based physics application solve. The MoabCodeExecutioner solveStep implementation executes
the preSolve, solve, and postSolve methods on the given IMoabCode realization. That concrete realization
is specified to the MoabCodeExecutioner through a required MOOSE parameter, moab_code, defined in
the input file. In the future, one could imagine this moab_code parameter being a vector of strings for
specifying the use of many MOAB-based physics applications in a given coupled BISON solve.

The only implementation of IMoabCode currently available in Warthog is a class called Proteus. This
class provides concrete implementations of the methods defined on IMoabCode that execute a steady state
solve for PROTEUS’ SN2ND solver. It provides the connection between the C++ MOOSE and Fortran 90
PROTEUS subroutines. It’s initialize method passes a reference to MOOSE’s MPI communicator to
PROTEUS and invokes a number of subroutines used to initialize PROTEUS’ solver data structures. The
preSolve method acts to transfer temperature data from MOOSE to PROTEUS for its cross-section
calculation. The solve implementation simply executes the PROTEUS SN2ND solve, and the postSolve
method transfers the computed power density from PROTEUS to MOOSE.

The only remaining question is how does this temperature and power density solution transfer happen?
To acheive this we must map solution fields from two completely different mesh libraries, MOAB and
libMesh. Warthog accomplishes this through DataTransferKit (DTK).

DataTransferKit

To enable interoperability between Proteus and Bison, the DataTransferKit library (DTK) was used to
provide solution transfer services [18]. Several development activities were needed to provide DTK
services for the libMesh data structures used by MOOSE and Bison for mesh and field data and the MOAB
data structures used by Proteus for mesh and field data. This development included the implementation and
testing of DTK interfaces for these data structures. In addition, an L2 projection data transfer operator was
added to DTK to support accurate mesh-based solution transfers. Finally, a number of integration tests
were developed in addition to the unit tests developed for each implementation which demonstrate the
mathematical correctness of the L2 projection operator when used for parallel solution transfer between
MOAB and libMesh data structures. This section of the report documents these development efforts.

DTK Data Transfer Concepts

The data transfer problem in DTK is defined as the translation or reconstruction of a function
represented by a discretization on one mesh to a representation on a potentially different mesh with a
different discretization. The mesh on which the function is initially represented is defined as the source
mesh and the mesh onto which the function will be transferred is defined as the rarget mesh. In its
representation on the source mesh, the function will be defined as, f, the source function. The
representation of the function on the target mesh will be, g, the target function. We define the source
function over M support locations as:

M
f=) fii, @)
i=1

12

where:
fi=fGsi),)
is the source function evaluated at the i support location in the source mesh, s;, and:

éi = ¢@i) , 6)

is the source basis function evaluated at the parametric coordinates of the i’ support location in the source
mesh, §;. Equivalently, we have the target function defined over N support locations as:

N
2= Wi,)
i=1
where:
gi=gt), ()

is the target function evaluated at the " support location in the target mesh, t;, and:

Wi =y, ©)

is the target basis function evaluated at the parametric coordinates i support location in the target mesh, ;.
A support location is defined as a geometric entity supporting the function. It may be a node, edge, face, or
element in the mesh depending on the underlying discretization of the function.

The data transfer problem is then to find the values of the source function on the target mesh given the
function discretization on both meshes and the source function values on the source mesh support
locations. We define a data transfer operator, H, such that:

g «— H(g, Yt , (10)

with H: RY — RN, f € RM the vector of source function values at the source support locations, and
g € RV the vector of target function values at the target support locations. The notation H(¢, ¢) indicates
that H is potentially constructed from the basis functions of the source and target discretizations.

To enable this numerical description, DTK has a set of interfaces defined as C++ classes which client
applications (i.e. libMesh or MOAB) implement to access DTK services. There are 6 such interfaces:
Entity, EntitySet, EntityLocalMap, EntityShapeFunction, EntityIntegrationRule, and Field. We will briefly
outline each of these to provide context for the libMesh and MOAB implementations created for Warthog.
These implementations are now included in the DTK library.

Entity An implementation of the Entity class gives a general description of a geometric object. For
example, all MOAB mesh entities such as faces and elements have an implementation for this class. To
allow DTK to query the state of the entity, the Entity interface gives the following information:

1. The physical dimension of the Entity. This is the number of coordinates needed to locate a point in
physical space contained within the entity.

2. The topological dimension of the Entity. This is the number of coordinates needed to locate a point
in the reference frame of the entity.

3. The unique global id number of the entity.

13

4. The parallel process id uniquely owning the entity.
5. The bounding box of the entity.
6. The block of the mesh in which the mesh entity resides.

7. The boundary (if any) on which the entity resides.

EntitySet The EntitySet interface provides DTK with a set of functions that describe all entities in the
problem. In the case of libMesh and MOAB, this describes the entire mesh in the problem. Subsets of the
mesh are accessed through predicate functions that modify iterators. The following information is provided
by this interface:

1. The parallel communicator (i.e. MPI communicator) for the entity set.

2. The physical dimension of the entity set.

3. The bounding box of all entities on the local parallel process.

4. The bounding box of all entities on all processes.

5. Retrieve an entity from the set given its topological dimension and global identifier.

6. Provide an iterator over entities in the set that satisfy a given predicate (i.e. an iterator over entities
on a given boundary).

7. Given an entity, retrieve the entities that are adjacent to it of a given topological dimension.

EntityLocalMap Through the EntityLocalMap interface, a user application provides DTK with functions
describing the reference frame of the entity. These include mapping a point to and from the reference frame
of an entity as well as functions that use the reference frame for geometric computations. The following
information is provided by the EntityLocalMap interface:

1. The measure of an entity. For an entity of topological dimension 1 this is the length, area for a
dimension of 2, and volume for a dimension of 3.

2. The centroid of an entity.
3. Map a point from the physical frame to the reference frame.
4. Determine if a point in the reference frame is in the entity.

5. Map a point from the reference frame of an entity to the physical frame.

EntityShapeFunction The EntityShapeFunction interface gives access to the shape functions
discretizing fields defined on entities. This includes both shape function evaluations as well as degree of
freedom id numbers. We will often want the actual shape function values for certain solution transfer
algorithms. The following information is provided by this interface:

1. The global identifiers of the objects supporting the shape function. For example, this is either a set of
node ids for an element or a set of different degree of freedom ids.

14

2. A function for evaluating the shape function of an entity at a given reference point.

3. A function for evaluating the gradient of the shape function of an entity at a given reference point.

EntityIntegrationRule For numerical integration, the EntitylntegrationRule interface provides DTK
with numerical quadrature rules for entities. This interface provides:

1. Given an entity and order of numerical integration, provide integration points in the reference frame
of the entity and the weights of those points in the quadrature.

Field Solution data is extracted from applications through the Field interface on an entity-by-entity basis.
The interface provides a means for establishing parallel vectors on top of application field data which can
then be used to transfer solutions between applications using operators applied to the vectors. An
implementation of the interface provides the following capabilities:

1. The dimension of the field. If the field is a scalar (e.g. temperature) the dimension is 1. If the field is
a vector quantity the dimension may be larger. For example, a flow velocity vector field in a 3D
calculation will have a dimension of 3.

2. The global ids of the objects supporting the field that are owned owned by the local parallel process.
This is the set of ids, such as degree of freedom ids, that would be returned by the
EntityShapeFunction interface which are also uniquely owned by the local parallel process.

3. Given a support id and a field component dimension, get the value of the field from the application.
4. Given a support id, a field component, and a field value, write the field value to the application.

5. Place the field in a parallel consistent state. The functionality gives the user application the option to
update, for example, ghosted field values after solution transfer as DTK will only operate on
non-ghosted data.

libMesh Adapters

To enable interoperability with Bison and other MOOSE applications within the NEAMS Fuels
Product Line, adapters were written for the interfaces described in the previous section. These adapters
currently reside within the DTK repository. However, previous users of DTK with libMesh will note that
this is in contrast to the DTK code residing both the MOOSE and libMesh repositories. These new adapters
specifically implement what we are terming the new, "Version 2" API of DTK. The implementations that
currently exist with MOOSE or libMesh, however, are still fully supported as the "Version 1" API of DTK
by use of the ClassicAdapters package in the library. These classic adapters provide all "Version 1"
functionality with the same API but implementation details have been replaced to use the new "Version 2"
code.

For the purposes of Warthog, the approach of adding new libMesh adapters to the DTK repository is
sufficient as all MOOSE/Bison builds are executed only with a PETSc dependency, eliminating the Trilinos
and DTK dependency from the MOOSE/Bison build. At a higher level, Warthog coordinates the use of
DTK and compilation of third-party libraries including DTK and Trilinos. Users access these new adapters
in DTK by building the library with libMesh as a dependency, thus avoiding cyclic dependencies.

15

The implementation of DTK interfaces using libMesh was relatively straightforward. Table 1 provides
a reference of which libMesh classes and interfaces map to which DTK interfaces. Additional data
structures to create a full adjacency graph between elements, faces, and nodes in libMesh were needed to
satisfy all DTK interface requirements. In particular, the extra adjacency data structures permit, for
example, the immediate extraction of all nodes in the mesh that compose a particular mesh element. All
implementations of DTK functionality are entirely parallel, utilizing native libMesh parallel functionality.
A suite of unit tests that check the libMesh implementation of all DTK interfaces and additional data
structures was developed as well. These tests, which run automatically with the rest of the DTK unit test
suite when the libMesh adapters are enabled, provide coverage for initial Warthog use cases.

Table 1. Relationships between DataTransferKit interfaces and libMesh interfaces.

DTK Interface libMesh Interface

Entity libMesh::Node, libMesh::Elem
EntitySet libMesh::MeshBase

EntityLocalMap libMesh::FEInterface, libMesh::Elem

EntityShapeFunction libMesh::FEComputeData, libMesh::FEInterface
EntitylntegrationRule libMesh::QBase
Field libMesh::System, libMesh:: Variable

As indicated in the previous section, DTK provides the opportunity to select only a subset of the mesh
for solution transfer using the concept of mesh blocks or boundaries which logically subdivide volumes or
surfaces. In libMesh, the concept of blocks is represented by subdomains. Each element in the mesh has a
given subdomain id and nodes are considered to be in a subdomain if one of their parent elements is in the
subdomain. The libMesh library equivalently has a boundary concept. A node can be directly on a
boundary while an element is considered to be on a boundary if any of its sides (faces) are on the boundary.
We have demonstrated solution transfer using DTK over both selected subdomains and boundaries of a
libMesh mesh.

MOAB Adapters

For interoperability with several physics tools in the NEAMS Reactors Product Line, DTK interface
adapters for the MOAB mesh database library were created for this work. Compared to libMesh, MOAB
has had no prior dependency on DTK and does not have a Trilinos dependency. Therefore, the logical
location for these adapters is in the DTK repository. These adapters, if enabled, use MOAB as a third-party
library to satisfy the dependency.

Table 2 gives the relationships between the DTK interfaces and MOAB interfaces. Although still
relatively straightforward, implementation of the DTK interfaces using MOAB was more nuanced than the
libMesh implementation. Management of the parallel mesh state in MOAB is provided through the
moab::ParallelComm interface. Some work was needed to understand how the parallel mesh is initialized
and how global indices are constructed for mesh elements using this interface. In addition, the bulk of
discretization capability is handled through the moab::ElemEvaluator interface which handles point
location, function evaluation, and numerical integration. For shape function evaluation, the

16

moab::ElemEvaluator uses tag data to provide field evaluation in a single function. To extract only the
shape function values and gradients for the DTK interfaces, artificial field values are used and the
moab::Tag interface is used to access field data when needed. For numerical integration, the
moab::ElemEvaluator interface could not be manipulated to extract the quadrature rule embedded in the
implementation. Instead, the Intrepid package of Trilinos was used to provide quadrature rules compatible
with the discretization provided for various topologies in the moab::ElemEvaluator interface [11].

Table 2. Relationships between DataTransferKit interfaces and MOAB interfaces.

DTK Interface MOAB Interface

Entity moab::EntityHandle

EntitySet moab::ParallelComm, moab::Interface
EntityLocalMap moab::ElemEvaluator

EntityShapeFunction — moab::ElemEvaluator
EntityIntegrationRule moab::ElemEvaluator
Field moab::Tag

Like the libMesh implementation, a suite of unit tests was developed for the MOAB implementation to
provide coverage for all Warthog use cases and to verify the correctness of the implementation. In
particular, they ensure that the data extracted from the moab:: ElemEvaluator interface as well as the use of
Intrepid shape functions with MOAB discretizations compute the correct values. When the MOAB
adapters are enabled in DTK, these tests execute with the other unit tests. It was found that these tests were
critical for verifying correctness of the code before proceeding to use the adapters in a larger coupled
framework under Warthog.

Both block and boundary concepts in the DTK implementation are represented using MOAB mesh
sets. These mesh sets are user defined collections of entities and are commonly used to represent logical
subdivisions of the mesh. Like libMesh, the DTK implementation considers a MOAB entity to be in a
block or on a boundary if that entity is contained within the mesh set defining the block or boundary. In
particular, predicate functions have been developed for MOAB which enable easy selection of entities in a
single or multiple mesh sets for solution transfer with DTK. We have also demonstrated this functionality
with solution transfers over specified MOAB mesh sets.

L2 Projection

For the accurate transfer of mesh-based fields in Warthog, an L2 projection operator was added to
DTK. To construct the data transfer operator for this method, the weighted residual problem based on L,
minimization is formed as follows per [14]. We define the following minimization problem:

2 f<g_f)2dg] - 0. (an
8i Q

Expanding the squared term and substituting in Eq (7) for g we have:

[f (g— NPdQ| = [f (wagf —2ZZw1g1¢kfk+<Z¢kfk>)dsz} (12)

j=1 k=1

17

Performing the differentiation and separating the integral gives the following linear system to solve for the

target function:
N M
Z]@%ﬁ%=ZjMMMﬁ, (13)
=18 k=1 V2

Mg = Af, (14)

or

where M is defined as the mass matrix with individual elements:
M;; =f¢ilﬁjd9, (15)
Q

A is defined as the coupling matrix with individual components:

M=L%WM, (16)

g the vector of unknown target function values and f the vector of known source function values. The
action of the data transfer operator on the source function is then:

Hf = M'Af, 17)

where now a symmetric positive-definite linear system must be solved at every application of the data
transfer operator from the current values of the source function. Although the weighted residual problem
can be weakly formulated as in [3], we find this definition to be more general as it permits minimizing the
data transfer residual over other norms'.

Building the mass matrix only requires integrations of the target basis functions and therefore those
integrations can always occur exactly over the target grid. However, constructing the coupling matrix
requires numerical integration of the target basis functions and the source function containing the source
basis functions. As both of those functions are likely to be defined over grids of different topologies and/or
mesh size, the question becomes how to perform those integrations in a way that is both accurate and
conservative. A first choice for building the coupling matrix is numerical integration over the source grid
while a second choice is numerical integration over the target grid [3, 4]. In general, integration of the
source grid provides better conservation while integrating over the target grid provides better accuracy. In
DTK, we choose integration of the target grid for improved accuracy. If needed in the future, more accurate
and conservative numerical integrations could be constructed via mesh intersection using the
common-refinement scheme [14] or the nearly identical super-mesh scheme [5].

DTK Integration and Verification Tests

To demonstrate interoperability between MOAB and libMesh as well as the numerical correctness of
the L2 projection operator specifically developed for this work, several integration and verification tests
were developed and exist as examples in the DTK repository. This are in addition to the individual unit test
suites developed for each adapter implementation to test using the the new code in the same manner as the
Warthog use case for both serial and parallel calculations.

To test interoperability, a libMesh and MOAB database is constructed from an exodus mesh file. The
DTK interface subclass implementations are then created from the libMesh and MOAB data structures. For

'Such as the Sobolev norm as in [14].

18

I moabC | | =]]

Linit L1: initialize

"|
"""""""""" [libmeshMoabTransfer.LibmeshMoabTransfer
1.2:initialize
2:init

|
«interface» === o 1) 3: solveStep |
[Z] IMoabCode F |

@ initialize () £ LibmeshMoabTransfer
é& E:S:I(V)E (0] 3.1.2: transfer

% Solv — N e
4 postSolve () «dser

3.1:presalve

3.11: transfer

] L 1 35: postsolve

i finalize () X! 3.2: preSolve |
- |
L 3.3: solve |

: ——— 1
[Crotews] [Fswano rorwan | Lo 5 '
[> | |
: |

3.5.1: transfer

35.2:transfer

36 postSolve

4:solveStep |

Fig. 5. The LibmeshMoabTransfer architecture in UML (left) with a sequence diagram de-
scribing its use in Warthog (right).

verification, a known function is assigned to either mesh depending on the direction of transfer (either from
libMesh to MOAB or from MOAB to libMesh), and the transfer is executed. The resulting solution is
checked against the values of the known function at those spatial locations. Accuracy is checked by
computing the difference between the transferred value at each node and the expected value with a norm of
this vector giving a global measure of accuracy. Conservation is assessed by comparing the difference
between the known function integrated over the source mesh to the transferred function integrated over the
target mesh. These tests show that for both transfer directions and in serial and parallel, both
interoperability between MOAB and libMesh and expected measures of conservation and accuracy using
the L2 projection operator are achieved.

LibmeshMoabTransfer Black Box Solution Transfer

To efficiently incorporate the aforementioned tools and technologies found in DataTransferKit,
Warthog provides an object that acts as a black box for pertinent solution transfers using DTK. The
LibmeshMoabTransfer object, shown in Figure 5, provides this black box solution transfer capability by
wrapping the essential DTK functionality for creating and executing transfers to and from MOAB and
libmesh. Every realization of IMoabCode inherits a reference to this object and can use it to create a DTK
transfer mechanism and execute it when its needed. For example, the Proteus implementation of
IMoabCode creates transfer operators for the temperature and power, and executes them in the preSolve
and postSolve methods, respectively. The sequence of events for a given PROTEUS execution and the
utilization of the LibmeshMoabTransfer object is demonstrated in the sequence diagram in Figure 5.

The power of DataTransferKit is exhibited in the example transfer code snippet in Figure 6. This is
essentially what the LibmeshMoabTransfer executes to create and invoke DTK transfer maps. First,
manager objects are created for the MOAB and libMesh mesh instances. From those, field vectors are
created for the Tag and Variable corresponding to the solution field of interest. The transfer operator is then
constructed in an extensible manner (operator types and parameters determined by XML file). The operator

19

// Create the MOAB Mesh
Teuchos: :RCP<moab: :ParallelComm> source_mesh = getMoabMesh();

// Create the Libmesh Mesh
Teuchos: :RCP<libMesh: :Mesh> tgt_mesh = getLibmeshMesh();

// Create a manager for the source set elements.
DataTransferKit::MoabManager src_manager(source_mesh, source_set);

// Create a manager for the target set nodes.
DataTransferKit::LibmeshManager tgt_manager(tgt_mesh,
Teuchos: :rcpFromRef(tgt_system));

// Create a solution vector for the source.
Teuchos: :RCP<Tpetra: :MultiVector<double, int, std::size_t>» » src_vector =
src_manager.createFieldMultiVector(source_node_set,
source_data_tag);

// Create a solution vector for the target.
Teuchos: :RCP<Tpetra: :MultiVector<double, int, std::size_t> > tgt_vector =
tgt_manager.createFieldMultivVector(tgt_var_name);

// Create a map operator.
Teuchos: :ParameterList& dtk_list = plist->sublist(“"DataTransferkKit");
DataTransferKit: :MapOperatorFactory op_factory;
Teuchos: :RCP<DataTransferKit: :MapOperator> map_op =
op_factory.create(src_vector->getMap(), tgt_vector->getMap(),
dtk_list);

// Setup the map operator.
map_op->setup(src_manager.functionSpace(), tgt_manager.functionSpace());
// SOLUTION TRANSFER

[wmmmmmmemmemeees

// Apply the map operator.
map_op->apply(*src_vector, *tgt_vector);

Fig. 6. Code used by LibmeshMoabTransfer to execute MOAB to libMesh solution transfers.
This code takes solution data on a moab::ParallelComm instance and maps it to a libMesh::Mesh
instance.

20

is then setup and a simple apply operation is executed to perform the solution transfer from MOAB to
libMesh.

Warthog-BISON Coupling Mechanism

With PROTEUS wrapped in a MOOSE-based application, and a convenient MOAB-libMesh data
transfer mechanism in place, the act of coupling to BISON is simple thanks to the MOOSE MultiApps and
Transfers systems. Figure 7 shows a high level view of the overall workflow for a coupled
BISON-PROTEUS calculation using Warthog, and the actual input file declaration to make it happen. A
user simply declares Warthog as a MultiApp in a BISON solve, and declares Transfers that take calculated
power from Warthog to BISON, and temperature from BISON to Warthog. These transfers occur between
the BISON and Warthog libMesh instances within the MOOSE framework, with the MOAB-libMesh
transfer between Warthog and PROTEUS happening at the lower, IMoabCode level.

A BISON solve that contains these blocks in the input file can perform a coupled
thermomechanics-neutronics solve. The overall workflow begins with an execution of Warthog, which in
turn executes a PROTEUS steady-state solve with the current temperature field. This solution is transfered
from MOAB back to libMesh using DTK, and that is then transferred from Warthog to BISON, which acts
as the master application in this MultiApp solve. BISON is then executed with the updated power density
data, and is followed by a transfer of the computed temperature back to Warthog. A Warthog solve is
executed again, with the updated temperature field thanks to a transfer invocation for the
LibmeshMoabTransfer object in the Proteus preSolve method. This continues interatively until
convergence is reached. Furthermore, the MOOSE Transient Executioner provides a hook in the input file
to specify a Picard iteration for even tighter coupling.

[MultiApps])

[./sub_warthog]
type = TransientMultiApp
input_files = 'warthog_fumex.i'
app_type = WarthogApp
positions = '6 0 @'
execute_on = "timestep_end’

[../]

————> (aWarthog Execute Proteus IMoabCodeé 3 @ DTK Transfer VPOWER from Moab to Warthog Libmesh

l (]
@ Warthog Moose Transfer VPOWER to Bison MultiApp [Transfers]

[./vpower_to_bison]

@ DTK Transfer Warthog temp to MOAB VTEMP variable = power
N Excuin| BN N source_variable = VPOWER

multi_app = sub_warthog
direction = from_multiapp
Yes) type = MultiAppInterpolationTransfer

G Warthog Moose Transfer Bison temp to Warthog

[../]
[./temp_to_warthog]
variable = VTEMP
source_variable = temp
multi_app = sub_warthog
direction = to_multiapp
type = MultiAppInterpolationTransfer
[../]
(]

Fig. 7. High-level flow for a given Warthog execution (left) and example MOOSE input file
blocks for enabling BISON-PROTEUS coupling with Warthog (right).

21

Integration with the NEAMS Integrated Computational Environment

The NEAMS Integrated Computational Environment (NiCE) is a product from the Integration Product
Line in NEAMS that provides a end-to-end workflow platform for NEAMS toolkit simulation
technologies. It provides a graphical interface and associated integrated tools for a large array of pertinent
scientific computing tasks such as local or remote simulation job launch, simulation input generation, and
data visualization and analysis. Throughout the 2015 fiscal year, NiCE support for MOOSE-based
applications has matured immensely. NiCE provides an integrated MOOSE Workflow tool for interaction
with any MOOSE-based application. NiCE now has support for embedded visualizations across the entire
platform, and was leveraged in the MOOSE Workflow tool to provide detailed and dynamic views of the
problem mesh, solution mesh, and XY plots of Postprocessor data. Furthermore, NiCE now supports
real-time Postprocessor visualizations. As MOOSE simulations are running, they can now report back
Postprocessor data at each time step to NiCE via a web socket, and NiCE updates a XY plot in real-time.

NiCE has also been updated to provide support for actual MOOSE application development. Users can
now leverage a myriad of tools in ICE for C++ development, application building, and even GitHub
integration. For MOOSE, NiCE now provides custom buttons and widgets to Fork the Stork [20], and clone
and fork MOOSE itself. MOOSE application developers can now create their application, keep it version
controlled, execute it, and analyze simulation results in one holistic and integrated environment.

Warthog development leveraged NiCE as much as possible. Warthog was actually developed in NiCE
using the aforementioned developer tools, and Warthog executions are performed using the MOOSE
Workflow tool (see Fig. 8 and 9). Using NiCE, a Warthog user can efficiently and quickly interact with
Warthog and execute simulation launches, view embedded mesh visualizations and simulation results, and
generate input file using a custom tree view.

22

-

w3 @i Bl 0 MOOSEActions + Edit Materials Database * LaunchVisit 4'» =+ Cov o

] @

@

[~ MOOSE Workflow £3
1 MOOSE Workflow 1 There are unsaved changes on the form.

The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a multiphysics framework developed by Idaha National
Laboratory.

~ Output File Parameters ~ Parallel Execution
Global parametars for the output file that ICE will create. ‘Spacity the number of OpenMP threads, TBB Threads, or
MPI processes that shouid be used for the Job.
4 : [Browse.
MOOSE-Based Appiication: file: [Acoount Gode/Project Gode:
Output File Name: none

mocesidedeld Number of MPI Processes:
Mesh: proteus_fumex 2de [Browse. 1
Numbor of TBB Throads:

1

Output File Parameters, Parallel Execution, etc. | Mesh and Output Files

[Input Data = Tree View

Adaptivity
AuxKernels
AuxScalarKarnels
AuxVariables

»BCs
Bounds.
Constraints
DGKernels

Materials

Mesh
MeshModifiers

Process:

Launch the Job

~ Show Postprocessors?

Enable the Postprocessors you would like to monitor in real

time.

3

NodalVariableValue10

NodalVarlableValueS0

=0 [Properies

Data

Go! Cancel

Node properties

™7 Plot Editor 3
Menu v
/o. KIdDW
Timeiflr

e Ini

20

0

r-aris (x10°-3)

All properties available for this node can be modified here.

Type:

MoabCedeExecutionor

Enabled Name

abort_on_solve,_fall
cross_sections_file
at

atmax

dtmin

end_time

input_file
materials_file
moab_code

Value
e

10430
2014
10430

‘Proteus’

Comments

user: agw
Tue Aug 111

mvepn

cal tree view for creating a Warthog input file.

Fig. 8. A view of a MOOSE Workflow Item for interacting with a Warthog simulation. NiCE
provides embedded views of the mesh and solution using VisIt or Paraview, and provides a graphi-

23

5 [y Resource |FIMOOSE | (1, Git [Visualization [ICE () Reactors

a

@

{&5 Project Explorer
» (& itemDB
¥ (3> warthog [warthog master]
5 » [Archives
» (3 assessment
» 4 Binaries
» (3 DataTransferkit
> Gy deps
» @ydoc
» (> examplos
v (ginclude
> Gy base
> (i executioners
» (gexternalcodes
> G proteus
> Gy transters
> [WarthogRevision.h
» iilinciudes.
=

» Gybase
» oxecutioners
» Gy externaloodes
¥ () main.C
» Gy proteus
¥y transfers
B console O ¢ BAl- R B-0-=0
CDT Buikd Console [warthog)
10:40:33 **** Build of configuration Default for project warthog *'
make -34 all

10:40:35 Build Finished (took 2s.543ms)

IMoabCode.n &3

D vali b

de>();
Sy
* IMoabCode is an interface that clients can realize to provide

* MOOSE (or WartHog) with access to a 3rd-party external Mogh-based
* physics code.

4
- class IMoabCode: public MooseObject {
protected

N
* Reference to the MoabCode's moab mesh instance,
* encapsulated by the ParallelComm object
“/
Teuchos: : RCP<moab: :ParallelComm> moabMesh;
L e
* Reference to the EquationSystems instance for this
* MOOSE gpp, encapsulating the libmesh mesh instance.

Teuchos: :RCP<libMesh: :EquationSystems> mooseMesh;
L e
* Reference to the LibmeshMoabTransfer, which maps

* solution data to and from magh and libmesh

Teuchos: :RCP<LibmeshMoabTransfers> transfer;

public:

* The Constructor
.

IMoabCode(const std::string& name, InputParameters parameters) :

ox=0

Error Log (#) Make Target 53 [C]

> Dsrc
> € unit

» (= DataTransferKit
> (> deps
> (doc
> (> examples
=1
> (> moab
» (2 moose
> (> proteus
> Etests
@ make all
(@ make unit test

Object.h - Eclipse Platform

B [(yResource EMDDSEVEV Git [Visualization [5ICE [Reactors
MooseObjecth £ =
[Tad DO NOT MODIFY THIS HEADER '/D =

#ifndef MOOSEOBJECT_H
#define MOOSEOBJECT_H

#include "InputParameters.h” ‘
#include "ConsoleStreamInterface.h” Fl

#/ libMesh includes
#include "libmesh/parallel_object.h"

class MooseApp;
Class MooseObject;

templates
» valid

ject>();

e
* Every object that can be built by the factory should be derived fr
./

- class MooseObject :
public ConsoleStreamInterface,
public libMesh::ParallelObject

public:
MooseObject(const std:istring & name, InputParameters parameters);

virtual ~MooseObject() { }
B
* Get the name of the object

* @return The name of the object
o

const std

tring & name() const { return _name; }

Get the parameters of the object

7

12 Git Repositories 83 = 0 & aistaging 582 = o
erhre e - Q SR -
v (] warthog [master] - AUsers/aqwACEFiles/wi
> i Brancies (0 warthog [master]
TaTags Unstaged Cha Comm
nges
> (> Rofarances o T erE
» () Remotes Messa
» (& Submodules (0] ;.D"‘T":""‘ 9
& Workng ety - siaurcErle | (TP g
update to
B> moces IMoabCode. . .
Staged Changes (1)
[@/MoabCodel aunor | aqu -

Committer: | aqw «

Commit and Pus!

Fig. 9. A view of NiCE tools for actual Warthog development. NiCE provides code editing
tools, as well as version control with Git.

24

Current Software Coupling Results

The ability to perform adequate software coupling has been demonstrated with Warthog using a simple
debug problem from the SHARP test system. This problem represents an idealized simple hexagonal
assembly (SAHEX) for a sodium cooled fast reactor [15]. Cross section data parameterized by temperature
and density was generated by the SHARP team for this problem using the MC? library [1]. First, to simply
demonstrate that Warthog correctly wraps the functionality in PROTEUS, we ran Warthog with the
SAHEX input deck to compare against an actual PROTEUS execution for that input. We found that
Warthog correctly produced the same power profile as PROTEUS, as shown in the left plot of Figure 10.

Finally, to demonstrate the complete workflow for our direct software coupling, we ran this calculation
as part of a MultiApp execution with BISON. We constructed a BISON input file that attempted to mimic
the SAHEX input model for PROTEUS. This input model was not meant to be physically accurate, as we
just want to demonstrate data transfer. We constructed a BISON mesh corresponding to the fuel pins in the
SAHEX PROTEUS model using Cubit, and simply assigned the MOOSE ThermalUO2 Material to the fuel
block. We added a TransientMultiApp to the BISON input file that executed the sub-app Warthog, and
transfered data to and from BISON and Warthog using provided MOOSE Transfer objects. The results are
shown in Figure 10, where one can clearly see that the correct workflow of data transfer from MOAB to
libMesh through DTK, and a MOOSE Transfer from Warthog to BISON for the final, correct power
distribution on the BISON mesh. This demonstrates successful and direct software coupling between
PROTEUS and BISON.

Future Work and Directions

Warthog has been demonstrated to succesfully enable the software coupling of BISON and PROTEUS.
As of the time of this writing, and moving forward in the near future, the Warthog team will be focusing on
the execution of physically realistic, and experimentally validated, BISON assessment cases. We have
already begun work on executing the BISON-Warthog MultiApp system for the simplified FUMEX-II

VPOWER

2.8356+02
=240
180

120

=60

Fig. 10. A view of the power density result for PROTEUS (left) and its mapped solution to
the BISON fuel pin mesh (right).

25

27_2b case [16]. So far, we have been able to demonstrate data transfer between the applications, but have
not put together a physically realistic input deck for execution.

The primary issue moving forward for executing physically realistic models is the lack of adequate
thermal fuel cross section data for PROTEUS executions. PROTEUS primarily works with fast reactor
fuel, and therefore does not have an extensive library of cross section data for thermal fuel. We have begun
work on generating the necessary cross section data with Ugur Mertyurek and Kang Seog Kim from the
ORNL SCALE team. We have considered solving the FUMEX-II 27_2b case assuming a 40% void
fraction and average core conditions [2]. However, while this problem was designed to facilitate
comparison between codes, it does so by specifying a power profile and was never intended to be simulated
with an actual neutronics simulator. The team is actively reviewing the FUMEX-II problems to identify
one that is a good fit for a multiphysics simulation with neutronics and fuel performance calculations.

There are other issues we would like to investigate going forward. Mapping input decks between
BISON and PROTEUS has proven difficult to do manually. We would like to incorporate some automatic
mapping in the overall Warthog execution that hides this complexity and successfully maps BISON inputs
to the files that PROTEUS expects. Perhaps we could investigate streamlining cross section generation for
PROTEUS as part of the overall Warthog solve. Additionally, with the extensibility of the
MoabCodeExecutioner and IMoabCode interface, we could begin to investigate coupling additional
components of the SHARP framework into Warthog. It would be interesting to experiment with adding a
Nek5000 implementation of IMoabCode, for example, to couple BISON and PROTEUS to a thermal
hydraulics solve.

26

Conclusion

We have demonstrated a viable methodology for the direct software coupling of BISON and PROTEUS.
This methodology could be extended to the coupling of MOOSE applications and other components of the
SHARP framework. In enabling this coupling, we have developed a new MOOSE-based application called
Warthog, which wraps the functionality of a PROTEUS steady-state solve and provides a means of utilizing
PROTEUS in the MOOSE MultiApps and Transfers systems. Crucially, this work has leveraged a wide
array of existing NEAMS technologies, as well as developed new tools for future use. We have leveraged
all that is available in the MOOSE framework and the MOAB bindings in the SHARP/PROTEUS system
to enable this coupling. We have provided a means for MOOSE-SHARP, MOAB-libmesh communication
through developed extensions to DataTransferKit. This work enables future work in NEAMS to seamlessly
communicate solution data between these two disparate mesh formats.

There is still much work to be done in the construction and execution of physically realistic reactor
models. Primarily, work needs to be done in the generation of thermal fuel cross section data for
PROTEUS to be utilized in BISON assessment case executions. Going forward, the Warthog team will
focus on this data generation and utilize the newly developed technologies to study models with
experimental data to validate against.

27

Acknowledgements

The Warthog team would like to acknowledge the MOOSE and BISON development teams at Idaho
National Laboratory, and the PROTEUS development team at Argonne National Laboratory. Their input
and advice greatly advanced this work, and will continue to do so in the future. Additionally, we would like
to acknowledge the funding agency for this work, the U.S. Department of Energy Office of Nuclear
Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program and the Advanced
Modeling and Simulation Office (AMSO) within DOE-NE.

28

REFERENCES

[1] MC2-2: A Code to Calculate Fast Neutron Spectra and Multigroup Cross Sections. Argonna National
Laboratory, ANL-8144.

[2] J.J. Billings, A. McCaskey, U. Mertyurek, K. Kim, and R. Williamson. private email communication,
2015.

[3] Juan Raul Cebral and Rainald Lohner. Conservative load projection and tracking for fluid-structure
problems. AIAA Journal, 35(4):687—692, 04 1997.

[4] C. Farhat, M. Lesoinne, and P. LeTallec. Load and motion transfer algorithms for fluid/structure
interaction problems with non-matching discrete interfaces: Momentum and energy conservation,
optimal discretization and application to aeroelasticity. Computer methods in applied mechanics and
engineering, 157:95-114, 1998.

[5] P.E. Farrell, M.D. Piggott, C.C. Pain, G.J. Gorman, and C.R. Wilson. Conservative interpolation

between unstructured meshes via supermesh construction. Computer methods in applied mechanics
and engineering, 198:2632-2642, 2009.

[6] RM Ferencz. Technical Spotlight: NEAMS Structural Mechanics with Diablo. Technical report,
Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2013.

[7] P Fischer, J Kruse, J Mullen, H Tufo, J Lottes, and S Kerkemeier. Nek5000 - Open Source Spectral
Element CFD Solver. Argonne National Laboratory, Mathematics and Computer Science Division,
Argonne, IL, see https:/lnek5000. mcs. anl. govfindex. php/MainPage, 2008.

[8] Derek Gaston, Chris Newman, Glen Hansen, and Damien Lebrun-Grandié. MOOSE: A Parallel
Computational Framework for Coupled Systems of Nonlinear Equations. Nuclear Engineering and
Design, 239(10):1768-1778, 2009.

[9] Derek R. Gaston, Cody J. Permann, John W. Peterson, Andrew E. Slaughter, David AndrAa, Yagi
Wang, Michael P. Short, Danielle M. Perez, Michael R. Tonks, Javier Ortensi, Ling Zou, and
Richard C. Martineau. Physics-based multiscale coupling for full core nuclear reactor simulation.
Annals of Nuclear Energy, 84:45 — 54, 2015. Multi-Physics Modelling of {LWR} Static and
Transient Behaviour.

[10] Frederick N. Gleicher, Richard L. Williamson, Javier Ortensi, Yaqi Wang, Benjamin W. Spencer,
Stephen R. Novascone, Jason D. Hales, and Richard C. Martineau. The coupling of the neutron
transport application RATTLESNAKE to the nuclear fuels performance application BISON under the
MOOSE framework. Oct 2014.

[11] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu,
Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps,
Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams,
and Kendall S. Stanley. An overview of the Trilinos project. ACM Trans. Math. Softw.,
31(3):397-423, September 2005.

[12] MOOSE Development Team: http://mooseframework.org/wiki/MooseSystems/MultiApps/. Moose
multiapp architecture, 2015.

29

[13] MOOSE Development Team: http://mooseframework.org/wiki/MooseTraining/Overview/. Moose
high-level architecture, 2015.

[14] Xiangmin Jiao and Michael T. Heath. Common-refinement-based data transfer between
non-matching mesh in multiphysics simulation. International Journal for Numerical Methods in
Engineering, 61:2402-2427, 10 2004.

[15] Vijay S Mahadevan, Elia Merzari, Timothy Tautges, Rajeev Jain, Aleksandr Obabko, Michael Smith,
and Paul Fischer. High-Resolution Coupled Physics Solvers for Analysing Fine-Scale Nuclear
Reactor Design Problems. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 372(2021):20130381, 2014.

[16] D. Perez, R. Williamson, S. Novascone, G. Pastore, J. Hales, and B. Spencer. Assessment of BISON:
A Nuclear Fuel Performance Analysis Code. Tech. Rep. INL/MIS-13-30314, Idaho National
Laboratory, 2013.

[17] E.R. Shemon, M. A. Smith, C. H. Lee, and A. (Nuclear Engineering Division) Marin-Lafleche.
PROTEUS-SN User Manual. Aug 2014.

[18] SR Slattery, PPH Wilson, and RP Pawlowski. The Data Transfer Kit: A geometric rendezvous-based
tool for multiphysics data transfer. In International Conference on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering (M&C 2013), pages 5-9, 2013.

[19] T.J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. MOAB: a mesh-oriented database.
SAND2004-1592, Sandia National Laboratories, April 2004. Report.

[20] MOOSE Development Team. Fork the Stork - http://mooseframework.org/create-an-app/, 2015.

[21] R.L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C.J. Permann, D. Andrs, and
R.C. Martineau. Multidimensional multiphysics simulation of nuclear fuel behavior. J. Nuclear
Materials, 423(1-3):149-163, 2012.

30

	LIST OF FIGURES
	EXECUTIVE SUMMARY
	INTRODUCTION
	NEAMS FRAMEWORK TECHNOLOGIES
	SHARP
	MOOSE

	WARTHOG
	BISON
	PROTEUS Core Neutronics
	Warthog Architecture
	DataTransferKit
	DTK Data Transfer Concepts
	libMesh Adapters
	MOAB Adapters
	L2 Projection
	DTK Integration and Verification Tests

	LibmeshMoabTransfer Black Box Solution Transfer
	Warthog-BISON Coupling Mechanism
	Integration with the NEAMS Integrated Computational Environment
	Current Software Coupling Results
	Future Work and Directions

	Conclusion

	Acknowledgements
	REFERENCES

