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ABSTRACT 

Decision-making is the process of identifying and choosing alternatives where each alternative offers a 
different approach or path to move from a given state or condition to a desired state or condition. The 
generation of consistent decisions requires that a structured, coherent process be defined, immediately 
leading to a decision-making framework. The overall objective of the generalized framework is for it to 
be adopted into an autonomous decision-making framework and tailored to specific requirements for 
various applications. In this context, automation is the use of computing resources to make decisions and 
implement a structured decision-making process with limited or no human intervention. The overriding 
goal of automation is to replace or supplement human decision makers with reconfigurable decision-
making modules that can perform a given set of tasks reliably. 

Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the 
status of the plant/systems and component health, and a deterministic assessment between plant operating 
parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety 
systems. 

The implementation of the probabilistic portion of the decision-making engine of the proposed 
supervisory control system was detailed in previous milestone reports. Once the control options are 
identified and ranked based on the likelihood of success, the supervisory control system transmits the 
options to the deterministic portion of the platform. 

The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet 
temperature) and calculates where it is within the challenge state, its trajectory, and margin within the 
controllable domain using utility functions to evaluate current and projected plant state space for different 
control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, 
etc. 

The integration of deterministic calculations using multi-physics analyses (i.e., neutronics, thermal, and 
thermal-hydraulics) and probabilistic safety calculations allows for the examination and quantification of 
margin recovery strategies. This also provides validation of the control options identified from the 
probabilistic assessment. Thus, the thermal-hydraulics analyses are used to validate the control options 
identified from the probabilistic assessment. 

Future work includes evaluating other possible metrics and computational efficiencies. 
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EXECUTIVE SUMMARY 

This technical report was generated as a product of the Supervisory Control of Multi-Modular Advanced 
Reactor Plants project within the Instrumentation, Controls and Human-Machine Interface (ICHMI) 
technical area under the Advanced Reactor Technologies (ART) Research and Development program of 
the US Department of Energy. 

The supervisory control system (SCS) includes a probabilistic portion and a deterministic portion to 
identify control options, select an option, and initiate a command. The project members at the Oak Ridge 
National Laboratory selected probabilistic risk assessment (PRA) as the analytical method and tool for 
accomplishing the probabilistic aspect of the decision-making process. The technical details of the 
probabilistic portion of the decision-making engine are documented in the previous milestone report. 

This report documents the technical basis of the deterministic decision-making function for the SCS. 
Deterministic behavior means that the systems operate in a predictable and repeatable manner. That is, 
deterministic systems will produce the same outputs for the same set of input signals. Decision-making is 
the process of identifying and choosing alternatives based on an agreed-upon set of metrics and 
preferences established by the decision maker. Indirectly implied in decision-making is that there are 
alternative options to be considered. Each option offers a different approach or trajectory to move from a 
given state or condition to a desired state or condition. 

This report presents a framework by which deterministic considerations can be taken into account for 
decision-making. More specifically, this report adapts classic utility theory as its mathematical method to 
realize decision-making for accomplishing the deterministic portion of supervisory control. Utility theory 
offers a unified conceptual framework for uniformly quantifying the consequences of decision 
alternatives, defining their weights, and dealing with associated uncertainties. In the context of 
supervisory control, utility is simply defined as a measure of preferences over a given set of actions. The 
consequence of a decision is the result that follows from that decision. 

The notion that mathematical analysis should guide rational choice under uncertainty was formulated as 
early as the seventeenth century. Since its introduction and early use in economics, utility theory has been 
adapted for multiple uses in portfolio management, business, government, and the military. Practical 
improvements include inclusion of the capability to compare multiple attributes as would be encountered 
in complex organizational decisions. Only recently has utility theory been considered for use in decision-
making for real-time systems such as automated automobile driving. Others are integrating utility 
functions with optimal control so that the cost function is more reflective of risk than it would otherwise 
have been. A possible application of a quadratic cost function is electric utility load-generation control. 

This report describes several new developments in the application of utility functions to real-time 
decision-making. Several accomplishments of this work contribute distinctive properties to supervisory 
decision-making: 

1. Special utility functions: Special utility functions are defined that express utility values for set-
point type process variables. Specifically, a Gaussian distribution is adapted as the mapping 
mechanism of the utility function. A bundle of utility functions may incorporate both Gaussian 
(optimizable) and monotonic functions to provide a uniform means of comparing preferences. 

2. Wide range utility functions: Utility functions are defined in this work that range from negative 
infinity to positive unity in contrast with the zero to unity range of previously defined utility 
functions. With this arrangement, all attributes are uniform for positive contributions, but the 
bundle sum can be penalized for a particular variable in a seriously degraded region. 
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3. Diversely integrated: Integration of diverse attributes into a uniformly calculated (single) utility 
value permits robust decision-making across a selection of alternative recovery solutions. The 
diversity of attributes includes process variables that capture system dynamics, economics, 
maintenance, and reliability/risk parameters from PRA output. 

4. Integration of rapid simulation: Both static and dynamic variable simulations are used to estimate 
minimum and maximum expected process variables from alternative solution plans. These 
min/max values are used to generate the utility values for conducting a weighted comparison. 

The developments discussed in this report combine PRA-based decision-making with deterministic 
decision-making in a formal manner to achieve a risk-informed comparative decision-making process that 
has not been presented in the literature. Based on the results described in this report, the next steps are to 
execute a series of examples that involve simple piping and fluid transport components. The examples 
demonstrate the combined PRA and deterministic decision-making capabilities over a range of system 
and component failures. 
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1. INTRODUCTION 

This document is an interim report providing an update on the progress being made on the autonomous 
decision-making component of the proposed supervisory control system (SCS). This system is the key 
capability for autonomous control. This report documents the deterministic portion of the autonomous 
risk-informed decision-making process within the SCS, which combines probabilistic assessments with 
deterministic rules and insights. 

Automation refers to the use of computing resources to perform repeatable tasks based on a predetermined 
set of rules and actions. 

Autonomy, on the other hand, refers to the use of computing resources to make decisions and implement a 
structured decision-making process with limited or no human intervention. The overriding goal of 
autonomy is to replace or supplement human decision makers with reconfigurable decision-making 
modules that can perform a given set of tasks reliably. 

Decision-making is the process of identifying and choosing alternatives based on an agreed-upon set of 
metrics and preferences established by the decision maker. Indirectly implied in decision-making is that 
there are alternative options to be considered. Each option offers a different approach or trajectory to 
move from a given state or condition to a desired state or condition. 

The generation of consistent decisions requires that a structured, coherent process be defined, which 
immediately leads to a decision-making framework. The generalized framework for autonomous 
decision-making can be adopted and tailored to specific requirements for various applications. 

This section provides an outline of the generalized decision-making framework that was presented and 
described in greater detail in previous reports [1-1, 1-2]. It also summarizes the key concepts of a risk-
informed decision-making process for an SCS. 

1.1 GENERALIZED FRAMEWORK FOR AUTONOMOUS DECISION-MAKING 

Ultimately, the objective of a decision-making process is to consider uncertainties and evaluate options 
for the current component and system status. Hence it is quite possible that evaluation and assessment 
steps will require consideration of multiple attributes of a system, components, or elements of a system, 
or their future states. This is especially true for large-scale, complex systems such as a nuclear power 
plant. 

While there are minor differences in the literature about the necessary and sufficient steps for decision-
making, the decision-making process for the SCS is based on three fundamental elements: 

1. identification: define decision alternatives, 

2. evaluation: assess alternative decisions, 

3. resolution: generate a single solution or a single trajectory, and collect the steps needed to finalize 
an action, and 

4. action: execute control actions. 

These elements, as illustrated in Fig. 1, define the generalized autonomous decision-making framework. 
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Fig. 1. Elements considered within the generalized framework for autonomous decision-making. 

The steps shown in Fig. 1 form a generalized framework within which various decision-making methods 
can be implemented. This framework can be applied to a variety of engineering problems. 

1.2 AUTONOMOUS DECISION-MAKING FOR SUPERVISORY CONTROL 

The generalized framework provides a conceptual structure that only includes abstract rules, elements, 
and the relationships between them. Adoption of this framework for application to an SCS requires that a 
specific implementation be created to define how the individual objectives will be accomplished. This 
section provides a functional definition and some generic specifications for the proposed autonomous 
decision-making framework for an SCS. Details of this implementation and the functionality of the 
architecture were previously reported [1-1]. 

1.2.1 High-Level Description of the SCS 

The SCS shall comply with the following high-level requirements: 

1. The SCS shall be implemented as a non-safety-related system. 

2. The SCS shall follow all the applicable rules and regulations regarding the separation and 
isolation of safety- and non-safety-related systems. 

3. The SCS shall not perform any safety-related function. 

4. The SCS shall not interfere with the functionality and operation of any safety system. 

5. The SCS shall not override operator directives. 

These requirements are enforced to define the domain of operation of the SCS. Implementing the SCS as 
a non-safety–related system avoids placing an undue regulatory burden on the vendor and the owner—
especially considering the complexity of the system. 

The fundamental assumption that goes into the design of the SCS is that, should the SCS fail to act during 
a transient, then the safety system will independently initiate and bring the plant to a nominal or 
acceptable shutdown state. 
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1.2.2 Definition of Terms 

The following terms are used throughout the report. A brief glossary is provided below to avoid 
misinterpretation and to maintain consistency throughout this report. 

Risk 
In safety analysis, risk is defined as the product of frequency and consequence. However, in the context of 
the proposed supervisory control architecture and the autonomous decision-making framework, risk is 
defined as the probability of challenging a safety system, or the probability of safety actuation. The goal 
of the SCS is to avoid challenging a safety system. 

Controllable Domain 
An SCS is required to support human decision-making under normal operating conditions and to make 
autonomous decisions. All of the possible states that the plant can assume constitute the controllable 
domain. The boundary of the controllable domain is primarily defined by the trip setpoints of the reactor 
protection system (RPS) or the engineered safeguards features actuation system (ESFAS). This domain is 
illustrated in light blue and orange in Fig. 2. 

 
Fig. 2. A conceptual state space formed by arbitrary state variables x1 and x2. 

 

Challenge Surface 
The surface of the controllable domain is called the challenge surface, beyond which a safety system 
actuation is warranted by the design of the plant. The challenge surface is illustrated with the red line in 
Fig. 2. 

Safety System Domain 
This is the domain outside the challenge surface of the plant state space. The safety system domain is 
illustrated in fading purple in Fig. 2. Because this region represents the safety functions (e.g., protection 
system functions), it is outside the scope and capabilities of the control system. 

 

Safety System Domain 
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Probability of Departure from Controllable Domain 
This metric is an indication of proximity of the plant state to the challenge surface. While there might be 
numerous ways to define this probability metric, it can be simply defined as a distance function between 
the current plant state and the closest point on the challenge surface. The closer the plant gets to the 
surface, the higher the probability of the protection system actuation. Higher order moments of the states 
can also be considered, such as the rate of approach. 

1.3 SUPERVISORY CONTROL SYSTEM ARCHITECTURE 

The proposed architecture for autonomous decision-making implements the general framework using two 
methods. In the first method, the probabilistic method is implemented using probabilistic risk assessment 
(PRA) techniques to identify decision options. In the second method, the deterministic portion is 
implemented using utility theory to evaluate the alternatives identified by the probabilistic portion and to 
generate a single solution, or the resolution of the autonomous decision-making process. These methods 
are shown in Fig. 3. The cost function for finding the optimal or desired decision is determined by the 
evaluation metric. Additional constraints, such as regulatory rules and operating guidelines, can be 
enforced in the deterministic evaluation phase. 

 
Fig. 3. The proposed framework for autonomous decision-making adopted for the supervisory control system. 

Fig. 4 shows the functional architecture of the SCS and illustrates how the decision-making block in 
Fig. 3 relates to the overall architecture. 
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1.4 RISK-INFORMED DECISION-MAKING FRAMEWORK 

Control systems should be “capable of maintaining system variables within prescribed operating ranges” 
[1-3]. More specifically, plant control systems in general and reactor control systems in particular in 
nuclear power plants are designed to maintain system variables (such as reactor power, coolant flow rate, 
power-to-flow ratio, reactor outlet temperature, coolant level, and turbine status) within prescribed 
operating ranges. Deviating outside these operating ranges (e.g., exceeding the setpoint of a control 
system variable) results in a plant transient and a challenge to plant mitigating systems, including a 
potential challenge to plant safety systems.  

The use of a risk-informed decision-making framework for the control system (i.e., one that couples a 
probabilistic assessment with a deterministic assessment) (1) allows consideration of a broader set of 
potential challenges, (2) provides a logical means for prioritizing these challenges, (3) allows 
consideration of a broader set of resources to prevent or mitigate these challenges, (4) explicitly identifies 
and quantifies sources of uncertainty in the analysis, and (5) leads to better decision-making by providing 
a means to test the sensitivity of the results against key assumptions [1-4]. 

1.4.1 Probabilistic Interface to Risk-Informed Decision-Making 

The purpose of this document is to define a framework for conducting the deterministic multi-attribute 
decision-making portion of the risk-informed framework. The probabilistic assessment portion of the risk-
informed decision-making framework provides the control options for successfully avoiding trip setpoints 
given the status of the plant/systems and the likelihood of success for each of those options. The 
probabilistic portion of the decision-making engine was detailed in a previous milestone report [1-2]. 

Based on plant operating status, component health, and equipment failures, the decision-making 
capabilities for the supervisory control system uses the probabilistic analyses to identify a set of control 
options. These options, if taken, should prevent the actuation of the protection system. The possibility for 
one or more outcomes distinguishes probabilistically informed decision-making implemented in real time 
from more traditional decision-making. 

The probabilistic portion of the decision-making algorithm ranks the likelihood of success of each 
decision path based on the current system/plant status and component health. Based on the likelihood of 
success metric under these conditions, the decision-making algorithm automatically chooses the top 
candidate control options as decision alternatives for the execution of the corresponding set of corrective 
actions. Selecting any of the control options would allow operations to continue by maintaining system 
status within the acceptable region. 

A probabilistically based decision-making algorithm would simply select the option with the greatest 
likelihood of success; however, this may not be the best choice based on other criteria. For example, the 
most likely option for avoiding a trip setpoint probabilistically could be to manually shut down the 
reactor, but deterministic factors such as reduced generation of heat (i.e., power reduction) may re-rank 
this option to the least favorable of the choices. 

Once the control options are identified and ranked, the supervisory control system transmits the options to 
the deterministic portion of the platform. 

1.4.2 Deterministic Interface to Risk-Informed Decision-Making 

The probabilistic portion of the risk-informed decision-making framework identifies those actions that 
would maintain system status within the acceptable region if taken. However, knowing the likelihood of 
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avoiding a trip setpoint does not inform the system of where within the challenge surface the system is 
operating, how close it is operating to the degraded region, and whether the operating trajectory is toward 
the safety system domain. The deterministic analyses of those control options selected probabilistically 
provides the necessary information to optimize the selection of the control action to be taken. The metric 
for the deterministic analysis is based on maintaining and/or controlling the heat balance from the reactor 
core to the ultimate heat sink and must also reflect the success of maintaining this heat balance. Thus, the 
deterministic assessment between plant operating parameters and reactor protection parameters is used to 
identify the margin between operating conditions and trip setpoints. 

Operation anywhere within the homeostatic region is considered normal. The plant control systems 
employ appropriate feedback control strategies, provided that the system parameters are maintained 
within the homeostatic region. Should operation be driven into the degraded region, the control objectives 
become (1) to maintain continuous and uninterrupted delivery of principal products of the system, if 
possible; (2) to prevent or minimize equipment damage; and (3) to preclude initiation of the plant safety 
and protection systems. Transitioning out of the degraded region back into the homeostatic region may 
require faster response control options to maintain system variables within the challenge surface. If a 
system variable transitions into the safety space region, it enters the domain of the protection system, 
which is independent of and isolated from the control system. 

Historically, safety margins have been set conservatively (for example, based on design and operational 
limits) to compensate for uncertainties in measured values and system responses. Because safety is 
critical to the successful operation of the nuclear power plant fleet, motivations are strong to better 
characterize and manage safety and its associated margins. Among these motivations is having improved 
knowledge of both the qualitative and quantitative aspects of safety margins to provide for enhancements 
and improvement in plant performance. Magnitude and speed can be important if the parameter of interest 
is close to, or moving rapidly toward, a reactor trip setpoint. The integration of deterministic calculations 
using multi-physics analyses (i.e., neutronics, thermal, and thermal-hydraulics) and probabilistic safety 
calculations allows for the examination and quantification of margin recovery strategies. This also 
provides confirmation of the control options identified from the probabilistic assessment. Thus, the 
thermal-hydraulics analyses are used to assess the control options identified from the probabilistic 
assessment by providing the following information: 

1. How far is (are) the variable(s) of interest from the preferred transition corridor (magnitude of 
correction)? 

2. Is the variable within the allowable variance along the Transition Pathway (tolerance)? 

3. What is the path within the homeostatic or degraded region (direction)? 

4. How fast a correction must be made (speed of correction)? 

Most decisions require more information than risk alone. The use of a risk-informed approach in a control 
system allows probabilistic insights to be coupled with deterministic factors of concern, such as 
magnitude of deviation from a nominal setpoint and speed of parameter adjustment needed. Each control 
option has a different probability of success and can be linked to magnitude of deviation, speed of 
adjustment, and other metrics of interest. Chapter 2 introduces the theory, and provides the technical 
bases for calculating the metrics for the deterministic for deterministic assessments. Chapter 3 describes 
how the methodology is applied within the SCS, and defines the interfaces and plant variables used to 
address the questions above. 
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2. ELEMENTS OF DETERMINISTIC DECISION-MAKING 

An overview of the decision framework is provided to allow for a clear presentation of the mathematical 
and statistical concepts, notation and structure involved in decision modeling. The necessary data 
interfaces to be able to process the output generated by the PRA calculation for a decision node is 
provided in Chapter 3. 

2.1 UTILITY THEORY 

The notion that mathematical analysis should guide rational choice under uncertainty was formulated as 
early as the seventeenth century. The concept of maximizing expected monetary return dates to the 
eighteenth century, when the principle of utility was conceived by Jeremy Bentham (1748–1832), 
Thomas Bayes (1702–1761), and Daniel Bernoulli (1700–1782) as a means of maximizing the greatest 
happiness or pleasure when making decisions from among alternative choices by applying rational 
analysis [2-1]. The bases of their early work can be summed up by the standard model of human 
motivation: given a person has a desire !, and if they believe that by performing action !, they can 
achieve !, then they will choose ! [2-2]. The early work, which merged logic and moral principles, was 
expanded over the centuries by numerous philosophers and intellectuals to encompass economics, 
statistics, and psychology. 

Bernoulli offered the approach that any gain brings a utility inversely proportional to the total wealth of 
an individual [2-3]. Mathematically, the relationship can be shown as Eq. (2-1a), in which a utility u with 
an increase in wealth !", relative to the current wealth !, is related to a positive constant !. For a small !, 
the expression can be written as the differential Eq. (2-1b). Integrating the differential equation yields 
Eq. (2-1c), where !! is the constant of integration—interpreted as the wealth necessary to obtain zero 
utility. 

 ! ! + !" − ! ! = ! !"!  (2-1a) 

 !" ! = ! !"!  (2-1b) 

 ! ! = ! log ! − log !!  (2-1c) 

 

From this derivation, Daniel Bernoulli determined that the utility of wealth is not linear but logarithmic. 
Thus, utility theory became analytical. It is interesting to note that Bernoulli’s formulation has the 
characteristic of being unbounded. Treatment of bounded utility does not appear until the twentieth 
century with the work of Savage [2-4]. 

Further evolution of utility theory involves the concept of marginal utility, which emerged not long after 
Bentham’s work. Marginal utility refers to the gain resulting from an increase in the consumption of a 
good or a service or, conversely, the loss resulting from a decrease in consumption. The marginal utility 
of a good is derived from its most important use to a person. The work of Gregory King (1648–1712), 
refined by the work of Charles Davenant (1656–1714), led to the King-Davenant law of demand that 
describes the inverse relationship between price and quantity [2-5]. Jules Dupuit, chief engineer of Paris, 
used water consumption in a city as an example of marginal utility. Dupuit, the first economist to present 
a cogent discussion of marginal utility, argued that if it were difficult to obtain water and consumers had 
to pay large use fees and they purchased it, it had to provide the household with at least that much utility. 
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However, he further argued that as more water was introduced to the city, the point would come when 
households would not require more. The relationship is simply illustrated in Fig. 5. 

Utility theory and numerous associated corollaries were refined in the nineteenth and twentieth centuries, 
resulting in progressively more organized methods to rank alternative decisions in their relative order of 
consumer preference. (Note that it is impossible to reliably measure the absolute economic utility derived 
from a good or service.) Since a consumer’s choice is constrained by price as well as disposable income, 
the rational consumer, it is assumed, will not spend money for a unit of goods or services unless the 
marginal utility is perceived as at least equal to or greater than that of a unit of another good or service. 
Therefore, the price of a good or service may be associated with its marginal utility; the consumer will 
rank personal preferences accordingly. This relationship is essentially a restatement of the standard model 
of human motivation previously described above. 

 

 

Fig. 5. Dupuit’s argument for the law of diminishing marginal utility. 

2.1.1 Modern Utility Theory 

Modern utility theory for decision-making originated in 1944 with von Neumann and Morgenstern, who 
postulated a set of axioms using objective probabilities [2-6]. They demonstrated that a utility value could 
be assigned to each possible decision outcome in a manner that allows the decision-maker to always 
select the outcome with the highest expected utility. This result, denoted the expected utility hypothesis, 
lends true credibility to decision outcomes derived using utility theory. Savage provided a major 
contribution in 1954 when he presented the first axioms concerning subjective expected utility, which 
incorporates subjective probability estimates made by the decision maker. Numerous other researchers 
have investigated a variety of decision-making characteristics beginning mid-twentieth century [2-7–2-
15]. These investigations have provided a basis for developing additive and multiplicative multi-linear 
utility functions. One important finding is that the form of the utility function applicable in a given 
decision-making circumstance depends on the independence conditions that exist among the attributes. 
Another discovery is that consumer attitude towards risk is reflected in the shape of the utility. With a 
Bernoulli utility function representation of risk preferences, an individual is risk averse if and only if the 
inequality of Eq. (2-2) is true. 
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 ! ! !!" !
!!

!!
≤ !! !!!" !

!!

!!
!for$all!! ∙  (2-2) 

where !(!) is the utility function, and !(!) is the distribution function for outcome variable !. The 
effect, called Jensen’s inequality function, is shown in Fig. 6 [2-16]. 

 

Fig. 6. Three different expected utility maximizers reflect different risk preferences. 

Utility theory as applied in the eighteenth and nineteenth centuries dealt with one or two variables and 
hence one or two utility attributes. Humans possess a limited capacity to perform complex information 
processing in terms of quantifiable characteristics they can process. The assignment of utility to the 
attributes also tended to be strongly subject to user interpretation. The desire to expand utility theory and 
decision-making to complex decisions for large-scale organization systems involving purchases, for 
example, led to multi-attribute utility theory (MAUT). MAUT is commonly applied to those decision-
making problems in which the possible decision consequences or alternatives are characterized by many 
attributes. 

2.1.2 Kepner-Tregoe 

The Kepner-Tregoe (KT) model was developed by Charles Kepner and Benjamin Tregoe in the mid-
twentieth century for the purpose of systematically evaluating a quantity of qualitative issues that have 
significant trade-offs between them. The KT model was developed as a result of observing methods used 
successfully by military officers to determine the best course of action among multiple alternatives. The 
KT method is very similar to utility theory and MAUT in particular and can be adapted to evaluation of 
quantitative issues. The steps in KT methodology are as follows: 

1. Clearly define the problem at a high level. 

2. Determine strategic requirements (musts), operational objectives (wants), and constraints (limits). 

3. Rank objectives and assign relative weights. 

4. Generate alternatives. 

5. Assign a relative score for each alternative on an object-by-objective basis. 

6. Calculate the weighted score for each alternative and identify the top two or three alternatives. 

Wealth

Risk Loving

Risk Averse
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7. List adverse consequences for each top alternative, and evaluate the probability and severity. 

8. Make a final, single choice between the top alternatives. 

 
Although KT literature makes no reference to utility theory, it is clear that this methodology is a practical 
but simplified implementation. The KT method has been taught for several decades as a process to help 
business organizations make critical (usually high-cost) decisions. 

Risk is handled only as an input to the KT decision process when identifying alternatives; however, the 
weighting process assumes linear utility functions, which have no predilection for risk (the linear case of 
Fig. 2). In fact, the generation of a utility function is not part of the KT process; hence the implied utility 
function simply becomes a linear multiplier. 

2.1.3 Multi-Attribute Utility Theory 

Multi-attribute utility theory is a quantitative comparison method used to evaluate dissimilar measures of 
costs, risks, and benefits. The underpinning of MAUT is the direct use of utility functions that transform 
diverse criteria to one common, dimensionless scale (0 to 1) known as a multi-attribute utility. An 
alternative’s quantitative data (values) can be converted to a utility score through utility functions that 
ranges between zero (unacceptable) and unity (excellent). Each criterion is weighted according to 
importance. The procedure to identify the preferred alternative requires multiplying each alternative’s 
utility score results across all assessed criteria, then summing these products. The preferred alternative 
will have the highest summation score. 

Utility functions (and MAUT) are used when quantitative information is known about each alternative—a 
distinction over KT. Better estimates and comparison of the alternative performance are possible with 
MAUT than with KT because of the utility functions. Utility functions (for every decision criterion) are 
created on the basis of the data for each criterion. The utility functions transform an alternative’s raw 
score [which may be in engineering dimensions, discrete state information (e.g., Celsius, kilograms, liters 
per minute, dollars), or a dimensionless utility score ranging between 0 and 1]. Criteria are weighted 
according to importance. Each normalized alternative’s utility score results are multiplied for all of an 
alternative’s criteria to identify the preferred alternative. The preferred alternative will have the highest 
total score. 

The MAUT evaluation method works well for complex decisions with multiple criteria and many 
alternatives. Additional alternatives can be added to a MAUT analysis with minimal effort. Any number 
of alternatives can be scored against them once utility functions have been developed. 

2.2 UTILITY THEORY AS A DECISION-MAKING TOOL 

Utility theory has not yet been integrated into decision-making for real-time automated industrial 
processes. Utility theory has not found significant support among control scientists and engineers, mainly 
because of the following limitations [2-31]: 

1. maximizing behavior cannot be consistently rational in any non-zero-sum multi-agent situation, 

2. the axiom of independence cannot be justified in real life situations, and 

3. value/utility functions are static (i.e., they do not change in time). 



 

13 

Although the first two limitations have restricted the widespread use of utility theory in control 
applications, the third limitation can be remedied by creating a system to upgrade the utility functions 
periodically to remain cognizant with changing plant conditions—something not considered in classical 
utility theory. An application that has recently applied utility theory in a control system is automated 
driving systems (see Section 2.3). The automated driving systems combine rule-based systems with utility 
theory to overcome the limitations cited above. 

In classical utility theory, the utility function can be curved to reflect the risk attitude of the consumer as 
shown in Fig. 6 (i.e., from risk-averse to risk-loving). As the concepts of utility functions are applied in 
real-time automation, the risk preferences take on a new meaning in automation space that is related to the 
significance of anticipating the approach to a threshold. For a control system, the current state can 
transition into an infinite number of states—within the homeostatic, degraded, or safety space regions. 
This would imply an infinite number of end states. Fortunately, the probabilistic assessment limits the 
number of alternatives. The deterministic assessment evaluates the top probabilistic alternatives by 
mapping the state space onto a utility function. How this is done is provided below. 

The current and future states of a plant system are represented by the two-dimensional state-space 
diagram, as illustrated in Fig. 7. Represented in this example are two arbitrary component temperatures. It 
is desired to maneuver the entire system’s operation from the current state to a new target state. The 
maneuver is accomplished by the actions of local controllers that cause the temperatures to move from the 
current value to a new (target) value along a trajectory that lies within a transition corridor shown in the 
figure. The planned trajectory and associated transition corridor avoid passing through unfavorable 
regions (e.g., any protection system challenges). However, in the example, an event occurs partway 
through the maneuver that changes the system’s trajectory. Without intervention, temperatures would be 
forced out of the transition corridor into the degraded region crossing !!" (degraded state) eventually 
causing actuation of the RPS at !!"# !(trip state). 

 
Fig. 7. How temperature movement in state space maps to a utility function. 

A collection of utility functions as shown in the left portion of Fig. 7 can be formulated for the 
temperatures. The utility function ordinate value was chosen to observe the customary range of 0 to 1 
from economics. The abscissa represents the temperature space with minimum- and maximum-
temperature bounds for the challenge surface, !!"# and !!"# for the RPS, and boundary between the 
corridor and degraded region, !!" and !!". A given temperature generates a specific utility value 
depending on which curve is employed. Curves A, B, and C are utility functions !! !  based on Gaussian 
distributions around temperature ! having three different variance parameters, !!, around the expected 
temperature value !!, which is !!"# for the example. 
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 !! ! = !
!! !!!!

!!
!!!!!  

(2-3) 

The three Gaussian curves (curves A, B and C) plus the straight-line curve (S)1 illustrate varying 
tolerance in anticipating the approach to a threshold. Table 1 shows that for normal operating 
temperatures, as defined by the planned trajectory, all curves generate a perfect value (unity). Likewise, at 
the threshold crossing into the RPS challenge surface, all curves generate zero values, meaning that there 
is no utility for that temperature and beyond. The significance of curve shape becomes apparent as the 
temperature departs from normal and heads toward the degraded region: shape determines how important 
the distance from normal becomes. Curve A with a higher variance is tolerant of deviation, whereas 
curve C with a lower variance is not and reduces utility value rapidly away from normal. The straight line 
is considered tolerance neutral. 

Table 1.  Comparison of util ity values having 
different shapes for the same temperature 

Temperature Curve 
Utility Value 

(arbitrary) 

!!"# A, B, C and S 1.00 

!!" A 0.66 

!!" S 0.45 

!!" B 0.25 

!!" C 0.12 

!!"# A, B, C and S 0.00 

 

For this example, the utility values were restricted to the range zero to one as customarily restricted in 
economics applications. However, utility values do not necessarily need to be limited to that range. Later 
in this report examples will be given for utility functions with ranges from −∞ to 1.Utility functions are 
traditionally summed as shown in Eq. (2-4) to obtain bundled utility values: 

 ! = !! !!! !!
!

!!!
 (2-4) 

where !! is the independent utility variable, !! !!  is the utility function that describes the shape of the 
utility variable !!, !! is the weight of the utility function !!, and ! is the total utility value of the bundle. 
Other functions can be applied, including multiplication (product sum) as well as unique functions that 
further define the weight of options. 

Utility functions do not have to be monotonically increasing as typically adopted for game theory and 
economic applications. Furthermore, dynamic utility functions can be constructed such that they respond 
                                                        
1 The straight-line (curve S) is represented by straight lines between !!"# to !!"# and !!"# and !!"#. 
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to varying plant conditions. However, the stability, reliability, and safety of this application have not yet 
been demonstrated. 

2.3 ENGINEERING APPLICATIONS OF UTILITY THEORY 

The preponderance of utility theory applications involves decision-making at an organizational level (e.g., 
governmental economics, business, and military). It has only been recently that the underlying concepts 
of utility theory have been considered for automated system application. 

2.3.1 Advanced Driver Assistance Systems and Highly Automated Driving 

The literature related to automated automobile driving systems suggests two leading decision-making 
processes. Many mathematical driving system models incorporate rule-based decision-making processes 
[2-18–2-20]; in comparison with the more sophisticated models that favor utility functions [2-21–2-24]. 
The principal advantage of utility functions over rule-based approaches is that multiple criteria can be 
weighed and compared quantitatively. Moreover, a utility function can be modified and extended with 
less effort than rule-based structures [2-25]. 

Autonomous driving has become a practical research topic over the last decade [2-26–2-28]. In intelligent 
transportation systems, most of the research work has focused on lane change assistant systems, which are 
inherently more difficult than finding the shortest or fastest path and have significant, immediate safety 
implications [2-29]. Recent work by BMW stands out in the application of utility functions [2-30]. This 
work specifically considers uncertainty by establishing a utility for each lane—each lane is evaluated 
based on driver settings (e.g., desired velocity); host vehicle properties; and environment information 
(e.g., road, lanes, and objects). The lane utility is described by means of a probability distributed 
stochastic variable, !, instead of a regular variable, !, as shown in Eq. (2-5). 

 !!~!! !! ,!!!  (2-5) 

An overall utility, !!, for time step ! is determined by using a weighting factor !!,!. The formulation of 
the utility function is shown in Eq. (2-6). 

 !! = !!,! !!!,!
!

!!!
 (2-6) 

where !!,! is the utility function for the ith attribute at time step !. 

The utility is calculated for state vectors that represent the traffic situation development from the past to 
the future. These vectors contain the position and the velocity of surrounding vehicles. The future state 
has to be predicted; current and past state vectors can be stored and reused for past time steps. The 
method that BMW uses to determine the utility of a lane change is based on combining utility function 
and a rule-based system, as illustrated in Fig. 8. In this example, the utility of each lane (!!) on a 
highway at any discrete time step (!) is calculated using a range of utility attributes as a time series 
within the Discretionary Lane Changes block. The utility of each lane varies as a function of road and 
traffic conditions obtained by sensor readings. The results of the calculation are then reassessed by the 
Mandatory Lane Changes block, which is a rule-based system, to assure that the decisions from the 
discretionary decision-making block would not violate the traffic rules or create safety issues. The 
approach by the BMW team was successfully tested August 2011on an actual public freeway. 
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Fig. 8. BMW utility determination method. 

2.4 ADOPTION OF UTILITY THEORY FOR SUPERVISORY CONTROL DETERMINISTIC 
DECISION-MAKING 

The concept of utility is applied to decision-making for supervisory control applications with the intention 
of establishing a uniform scale for measuring the overall value of a choice. Utility becomes a true measure 
of value to the decision maker. Utility theory as described previously provides a consistent method to 
compare and measure values. Therefore, the choice with the highest utility value will be preferred. There 
will always be an interpretation or characterization of the utility functions made by designers. This 
interpretation will always have an aspect of subjectivity that is no different from human operators 
interpreting operating procedures at a power plant (which also have been devised with some level of 
subjectivity derived from engineering experience). 

The decision-making sequence almost always comes down to the simplified progression depicted in 
Fig. 9. Each box can be expanded into a subsystem that together comprises a supervisory decision-making 
system. Previous work at Oak Ridge National Laboratory developed architectures and decision tools for 
building an automated decision-making supervisory control system [2-32]. In a related project, a decision-
making engine based on PRA was devised [2-33]. The developments described in these reports are 
combined in the architecture shown in Fig. 10. This architectural interconnection becomes the functional 
blocks of a generalized decision-making framework employing probabilistic and deterministic methods to 
arrive at decisions. 

 

 

Fig. 9. Most basic sequence for arriving at a decision and implementing it. 
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Fig. 10. Architectural interconnection of functional blocks of the generalized decision-making framework 
showing probabilistic and deterministic modules. 

 

In Fig. 10, plant sensors are sampled (far left) and feed software analyzes those signals to interpret 
sensory data to determine the following: 

• Proximity to RPS challenge surface 

• Current operating regime/state 

• Exceptional trends over specific time blocks 

 
Additionally, sensor data (as measured and historical) are examined for diagnostic and prognostic 
purposes: 

• Failure diagnosis 

˗ Detect anomalies 

˗ Detect sensor drift  

˗ Detect component degradation 

˗ Identify fault incipience 

˗ Isolate faults 
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• Project remaining useful life estimates 

• Probability of failure vs. time horizon 

• Cycle counting 

 
A probabilistic decision-making engine (the block: Perform PRA Supervisory Decision Action) acts on 
failed component information as well as sensory and state information to identify and rank control 
restoration actions. A list of possible actions is ranked based on the potential for success based on real-
time plant equipment and state information. These actions are turned into a set of alternative solution 
plans by the block Assemble Solutions Plans Using Go/No-Go Rules, which accesses plant operation 
procedures, NRC rules and guidelines, and other databases such as collective experience. 

The block Compare Alternative Solutions Based on Simulation and Utility Functions is in effect the 
primary block for accomplishing the deterministic decision-making function. This block applies the utility 
functions and other weighting schemes to derive a bundled utility value for all the possible solutions from 
the Assemble Solutions Plans block. Basic and simplified simulations for crucial points in each of the 
alternative plans will be accomplished in the Compare Alternative Solutions block. This block receives 
weighting and utility function anticipation values from the block Select Utility Functions and Weights. 
The relative importance of the various utilities can be modified by information provided by diagnostics 
and prognostics, PRA, and the feedback results of the more rigorous simulation and analysis performed in 
the Test Solution and Package block. 

The architecture is divided into two distinct systems characterized by a difference in their depth of 
simulation. System I (left of the red dashed line) continuously monitors plant variables, components, and 
systems. It may regularly generate possible solutions for minor deviations that may not ultimately be 
considered sufficiently important to pass on for actual implementation. There may be some continuous 
learning and calibration so that the ability to generate solutions and achieve near optimal comparative 
ranking is always robust. In contrast, System II, which receives the highest ranked solution from 
System I, tests and validates solution plans by a more detailed simulation exercise. A successful 
simulation proceeds on to become packaged as a complete procedure for implementation by lower levels 
of control in the hierarchy. As mentioned, this block updates several System I parameters including its 
simpler model/simulation parameters. 

Several enhancements have been made to the classic utility theory that make the functionality of the 
Compare Alternative Solutions Based on Simulation and Utility Functions block distinctive and effective 
for the task of supervisory decision-making: 

1. Special utility functions: Special utility functions are defined that express utility values for 
setpoint type process variables. Specifically, a Gaussian distribution is adapted as the 
mapping mechanism of the utility function. A bundle of utility functions may incorporate 
both Gaussian (optimizable) and monotonic functions to provide a uniform means of 
comparing preferences. 

2. Wide range utility functions: Utility functions are defined in this work that range from 
negative infinity to positive unity in contrast with the zero to unity range of previously 
defined utility functions. With this arrangement, all attributes are uniform for positive 
contributions, but the bundle sum can be penalized for a particular variable in a seriously 
degraded region. 
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3. Diversely integrated: Integration of diverse attributes into a uniformly calculated (single) 
utility value permits robust decision-making across a selection of alternative recovery 
solutions. The diversity of attributes includes process variables that capture system dynamics, 
economics, maintenance, and reliability/risk parameters from PRA output.  

4. Integration of rapid simulation: Both static and dynamic variable simulations are used to 
estimate minimum and maximum expected process variables from alternative solution plans. 
These min/max values are used to generate the utility values for conducting a weighted 
comparison. 
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3. APPLICATION OF UTILITY THEORY IN DETERMINISTIC DECISION-MAKING FOR 
SUPERVISORY CONTROL SYSTEM 

The objective of deterministic decision-making is to capture the physical behavior of a system (i.e., the 
time evolution of physical variables for a known disturbance). A system is said to be deterministic if its 
future states does not involve random behavior. Hence, a deterministic model is a representation of a 
system behavior that will produce the same set of outputs for a given set of inputs and an initial state. 
Typically, the deterministic behavior of a system is represented by a set of differential, difference, or 
algebraic equations. 

The deterministic decision-making framework is intended to provide the necessary interfaces for the 
probabilistic portion and to generate a resolution (i.e., a single solution) of the decision-making process. 

3.1 INTERFACES TO PROBABILISTIC DECISION-MAKING 

As documented in the previous milestone report (Ref. 3-1), the outcome of the probabilistic module is to 
generate a set of decision alternatives, each of which may have a varying number of control actions, as 
illustrated in Fig. 11. The probabilistic module provides a probabilistic ranking of these alternatives with 
a metric called likelihood of success, which is retrieved from the Frequency column of a PRA calculation, 
as shown in Fig. 12. 

 

Fig. 11. A decision tree generated as a result of a probabilistic risk assessment. 

The purpose of the decision-making method is to assess each alternative, considering its likelihood of 
success as a whole as well as by taking into account the implications of individual control actions. The 
outcome of this assessment must be a singleton measure that quantifies the favorability of an alternative. 

Based on an extensive literature survey, control theory (classical and contemporary) does not offer 
analytical tools that can be employed to tackle the decision-making problem for the SCS. While Bayesian 
networks and decision graphs offer a wide spectrum of mathematical tools for decision-making [3-2], the 
scale of a complex system—such as a nuclear power plant—and the interdependence of its dynamic 
processes, makes these tools inefficient. However, these tools may prove useful in the future for certain 
subtasks of complex decision-making processes. 
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Conversely, utility theory provides a means by which a series of decision alternatives—called utility 
attributes—can be collectively evaluated, as briefly introduced in Chapter 2 for large-scale complex 
systems. This chapter describes the data interfaces that are needed to be able to process the output 
generated by the PRA calculation for a decision node. 

3.2 SELECTION OF UTILITY VARIABLES 

The objective of employing the utility theory is to create a framework by which the physical behavior of 
the system can be assessed along with the probabilistically ranked decision alternatives. The plant 
dynamics are captured by a set of state variables that are determined to be key actors in control. 

3.2.1 Utility Attributes for Plant State 

The objective of the deterministic decision-making module is to incorporate the physical behavior 
(current and projected) of the system. In order to achieve that capability, the utility variables must be 
selected such that the projected physical behavior of the system can be factored into the decision-making 
with the probabilistically ranked options from the PRA calculation. This is best accomplished by linking 
the desired utility attributes to key process variables (i.e., the ones that provide insight about the status of 
the system). A partial list of system design variables for Advanced Liquid-Metal Reactor (ALMR) Power 
Reactor Innovative Small Module (PRISM) and their nominal steady-state values are shown in Table 2. 

Table 2.  ALMR PRISM heat transport system design values 

Variable Description Nominal 
Value Unit 

!!! Reactor thermal power 425 MWt 

!!!" Reactor outlet temperature 468.3 ºC 

!!!" Reactor inlet temperature 321.1 ºC 

!!!! Reactor temperature difference 147.2 ºC 

!! Primary coolant mass flow rate (total) 2016 kg/s 

!!,!!"#$ Primary pump discharge volumetric flow rate* 0.66 m3/s 

!! Primary pump head 96.3 m 

!!" Intermediate hot leg temperature 426.67 ºC 
!! Intermediate coolant mass flow rate (total) 2268 kg/s 

!!,!!"#$ Intermediate pump discharge volumetric flow rate 2.6 m3/s 

!! Intermediate pump head 95.7 m 

!!" Steam generator thermal power** 432 MWt 

!!",! Steam generator outlet temperature 285 ºC 

!!",!! Steam generator outlet pressure 6.895 MPa 
!!",!!" Steam generator feedwater temperature 216 ºC 

!!" Steam flow rate 233.5 kg/s 
* Volumetric flow rate per pump; total of four pumps. 
** Including pump heating from primary loop, intermediate loop, and steam generator pumps (~ 6.82 MWt). 
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The selection criteria for utility variables must address the safety envelope of the controls domain. As 
illustrated in Fig. 2, the fundamental objective of the SCS is to maintain the plant state within the 
controllable domain, which is delineated by the red line in Fig. 2—also referred to as the challenge 
surface. In its simplest form, the challenge surface is formed by the trip variables that, if exceeded, 
initiate an RPS and/or ESFAS actuation. Reactor safety functions and associated trip variables for ALMR 
PRISM are listed in Table 3. 

Table 3.  Reactor trip variables and associated safety functions for ALMR PRISM 

 Safety Function Monitored Variable Type 

Flux Monitor for insertion of reactivity 
(threshold function of operating power level) Reactor core neutron flux TRIP 

Flow Monitor for loss of flow* 
Primary loop sodium level 

TRIP Primary loop EM pump 
discharge inlet pressure 

Temperature Monitor for loss of heat sink 
Reactor core outlet temperature 

TRIP 
Cold pool temperature 

Level Monitor for loss of sodium Primary loop sodium level TRIP 

Pressure Monitor for electromagnetic (EM) pump 
outlet duct failure 

Primary loop EM pump 
discharge inlet pressure TRIP 

* The loss-of-flow measurement is indirect, using the EM pump discharge pressure as an indicator of the primary loop flow rate. 

During normal operation, the SCS tries to confine the plant state within an even tighter domain, which is 
delineated by the blue line in Fig. 2—also called the homeostatic region. Similarly, to incorporate a 
broader snapshot of the plant state, additional utility attributes must be linked with key process variables. 

ALMR PRISM RPS actuates on the following trip variables [3-3]: 

1. measured reactor core neutron flux (!), 

2. reactor core outlet temperature (!!!"), 

3. cold pool temperature (!!""#,!"#$), 

4. pump discharge inlet pressure (!!"#$), and 

5. primary heat transport system (PHTS) sodium level (!!"#$). 

In addition to the RPS trip variables identified in the ALMR PRISM Preliminary Safety Information 
Document [3-3], the following variables were identified as important decision variables: 

1. reactor core coolant temperature difference (!!!!), 

2. intermediate heat transport system (IHTS) sodium level (!!"#$), 

3. steam generator (SG) drum level (!!"), and 

4. steam generator feedwater (FW) inlet flow rate (!!"). 
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To maintain consistency among the attributes, the utility variables are derived from the process variables 
through a simple linear transformation: 

 !! =
!! − !! !"#

!! !"# − !! !"#
 (3-1) 

where !! is the utility variable for the ith attribute, and !! is the process variable linked to !!; subscripts 
min and max are the minimum and maximum values each process variable is allowed to take (red line in 
Fig. 2). For safety-related variables (i.e., trip variables) these values are obtained by the setpoints of their 
processes from plant technical specifications. Fig. 13 shows an example plot of a how a utility variable 
and a process variable are linked through the linear transformation. 

 
Fig. 13. The linear transformation maps the core differential temperature variable onto its utility variable. 

 

A preliminary list of utility variables selected for the supervisory control system for the ALMR PRISM 
based on the nine variables identified above is shown in Table 4. 
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Table 4.  Process util ity variables for ALMR PRISM supervisory control system 
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132.2 142.2 147.2 152.2 162.2 !! =
!!!! − !!!! !"#

!!!! !"# − !!!! !"#
 

!! 
!!!" 
(ºC) 

453.3 463.3 468.3 473.3 483.3 !! =
!!!" − !!!" !"#

!!!" !"# − !!!" !"#
 

!! 
!!!" 
(ºC) 

306.1 316.1 321.1 326.1 336.1 !! =
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!!!" !"# − !!!"! !"#
 

!! 
!!"# 
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807 817 827 837 847 !! =
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!!"# !"# − !!"# !"#
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(m) 
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!! 
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!! − !! !"#
!! !"# − !! !"#

 

!! 
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(m) 

2 3 5 7 8 !! =
!!" − !!" !"#
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!! 
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!! 
!!" 
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3.2.2 Utility Attributes for Decision Alternatives and Interface to Probabilistic Portion of 
Decision-Making 

This utility attribute is the interface to the probabilistic portion of the decision-making; it integrates the 
probabilistically informed assessments with deterministic calculations. 

As presented in Fig. 11 and Fig. 12, the probabilistic calculation module outputs a number of decision 
alternatives, with each alternative having a quantitative measure, !! ∈ 0, 1 , indicating its likelihood of 
success. Since the attribute is defined within the same input domain, the utility variable is defined as: 

 !!" = !! (3-2) 
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3.3 SELECTION OF UTILITY FUNCTIONS 

The functional characteristics of utility functions are a subject of research. As briefly discussed in 
Chapter 2 and illustrated in Fig. 6, the shape of a utility function has implications for its effect on the 
overall decision-making. While utility functions presented in the literature—mostly in the field of 
economics—are expected to satisfy certain criteria such as monotonicity, non-decreasing, or strictly 
increasing properties, these rules result from the field of the application. 

Engineering applications of utility theory expand the classical definition of utility functions to address 
specifics needs and requirements. For instance, Ref. 2-30 employs Gaussian distributions for representing 
the relationship between a utility attribute and its functional form. 

3.3.1.1 Utility Functions for Plant State 

The proposed selection scheme of utility functions greatly expands its definition: 

1. utility variables, !!, are defined in ℝ ∈ 0, 1 , which maps an engineering variable operating 
range between its minimum and maximum value, 

2. utility functions, !! !! , have a mean value of ! = 0.50 (symmetry rule), 

3. utility functions intersect the abscissa at a lower-bound and an upper-bound value of an 
engineering variable, and 

4. utility functions are positive within the domain delineated by the lower- and upper-bound, and 
negative elsewhere. 

This scheme allows for rewarding a particular utility for being contained within the operations domain 
while penalizing it for being outside. Depending on the other parameters used, the penalty for not being 
contained within the domain can be significant, as will be illustrated shortly. 

The probability density of the Gaussian distribution is represented as 

 ! ! !,! = !!
! !!! !!
!!!  (3-3) 

where ! is the mean and ! is the standard deviation of the distribution. Some examples from the family of 
distributions are shown in Fig. 14. 
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Fig. 14. Family of Gaussian probability density distributions for various standard deviations. 

 

The utility functions are selected from the family of Gaussian distributions through a linear 
transformation (called affine transformation) represented by Eq. (3-4), 

 ! ! !,! = !!!!
!!! !
!!! + ! (3-4) 

where ! and ! are the coefficients of the transformation. This transformation essentially determines the 
point where the curve intersects the abscissa. Fig. 15 shows the Gaussian family of curves after the linear 
transformation. 
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Fig. 15. Utility functions with varying standard deviations after linear transformation. 

 

The intersection points are determined based on the lower- and upper-bound values of a safety variable. 
For instance, the lower- and upper-bound values for !! are determined as follows: 

 !! !" =
!!!! !" − !!!! !"#
!!!! !"# − !!!! !"#

 (3-5a) 

 !! !" =
!!!! !" − !!!! !"#
!!!! !"# − !!!! !"#

 (3-5b) 

Based on the values given in Table 4, these are calculated as 
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!! !" and !! !" values are symmetrical about !! = 0.5, as illustrated with !! !" and !! !". 

The ! and ! values of the linear transformations as shown in Eq. (3-4) for a given utility function 
!! !! !,!  are calculated by solving the following set of equations: 

 
!
! = exp − !! !" − ! !

2!!  (3-6a) 

 ! − ! = 1 (3-6b) 

As an example, solving Eq.’s (3-6a) and (3-6b) for ! = 0.5 and ! = 0.15 yields 

! = 2.171117 

! = 1.171117 

The utility functions for the ALMR PRISM process variables based on the transformation and lower and 
upper limits are shown in Fig. 16. 

 

3.4 COMPOUND UTILITY AND INTERFACE TO PROBABILISTIC PORTION OF 
DECISION-MAKING 

Contributions from individual utilities ! ∈ 1,!  are combined into a compound utility metric, !!, for the 
decision branch ! on Fig. 11 by the following expression: 

 !! = !! !! !!! !!
!

!!!
 (3-7) 

where !! is the likelihood of success associated with the !th branch of the decision tree (Fig. 11), ! is the 
total number of utility variables (e.g., nine utility attributes were identified for ALMR PRISM as shown 
in Table 4), !! is the weight of each utility function, and !! !!  is the utility function for the attribute !!. 
The decision branch with the highest compound utility, !, is selected. 

The compound utility is calculated based on the maximum or minimum values that process variables take, 
which is determined based on a detailed, end-to-end dynamic simulation for the plant. The compound 
utility may also be calculated as a time-varying variable. In that case, the lowest compound utility value 
must be used as the decision variable for each decision branch. 
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4. SUMMARY, CONCLUSIONS AND FUTURE WORK 

This report documents the technical basis and a computational framework to accomplish the deterministic 
decision-making function for the SCS. The framework adopts utility theory as the mathematical method 
to perform the deterministic portion of the overall decision-making function. Utility theory offers a 
unifying measure that takes into account the value and potential consequences of individual control 
actions, which is reflected on the combined utility of a decision alternative. In the context of supervisory 
control and automated decision-making, utility is simply defined as a measure of preferences over a given 
set of actions. 

The proposed deterministic decision-making framework accomplishes the following: 

1. provides interfaces to the probabilistic decision-making function that allows incorporation of 
decision branches, which represent decision alternatives, as well as their likelihood of success; 

2. provides a formal way to incorporate the physical behavior of the system with probabilistic 
assessments; 

3. provides a theoretical foundation to combine the effects of individual physical dynamics, called 
utility attributes in utility theory, to ultimately achieve a metric that gives a singleton measure of 
its effectiveness—called its utility; and 

4. provides a unifying method to incorporate other key considerations, such as plant life-cycle 
economics and predictive maintenance scheduling, into the final decision metric. 

4.1 CONCLUSIONS 

This report introduces several new developments in the application of utility theory to real-time decision-
making: 

1. Special Utility Functions: Special utility functions are defined that express utility values for 
process variables. Specifically, a Gaussian distribution is adopted as the mapping between the 
utility attributes and their utilities for process variables. 

2. Wide-Range Utility Functions: Utility functions are defined in this work that range from negative 
infinity to positive unity for process variables in contrast with the zero-to-unity range of classical 
utility functions. This arrangement allows for rapid penalty of control actions that will take the 
plant to degraded operational domain. 

3. Diversely Integrated: Integration of diverse attributes into a uniformly calculated (single) utility 
value permits robust decision-making across a selection of alternative recovery solutions. The 
diversity of attributes includes process variables that capture system dynamics, plant life-cycle 
economics, maintenance scheduling, and likelihood of success value from the probabilistic 
decision-making module. 

4. Integration of Rapid Simulation: Faster-than-real time simulations are used to determine the 
effects of individual control actions for each decision branch. The violations of trip setpoints are 
noted, and those branches are automatically eliminated from the decision process. Utility 
calculations are performed based on the projected worst-case values of the tracked process 
variables following a disturbance until a steady state is reached. 
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The contributions in this report provide a formal way to combine probabilistic decision functionality with 
deterministic evaluations to achieve a risk-informed performance-based comparative decision-making 
process. This is a novel contribution that currently is not reported in the literature for an engineering 
application. 

4.2 FUTURE WORK 

The present work documents the progress made on incorporating a deterministic decision-making 
approach into the overall decision-making function. The ongoing work captures this approach in the 
simulation environment that was presented in previous milestone reports. 

The simulation environment under development for demonstrating the supervisory control decision-
making functionality makes use of a PRA simulation tool and a system-level dynamic simulation tool. 
These two diverse simulation approaches are coupled through a complex data-exchange scheme. 
Supervisory control capability leverages this capability and adds functionalities to perform the decision-
making calculations. 

4.2.1 Identification of Utility Function Weights 

There is a large volume of publication in the scientific literature that addresses the problem of identifying 
the weights of individual utility functions. However, a great majority of these publications addresses the 
issue of maximizing the marginal utility or the expected utility of an economic or financial problem. It 
was observed that these solutions may not be directly applicable to the supervisory control decision-
making problem. Currently, the weights are identical. 

One potential solution being considered is to bring in an existing operating procedure for a given set of 
transients—similar to training an expert system. The designer would then set up the utility quadrature, run 
the simulations, and calculate utilities by performing a parametric scan over all attribute weights. Only 
those weights that lead to desired (or required) decisions would be selected; others that did not satisfy the 
condition would be eliminated from the parametric search. 

This research activity is ongoing. 

4.2.2 Incorporation of Power Runback Options 

Power runback is a key functionality for SCS. While the research is still ongoing, it is considered that the 
most effective way to incorporate that functionality will be through multiple utility calculations 
performed at different reactor power levels such as 100%, 90%, 80%, etc. It is expected that the 
compound utility for the process variables will be more favorable as the power level is reduced—
provided that the lower-level loop control functions are designed to maintain reactor operations at lower 
power levels than the nominal steady state power. The supervisory control would most likely accomplish 
this by changing the power-level setpoint of the control system that regulates the control-rod drive 
mechanisms, as would an operator. The highest power level that yields an acceptable level of utility 
would be selected.  

This is an ongoing research activity. 
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4.2.3 Incorporation of System Diagnostic and Prognostic Information 

An ongoing effort led by Pacific Northwest National Laboratory (PNNL) under the ART program within 
the ICHMI technical area is working on developing a methodology for enhanced risk monitors that 
integrate real-time information about equipment condition and probability of failure into risk monitors. 
The idea is to provide an instantaneous assessment of risk at a component level as plant equipment is used 
and ages. This methodology incorporates the sources of uncertainty into the enhanced risk monitors 
framework and addresses the question of how uncertainties propagate through the calculations. An 
uncertainty bound is estimated for predicted risk metrics [4-1]. 

While the content of the data that will be provided by the enhanced risk monitors module is not clear, 
based on the earlier interactions with the PNNL team, it is understood that the output of the prognostic 
calculation will include a multitude of projections, which would indicate likelihood of failures at different 
time horizons and associated confidence levels. 

This area will be further investigated internally as well as with the research team at PNNL. 
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