
ORNL/TM-2015/210

Review of Enabling Technologies to Facilitate
Secure Compute Customization

Approved for public release; distribution is unlimited.

Ferrol Aderholdt
Blake Caldwell
Susan Hicks
Scott Koch
Thomas Naughton
Daniel Pelfrey
James Pogge
Stephen L. Scott
Galen Shipman
Lawrence Sorrillo

December 2014

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Website: http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Govern-
ment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2015/210

Computing & Computational Sciences Directorate

DoD-HPC Program

Review of Enabling Technologies to Facilitate
Secure Compute Customization

Ferrol Aderholdt2, Blake Caldwell1, Susan Hicks1, Scott Koch1,
Thomas Naughton1, Daniel Pelfrey1, James Pogge2,

Stephen L. Scott1,2, Galen Shipman2 and Lawrence Sorrillo1

1 Oak Ridge National Laboratory
Oak Ridge, TN 37831

2 Tennessee Technological University
Cookeville, TN, 38501

Date Published: December 2014

Prepared by
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6285

managed by
UT-Battelle, LLC

for the
US DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

CONTENTS

List of Figures . v
List of Tables . vii

Executive Summary 1

1 Introduction 3
1.1 Project Scope . 3

1.1.1 Customizable Computing Resources . 3
1.1.2 Threat Model . 4

1.2 Report Outline . 5

2 Background 6
2.1 Terminology . 6
2.2 Security Classifications . 6
2.3 Virtualization Classification . 8

2.3.1 OS Level Virtualization . 8
2.3.2 System-level Virtualization . 8

3 Virtualization 10
3.1 OS level virtualization . 10

3.1.1 Namespaces . 10
3.1.2 Cgroups . 12
3.1.3 Linux-VServer . 13
3.1.4 OpenVZ . 14
3.1.5 LXC . 15
3.1.6 Docker . 15

3.2 System level virtualization . 15
3.2.1 Xen . 15
3.2.2 KVM . 16

3.3 Virtualization and Security Mechanisms . 17
3.3.1 sVirt . 17
3.3.2 SELinux . 17
3.3.3 AppArmor . 18
3.3.4 Capabilities . 18

3.4 Management Platforms . 19
3.4.1 OpenStack . 19
3.4.2 Puppet . 20

iii

3.4.3 LXD . 20

4 Evaluation 21
4.1 User namespaces . 21

4.1.1 Shared-storage use case . 21
4.2 HPCCG . 25

4.2.1 Description . 25
4.2.2 Setup . 25
4.2.3 Discussion & Observations . 27

4.3 iperf: TCP Bandwidth . 32
4.3.1 Description . 32
4.3.2 Setup . 32
4.3.3 Discussion & Observations . 32

5 Vulnerability Assessment 33
5.1 Introduction . 33
5.2 Evaluation . 33

5.2.1 System-level Virtualization . 34
5.2.2 OS level virtualization . 36
5.2.3 The Linux Kernel . 37

5.3 Recommendations . 37

6 Conclusion 38
6.1 Synopsis . 38
6.2 Observations . 39

6.2.1 Vulnerability Assessment . 39
6.2.2 Initial Benchmarks . 39
6.2.3 User namespaces . 39
6.2.4 Security Classifications . 40

6.3 Future Plans . 40
6.4 Acknowledgements . 41

Bibliography 42

Appendices

A Docker 46
A.1 Docker Files . 46

B libvirt 48
B.1 libvirt Files . 48

iv

LIST OF FIGURES

1.1 Illustration of two axes of administrative control . 4

2.1 Overview of various virtualization architectures . 9

3.1 Example of cgroup linking CPUs and memory with subshell 13

4.1 Example output from HPCCG benchmark. 26
4.2 Example loop used to run HPCCG tests . 26
4.3 Example of KVM/libvirt VM startup . 27
4.4 Example of Docker VE startup . 27
4.5 HPCCG (serial) with Native, Docker and KVM . 28
4.6 HPCCG (parallel) with Native, Docker and KVM . 28
4.7 Scale-up test of HPCCG MPI with Native, Docker and KVM 29
4.8 Example iperf server/client . 32

v

LIST OF TABLES

3.1 Available Linux namespaces and required kernel version. 11
3.2 Available cgroup controllers in RHEL7 . 13
3.3 Relationship between security/isolation mechanisms and virtualization solutions 17

4.1 Parameters (numprocs & problem dimensions) for scale-up test of HPCCG MPI 30
4.2 Times for HPCCG (serial) tests . 31
4.3 MFLOPS for HPCCG (serial) tests . 31
4.4 Standard deviation of Times for HPCCG (serial) tests . 31
4.5 Standard deviation of MFLOPS for HPCCG (serial) tests 31
4.6 Network Bandwidth (TCP) with iperf . 32

5.1 Virtualization solutions and their corresponding attack vulnerabilities. 34
5.2 Virtualization solutions and their vulnerabilities’ targeted region of the system. 34

vii

viii

Executive Summary
Review of Enabling Technologies to Facilitate

Secure Compute Customization

High performance computing environments are often used for a wide variety of workloads ranging
from simulation, data transformation and analysis, and complex workflows to name just a few. These
systems may process data for a variety of users, often requiring strong separation between job allocations.
There are many challenges to establishing these secure enclaves within the shared infrastructure of
high-performance computing (HPC) environments.

The isolation mechanisms in the system software are the basic building blocks for enabling secure
compute enclaves. There are a variety of approaches and the focus of this report is to review the different
virtualization technologies that facilitate the creation of secure compute enclaves. The report reviews
current operating system (OS) protection mechanisms and modern virtualization technologies to better
understand the performance/isolation properties. We also examine the feasibility of running “virtualized”
computing resources as non-privileged users, and providing controlled administrative permissions for
standard users running within a virtualized context. Our examination includes technologies such as Linux
containers (LXC [32], Docker [15]) and full virtualization (KVM [26], Xen [5]).

We categorize these different approaches to virtualization into two broad groups: OS-level
virtualization and system-level virtualization. The OS-level virtualization uses containers to allow a single
OS kernel to be partitioned to create Virtual Environments (VE), e.g., LXC. The resources within the host’s
kernel are only virtualized in the sense of separate namespaces. In contrast, system-level virtualization uses
hypervisors to manage multiple OS kernels and virtualize the physical resources (hardware) to create
Virtual Machines (VM), e.g., Xen, KVM. This terminology of VE and VM, detailed in Section 2, is used
throughout the report to distinguish between the two different approaches to providing virtualized
execution environments.

As part of our technology review we analyzed several current virtualization solutions to assess their
vulnerabilities. This included a review of common vulnerabilities and exposures (CVEs) for Xen, KVM,
LXC and Docker to gauge their susceptibility to different attacks. The complete details are provided in
Section 5 on page 33. Based on this review we concluded that system-level virtualization solutions have
many more vulnerabilities than OS level virtualization solutions. As such, security mechanisms like sVirt
(Section 3.3) should be considered when using system-level virtualization solutions in order to protect the
host against exploits. The majority of vulnerabilities related to KVM, LXC, and Docker are in specific
regions of the system. Therefore, future “zero day attacks” are likely to be in the same regions, which
suggests that protecting these areas can simplify the protection of the host and maintain the isolation
between users.

The evaluations of virtualization technologies done thus far are discussed in Section 4. This includes
experiments with user namespaces in VEs, which provides the ability to isolate user privileges and allow
a user to run with different UIDs within the container while mapping them to non-privileged UIDs in the
host. We have identified Linux namespaces as a promising mechanism to isolate shared resources, while
maintaining good performance. In Section 4.1 we describe our tests with LXC as a non-root user and
leveraging namespaces to control UID/GID mappings and support controlled sharing of parallel
file-systems. We highlight several of these namespace capabilities in Section 6.2.3.

The other evaluations that were performed during this initial phase of work provide baseline
performance data for comparing VEs and VMs to purely native execution. In Section 4.2 we performed

1

tests using the High-Performance Computing Conjugate Gradient (HPCCG) benchmark to establish
baseline performance for a scientific application when run on the Native (host) machine in contrast with
execution under Docker and KVM. Our tests verified prior studies showing roughly 2-4% overheads in
application execution time & MFlops when running in hypervisor-base environments (VMs) as compared
to near native performance with VEs. For more details, see Figures 4.5 (page 28), 4.6 (page 28), and 4.7
(page 29). Additionally, in Section 4.3 we include network measurements for TCP bandwidth performance
over the 10GigE interface in our testbed. The Native and Docker based tests achieved ≥ 9Gbits/sec, while
the KVM configuration only achieved 2.5Gbits/sec (Table 4.6 on page 32). This may be a configuration
issue with our KVM installation, and is a point for further testing as we refine the network settings in the
testbed. The initial network tests were done using a bridged networking configuration.

The report outline is as follows:

• Section 1 introduces the report and clarifies the scope of the project, to include working assumptions
about the threat model for customizable computing resources.
• Section 2 provides background and defines terminology used throughout the report. This section also

includes details on security and virtualization classifications.
• Section 3 reviews isolation mechanisms for container and hypervisor based solutions. This section

provides information on security frameworks for use with virtualization. A synopsis of management
platforms for virtualization technologies, which brings these various pieces together is also included
in this section.
• Section 4 provides details on evaluations done thus far, to include: namespace tests with LXC,

memory/compute benchmarking with HPCCG [34], and TCP Bandwidth tests with iperf [24].
• Section 5 discusses a vulnerability assessment that reviewed common vulnerabilities and

exposures (CVEs) for Xen, KVM, LXC and Docker CVEs Xen, KVM, LXC, Docker and the Linux
kernel.
• Section 6 summarizes the report and highlights a observations from this initial phase as well as

points of interest for subsequent phases of the project.

2

Chapter 1

Introduction

The ability to support “on-demand self-service” computing resources is a major asset of Cloud
Computing [35]. These customizable environments are made possible by modern operating system (OS)
mechanisms and virtualization technology, which allow for decoupling the physical and virtual resources.
This separation enables users to customize “virtualized” computing resources, while maintaining
appropriate protections to ensure control is maintained at the hosting (physical) level.

There are many factors that influence the degree of control and in this report we review these factors to
gain insights into the current state of practice. The objectives of the report are to: (i) review current OS
protection mechanisms and virtualization technologies to better understand the performance/isolation
properties; (ii) examine the feasibility of running “virtualized” computing resources as non-privileged
users, i.e., non-root users; (iii) analyze the vulnerabilities of current virtualization based environments.
Additionally, the report provides insights into ways that available protection mechanisms may be used to
better isolate use of shared resources in a multi-tenant environment1. Specifically we examine the use case
of sharing common distributed parallel filesystems and a high speed network infrastructure.

1.1 Project Scope

The overall goal of this project is to evaluate the current technologies used to create user customizable
computing platforms with respect to their security and isolation qualities. The basic assumption is that
virtualization plays a central role in enabling secure compute customization. As such a thorough review of
the current state of relevant virtualization technology is important to better understand the challenges and
opportunities for deploying user customizable computing resources.

1.1.1 Customizable Computing Resources

In multi-user computing environments the access to common computing, network and storage
resources are shared among many users. In contrast, this project is focused on a multi-tenant environment
that allows users to customize the computing platform specific to their needs, while still sharing some
physical network and storage resources. The customizability in a multi-user computing environment is
limited to unprivileged changes such as altering the shell and environment variables while using the shared
system in the context of a particular user. In a multi-user computing environment users are aware of other

1In subsequent months of the project, we anticipate leveraging these insights for node-level isolation mechanisms to explore
ways to leverage them for protection with shared-storage and network aspects.

3

Platform A Platform B

Infrastructure Layer

Figure 1.1. Illustration of two axes of administrative control (platform and infrastructure) in
a customizable computing environment.

users on the system and of all processes running on the system. The reason for limiting users to
unprivileged operations on the system is so that one user cannot bypass system security controls and affect
the quality of service of another user. However in a multi-tenant environment, each tenant’s computing
platform is isolated from each other, meaning that they can be allowed a high degree of control as to how
their platform is customized. For example a tenant may run a completely different Linux distribution with
customized system-level functionality such as logging authorization mechanisms that have no bearing on
other tenants. This can be done while still sharing physical resources such as network and storage. In this
project a customizable computing platform is in the context of a multi-tenant model where even
system-level changes are permissible. The isolation of computing platforms between each other and also
the underlying infrastructure enables a distinction to be made between platform admins and infrastructure
admins who manage the physical resources and services on top of which secure computing platforms are
deployed (Figure 1.1).

1.1.2 Threat Model

Virtualization technologies that enable customizable environments involve a deep “software stack”,
from the infrastructure and system layers to the application layer. The security at each of these levels must
be considered when evaluating the system as a whole. Furthermore, in this study we use isolation
mechanisms to limit the exposure of particular levels in the software stack that might have weak security
controls. The reinforcement of these controls through isolation mechanisms (e.g., virtualization) allows for
more fine-grained resource marshalling, whereas relying purely on strict controls might limit the usefulness
of a customized compute environment. Thus, to establish a framework for our evaluation and to identify
remaining gaps for future work we developed the following threat models assumed for this study.

We assume a multi-tenant model where many users make use of shared infrastructure for separate
tasks. Isolation must be maintained between users and their data. When virtualization involves sharing of
system level resources, (e.g. memory, CPU caches, I/O devices), there is a potential attack vector of
side-channel attacks between environments co-located on the same system. We assume granularity at the
node level, such that a single user has ownership of a compute node where memory, CPU cores, or PCI
devices are not shared.

While applications for different users do not share the same node, they may share physical network
infrastructure and storage resources. The shared storage could be at the block-level granularity, such that

4

data belonging to each user does not share filesystem data structures, or at the granularity of a subset of a
shared filesystem. Our use case with respect to a customizable secure compute environment focuses on
sharing a distributed or parallel filesystem such as Lustre or GPFS. A shared filesystem raises several
challenges in a multi-tenant environment, and of those challenges, we address those related to configuring
customizable compute environments for isolating segments of a shared filesystem and only providing a
user access to explicitly approved segments.

In summary, the working assumptions/requirements for a prototypical system are:

• Granularity is at the node level, i.e., single user per node (Therefore not concerned with on-node,
cross-user security attacks or snooping, i.e., memory of neighbor in co-hosted VM/VE)
• Must support controlled user permission escalation, i.e., user may obtain root, but only in VE/VM.
• Users can not escalate beyond set permissions/access granted to VE/VM (e.g., maintaining only

limited access rights on a shared filesystem)
• Maintain “acceptable” performance levels, where “acceptable” will be defined as some percentage of

native performance balanced with added protection capabilities. Performance implications are
addressed in Section 4.2.
• Incorporate deployment/maintenance overheads when considering viability of different technologies

(i.e., practicality factor). This is discussed in detail in Section 3.4.

1.2 Report Outline

The report is structured as follows, in Chapter 2 we define important terminology, delineating
protection and security, and review security and virtualization classifications. Chapter 3 focuses on key
virtualization technologies that are relevant to this project. Testing and evaluations related to these
technologies that have been performed thus far in the project are described in Chapter 4. A vulnerability
assessment for different virtualization technologies is given in Chapter 5. In Chapter 6 we discuss our
observations and conclusions.

5

Chapter 2

Background

There are several terms that get used somewhat interchangeably and have different connotations
depending on your background and area of expertise. To avoid these ambiguities, we define important
terminology and review classifications that will help to structure the remainder of the report.

2.1 Terminology

Protection vs. Security: The title of this project includes the term “secure”. Therefore we begin by
clarifying our distinction between protection and security. The topic of security is important and a set of
security classifications are discussed in Section 2.2. However, the focus of this project is on specific
protection and isolation mechanisms, which can be used to create and enforce security policies. The
underlying mechanisms provide the building blocks to create security.

Virtualization Variants: In Section 2.3 we provide details about different container and hypervisor
based virtualization classifications. Generally speaking, throughout the report we distinguish between
hypervisor and container-based virtualization configurations using the terms, Virtual Machine (VM) and
Virtual Environment (VE), respectively.

Virtual Machine (VM) – type-I/type-II virtualization (hypervisors); VMs may include multiple OS
kernels and the virtualization layer extends below the kernel to virtualization of the “hardware.”

Virtual Environment (VE) – OS-level virtualization (containers); VEs share a single OS kernel with the
host and include virtualization of the “environment.” Resources within the host’s kernel are only
virtualized in the sense of separate namespaces.

2.2 Security Classifications

The “Orange Book” [14] is a requirements guideline published by the Department of Defense (DoD) in
1985. This publication defined both the fundamental requirements for a computer system to be considered
secure and multiple classification levels in order to describe the security of a given system.

The fundamental requirements for secure computing systems are:

1. Security Policy. The security policy defines the mandatory security policy for the system. This may
include separation of privilege levels and the implementation of a need-to-know access list.

6

2. Marking. Marking includes the ability for access control labels to be associated with system objects
as well as have the ability to assign sensitivity levels to objects and subjects.

3. Identification. Within a secure system, each subject must be identified in order to properly assert the
security policy.

4. Accountability. Logging must be used in order to properly hold each subject accountable for their
actions while logged into the system.

5. Assurance. Each component of the security policy implementation must reside within independent
mechanisms.

6. Continuous Protection. During the execution of the system, each component must retain its integrity
in order to be considered trusted.

The criteria of the security for a system ranges from division D to division A. Division D represents
systems with minimal security, while division A represents systems with a high level of verifiable security.
A system that is labeled as a division D system is considered to provide minimal protection and is reserved
for any system that does not meet the criteria for any higher rated system.

Division C systems are broken into two classes: C1 and C2. A system meeting the criteria for class C1
provides the following fundamental requirements: (i) security policy, (ii) accountability, and (iii) assurance.
With respect to requirement (i), a system must have discretionary access control in which access controls
are used between objects and users with the ability to share objects amongst users or groups.
Requirement (ii) states that the system should provide the user with the ability to login with the use of a
password. Requirement (iii) directs the configuration to provide system integrity as well as a separation of
privilege for user applications and the OS kernel. Additionally, the system should be tested with respect to
the security mechanisms used to provide each of these requirements.

A C2 system provides all of the requirements with some additional requirements. The kernel should
provide sanitized objects before use or reuse. Additionally, the kernel should maintain logs of the following
events: use of authentication mechanisms, file open operations, process initiation, object deletion, and user
actions.

Division B criteria moves from discretionary to mandatory protection for the system. This division
contains multiple classes of increasing protection from class B1 through B3. In addition to providing an
increased amount of protection, the system developer must also provide a security policy model as well as
the specification for the model.

Class B1 requirements are the same as C2 with the addition of sensitivity labels, mandatory access
control, and design specification and verification. The sensitivity labels allow for the ability to have
multiple trust levels per user, per object, or both. The mandatory access control will leverage the security
labels in order to enforce the security policy. The sensitivity policy that will be deployed in a class B1
system, and from hence forth, is one in which a subject can read at their sensitivity level or lower and write
at their sensitivity level or higher. This prevents objects from becoming untrusted and removes the
possibility of users observing data outside of their sensitivity level. The design specification and
verification of the system may be done as an informal or formal model and must be maintained over the life
span of the system. Additionally, all claims made about the system must be verified or verifiable.

Class B2 provides structured protection as well as a verifiable security policy model. The majority of
requirements for a system to be considered of class B2 are also required as a class B1. The additions from
the B1 requirements are within the fundamental requirements areas such as the security policy,

7

accountability, and assurance. The security policy is extended to support device sensitivity labels and users
have the ability to query their sensitivity level at runtime. The accountability requirement is extended to
supported “trusted path” communication between the user and the kernel. The assurance requirements are
considerably extended from the B1 to the B2 requirements. In a B2 class, the kernel must execute within its
own domain, maintains process isolation through address space provisioning, and is structured into
independent modules with a separation between protection-critical and non-protection critical elements.
Additionally, covert channels are searched for and analyzed.

Class B3 requires a complete implementation of a reference monitor, which will provide mediation on
all access of objects by subjects, be tamper-proof, and be small enough to be verifiable. Additionally, the
system must contain recovery procedures in the case of faults or attacks as well as be highly resistant to
penetration. With respect to the fundamental requirements for the system, minor additions are required
within the accountability and assurance requirements when compared to class B2. In a class B3 system, the
trusted path is required like class B2, but the path should be isolated and distinguishable from any other
path. The auditing system should be able to track the various security events and determine if any
predefined thresholds have been exceeded. If the events are to continue, the system should terminate the
event in the least disruptive manner. The system architecture should have minimal complexity with simple
protection mechanisms while providing significant abstraction.

Division A provides the most secure systems. However, these systems require complete verification,
which is not feasible with the average size and complexity of modern systems.

2.3 Virtualization Classification

Virtualization is the abstraction of the system layer in order to achieve various goals including isolated
execution, compute customization, and environment portability. A benefit enjoyed by cloud computing
environments is making use of the abstraction for resource sharing, allowing for higher resource utilization
through statistical multiplexing and oversubscription. Of more direct interest to this report, the
virtualization layer provides a demarcation point, above which distinct VMs or VEs can be customized in a
portable fashion, while layers below enforce inter-VM or VE isolation and act as a trusted arbitrator for
system resources and hardware.

2.3.1 OS Level Virtualization

OS level virtualization, or container-based virtualization, is the abstraction of the OS such that
processes and libraries are isolated within virtual environments (VE). These VEs are owned and created by
a user on the host system via a set of user-level tools. The user-level tools leverage the kernel’s isolation
capabilities in order to provide the abstraction with respect to a VE’s unique set of processes, users, and file
system. A VE employs a single kernel instance, which manages the isolation for the “containers” where
processes execute. This VE architecture is illustrated in Figure 2.1(c).

2.3.2 System-level Virtualization

System-level virtualization is the abstraction of the hardware such that execution environments are
isolated within virtual machines (VM). Each VM is isolated and managed by a virtual machine monitor
(VMM), also known as a hypervisor. The VMM is a thin software layer that may reside on top of the
hardware, or on top of (or beside) an administrative OS known as a host OS. An example of both types can

8

(a) Type-1 Virtualization (b) Type-2 Virtualization (c) OS-level Virtualization

Figure 2.1. Overview of various virtualization architectures

be seen in Figure 2.1. A VM configuration employs multiple kernel instances, one per VM, which are
managed by the VMM (hypervisor).

There two general architectures used to describe where the VMM exists within a system
architecture [18]: type-1 and type-2 VMM. As shown in Figure 2.1(a), a type-1 VMM exists above the
hardware. A type-2 VMM, Figure 2.1(b), exists on top of (or beside) the host OS. In a type-1 VMM, the
host OS is often implemented as a privileged VM, which contains many of the hardware device drivers used
by the system. The host OS for a type-2 VMM executes natively. An example of a type-1 VMM is the Xen
hypervisor [5], while the kernel-based virtual machine (KVM) [21, 30] is an example of a type-2 VMM.

9

Chapter 3

Virtualization

Virtualization dates back to the 1960’s with research performed at IBM in conjunction with their large
time-shared systems [12, 19]. In these environments the resources were prohibitively expensive, such that
the resources needed to be shared among users. As noted by Goldberg [18], virtual machines enhanced
system multiplexing (e.g., “multi-access, multi-programming, multi-processing”) to include the entire
platform (“multi-environments”).

Interestingly, many of the initial motivating factors that led to the use of virtual machines (machine
costs, user accessibility, development on production environments, security, reliability, etc.) are true of
today’s large-scale computing environments [23, 28, 46, 47]. The early IBM VM/370 systems included
additional hardware support for virtual machines [12]. The recent resurgence of interest in
virtualization [17] has led to hardware enhancements to support virtualization on commodity architectures
(e.g., Intel [45], AMD [1]).

Virtualization has re-emerged as a building block to aid in the construction of systems software. This
infrastructure technology has been used in the past to support system multiplexing and to assist with
compatibility during system evolution (e.g., IBM 360 virtual machines [12]). The approach has received
renewed interest to enhance security (trusted computing base), improve utilisation (over-subscription), and
assist system management (snapshots/migration). In this chapter we review relevant virtualization
technologies that will be used in our feasibility study.

3.1 OS level virtualization

With respect to this work, all user-level tools will be leveraging mechanisms present within the Linux
kernel. The Linux kernel has two primary mechanisms that are used to implement isolation for
container-based, single-OS kernel virtualization: (i) namespaces and (ii) control groups (cgroups).

3.1.1 Namespaces

Namespaces provide isolations for various resources as well as users. Currently, there are six
namespaces present in the Linux kernel1. These namespaces are summarized in Table 3.1.

The first namespace to be supported by the Linux kernel was for controlling file system mounts. The
mnt namespace allows for isolating one namespace instance from another instance. This feature dates back
to Linux version 2.4.19 and allows mounts within a namespace to be invisible outside the context of the

1As of Nov-2014, Linux v3.18.

10

Kernel Namespace Description
≥2.4.19 mnt mount points & file systems to be isolated, (i.e., file system mounts

in one namespace are hidden from another namespace)
≥2.6.19 ipc Inter-Process Communication mechanisms within namespace
≥2.6.19 uts hostname and domain name separate from values at host
≥2.6.24 pid process isolation between namespaces
≥2.6.29 net isolates the network devices and network stack
≥3.8 user separate lists of users per namespace; allows for separation

of privileges between the host and the guest.

Table 3.1. Available Linux namespaces and required kernel version.

namespace. Subsequently, inter-process communication (IPC) and hostname/domainname isolation
mechanisms were introduced in Linux version 2.6.19 with the ipc and uts namespaces, respectively.

The isolation of entire processes between namespaces was added with the pid namespace in Linux
version 2.6.24. This allows for two processes running on the same machine to be visible from the host but
entirely invisible to each other. For example, a process listing (ps) from the host shell will show Process-A
in Container-A and Process-B in Container-B. However, a process listing within Container-A will not show
Process-B and vise versa.

The isolation of network devices, and the network stack as a whole, on a per-container basis was
introduced in Linux version 2.6.29 with the net namespace. This provides a logical copy of the network
stack, including: routes, firewall rules, and network devices, loopback device, SNMP statistics, all sockets,
and network related procfs and sysfs entries. When using the net mechanism for devices and sockets, the
network device belongs to exactly 1 network namespace, and the socket belong to exactly 1 network
namespace.

The most recent addition was the user namespace, which establishes per-namespace contexts for user
ID’s (UIDs) and group ID’s (GIDs). UIDs and GIDs when combined with capability sets (discussed in
3.3.4) are the basic security attributes in Linux for defining allowed operations on files, processes, or
system resources. User namespaces, as an isolation mechanism, work in conjunction with these attributes
to perform security enforcement specific to the context of a user namespace and only to the resources
within that namespace. When applied to containers, a container runs within the context of a child user
namespace distinct from the host OS’s parent user namespace. In this scenario, a user in the host context
can be mapped to a different user within the container, even the container’s root user. This user is able
perform administrative functions within the container, such as installing packages, and system operations
such that: (i) the user possesses the capability set to do so, and (ii) the resource on which it is acting on is
owned by the user namespace. For example, an user who is privileged within the child user namespace
who attempts operations on net and mnt namespaces of a parent user namespace would be denied if the
user is not privileged with the necessary capabilities in the parent namespace. However, new network
and mnt namespaces that are created within the child user namespace may be modified. Launching an
LXC container (as evaluated in Section 4.1) will cause new net and mnt namespaces to be created inside
the child user namespace so that unprivileged users may modify them.

Any user on the system can create a nested namespace, such that the nesting level does not exceed up
to 32 levels. When a process in the parent namespace creates a new user namespace, the processes’s
effective user becomes the child namespace’s owner and inherits all capabilities in the new namespace by
default. Other processes can be placed within the same child user namespace and return to their parent

11

namespace, but processes may only exist in a single namespace at any point in time.
Access to system resources within user namespaces are controlled by the host OS kernel in the

following way. When any user performs a system call (e.g. open(), mount(), write()), the host kernel will
evaluate whether to allow the operation by mapping the UID in the calling namespace to the UID in the
namespace where the target resource resides (and check the capabilities set within the target’s namespace).
In this way the root user within a container, which is mapped to an unprivileged user may not un-mount a
filesystem on the host, because it only possesses the capabilities to un-mount a filesystem within the
context of the container’s namespace. System calls such as getuid() return the UID within the context of the
calling process, meaning applications executing within the container are unaffected by the existence of
different mappings on the host.

There is a significant degree of flexibility in how UIDs can be mapped between the host OS and a
container. An unprivileged user on the host OS can create a child namespace, but by default only their own
UID is mapped within the container (as root). To extend this behavior, the root user on the host OS can
configure the allowed mappings such that unprivileged users can map ranges of UIDs on the host to within
the container. A typical usage is to allow UIDs within the container to be mapped to very high UIDs on the
host (e.g. 1,000,000), such that they remain unprivileged on the host, but the full range of 65k users can
exist within the container (up to 1,065,534).

Having introduced the use of the namespaces such as net, mnt, and user namespaces related to
kernel isolation mechanisms, it is also necessary to distinguish these from another type of namespace used
in the context of filesystems. A filesystem namespace involves the hierarchical naming scheme of
directories and files, where a file is uniquely identified by its path. Filesystem namespaces can be nested,
where one filesystem’s namespace is rooted at a mount point within another filesystem. There will be some
overlap of these definitions when discussing isolating filesystem namespaces in Section 4.1. There we
restrict the files a container may access to those files rooted at a particular point in the filesystem directory
hierarchy. The two filesystem namespaces in that discussion are the global directory structure and the
chroot’d namespace making up the files which a container may access.

3.1.2 Cgroups

Linux Control Groups (cgroups) provide a mechanism to manage resources used by sets of tasks [10].
This mechanism partitions sets of tasks into hierarchical groups allowing for these sets of processes, and all
future child processes, to be allocated a specific amount of the given resources, e.g., CPU, memory. The
Linux subsystems that implement the cgroups are called resource controllers (or simply controllers). These
resource controllers are responsible for scheduling the resource to enforce the cgroup restrictions. A list of
available controllers is shown in Table 3.2. The cgroups are arranged into a hierarchy that contains the
processes in the system, with each task residing in exactly one cgroup. The cgroup mechanism can be used
to provide a generic method to support task aggregation (grouping). For example, the grouping of CPUs
and memory can be linked to a set of tasks via cpusets, which uses the cgroups subsystem [10].

To simplify the usage of cgroups, the designers created a virtual file system for creating, managing, and
removing cgroups. The file system of type cgroup can be mounted to make changes and view details
about a given cgroup hierarchy [10]. All query and modify operations are done via this cgroup file
system [10], with each cgroup shown as a separate directory with meta-data contained in files in the
directory, e.g., tasks list of PIDs in group. Figure 3.1 shows an example taken from [10] that details how
create a cgroup named “Charlie” that contains just CPUs 2 and 3 and Memory Node 1, and starts a subshell
‘sh’ in that cgroup.

12

Controller Description
blkio sets limits on input/output access to and from block devices such as physical

drives (disk, solid state, USB, etc.).
cpu uses the scheduler to provide cgroup tasks access to the CPU. It is mounted

together with cpuacct on the same mount.
cpuacct automatic reports on CPU resources used by tasks in a cgroup. It is mounted

together with cpu on the same mount.
cpuset assigns individual CPUs (on a multicore system) and memory nodes to tasks

in a cgroup.
devices allows or denies access to devices by tasks in a cgroup.
freezer suspends or resumes tasks in a cgroup.

memory sets limits on memory use by tasks in a cgroup, and generates automatic reports
on memory resources used by those tasks.

net_cls tags network packets with a class identifier (classid) that allows the Linux
traffic controller (tc) to identify packets originating from a particular cgroup task.

perf_event allows to monitor cgroups with the perf tool.
hugetlb allows to use virtual memory pages of large sizes, and to enforce resource limits

on these pages.

Table 3.2. Available Resource Controllers in Red Hat Enterprise Linux 7 [39].

1 mount -t tmpfs cgroup_root /sys/fs/cgroup
2 mkdir /sys/fs/cgroup/cpuset
3 mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset
4 cd /sys/fs/cgroup/cpuset
5 mkdir Charlie
6 cd Charlie
7 /bin/echo 2-3 > cpuset.cpus
8 /bin/echo 1 > cpuset.mems
9 /bin/echo $$ > tasks

10 sh
11 # The subshell ’sh’ is now running in cgroup Charlie
12 # The next line should display ’/Charlie’
13 cat /proc/self/cgroup

Figure 3.1. Example showing how to create a cgroup (“Charlie”) containing CPUs 2 and
3, and Memory Node 1, and starting a process (‘sh’) in the new cgroup. (Example taken
from [10].)

3.1.3 Linux-VServer

Linux-VServer [31] is a patch to the Linux kernel that allows for VEs to be created and isolated from
each other as well as the host system. The patch specifically modifies the process, network, and file system
data structures of the kernel.

With respect to processes, each process is given a unique PID regardless of VE. This means there is a
global PID space. In order to isolate VEs, a VE is given a range of possible PIDs and any process with a
PID within that range is considered within that VE.

The file systems of each VE are isolated through the use of chroot. Chroot changes the root

13

directory (e.g., “/”) for the execution context to the directory associated with the VE. When this occurs, the
user of the VE should not be able to locate any file not associated with the VE unless there is a shared file
system between VEs (e.g., NFS).

There is little isolation with respect to the network subsystems of the kernel. More clearly, there is no
performance isolation between VEs, but packets are tagged with a VE ID in order to determine the delivery
location of the packet.

The scheduling of a VE to the CPU is completed with the combination of two approaches. The first
approach is the use of the default Linux scheduler. However, simply using the Linux scheduler could result
in an unfair scheduling of specific VEs. To remedy this, the Linux-VServer uses a token bucket filter (TBF)
in order to schedule VEs. Each VE is assigned a TBF. While the TBF is not full, every process associated
with the VE is removed from the scheduler’s list of “runable” processes (i.e., run queue). When the TBF is
full, a process from the VE is scheduled and the TBF is emptied accordingly.

Unfortunately, due to the implementation of Linux-VServer (i.e. a global PID space), a VE executing
in this environment cannot be checkpointed or migrated. This is because it is impossible to guarantee the
same PID space originally assigned to a VE to be available on restart. As we will be dealing with clusters
and scientific computing, there will be failures and the inability to overcome failures reduces the
desirability of this virtualization system. Another potential detraction of Linux-VServers is that the support
is through external patches, i.e., the code is not in the main line of the Linux kernel. Therefore, the
integration and deployment of Linux-VServers with existing environments may be less streamlined.

3.1.4 OpenVZ

OpenVZ [38] is a container-based virtualization solution. The system is made possible by creating a
custom kernel that supports the underlying functionality including process and resource isolation. The
custom kernel commonly used is a modification of a Linux kernel. It is possible to make use of a
unmodified Linux kernel of version 3.x or higher, but this will result in limited functionality.

OpenVZ leverages the namespace functionality resident in the Linux kernel in order to provide
process, file system, I/O, and user isolation. The isolation is provided on a per VE basis. This allows for the
safe execution of multiple VEs per system.

Resource isolation with respect to the CPU and disk resources are accomplished using two-level
schedulers. For the CPU, beancounters are used to represent a VE executing on the system. These
beancounters keep track of the VEs CPU usage over time and allow the scheduler to fairly select a
schedulable VE. At the second level of scheduling, the default Linux scheduler is used to select a process to
execute from within the VE. Similarly, beancounters are used to keep track of a VEs disk I/O usage as well.
The first level scheduler for disk I/O examines the beancounters for each VE and fairly selects a VE. After
the VE has been chosen, the default Linux disk I/O scheduler will be used as the second level scheduler.

OpenVZ provides several options for the use of the networking systems. There are route-based,
bridge-based, and real-based networking options that may be assigned to a specific VE. The route-based
approach is the routing of Layer 3 packets (e.g. TCP) to a VE. The bridge-based approach routes Layer 2
packets (e.g. Ethernet) to a VE. Finally, the real-based approach is simply the assignment of a NIC to a VE.

Checkpoint/restart and container migration is supported for OpenVZ. Checkpoint/restart may be
accomplished using CRIU [13], which is able to leverage existing Linux kernel functionality in order to
save the container’s state to disk. The same mechanism is used to provide migration functionality, however,
this is a stop-and-copy approach rather than a live migration approach.

14

3.1.5 LXC

Linux containers (LXC) [32] is a collection of user-level tools that assist in the creation, management,
and termination of containers. The tools leverage the feature-set presented by the Linux kernel including
namespaces and cgroups. By leveraging these features, it is possible for LXC to remove the burden of
knowledge with respect to virtual environment creation from the user. Instead, customization of the
environment is eased and can be the primary goal of the user.

Because LXC leverages features present in Linux, the scheduling of CPU resources is provided by the
default scheduler and the use of cgroups. Likewise, user, filesystem, and process isolation is provided
through the use of namespaces.

3.1.6 Docker

Docker is a user-level tool to support in the creation, management, and termination of containers in
Linux environments. This tool may leverage either the underlying Linux container-based features or LXC
in order to easily create and maintain containers. As an alternative to LXC containers can be run through
the libcontainer execution driver, which is aimed at standardizing the API that programmers use to create
and manage containers. Docker has switched to make libcontainer the default execution driver in Docker,
so it is likely that future development efforts from within Docker will be focused on libcontainer rather
than LXC. Regardless of which is leveraged, Docker provides both resource isolation and resource
management through Linux’s namespaces and cgroups respectively.

The distinguishing features of Docker from LXC are higher-level features such as an image-based
filesystem capable of support snapshotting, and an API that can be used locally by the docker daemon or
remotely, if the socket is exported, to control the management of containers. LXC exposes many very
granular configuration options, whereas Docker’s configuration is much more limited and contained within
a standardized “Dockerfile” format (see Appendix A.1 for Dockerfile examples). The image-based
management of Docker images greatly simplifies the distribution of applications, where they can be stored
in a repository, from which a user can pull the image, run the container, save the image, and push it back to
the repository. For our evaluation, we set up a private Docker repository on a test bed node, which is an
alternative to using http://hub.docker.com.

3.2 System level virtualization

A hypervisor based approach to virtualization allows for running multiple OS kernels, which run in the
virtual machine. The following subsections describe the Xen (type-I) and KVM (type-II) hypervisor-based
virtualization platforms.

3.2.1 Xen

The Xen hypervisor [5] is a commonly used hypervisor in Enterprise and Cloud environments. The
reason for this is due to its free and open-source nature as well as the use of paravirtualization.

Paravirtualization is the modification of both the host OS and guest OS in order to make use of
hypercalls from the guest to the host. Hypercalls are akin to system calls in both usage and implementation.
For the Xen implementation, a hypercall table is used containing function pointers to the various functions.
These functions are meant to perform some privileged operation on behalf of a guest without the
requirement of a trap-and-emulate architecture commonly found in full virtualization environments.

15

Interrupts in the guest are delivered using an event-based interrupt delivery system in Xen. Upon
interrupt delivery, the guest makes use of the corresponding interrupt service routine specified by the guest.
During the boot process, the guest registers the interrupt descriptor table (IDT) and, thus, each interrupt
service routine with Xen. Xen validates each routine before allowing it to handle interrupts. The majority
of faults cause Xen to rewrite the extended stack frame prior to redirecting execution to the guest. An
exception to this rule is system call exceptions as these are the most common interrupt. After validation,
these exceptions are handled directly by the guest without redirection.

With respect to memory management, a guest OS is allocated a specified amount of RAM by the user
during VM creation. As the guest boots, each page used is registered with Xen after it is initialized. At this
point, the guest will relinquish write privileges to Xen and only have read privileges. Any update will be
performed by Xen via a hypercall. This allows Xen to provide verification of page updates prior to them
actually occurring.

Xen schedules VMs using its credit scheduler. With this scheduler, all VMs are given a certain amount
of credits that are debited each time the VM is scheduled. Debits occur periodically every 10 milliseconds
the guest is allowed to run.

The credit scheduler uses two states to describe the schedulability of a VM. At any given point, a VM
is either in the UNDER state or the OVER state. The UNDER state means the VM still has credits to use
and the OVER state is for VMs who have used all of their credits. When scheduling occurs, a VM in the
UNDER state will be chosen first unless none are runnable. In this case, a VM from the OVER state will be
chosen to execute.

3.2.2 KVM

The kernel-based virtual machine (KVM) [21, 30] is a hypervisor, which extends the Linux kernel.
This is often implemented as a loadable kernel module (LKM) but may also reside in the kernel directly.
The extension provides support for modern processor extensions for virtualization known as Intel
VT-x [45] and AMD-v [1].

KVM operates in conjunction with supporting user-level tools found within QEMU [6]. QEMU is
responsible for multiple tasks including allocating the memory associated with a guest, emulating the guest
devices, and performing redirection of execution back to the hypervisor during execution. Any guest that is
created by the user will have the memory for the guest allocated using malloc by QEMU and an ioctl
is used to inform KVM of the initial address space that may be associated with the VM. Because malloc
is used, KVM’s VMs do not use the amount of assigned memory until each page is touched. Each emulated
device is handled in userspace by QEMU after receiving notification from KVM that work is pending. The
majority of execution by QEMU is within a loop that handles the pending I/O, as noted earlier, and will
return execution to KVM at the end of the loop.

Emulating each device adds a significant amount of overhead due to the VM exits caused by the I/O
operations from the executing VM. Because of this reason, Rusty Russell developed virtio [40]. Virtio is a
standard for PCI device as well as block device paravirtualization.

While virtio is simply a standardized interface, it requires the usage of hypercalls between the host and
the guest. Hypercalls are similar to system calls in implementation and allows for a layer of isolation to be
removed in order to reduce the amount of VM exits and, thus, improve performance. Currently, KVM
supports five hypercalls, of which only four are active.

With virtio, there is a frontend and backend driver. The frontend driver exists within the VM and
communicates via hypercalls with the backend driver found within the host. In more detail, the steps for
the KVM virtio frontend/backend communication between guest/host are:

16

Mechanism Linux-VServer OpenVZ LXC Docker Xen KVM
Namespaces No Yes Yes Yes No No

Cgroups No Yes Yes Yes No No
SELinux/sVirt No No Yes Yes Yes Yes

Hypervisor No No No No Yes Yes

Table 3.3. This table shows the relationship between the security/isolation mechanisms and the virtu-
alization solutions (i.e., which mechanisms are present in which solutions).

1. A guest needs to perform an operation on the device.

2. The function corresponding to the operation is called by the guest on the frontend device.

3. A hypercall is issued between the frontend device and the backend device.

4. The backend device sends the operation to the hardware device and returns the result to the frontend
device.

3.3 Virtualization and Security Mechanisms

In this section, we present relevant security mechanisms. These security mechanisms and the isolation
mechanisms from Sections 3.1 & 3.2 are summarized in conjunction with relevant virtualization solutions
in Table 3.3.

3.3.1 sVirt

The Secure Virtualization (sVirt) project extends the generic virtualization interface libvirt [7] to
include a pluggable security framework [36]. sVirt can be used to put a “security boundary around each
virtual machine” [37, Ch.15]. VM or VE processes and disk images are labelled by sVirt so that the kernel
can enforce a MAC policy. The initial implementation used SELinux for the labeling and policy
enforcement and addressed the threat of a guest that escapes the virtualization mechanism and and then use
the host as a platform for attacks on other guests or escalation attacks on the host itself. As of libvirt 0.7.2,
there is also support for using AppArmor with sVirt to restrict virtual machines [2].

3.3.2 SELinux

SELinux [41] is an implementation of the Flask [42] architecture for the Linux kernel. The Flask
architecture was the result of the NSA’s and Secure Computing Corporation’s (SCC) research to develop a
strong, flexible mandatory access control mechanism being transferred to Utah University’s Fluke OS.
While being implemented for Fluke, the mechanism was enhanced becoming the Flask architecture.

The Flask architecture is comprised of two components: (i) the security server and (ii) the access
vector. The security server contains the security policy for the system. A security policy is a list of possible
subjects and objects. Each subject is a user or role, while everything else is considered an object. With
respect to kernel-space, the kernel subsystems are considered object managers. The access vector is simply
a bitmap with the results obtained by the security server whenever access to a file or device is requested by

17

a process. By storing the results of the security server in the access vector, it is possible to provide
mandatory access control with little overhead.

Initially, the development of SELinux was completed as a series of patches to the Linux kernel that
provide the services found within the Flask architecture. These patches focus on providing security labels
for the various resources controlled by the kernel and the users that may use the system.

3.3.3 AppArmor

The AppArmor security project [4] is derived from the SubDomain project that dates back to
1998/1999 [3], and was rebranded as AppArmor after Novell acquired the work in 2005 [3]. The code
extends the Linux kernel to support mandatory access controls (MAC). In 2009 Canonical took over
maintenance and development of AppArmor and the core functionality was accepted into the main Linux
source in kernel version 2.6.36 [3]. AppArmor uses the Linux Security Module (LSM) interface [11].

AppArmor places restrictions on resources that individual applications can access, which defines the
“AppArmor policy” for the program. These controls include access to files, Linux capabilities, network
resources and resource limits (rlimits) [4]. The program profiles are path-based. The system is intented to
have a lower learning curve than some other security tools. This is in part due to a “learning mode” where
policy offenses are logged to help identify the behavior of the program [4]. These learned elements can
then be added to the restrictions (“enforced mode”) or ignored depending on the security objectives. The
intent is to reduce the overhead in developing the security policies for a platform. The various releases and
re-packaged versions of AppArmor also include additional policy defaults for standard services, e.g., ntpd.

AppArmor is available on many modern Linux distributions, e.g., Debian, openSUSE, Ubuntu. Note,
there does not appear to be direct support for AppArmor in the lastest Red Hat release (RHEL7) but the
RPMS from openSUSE may be usable. AppArmor has also been integrated with libvirt [2] to provide
another security backend for the sVirt framework.

3.3.4 Capabilities

Linux capabilities were introduced in version 2.2 as a mechanism for dividing up the privileges of the
root user into distinct units [9]. As of Linux 3.17 the kernel has 37 such units. A thread posseses capability
bounding sets which are subsets of the 37 capabilities, one is the effective set, which is used for permission
checking by the kernel. Particular capabilities can be individually added or dropped using the capset()
syscall. For example, a process just needing to modify the kernel’s logging behavior (e.g. clear the ring
buffer), could have all other capabilities dropped except for CAP_SYSLOG. This is an example of a
narrowly-scoped capability that can be granted with a low likelihood of allowing that process to escalate to
full root privileges. However, another capability CAP_SYS_ADMIN accounts for over 30% of all uses of
capabilities within the 3.2 kernel [9]. The implication is that CAP_SYS_ADMIN has become the catchall
for privileged operations in the kernel and due to legitimate privilege escalation vectors, it is no better at
limiting the scope of privilege than the full set of capabilities. Some other examples that can lead to
privilege escalation when given to a process unconstrained by kernel namespaces are
CAP_SYS_MODULE, CAP_SYS_RAWIO, CAP_SYS_PTRACE, CAP_CHOWN [44] The first one
would allow arbitrary code to be loaded as a kernel module, and the second one would allow processes to
directly control system devices. Interestingly, only the first two are removed from capability bounding set
granted to a Docker container by default. Namespace and chroot isolation mechanisms limit the attack
surface and in the last two, the isolation prevents specific root escalation vectors. The capability
CAP_SYS_PTRACE allows a process to control the execution of another through the ptrace() syscall, but

18

when constrained to a pid namespace, the processes which can be traced are very few. Likewise, from
within a chroot environment, the CAP_CHOWN capability (as root) allows the files to have ownership bits
changed within the chroot but sensitive files like /etc/passwd on the host are not accessible. However, in the
last example, additional isolation techniques, such user namespaces are needed to prevent a chroot
breakout. So even though capabilities distinguish units of root privileges, dropping capabilities must be
combined with other isolation techniques to prevent a process from expanding its effective capabilities
beyond what was granted.

3.4 Management Platforms

This section primarily addresses the “practicality factor” of the virtualization technologies evaluated in
this work. As virtualization technologies enable the portability and lifecycle management (save/start/stop)
of user-customizable secure computing environments, tools that operate at a higher level of abstrction
become necessary to facilitate rapid deployment and management of resources. Should it be desirable, they
allow for compute resources to be instantiated without privilege on the physical hardware they are
deployed on. We believe OpenStack may be a string option for managing both VMs and VEs. Since
OS-level virtualization doesn’t necessarily involve a hypervisor, an alternative would be to manage VE
hosts through standalone configuration management tools such as Puppet. Also entering into the VE
management picture is a new project called LXD. The following section is a brief overview of the
management platforms that we are evaluating for improving the “practicality factor” of the virtualization
mechanisms employed to meet our goal of a customizable secure compute platform.

3.4.1 OpenStack

OpenStack is an open-source cloud framework primarily aimed at deployed private cloud platforms.
Numerous sub-projects are each responsive for providing services to the OpenStack cloud. For example the
neutron project provides the networking services, where the nova project provides the computing
resources. Each project has an API for admins or tenants to interact with. Only a subset of the OpenStack
projects apply to the use case in this work and each component can be configured to meet specific customer
demands. For instance, neutron has several plugins for providing different types of network services (e.g.
vlan, flat, gre). We are interested in using the plugins that facilitate isolation through various mechanisms,
including VLANs, and SDN plugins that allow the configuration of network devices to be automated.

Our use case of a multi-tenant cloud, providing system-level or OS-level customizable computing
platforms, while supporting separate platform and infrastructure admins fits well within the OpenStack
framework. Over the coming months we will be exploring the use of OpenStack with regard to how it
works with the secure customizable compute platforms that are the subject of this repot.

OpenStack deployments typically allow users to log into a web-based dashboard to view and manage
tenant-specific resources, or alternatively allow them to authenticate with API’s providing similar
functionality. From the dashboard, a user can launch an instance selecting from a list of available images,
and upon successfully deployment, view the IP address that can be used to SSH to the deployed VE or VM.
Resource limits such as the number of instances or CPUs, or GB of memory that can be used are specified
per-tenant. In summary OpenStack provides significant ease of use benefits to both types of administrators,
but it also expands the functionality exposed to tenants who are unprivileged on the actual hosts providing
either VE or VM compute resources.

19

3.4.2 Puppet

As a very flexible and full-featured configuration management system, Puppet [27] can be a useful tool
for an automated infrastructure deployment. In the test bed, Puppet was used to initially configure the
RHEL 7 VM or VE hosts. In the typical deployment scenario there were one-time tasks first run by the
infrastructure admin, before the system is accessible by other users. After the initial run, Puppet can be run
via an agent process in the bacground to periodically sync configurations. The agent ensured consistency
across the various machines in a deployment. Beyond use by infrastructure admins, Puppet could also be
employed to configure tenant VMs or VEs based on templates. An option for further customization by
tenants could be to set up a separate version-controlled repository per-tenant. When Puppet runs on the
VMs or VEs, it would use the configuration parameters and templates from the committed repository. This
achieves a high standard of consistency and reproducibility where a VM or VE that fails can easily be
recreated from the data in configuration management. This model works well for infrastructure admins
who have a large number of systems to manage and complex configuration requirements. However, the
check-in and Puppet agent model can be a burden for tenants to keep up with, where configured
environments might only be serving a temporary purpose.

An alternative to periodic runs of configuration management is to leverage virtualization feautures such
as snapshotting to save the changes to the base image to persistent storage. This is a common feature for
system-level virtualization technologies, but further testing is needed with OS-level virtualization to
explore tools such as CRUI [13] when used with LXC. This tool would provide the means for live
migration of containers between physical hosts. A hybrid approach to this problem is likely where Puppet
is used for infrastructure administration, while tenant configuration may rely on other higher level tools.

3.4.3 LXD

LXD [33] was recently announced in November 2014 as a project that may fill the gap for
container-based virtualization and where cloud management tools sit today. It promises a management
platform for unprivileged containers making use of user namespaces, AppArmor, and seccomp by default.
Other feautres typically only found in VM hypervisors are support for live-migration and snapshotting. The
latter of which comes from LXC’s prior integration with the CRIU tool. Additional features promised are
improved networking options beyond NAT or bridging modes and REST API-based image storage. The
development effort is backed by Canonical and the first project code has been posted but it is evident that
signficant development remains before this tool is operationally ready.

Regarding future OpenStack integration for LXD, a driver for Nova called nova-compute-lxd will be
developed to interface between the Nova API and the LXD API. It will bear a strong resemblence to an
existing project nova-compute-flex that can create VEs with user namespaces on an OpenStack cloud
today. Our evaluation efforts in the short term in this area will be using nova-compute-flex while we wait
for LXD to mature.

20

Chapter 4

Evaluation

4.1 User namespaces

From our review of prevalent virtualization technologies, which we have discussed in Chapter 3 above,
we observed that user namespaces have a unique benefit with respect to VEs and multi-tenant shared
filesystems. The existence of a kernel-enforced isolation mechanism between the user mappings on the
host and guest meant that the root user could be prevented from gaining access to certain areas of the
filesystem. Since a shared filesystem client, typically sits in kernel-space where it handles VFS calls it
implicitly trusts the supplied UID and GID, as that of an authenticated user. However, the root user local to
that machine is capable of supplying an UID or GID with a POSIX system calls (e.g. read(), write(),
stat()), so there are no mechanisms preventing root from accessing any users data on the filesystem.
Root-squash techniques limit the power of the actual root user, but they are powerless to distinguish
between a real user and root posing as that user.

However, with the introduction of the user namespace abstraction, root in the VE is a new level in the
privilege hierarchy where the filesystem client can be protected behind UID and GID mapping where root
in the container is just a normal user on the host. With respect to the security of a shared filesystem, the
consequence of allowing the end-user to have root credentials within the container is no different than
granting them an unprivileged user account on the filesystem. A container root user can be restricted to a
separate view of the shared filesystem as defined by POSIX file and directory permissions (also referred to
as a filesystem namespace).

4.1.1 Shared-storage use case

Building on the technical feasibility of securely isolating the filesystem namespace that a container
may access, we are evaluating the use of customizable VEs (containers) accessing these isolated segments
of two parallel distributed filesystes, Lustre and GPFS. Security is achieved through a combination of
filesystem namespace isolation, and existing POSIX permission-based access controls. For a
proof-of-concept demonstration, we used a single node in our test bed infrastructure running Red Hat
Linux version 7 for the host OS, and a LXC container as the VE guest, also running Red Hat Linux 7. Red
Hat disables user namespace support by default, so a 3.13.11 kernel was built with user namespaces
enabled and additional upstream patches for supporting unprivileged user namespaces. Shadow-utils 4.2
was used instead of the Red Hat-provided version to include new features relating to user namespaces.
Specifically, 4.2 enabled the host’s root user to control of the allowed UID/GID mappings with usermod

21

utility or the /etc/subuid and /etc/subgid files. While the kernel and shadow-utils version were not the Red
Hat-provided versions, there is precedent in other distributions, namely Ubuntu to support these features
out of the box. A last important requirement for this proof-of-concept that is relevant in a production
deployment was centralized LDAP for consistent UIDs between the RHEL7 host OS and Lustre servers.
LDAP is not a requirement in the VE guest for shared storage isolation.

On the Lustre side, the server was KVM-virtualized for rapid deployment running Lustre 2.5 on Red
Hat Linux 6. Work is currently underway to migrate the filesystem to dedicated hardware and storage
controllers in the testbed to facilitate performance evaluations. The RHEL7 host ran a Lustre 2.6 client,
which is installed as a kernel module and activated with the mount command. The mount command below
run as root mounts the filesystem at /lustre by initiated a TCP connection to the Lustre MGS server. This
environment uses the TCP lustre networking driver instead of the InfiniBand driver.

mount -t lustre 192.168.122.5@tcp:/lustre /lustre/

When /lustre is viewed on the host by an unprivileged user alice, the directory ownership is dictated by
the LDAP server. Three users on the host: alice, bob, and root have three directories each, with user, group,
and world writable bits set.

[alice@or-c45 lustre]$ ls -l
total 36
drwxrwx--- 3 alice users 4096 Oct 14 09:23 alice-group
drwx------ 3 alice users 4096 Oct 14 09:24 alice-user
drwxrwxrwx 3 alice users 4096 Oct 14 08:27 alice-world
drwxrwx--- 3 bob users 4096 Oct 14 08:28 bob-group
drwx------ 2 bob users 4096 Oct 14 08:23 bob-user
drwxrwxrwx 3 bob users 4096 Oct 14 08:28 bob-world
drwxrwx--- 2 root root 4096 Oct 14 08:15 root-group
drwx------ 2 root root 4096 Oct 14 08:15 root-user
drwxrwxrwx 3 root root 4096 Oct 14 08:27 root-world

This is the typical case where a cluster compute node has the filesystem mounted where any user can
access files as the ownership and permissions settings allow. Both alice and bob can access directories
owned by themselves, where access to the other directories depends on whether the group r/w/x bits are set
and whether they are a group owning the directory. For this example, note that alice can access root-world,
bob-world, and bob-group, but not root-user, root-group, or bob-user. Next we will expose this Lustre
filesystem through to an LXC container by bind-mounting it to a path that the container has access to.

Since the container runs in a chroot inside the host’s global directory hierarchy, the host han access the
container’s filesystem. As such it can perform a mount command on behalf of the container, where the
mount point is relative to the host’s directory structure. The command below will cause /lustre on the host
to be bind-mounted in the container at emph/lustre on startup.

lxc.mount.entry=/lustre \
/home/alice/.local/share/lxc/lxc_lustre/rootfs/lustre \
none defaults,bind 0 0

The new user namespace will attempt to set its mappings on startup, but the host kernel will consult
the /etc/subuid and /etc/subgid files to see that the requested mappings are allowed. Since those files are on

22

the host filesystem and managed by the host root user, they are trusted. In this demonstration, we want to
allow alice to map her own UID 6000. The mapping also allows 65533 continguos other UIDs starting at
100000 on the host. Since UID 100000 and above on the host are unprivileged, all of the allowed mappings
within the container will be unprivileged as well. Bob’s UID is excluded from this list, so his UID cannot
be mapped into the container. /etc/subuid:

alice:100000:65533
alice:6000:1

The file /etc/sugid is configured in an analogous way, except the users group has GID 100:

alice:100000:65533
alice:100:1

LXC needs to be aware of the allowed mapping as well. This makes up what the container will attempt
to write to /proc/CONTAINER_PID/uid_map and /proc/CONTAINER_PID/gid_map on startup. The kernel
consults /etc/subuid and /etc/subgid and the write will succeed since the mappings were defined above.

lxc.id_map = u 0 6000 1
lxc.id_map = g 0 100 1
lxc.id_map = u 1 100000 65534
lxc.id_map = g 1 100000 65534

To allow a specific user to modify the cgroups for the container, the following scriptable commands
were needed:

for controller in /sys/fs/cgroup/*; do
sudo mkdir -p $controller/$USER/lxc
sudo chown -R $USER $controller/$USER
echo $$ > $controller/$USER/lxc/tasks

done

After starting the container with lxc-start –name lxc_lustre and and gaining a prompt either with
lxc-attach –name lxc_lustre /bin/bash or ssh, the expected mappings are visible in
/proc/CONTAINER_PID/uid_map and /proc/CONTAINER_PID/gid_map:

[root@lxc_lustre lustre]# cat /proc/1299/uid_map
0 6000 1
1 100000 65533

[root@lxc_lustre lustre]# cat /proc/1299/gid_map
0 100 1
1 100000 65533

[root@lxc_lustre lustre]#ls -l
total 36
drwxrwx--- 3 root root 4096 Oct 14 08:27 alice-group
drwx------ 3 root root 4096 Oct 14 08:27 alice-user
drwxrwxrwx 3 root root 4096 Oct 14 08:27 alice-world
drwxrwx--- 2 65534 65534 4096 Oct 14 08:15 root-group

23

drwx------ 2 65534 65534 4096 Oct 14 08:15 root-user
drwxrwxrwx 3 65534 65534 4096 Oct 14 08:27 root-world
drwxrwx--- 3 65534 root 4096 Oct 14 08:28 bob-group
drwx------ 2 65534 root 4096 Oct 14 08:23 bob-user
drwxrwxrwx 3 65534 root 4096 Oct 14 08:28 bob-world

The output from ls confirm that alice’s UID of 6000 was mapped to 0 (root) on the host and GID 100
(users) was mapped to the root group. Notice how unmapped UIDs and GIDs become 65534 inside the
user namespace, which is UIDMAX. While user 65534 can have a name assigned to it (e.g. nfsnobody),
it has no real permissions on the system. This prevents alice from being able to access root-user even if she
maps 65534 within the container or sets her effective UID to 65534 (this is allowed since she has root
privileges within the container).

We next attempt to perform some filesystem operations from within the container to directories on the
bind-mount:

[root@lxc_lustre lustre]# mkdir root-world/test
[root@lxc_lustre lustre]# ls -l root-world/
total 4
drwxr-xr-x 2 root root 4096 Oct 14 09:24 test
[root@lxc_lustre lustre]#mkdir root-group/test
mkdir: cannot create directory ‘root-group/test’: Permission denied
[root@lxc_lustre lustre]# ls -l bob-group/
total 4
drwxr-xr-x 2 root root 4096 Oct 14 08:28 test
[root@lxc_lustre lustre]# chown root bob-group/
chown: changing ownership of ‘bob-group/’: Operation not permitted

We can see that alice can create a directory in root-world since it has the ’other’ w bit set. However,
creating the directory /lustre/root-group/test is disallowed because even though alice is a member of the
group root in the container, she is not a member of root on the host, which is GID 65534 in the container.
Also note how the group for bob-user, bob-group, and bob-test is root within the container and alice can
read files in bob-group. This means bob can share files with alice even as alice accesses the directories
from within the user namespace. Attempts to change ownerships of bob’s directories fail, because the
host kernel will map root within the container to alice’s UID of 6000 and the Lustre filesystem will not
allow UID 6000 to change directories owned by UID 3000 (bob).

Since the check whether a particular UID is allowed to access or change a file are done on the Lustre
server, it must be the case that Lustre is only supplied with UIDs from a trusted source. The host kernel,
running the Lustre client kernel module is trusted, but alice’s container is not. Since user namespaces
ensure that the UIDs from the container are mapped to allowed UIDs before being sent to the Lustre client,
the Lustre server can trust the supplied UID. In the absence of user namespaces, since the host must be
trusted, it was not possible to give tenants root access to a customized compute environment with similarly
configured shared filesystems.

24

4.2 HPCCG

4.2.1 Description

We performed a set of tests using the High-Performance Computing Conjugate Gradient (HPCCG)
benchmark to establish baseline performance for basic application execution. The tests gather data from
execution of the benchmark on the Native (host) machine, and when run under Docker and KVM.

HPCCG was developed by Michael Heroux from Sandia National Laboratories and is included in the
Mantevo mini-apps [34]. The code is written in C++ and support serial and parallel (MPI & OpenMP)
execution. The benchmark performs an iterative refinement until reaching a solution within a given
threshold, or until a maximum number of iterations are performed.

This application is relevant for high-performance computing (HPC) from a few perspectives. Firstly, it
provides use case for metrics regarding application memory and compute usage. Also, previous studies
have found iterative algorithms to be resilient to some errors [8], possibly at the cost of taking longer to
converge on an appropriate value, which is relevant for HPC resilience purposes. Additionally, the HPCCG
benchmark has been identified as a more representative metric for current scientific applications and was
identified by Heroux and Dongarra as a candidate alternative metric for future Top 500 indexes [22].

4.2.2 Setup

The software configuration for the test used HPCCG v1.0 compiled with the GNU g++ v4.8.2
compiler. The host and guest Linux kernel was the same (version 3.10.0-123.8.1.el7.x86_64), with the host
(Native) running Red Hat Enterprise Linux (RHEL) v7.0 and the guests running CentOS v7.0 (free
alternative that is binary compatible with RHEL v7.0). The parallel tests used Open MPI version 1.6.4 that
is shipped with CentOS v7.

The tests were done on the project’s testbed at ORNL1. The machines have dual Intel(R) Xeon(R) CPU
E5-2650 processors running at 2.8 GHz, with 32 cores and a total of 65 GiB of physical memory per node.
The virtualization based tests used KVM v1.5.3-60.el7_0.7 with the VM allocated resources fixed at 31
CPUs and 48G of memory. The VE tests used Docker v0.11.1-22.el7 configured with libcontainer and the
VE was allocated resources fixed at 31 CPUs and 48G of memory.

HPCCG accepts three parameters that define the dimensions for the problem, nx, ny, and nz. The
serial tests were run using nx = ny = nz = N for increasing values of N up to the max memory
available2. The parallel tests were run using the same dimensions, which results in a larger overal problem
size based on the number processors used, i.e., overall problem size is nx ∗ ny ∗ (NumProcs ∗ nz) [34].
The parallel tests used two nodes (NumProcs = 2) with one VM (VE) per node. The tests were run with
max_iterations=150 and tolerance=0.0, which results in all tests running to the maximum
number of iterations every time. The benchmark was run 20 times, with dimensions of 100, 200, 300, 400,
and 4303, using the loops shown in Figure 4.2 for serial and parallel (MPI) tests, respectively. The output
from a serial run of the benchmark is shown in Figure 4.1, with the Total execution time and Total
MFLOPS highlighted in green.

1For reference purposes, the tests were done on nodes or-c46 and or-c46 of the testbed.
2The max memory was the maximum that would be available in the Native/Docker/KVM configurations such that all could have

the same max, even though our Native tests could have had a bit more memory than that used in VE/VM configurations.
3The selection of N = 430 was emperically determined through testing to see what was max value usable with a single processor

for given memory resources allocated to VE/VM. In parallel case, the increase problem size exceeds the available memory and
results in a max dimension for tests of N = 300.

25

bash:$ time -p ./test_HPCCG 100 100 100!

Initial Residual = 2647.23!

Iteration = 15 Residual = 35.0277!

 …<cut>…!

Iteration = 149 Residual = 7.9949e-21!

Mini-Application Name: hpccg!

Mini-Application Version: 1.0!

Parallelism: !

 MPI not enabled: !

 OpenMP not enabled: !

Dimensions: !

 nx: 100!

 ny: 100!

 nz: 100!

Number of iterations: : 149!

Final residual: : 7.9949e-21!

!

!

!

!

********** Performance Summary (times in sec)
***********: !

Time Summary: !

 Total : 6.28416!

 DDOT : 0.366029!

 WAXPBY : 0.56881!

 SPARSEMV: 5.34828!

FLOPS Summary: !

 Total : 9.536e+09!

 DDOT : 5.96e+08!

 WAXPBY : 8.94e+08!

 SPARSEMV: 8.046e+09!

MFLOPS Summary: !

 Total : 1517.47!

 DDOT : 1628.29!

 WAXPBY : 1571.7!

 SPARSEMV: 1504.41!

real 6.45!

user 6.37!

sys 0.08!

Figure 4.1. Example output from HPCCG benchmark.

1 # Serial test
2 for count in {1..20} ; do
3 for dim in 100 200 300 400 430 ; do
4 time -p ./test_HPCCG $dim $dim $dim
5 done
6 done
7

8 # Parallel test
9 for count in {1..20} ; do

10 for dim in 100 200 300 ; do
11 time -p mpirun -np $numproc --hostfile hosts \
12 ./test_HPCCG.mpi $dim $dim $dim
13 done
14 done

Figure 4.2. Example showing how the HPCCG serial and parallel (MPI) tests were run.

The startup for the VM based test with KVM is shown in Figure 4.3. The startup for the VE based tests
with Docker are shown in Figure 4.4. In the serial case, all tests were run on a single host inside a single
VE. In the parallel test case, a “master” VE was started and is where the mpirun executes and connects to
the “slave” VE(s). The MPI process launch uses SSH to start the remote processes in the “slave” VE(s).
Note, the master and slave VE(s) run on separate hosts and are connected via the 10Gig network.

Notice:
The current data was run using ’sudo’ for KVM and Docker bootstrap, but we plan to run
as a non-privledged user in future to determine if there is any change in performance.

26

1 # Edit 48GiB, 31CPUs
2 sudo virsh edit centos7kvm
3 # Start VM
4 sudo virsh start centos7kvm
5 # Login to vm an run benchmark test
6 ssh centos@<vm_ip_addr>

Figure 4.3. Example showing the commands used for KVM/libvirt VM startup.

1 # -- Single VE for Serial Tests --
2 # Limit to 48GiB, not explicitly restricting Num cpus
3 # Run benchmark test from shell in container
4 sudo docker run -m 48g -t -i naughtont3/centos7cxx /bin/bash
5

6

7 # -- (Part-1) MASTER VE for Parallel Tests --
8 # Limit to 48GiB, not explicitly restricting Num cpus
9 # Run benchmark test from shell in container

10 sudo docker run -m 48g --name master --privileged \
11 -ti -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
12 or-c46.ornl.gov:5000/blakec/centos7cxx-sshd-mpi /bin/bash
13

14 # -- (Part-2) SLAVE VE for Parallel Tests --
15 # Limit to 48GiB, not explicitly restricting Num cpus
16 # Run benchmark test from shell in container
17 sudo docker run -m 48g -d --name slave-1 --privileged \
18 -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
19 or-c46.ornl.gov:5000/blakec/centos7cxx-sshd-mpi

Figure 4.4. Example showing the commands used for Docker VE startup. The serial test runs
in a single VE, while the parallel version run across two VEs (master/slave).

4.2.3 Discussion & Observations

4.2.3.1 HPCCG (serial & parallel)

All results in Figure 4.5 are averaged over 20 runs of HPCCG (serial), e.g., test_HPCCG nx ny
nz. These results are consistent with previous studies that reported roughtly 2-4% overheads in
hypervisor-based virtualization environments. The HPCCG (serial) application execution time & MFLOPS
shown in Figure 4.5, with details in Tables 4.2 & 4.3, reflect this moderate overhead for the VM case and
show near-native performance for the VE case.

As shown in Tables 4.4 & 4.5, the serial tests had more consistent MFLOPS performance (except in 1
instance) with Docker runs of HPCCG (serial) than with Native runs of HPCCG (serial), i.e., lower
standard deviation over 20 runs. (It is currently unclear why this was the case.) However, the actual Docker
vs. Native values were almost the same, with Native achieving slightly better performance (lower Time and
higher MFLOPS).

Table 4.5 also shows that over 20 runs the standard deviation in KVM based execution of
HPCCG (serial) was very high (σ = 15 to σ = 30). Further testing will be needed to determine the cause
of this fluctuation but it may be due to a lack of resource pinning when the benchmark was run. Overall,
the Time tests with HPCCG (serial) showed very consistent values for application runtime over the 20 runs,
with the exception of two instances with KVM (kvm-300 and kvm-400).

While these baselines were for single node (HPCCG serial mode), they provide a basis for future

27

0"

100"

200"

300"

400"

500"

100" 200" 300" 400"

Se
co
nd

s(

Problem(size((N)(
(Dimensions(nx=ny=nz=N)(

Time(Summary:(Total(

Na*ve"

Docker""

KVM"

(a) HPCCG (serial) Time in seconds

1300$

1350$

1400$

1450$

1500$

1550$

100$ 200$ 300$ 400$

M
Fl
op

s'

Problem'size'(N)'
(Dimensions'nx=ny=nz=N)'

MFLOPS'Summary:'Total'

Na*ve$

Docker$$

KVM$

(b) HPCCG (serial) MFLOPS

Figure 4.5. HPCCG (serial) under Native, Docker and KVM at different problem sizes N .

0	

50	

100	

150	

200	

100	 200	 300	

Se
co
nd

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

Time	 Summary:	 Total	

Na)ve	

Docker	 	

KVM	

(a) HPCCG (parallel) Time in seconds

2700	
2750	
2800	
2850	
2900	
2950	
3000	
3050	
3100	

100	 200	 300	

M
Fl
op

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

MFLOPS	 Summary:	 Total	

Na,ve	

Docker	 	

KVM	

(b) HPCCG (parallel) MFLOPS

Figure 4.6. HPCCG (parallel) under Native, Docker and KVM at different problem sizes N .

comparisons later in the project. The near native performance of Docker and fast launch times make it a
very interesting candidate for further tests with workloads that do not require multiple kernels.
Additionally, the tools for Docker launch and execution environment customization show great promise.
The integration of more advanced capabilities, e.g., user namespace isolation, will also enhance the
viability of this approach to virtualization.

We also repeated these tests same tests with a parallel build of HPCCG, which used MPI and two
compute nodes. These HPCCG (parallel) tests were using just two ranks, each on separate hosts/VE/VM.
The HPCCG problem size was varied as with HPCCG (serial) tests up to the maximum available memory.
The parallel version factors in the number of processors (ranks) to scale the problem up accordingly and
therefore the N = 400 case exceeded the available memory for the HPCCG (parallel) tests. The results for
Time and MFlops are shown in Figure 4.6.

4.2.3.2 HPCCG MPI scale-up

In addition to repeating MPI based runs to match the serial HPCCG test we also ran some very small
scale-up tests with HPCCG. While the testbed is still being setup, we had two nodes available so did the
scale-up based on the number of cores-per-node (32). The test includes more variation in the number of
ranks used and illustrates increased number of ranks per node with roughly fixed problem size. The results

28

from these tests are shown in Figure 4.7, which show the average value over 5 runs at each NumProc.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

291	 231	 183	 145	 115	 101	 91	 85	 80	 76	 72	

Se
co
nd

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

Time	 Summary:	 Total	

Na.ve	

Docker	 	

KVM	

(a) Scale-up test with HPCCG MPI Time in seconds

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

291	 231	 183	 145	 115	 101	 91	 85	 80	 76	 72	

M
Fl
op

s	

Problem	 size	 (N)	 with	 MPI	 NumProcs=2	
(Dimensions	 nx=ny=nz=N)	

MFLOPS	 Summary:	 Total	

Na.ve	

Docker	 	

KVM	

(b) Scale-up test with HPCCG MPI MFLOPS

Figure 4.7. MPI scale-up test of HPCCG (parallel) under Native, Docker and KVM with a
problem sized for approximately 50% of 48GiB/per node. (See details in Table 4.6)

The values for N try to keep the problem size at roughly 50% of available memory. The VE and VM
are allocated 48G of memory and the Native system has 64G, so the Native tests are slightly lower
percentage of total memory but it is reasonably close for our purposes. As with the earlier tests, the value
of nx = ny = nz = N and the same number of nodes (2) are used with these tests for a total of 64 cores
(32 per node). The number of ranks used in the tests ranged between 1 to 64 (mpirun -np X ...) to
show scale-up as detailed in Table 4.1. The N value was calculated so that nx ∗ ny ∗ (NumProcs ∗ nz) is
roughly equivelent to 50% (PctMem = 50%) of the memory (TtlMem = 48GiB).

MemPerRank =
TtlMem× PctMem

NumProcs

N =
⌊

3
√
MemPerRank

⌋
For example, with 64 MPI ranks NumProcs = 64, each getting MemPerRank amount of data, we set
the value of the dimension parameter for HPCCG to N = 72, assuming TtlMem ≈ 48G→ 49747160.

388649.68 =
49747160× 0.50

64

72 =
⌊

3
√
388649.68

⌋

29

NumProcs MemPerRank N (dim)
1 24873580.00 291
2 12436790.00 231
4 6218395.00 183
8 3109197.50 145
16 1554598.75 115
24 1036399.17 101
32 777299.38 91
40 621839.50 85
48 518199.58 80
56 444171.07 76
64 388649.69 72

Table 4.1. HPCCG MPI ranks and associated dimension parameter nx = ny = nz = N , and amount
of per-rank memory for problem sized for approximately 50% of 48GiB memory per node.

30

Dimensions Native Docker KVM
100 6.293491 6.304308 6.4892095
200 51.36137 51.43617 52.79015
300 176.93065 177.30215 184.34125
400 412.2705 412.85375 426.21125

Table 4.2. HPCCG (serial) Times in seconds averaged over 20 runs under Native, Docker and KVM
at different problem sizes N (Dimensions N = nx = ny = nz).

Dimensions Native Docker KVM
100 1515.2195 1512.6185 1469.752
200 1485.33 1483.3495 1445.288
300 1455.2405 1452.1705 1397.405
400 1480.3515 1478.2645 1432.4365

Table 4.3. HPCCG (serial) MFLOPS averaged over 20 runs under Native, Docker and KVM at dif-
ferent problem sizes N (Dimensions N = nx = ny = nz).

Dimensions Native Docker KVM
100 0.00931357 0.005463481 0.085735511
200 0.146079607 0.610579775 0.598340949
300 0.751579199 0.31564575 4.333634987
400 0.62727787 0.978753443 8.432111397

Table 4.4. Standard Deviation of HPCCG (serial) Times in seconds averaged over 20 runs under
Native, Docker and KVM at different problem sizes N (Dimensions N = nx = ny = nz). Large
values are highlighted in red.

Dimensions Native Docker KVM
100 2.240769311 1.311653336 18.71753824
200 4.218194924 16.89799536 15.75161232
300 6.168290282 2.584735505 30.945298
400 2.250406455 3.498747859 27.07518737

Table 4.5. Standard Deviation of HPCCG (serial) MFLOPS averaged over 20 runs under Native,
Docker and KVM at different problem sizes N (Dimensions N = nx = ny = nz). Large values are
highlighted in red.

31

4.3 iperf: TCP Bandwidth

4.3.1 Description

We ran basic network performance measurements using the iperf benchmarking / tuning utility [24].
The tests provide data about the Native (host) performance and the comparison when running under Docker
and KVM.

4.3.2 Setup

The tests were limited to the 10GigE interface in the testbed. The tests focused on the TCP bandwidth
between two nodes in the testbed. The tests used iperf version 2.0.5-2 for x86-64. The tests were run as
shown below in Figures 4.8 using the standard client/server setup for to the tool. The The host and guest
Linux kernel was the same (version 3.10.0-123.8.1.el7.x86_64), with the host (Native) running Red Hat
Enterprise Linux (RHEL) v7.0 and the guests running CentOS v7.0. This is the same hardware and
software configuration used for the HPCCG tests discussed in Section 4.2 on page 25.

The virtualization based tests used KVM v1.5.3-60.el7_0.7 with the VM allocated resources fixed at 31
CPUs and 48G of memory. The VE tests used Docker v0.11.1-22.el7 configured with libcontainer and the
VE was allocated resources fixed at 31 CPUs and 48G of memory. The default TCP window size was used
for all tests, which was 95.8 KBytes for the Native and KVM client. The Docker client defaulted to a TCP
window size of 22.5 KBytes, with one exceptional case that defaulted to 49.6 KBytes.

1 # Start server, binding to 10Gig interface
2 [mpiuser@160d5aae2f91 ~]$./iperf_2.0.5-2_amd64 -s -B 10.255.1.10
3

4 # Start client TCP test
5 [mpiuser@160d5aae2f91 .ssh]$./iperf_2.0.5-2_amd64 -c 10.255.1.10

Figure 4.8. Example showing the commands for staring the server and client of iperf test.

4.3.3 Discussion & Observations

The tests were each run 10 times and the averages are shown in Table 4.6. The Native tests achieve
most of the 10GigE bandwith, and Docker achieved near native performance. The KVM configuration did
much worse than Native and Docker, which is an issue we plan to look into further as we proceed with the
networking tasks. This initial testing was simply to gain a baseline for a basic bridged networking
configuration. One possible point for further testing will be to see how the KVM performance changes if
we use a ‘virtio’ interface instead of the ‘e1000’ interfaces. Further details about the KVM configuration
used in this round of testing are given in Appendix B.

Platform Transfer (Gbytes) TCP Bandwidth (Gbits/sec)
Native 11.5 9.89
Docker 10.88 9.331
KVM 3.086 2.651

Table 4.6. Network Bandwidth for TCP tests with iperf between two nodes on the 10GigE interface.

32

Chapter 5

Vulnerability Assessment

5.1 Introduction

This work consists of many components interconnected via some form of interconnect. These
components include secure compute, network, and shared storage. In order to provide isolation for each
user, the scope of the secure compute component will be reviewed to assess the existing vulnerabilities that
are present.

The components that will be evaluated include the Xen hypervisor, the Kernel-based virtual machine
(KVM), Linux containers (LXC), Docker, and a brief examination of the Linux kernel.

5.2 Evaluation

To perform this assessment, we compiled relevant common vulnerabilities and exposures (CVEs) and
characterized these vulnerabilities based on the type of exploit and the different regions of the platform that
are vulnerable to those attacks.

In order to fully clarify the operating model upon which our assessment is based, we made several
assumptions of the environment. The following assumptions were made:

1. Users are allocated resources on a per node basis. Specifically, this assumes that any resources
allocated on a physical node should be given solely to that user. This is a single tenant environment.
By making this assumption, we are restricting the amount of possible attacks by removing denial of
service (DoS) attacks against the hosting node.

2. A user may only access to a VM or VE. In other words, the user should never be given access to the
host directly.

3. The host and the guest will likely be running some version of the Linux kernel. The use of OS level
virtualization solutions forces this assumption to be true as the same kernel must be used on both the
host and guest. However, with the use of system-level virtualization, this assumption may still hold
but it is not necessarily true that both the host and guest will use the same kernel.

These assumptions limit the goals of the attackers to three types: (i) privilege escalation of the attacker,
(ii) unauthorized access to memory and storage including shared storage, and (iii) arbitrary code execution
on the host.

33

Solution Rel. CVEs Privilege Escalation Unauthorized Access Arbitrary Code Exec.
Xen 53 43.4% 37.4% 18.9%

KVM 26 34.6% 23.1% 42.3%
LXC 2 50% 50% 0%

Docker 3 66.7% 33.3% 0%

Table 5.1. Virtualization solutions and their corresponding attack vulnerabilities.

Solution Rel. CVEs x86 Emu. Devices Userspace tools Hardware VMM/Kernel
Xen 53 22.6% 22.6% 20.8% 5.7% 28.3%

KVM 26 7.7% 69.2% 0% 0% 23.1%
LXC 2 0% 0% 50% 0% 50%

Docker 3 0% 0% 100% 0% 0%

Table 5.2. Virtualization solutions and their vulnerabilities’ targeted region of the system.

A very serious type of attack is for the attacker to gain privileges on the host (i.e. type (i)). By doing
this, the attacker can raise their privilege from a normal user to that of a superuser on the system allowing
the installation of malicious software that could allow for long term superuser access (i.e. kernel-level
rootkit). Additionally, the attacker will have the ability to subvert the network isolation provided by
VLANs and may attempt to join other VLANs in order to sniff traffic or perform network-based attacks on
other nodes. Shared-storage systems would also be vulnerable if a system becomes compromised as
described, because the attacker with root privileges can assume any UID on the system. If mechanisms
such as user namespaces, sVirt, 3rd party authentication (e.g. Kerberos), are either not used or subverted,
the attacker is free to access all other users’ data on the shared file system.

Unauthorized access to memory and storage, (ii), is similar to (i) with respect to the violations of
isolation between users and users’ data. This is evident with the ability of the attacker to be able to obtain
sensitive data in memory or on the secondary storage. However, the largest threat of such an attack is to
obtain sensitive information that is stored on the host. With the assumption of a single tenant environment,
the threat is lessened but still present.

In (iii), an attacker may execute arbitrary code on the host machine. Allowing the attacker to perform
such actions could compromise the integrity and trust of the host.

We have isolated our assessment to three areas: system-level virtualization solutions, OS level
solutions, and the host and guest kernels. Within the scope of system-level virtualization, we will be
examining both the Xen hypervisor and KVM. For OS level virtualization, LXC and Docker are assessed
and the Linux kernel is reviewed as it will likely be used for both the host and guest kernel, though not
necessarily the same kernel version for both.

The results of this analysis are summarized in Table 5.1 and Table 5.2.

5.2.1 System-level Virtualization

Within the scope of system-level virtualization, we will be performing a vulnerability assessment on
two solutions: (i) Xen and (ii) KVM. For both of these hypervisors, we will characterize the potential
attacks based on the region of the system targeted to perform the exploit, the type of exploit (i.e., the three
types listed prior), and the operating dependency for the Xen hypervisor (e.g., an attack that is only

34

successful when using full virtualization rather than para-virtualization). The regions of the systems that
may be potentially targeted include the emulation of the x86 and AMD64 platforms, any emulated devices
available for use by the VM including para-virtualized devices, user-level tools and libraries, the hypervisor
and hypervisor related libraries, and the underlying hardware architecture.

5.2.1.1 The Xen Hypervisor

The Xen hypervisor [5] has been available for use from 2003 to present with versions 3.4 and 4.2-4.4
currently supported. The version limitation has restricted our assessment only to the these versions. While
this does not include the full lifespan of the Xen hypervisor, it is sufficient to obtain a reasonable, modern
assessment.

We have found that there are 124 total CVEs with respect to Xen. However, after limiting these CVEs
based on our assumptions, this reduces the amount of valid CVEs to 53. Of these CVEs, almost an
identical amount are based on Xen operating in either full virtualization, known as HVM, or
para-virtualization with full virtualization required for 28.3% of the CVEs and para-virtualization required
for 24.5%. The remaining CVEs had no specific operating dependency.

Privilege escalation provides for 43.4% of the CVEs for the Xen hypervisor. The attacks are present for
privilege escalation of both unprivileged and privileged users in the guest environment with the escalation
resulting in the potential to escape from the VM and access the host. Unauthorized access to memory or
storage accounts for 37.7% of the CVEs suggesting that both privilege escalation and unauthorized access
to sensitive information will be the primary attacks used in future zero-day exploits for Xen.

The regions of the systems that are targeted for these CVEs are primarily related to the hypervisor or
hypervisor-level tools with 28.3%. Both the platform emulation and emulated devices are next with 22.6%
each. User-level tools make up 20.8% of the CVEs and hardware related regions having the smallest
amount with 5.7%. These results suggest that the regions of the system that require protection from future
exploits are varied and not easily hardened with external mechanisms such as Xen’s Xen security module
(XSM), which implements a protection mechanism much like SELinux.

It should be noted that the CVEs we examined specific to Xen have all been fixed.

5.2.1.2 KVM

The KVM hypervisor [26] is a relatively new hypervisor in comparison to Xen and takes a more
traditional approach to performing full system-level virtualization (i.e. trap-and-emulate style). Because it
is only performing full system-level virtualization, the complexity of the hypervisor is less than that of Xen
and it is evident with respect to this assessment.

Currently, there are 26 CVEs matching our assumptions related to KVM or the user-level supporting
tools known as QEMU, which is used for VM initialization as well as device emulation. Of these CVEs,
there was a relatively even distribution of CVEs among the three types of attacks we are focusing on for
this work. Arbitrary code execution has the largest proportion of CVEs with 42.3% and privilege escalation
accounting for 34.6%. Unauthorized memory access had a total of 23.1% of the CVEs.

There are only three regions of the system that have vulnerabilities. Device emulation and
implementation errors within the hypervisor itself consume a combined 92.3% of the CVEs, while x86 and
AMD64 emulation consume the rest.

These types of vulnerabilities and regions of the system effected suggest that the simplistic
implementation of KVM provides far more benefits with respect to limiting vulnerabilities than Xen’s more
complex implementation. Additionally, many of the vulnerabilities are specific to device emulation, which

35

is handled, primarily, in userspace on the host. This means an attacker would need to perform additional
attacks in order to fully compromise the host.

Like Xen, all of the CVEs listed for KVM have been fixed.

5.2.2 OS level virtualization

With respect to LXC and Docker, both work are inter-related as Docker made use of LXC by default
prior to the 0.9 version where Docker moved to libcontainer as the default virtualization solution. However,
Docker can still make use of LXC rendering all vulnerabilities specific to LXC also potentially affecting
Docker as well.

To evaluate this work, the same categories used in Section 5.2.1 will be applied here. Obviously
changes must be made with respect to the regions of the system that may be exploited due to the different
techniques involved in providing OS level virtualization as apposed to system-level virtualization. Thus,
the categories related to the emulation of the x86 and AMD64 as well as device emulation will be dropped
from this evaluation. However, the regions including userspace tools that leverage LXC (e.g., libvirt),
hardware related, and the kernel.

5.2.2.1 LXC

With respect to LXC, there are few vulnerabilities as compared to the system-level virtualization
approaches. Currently, there are four CVEs specific to LXC, i.e. CVE-2011-4080, CVE-2013-6436,
CVE-2013-6441, and CVE-2013-6456. However, due to the single tenant environment, CVE-2013-6436
should not be considered as exploiting this vulnerability will result in a DoS attack. Likewise,
CVE-2013-6456 is not a vulnerability within LXC but within Libvirt, which may be used to create VEs.
Because the attacker would need access to the host, we are excluding this vulnerability from analysis.

In CVE-2011-4080, there was a logical implementation error with respect to permissions to read the
kernel’s ring buffer (i.e., dmesg). The error dealt with the dmesg_restrict system call that, when set
to 0 allows unprivileged users to perform dmesg. When the system call is set to 1, the user must have the
CAP_SYS_ADMIN capability set in order to perform dmesg. The vulnerability occurs when a
unprivileged user becomes root within the container. At this point, the user is able to perform the
dmesg_restrict system call and set it to 0 allowing the unprivileged view of the system log. This
vulnerability has since been fixed.

The CVE-2013-6441 vulnerability is not actually related to the implementation of LXC, but to a
template used by LXC to assist in the building of a VE. Templates are simply scripts used to build VEs.
This template is the lxc-sshd.in template and the issue is during VE creation, the script performs a
bind mount of the host’s /sbin/init executable with r/w permission inside the guest. A malicious user
could modify or replace the host’s init with their own and escalate privilege by creating another guest
that uses this template. Oddly, the vulnerability is not fixed in all distributions of Linux, though it only
affects LXC versions prior to 1.0.0.beta2 and can be fixed by modifying one line of the template.

5.2.2.2 Docker

There are three vulnerabilities specific to Docker. These vulnerabilities include CVE-2014-3499,
CVE-2014-5277, and vulnerability that was not assigned a CVE number.

CVE-2014-3499 is specific to version 1.0.0 of Docker. In this vulnerability, Docker failed to assign the
correct permissions to the management sockets allowing them to be read or written by any user. This could

36

allow a user to take control of the Docker service and its privilege. This vulnerability was has since been
fixed.

The vulnerability described by CVE-2014-5277 is specific to a fallback from HTTPS to HTTP if an
attempt to connect to the Docker registry fails. This presents the possibility for an attacker to force the
Docker engine to fallback to HTTP if a man-in-the-middle attack was used. Because HTTP is used rather
than HTTPS, unauthorized access to any information sent over the network will occur. In the worst case,
authentication information may be leaked due to an exploit of this vulnerability. This vulnerability was
fixed in Docker version 1.3.1.

The unassigned vulnerability effects Docker versions 0.11 and prior. In these versions, Docker failed to
restrict all kernel capabilities to the guest and instead only restricted a specific set of capabilities. This
could allow a malicious guest to walk the host file system by opening inode 2, which always refers to the
root file system on the host. This was fixed in version 0.12.

5.2.3 The Linux Kernel

The Linux kernel is present in some form for all of the system-level and OS level virtualization
solutions. Currently, the Linux kernel is known to have as many as 1199 CVEs from 1999 to present. Of
these CVEs, 33.1% consist of the three types of attacks we have presented above with the majority of these
related to the unprivileged access to memory and storage. The Linux kernel also contains a significant
attack vector with as many as 339 system calls as of the Linux 3.17 kernel. This is in addition to many
more kernel modules and subsystems with interfaces open to userspace.

5.3 Recommendations

From the assessment that was performed, there are conclusions that may be made. First, system-level
virtualization solutions are more vulnerable than OS level virtualization solutions. Another conclusion that
can be made focuses on the isolation of the majority of vulnerabilities to specific regions of the system.
Based on these conclusions recommendations will be made for the possible design of a secure compute
environment.

As stated prior, system-level virtualization solutions have many more vulnerabilities than OS level
virtualization solutions. Based on the results of Section 5.2.1, this is likely due to the complexity of the
implementation necessary to perform safe virtualization of the underlying architecture as well as the
multiplexing of hardware through emulated devices. However, many of the vulnerabilities for KVM are
due to emulated devices, which reside in userspace. Based on this, a recommendation for this work is to
make use of a mechanism such as sVirt if system-level virtualization is used. The use of sVirt may limit the
damage from the exploit of these vulnerabilities.

The majority of vulnerabilities for KVM, LXC, and Docker are in specific regions of the system. This
is important because future zero-day vulnerabilities will likely be in the same regions. For KVM, the
vulnerabilities are primarily found in device emulation. LXC and Docker primarily have vulnerabilities in
userspace tools or scripts. The protection of these areas can simplify the protection of the host and maintain
the isolation between users. It is recommended that these solutions be used to provide the virtualization
layer for this work.

37

Chapter 6

Conclusion

6.1 Synopsis

The customization of multi-tenant environments is directly influenced by the underlying isolation
mechanisms used to limit access and maintain control of the computing environment. In this report we
reviewed terminology and relevant technologies, which helps to elucidate the topic of secure compute
customization.

A brief review of relevant security classifications is discussed in Section 2.2. This was followed by a
review of virtualization classifications in Section 2.3, which detailed the different types of OS-level and
system-level virtualization. The main distinction between different virtualization technologies, which is
used throughout the report, has to do with the degree of integration with a host kernel. The terms virtual
environment (VE) and virtual machine (VM) are used to distinguish between container-based (single
kernel) and hypervisor-based (multiple kernel) virtualization.

In Section 3, we reviewed current operating system protection mechanisms and virtualization
technologies that provide the basis for customizable environments. This included various OS-level
mechanisms like namespaces, cgroups and LXC/Docker. This was followed by a review of two
hypervisor-based solutions Xen (type-I hypervisor) and KVM (type-II hypervisor). This included details
about kernel versions when various capabilities were introduced, which provides information about
dependencies when choosing different solutions for deployment. Security mechanisms and virtualization
were discussed in Section 3.3, which included information on the sVirt framework that enhances the libvirt
virtualization interface to support a security framework. The currently supported sVirt backends, SELinux
and AppArmor are also described. This section finishes with a review of Linux Capabilities in
Section 3.3.4.

The evaluations that have been carried out thus far in the project are described in Section 4. The first
(Section 4.1) focuses on experiments using the Linux user namespace to differentiate guest/host user
contexts and provide different access rights accordingly. The next evaluation (Section 4.2) provided a
baseline for running a scientific application under native and virtualized settings. This included numbers
for the HPCCG benchmark run natively and on Docker and KVM. Finally, in Section 5 we analyzed
several current virtualization solutions to assess their vulnerabilities. This included a review of common
vulnerabilities and exposures (CVEs) for Xen, KVM, LXC and Docker to gauge their susceptibility to
different attacks.

38

6.2 Observations

We will now briefly discuss observations that were made as a result of this review. The intent is to
briefly summarize, or highlight, important points that may be useful for realizing user-customizable secure
computing environments.

6.2.1 Vulnerability Assessment

Based on the vulnerability assessment, system-level virtualization solutions have many more
vulnerabilities than OS-level virtualization solutions. As such, we recommend that sVirt be used with
system-level virtualization solutions in order protect the host against exploits. Also, the majority of
vulnerabilities related to KVM, LXC, and Docker are in specific regions of the system. Therefore, future
zero-day attacks are likely to be in the same regions. Also, protecting these areas can simplify the
protection of the host and maintain the isolation between users.

6.2.2 Initial Benchmarks

Our testing verified prior studies showing roughly 2-4% overheads in application execution time &
MFLOPS when running in hypervisor-based virtualization environment as compared to native execution.
We observed near-native application performance (time & MFLOPS) when running under container-based
virtualization as compared to native execution. Also, we observed more consistent MFLOPS performance
(except in 1 instance) with Docker runs of HPCCG than with Native runs of HPCCG, i.e., lower standard
deviation over 20 runs, which is currently unexplained. However, the actual Docker vs. Native values were
mostly the same, with Native achieving slightly better performance (lower Time, higher MFLOPS).

The standard deviation (over 20 runs) of HPCCG running on KVM was very high (σ = 15 to σ = 30).
This may be due to a lack of resource pinning (e.g., CPU pinning), but further tests will be needed to
confirm this suggestion. Regarding Time tests with HPCCG, all runs except two with KVM (kvm-300 and
kvm-400) had very consistent values over the 20 runs, i.e., low standard deviation in Time in seconds for
HPCCG runtime.

6.2.3 User namespaces

We identified Linux namespaces as a promising mechanism to isolate shared resources. This includes
the most recent kernel additions (Linux ≥ 3.13) that include the user namespace, which was evaluated in
Section 4.1 to support shared-storage isolation. Those experiments confirmed that different UIDs could be
mapped between the guest/host environments when accessing shared resources. The near-native
performance results of HPCCG running in a Docker-based container, which uses namespaces to implement
the isolation, is another reason we believe this to be an interesting avenue to pursue for secure compute
customization.

Since user namespaces is a very recent addition to the kernel, its use cases are still evolving and
higher-level tools like Docker are still working on formalizing an interface for users. The flexibility of user
mappings is almost entirely inherited by LXC, but this interface used in the evaluation in Section 4.1 is still
cumbersome and prone to mistakes. Discussions amongst developers engaged in the effort to bring user
namespaces to Docker have converged on a model where a single username docker-root is designated to be
always mapped to root within the container. Other users (besides root on the host) will be mapped
one-to-one inside the container. This approach was taken in order to speculatively meet general user

39

requirements, but it will not work for customizable computing environments where only a small subset of
host users should be mapped into the VE. Otherwise, docker-root would be able to modify the files of all of
those users. The second problem is with docker-root being shared between containers that access a
shared-filesystem. If the chroot’ed environments of VEs overlap, then docker-root on one VE may be able
to interfere with docker-root on the other container. If they could replace files with malicious binaries, and
then convince the victim docker-root to run the binaries, they would then be able to access files of all users
on the victim’s VE.

LXD is a new open source project with the support of Canonical titled the “Linux Container Daemon”
and and will provide an API for managing LXC containers with user namespaces enabled by default [33].
However, like Docker, it takes a simplified approach to the mappings, at least initially. It will only support
a single contiguous range of users mapped into the container (e.g. UID 100000 on host maps to UID 0 in
the container and UID 165534 maps to UID 65534 in the container).

For the use case presented in this work, we would desire the flexibility offered by bare LXC containers
to set up (1) an unprivileged user on the host to map to root within the container and (2) specific ranges of
UIDs that should be mapped one-to-one. It is possible that this functionality may be added to Docker or
LXD after initial user namespace functionality has been merged.

6.2.4 Security Classifications

Lastly, as a point of clarification we note that based on the security classifications presented in
Section 2.2, the technologies presented in this work belong to the class C1 in their default configuration.
This is because the technologies leverage Linux as their OS and Linux meets the three requirements for
class C1. More clearly, Linux as used in this work by VMs and VEs satisfies these requirements by
(1) using DAC, (2) having users with passwords, and (3) user applications are unprivileged while the kernel
is privileged. For any of the virtualization platforms to be considered of class C2, they would need to both
sanitize objects before use and re-use and provide logging for various actions performed on the system.
Sanitization is an easier problem to solve if the VM or VE is just considering adding a further layer of
isolation, where the VM or VE is not a multi-user environment itself. In this case, the host already ensures
objects are sanitized before re-use by another process. With respect to the B1 classification that requires
use of label-based Mandatory Access Controls, VMs could use SELinux and Audit to meet the
requirements, but SELinux cannot run inside the container. That being said, if the use case is limited to a
single application running within a VE, SELinux can be enabled on the host and sVirt can be used to label
the container’s processes and enforce a MAC policy unique to that VE.

Since RHEL7 was released only in June 2014, and this is the first release where Red Hat has supported
containers, we found mention of one bug in the audit framework and expect several other refinements will
be needed to reach the classifications acquired by RHEL 5 and 6.

6.3 Future Plans

We conclude with a few remarks about plans moving forward and possible avenues for further
investigation. The current benchmarking efforts will continue and provide data to measure the performance
as additional isolation mechanisms are introduced. We will also be performing more parallel application
tests and file-system/storage tests. We have started to investigate prior work in paravirtualized
filesystems (VirtFS) [25]. This looks like a promising approach for providing efficient sharing of host
filesystem mounts with guests, in contrast to network filesystem such as NFS or CIFS. It is implemented

40

using 9p filesystem support in Linux and the VirtIO PCI interface which can support zero-copy operations,
thus reducing inefficiencies from extra copies and packetization for TCP transport. An enhanced security
model offered by VirtFS called “mapped”, stores access credentials in the extended attributes of files that
are stored on disk. The access credentials stored are relative to client-user accessing the file, so different
guest VMs can have completely isolated filesystem views.

There are also indications that the “mapped” VirtFS security model could be used to share a parallel
filesystem mount (e.g. GPFS), but since this relies on a backing filesystem format change by using
extended attributes, this may break compatibility with Lustre. Nonetheless, the security model of VirtFS
with 9p is very interesting and we are interested in investigating how it can isolate shared storage.

Another area that might provide interesting future avenues for investigation is the use of VM recording
to perform security audits. There has been prior work to log all non-deterministic input, allowing execution
replay [16] to aid in forensics and debugging. These capabilities might also be advantageous for performing
audits and even attestation that specific code was executed in [20] user-customizable environments.

Finally, we anticipate that hardware extensions that were added to Intel and AMD processors to
support system-level virtualization with KVM or Xen will be adapted for VE environments as well. Intel
VT-d extensions allow a guest to directly communicate with a PCIe function and thus remove the host’s
networking bridge from the path in VE network connectivity. Also Extended Page Tables (EPT) give a
guest saccess to dedicated physical memory. Research in these areas as applied to VMs are bringing them
closer to OS-level VEs to capitalize on the ability to access virtualized hardware resources without a KVM
or Xen VMM [43] [29]. A new open-source project LXD is aiming to make use of hardware isolation
capabilities as a hypervisor for LXC containers in addition to bringing management features such as live
migration and OpenStack integration [33].

6.4 Acknowledgements

This work was supported by the United States Department of Defense (DoD) and used resources of the
DoD-HPC Program and the Compute and Data Environment for Science (CADES) at Oak Ridge National
Laboratory.

41

Bibliography

[1] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, September 2007. Publication Number: 24593, Revision: 3.14.

[2] AppArmor Libvirt: Confining virtual machines in libvirt with AppArmor. URL:
http://wiki.apparmor.net/index.php/Libvirt [cited 23-nov-2014].

[3] AppArmor Security Project History. URL:
http://wiki.apparmor.net/index.php/AppArmor_History [cited 30-nov-2014].

[4] AppArmor Security Project Wiki. URL: http://wiki.apparmor.net [cited 29-nov-2014].

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the nineteenth ACM
symposium on Operating System s Principles (SOSP19), pages 164–177. ACM Press, 2003.

[6] Fabrice Bellard. QEMU, A Fast and Portable Dynamic Translator. In USENIX 2005 Annual
Technical Conference, Anaheim, CA, USA, April 2005.

[7] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver Niehörster, and André Brinkmann.
Non-intrusive virtualization management using libvirt. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, pages 574–579, 3001 Leuven, Belgium, Belgium, 2010.
European Design and Automation Association. doi:10.1109/DATE.2010.5457142.

[8] Greg Bronevetsky and Bronis de Supinski. Soft Error Vulnerability of Iterative Linear Algebra
Methods. In Proceedings of the 22nd Annual International Conference on Supercomputing, ICS ’08,
pages 155–164, New York, NY, USA, 2008. ACM. doi:10.1145/1375527.1375552.

[9] CAP_SYS_ADMIN: the new root. URL: http://lwn.net/Articles/486306/ [cited 30-nov-2014].

[10] cgroups: Linux Control Groups Documentation. URL:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt [cited 30-nov-2014].

[11] Crispin Cowan. Securing Linux Applications With AppArmor, August 2007. Presentation at
DEFCON-15 in Las Vegas, NV, August, 2007. URL:
https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-cowan.pdf [cited
30-nov-2014].

[12] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research and
Development, 25(5):483–490, September 1981.

42

http://wiki.apparmor.net/index.php/Libvirt
http://wiki.apparmor.net/index.php/AppArmor_History
http://wiki.apparmor.net
http://dx.doi.org/10.1109/DATE.2010.5457142
http://dx.doi.org/10.1145/1375527.1375552
http://lwn.net/Articles/486306/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-cowan.pdf

[13] CRIU: Checkpoint/Restore In Userspace. URL: http://www.criu.org [cited 29-nov-2014].

[14] Department of Defense. Trusted Computer System Evaluation Criteria. December 1985. Note, also
referred to as the “Orange Book.”.

[15] Docker: An open platform for distributed applications for developers and sysadmins. URL:
https://www.docker.com [cited 05-dec-2014].

[16] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen. Execution
replay of multiprocessor virtual machines. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’08, pages 121–130, New York,
NY, USA, 2008. ACM. URL: http://doi.acm.org/10.1145/1346256.1346273,
doi:10.1145/1346256.1346273.

[17] Renato Figueiredo, Peter A. Dinda, and José Fortes. Resource Virtualization Renaissance (Guest
Editors’ Introduction). IEEE Computer, 38(5):28–31, May 2005.

[18] R. P. Goldberg. Architecture of Virtual Machines. In Proceedings of the workshop on virtual
computer systems, pages 74–112, New York, NY, USA, 1973. ACM Press.
doi:http://doi.acm.org/10.1145/800122.803950.

[19] R. P. Goldberg. Survey of Virtual Machine Research. IEEE Computer, 7(6):34–45, June 1974.

[20] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel. Accountable virtual
machines. In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–16, Berkeley, CA, USA, 2010. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1924943.1924952.

[21] Red Hat. (Whitepaper) KVM - Kernel-based Virtual Machine, September 1, 2008. URL:
http://www.redhat.com/resourcelibrary/whitepapers/doc-kvm [cited 29-nov-2014].

[22] Michael A. Heroux and Jack Dongarra. Toward a New Metric for Ranking High Performance
Computing Systems. Technical Report SAND2013-4744, Sandia National Laboratories, June 2013.
URL: http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf [cited 29-nov-2014].

[23] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K. Panda. A case for high performance
computing with virtual machines. In Proceedings of the 20th International Conference on
Supercomputing (ICS), pages 125–134, New York, NY, USA, 2006. ACM Press.
doi:http://doi.acm.org/10.1145/1183401.1183421.

[24] iperf : A tools to measure network performance. URL: https://iperf.fr [cited 04-dec-2014].

[25] Venkateswararao Jujjuri, Eric Van Hensbergen, Anthony Liguori, and Badari Pulavarty. VirtFS—A
virtualization aware File System pass-through. In Ottawa Linux Symposium, pages 1–14, December
2010.

[26] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: the linux virtual
machine monitor. In OLS ’07: The 2007 Ottawa Linux Symposium, pages 225–230, July 2007.

[27] Puppet Labs. Puppet Documentation Index. URL: https://docs.puppetlabs.com/puppet/ [cited
02-dec-2014].

43

http://www.criu.org
https://www.docker.com
http://doi.acm.org/10.1145/1346256.1346273
http://dx.doi.org/10.1145/1346256.1346273
http://dx.doi.org/http://doi.acm.org/10.1145/800122.803950
http://dl.acm.org/citation.cfm?id=1924943.1924952
http://www.redhat.com/resourcelibrary/whitepapers/doc-kvm
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1183401.1183421
https://iperf.fr
https://docs.puppetlabs.com/puppet/

[28] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei Xia, Patrick Bridges,
Stephen Jaconette, Mike Levenhagen, Ron Brightwell, and Patrick Widener. Palacios and Kitten:
High Performance Operating Systems For Scalable Virtualized and Native Supercomputing.
Technical Report NWU-EECS-09-14, Northwestern University, July 20, 2009. URL:
http://v3vee.org/papers/NWU-EECS-09-14.pdf.

[29] Ye Li, Richard West, and Eric Missimer. A virtualized separation kernel for mixed criticality systems.
In Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’14, pages 201–212, New York, NY, USA, 2014. ACM. URL:
http://doi.acm.org/10.1145/2576195.2576206, doi:10.1145/2576195.2576206.

[30] Linux Kernel-based Virtual Machine (KVM). URL: http://www.linux-kvm.org [cited
29-nov-2014].

[31] Linux VServer project. URL: http://linux-vserver.org [cited 19-nov-2014].

[32] LXC - Linux Containers: Userspace tools for the Linux kernel containment features. URL:
https://linuxcontainers.org [cited 19-nov-2014].

[33] LXD: The Linux Container Daemon. URL: http://www.ubuntu.com/cloud/tools/lxd [cited
30-nov-2014].

[34] Mantevo mini-application downloads. URL: http://www.mantevo.org/packages.php [cited
29-nov-2014].

[35] Peter Mell and Timothy Grance. The NIST definition of cloud computing. Technical Report 800-145,
National Institute of Standards and Technology, September 2011. URL:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf [cited 29-nov-2014].

[36] James Morris. sVirt: Hardening Linux virtualization with mandatory access control, 2009.
Presentation at Linux Conference Australia (LCA). URL:
http://namei.org/presentations/svirt-lca-2009.pdf [cited 23-nov-2014].

[37] OpenStack Security Guide, 2014. This book provides best practices and conceptual information about
securing an OpenStack cloud. URL:
http://docs.openstack.org/security-guide/content/index.html [cited 23-nov-2014].

[38] OpenVZ: Container-based virtualization for Linux. URL: http://www.openvz.org [cited
19-nov-2014].

[39] Red Hat. Red Hat Enterprise Linux 7 Resource Management and Linux Containers Guide, 2014.
URL: http://goo.gl/Y4rB5D [cited 30-nov-2014].

[40] Rusty Russell. virtio: Towards a de-facto standard for virtual I/O devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103, July 2008. doi:10.1145/1400097.1400108.

[41] SELinux: Security Enhanced Linux. URL: http://selinuxproject.org [cited 29-nov-2014].

[42] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and Jay Lepreau. The
Flask security architecture: System support for diverse security policies. In Proceedings of the 8th
Conference on USENIX Security Symposium, volume 8 of SSYM’99. USENIX Association, 1999.

44

http://v3vee.org/papers/NWU-EECS-09-14.pdf
http://doi.acm.org/10.1145/2576195.2576206
http://dx.doi.org/10.1145/2576195.2576206
http://www.linux-kvm.org
http://linux-vserver.org
https://linuxcontainers.org
http://www.ubuntu.com/cloud/tools/lxd
http://www.mantevo.org/packages.php
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://namei.org/presentations/svirt-lca-2009.pdf
http://docs.openstack.org/security-guide/content/index.html
http://www.openvz.org
http://goo.gl/Y4rB5D
http://dx.doi.org/10.1145/1400097.1400108
http://selinuxproject.org

[43] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. Eliminating the hypervisor attack
surface for a more secure cloud. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 401–412, New York, NY, USA, 2011. ACM. URL:
http://doi.acm.org/10.1145/2046707.2046754, doi:10.1145/2046707.2046754.

[44] Juliean Tinnes and Chris Evans. Security in-depth for Linux software, October 2009. URL:
https://www.cr0.org/paper/jt-ce-sid_linux.pdf [cited 30-nov-2014].

[45] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V.
Anderson, Steven M. Bennett, Alain Kägi, Felix H. Leung, and Larry Smith. Intel R© Virtualization
Technology. IEEE Computer, 38(5):48–56, May 2005.

[46] Geoffroy R. Vallée, Thomas Naughton, Christian Engelmann, Hong H. Ong, and Stephen L. Scott.
System-level virtualization for high performance computing. In Proceedings of the 16th Euromicro
International Conference on Parallel, Distributed, and network-based Processing (PDP) 2008, pages
636–643, Toulouse, France, February 13-15, 2008. IEEE Computer Society, Los Alamitos, CA, USA.
URL: http://www.csm.ornl.gov/~engelman/publications/vallee08system.pdf,
doi:http://doi.ieeecomputersociety.org/10.1109/PDP.2008.85.

[47] Lamia Youseff, Keith Seymour, Haihang You, Jack Dongarra, and Rich Wolski. The impact of
paravirtualized memory hierarchy on linear algebra computational kernels and software. In
Proceedings of the 17th International Symposium on High Performance Distributed Computing
(HPDC’08), pages 141–152, New York, NY, USA, 2008. ACM.
doi:http://doi.acm.org/10.1145/1383422.1383440.

45

http://doi.acm.org/10.1145/2046707.2046754
http://dx.doi.org/10.1145/2046707.2046754
https://www.cr0.org/paper/jt-ce-sid_linux.pdf
http://www.pdp2008.org
http://www.pdp2008.org
http://www.computer.org
http://www.csm.ornl.gov/~engelman/publications/vallee08system.pdf
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/PDP.2008.85
http://dx.doi.org/http://doi.acm.org/10.1145/1383422.1383440

Appendix A

Docker

A.1 Docker Files

The following source listings provide an example of a Docker image description file. These listings
also provide details about the configurations used in our testing.

Listing A.1. Example Dockerfile for CentOS v7 image that includes the HPCCG bench-
mark and GNU compilers.

1 # $Id: Dockerfile 263 2014-12-02 15:00:18Z tjn3 $
2 # TJN adding G++ to CentOS7 for HPCCG testing
3 #
4 # To rebuild image:
5 # sudo docker build -t="naughtont3/centos7cxx" .
6 # sudo docker push naughtont3/centos7cxx
7

8 FROM centos:centos7
9 MAINTAINER "Thomas Naughton" <naughtont@ornl.gov>

10

11 ADD etc/yum.repos.d/epel-ornl.repo /etc/yum.repos.d/epel-ornl.repo
12 ADD etc/yum.repos.d/rhel7.repo /etc/yum.repos.d/rhel7.repo
13 CMD ["chmod","0644","/etc/yum.repos.d/epel-ornl.repo","/etc/yum.repos.d/rhel7.repo"]
14

15 RUN yum -y update; yum clean all
16 RUN yum -y install epel-release; yum clean all
17 RUN yum -y install libcgroup-tools; yum clean all
18 RUN yum -y install gcc gcc-c++ libstdc++ libstdc++-devel; yum clean all
19 RUN yum -y install wget net-tools; yum clean all
20

21 CMD ["mkdir","-p","/benchmarks"]
22 ADD benchmarks/HPCCG-1.0.tar.gz /benchmarks
23 ADD benchmarks/Makefile.HPCCG /benchmarks/HPCCG-1.0/Makefile.HPCCG
24 ADD benchmarks/Makefile.HPCCG+mpi /benchmarks/HPCCG-1.0/Makefile.HPCCG+mpi
25 ADD benchmarks/Makefile.HPCCG /benchmarks/HPCCG-1.0/Makefile

46

Listing A.2. Example Dockerfile that extends base CentOS7-HPCCG image to include
Open MPI, an mpiuser and configurations for inter-container MPI launch via SSH.

1 # BC adding OpenMPI and SSHD to CentOS7/HPCCG bundle
2 #
3 # To rebuild image:
4 # sudo docker build -t="blakec/centos7-sshd-mpi" .
5 # sudo docker push blakec/centos7-sshd-mpi
6

7 FROM naughtont3/centos7cxx
8 MAINTAINER "Blake Caldwell" <blakec@ornl.gov>
9 ENV container docker

10

11 # Install the real systemd
12 RUN yum -y swap -- remove fakesystemd -- install systemd systemd-libs
13

14 # Install all packages and create mpiuser with authentication by ecdsa key
15 RUN yum -y install openssh-clients openssh-server openmpi openmpi-devel net-tools; \
16 yum clean all; \
17 adduser mpiuser; \
18 su -c "echo ’export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:\$LD_LIBRARY_PATH’ >> ~

mpiuser/.bashrc" mpiuser; \
19 su -c "echo ’export PATH=/usr/lib64/openmpi/bin/:\$PATH’ >> ~mpiuser/.bashrc" mpiuser

; \
20 su -c "/usr/bin/ssh-keygen -t ecdsa -f ~/.ssh/id_ecdsa -q -N ’’" mpiuser; \
21 su -c "cat ~/.ssh/id_ecdsa.pub >> ~/.ssh/authorized_keys" mpiuser; \
22 ssh-keygen -t ecdsa -f /etc/ssh/ssh_host_ecdsa_key -q -N ""; \
23 su -c "echo -n ’* ’ > ~/.ssh/known_hosts && cat /etc/ssh/ssh_host_ecdsa_key.pub >>

~/.ssh/known_hosts" mpiuser
24

25 # Configure systemd removing unecessary unit files
26 RUN (cd /lib/systemd/system/sysinit.target.wants/; \
27 for i in *; do [$i == systemd-tmpfiles-setup.service] || rm -f $i; done); \
28 rm -f /lib/systemd/system/local-fs.target.wants/*; \
29 rm -f /lib/systemd/system/systemd-remount-fs.service; \
30 rm -f /lib/systemd/system/sockets.target.wants/*udev*; \
31 rm -f /lib/systemd/system/sockets.target.wants/*initctl*; \
32 rm -f /lib/systemd/system/basic.target.wants/*; \
33 rm -f /lib/systemd/system/anaconda.target.wants/*; \
34 rm -f /lib/systemd/system/console-getty.service; \
35 rm -f /etc/systemd/system/getty.target.wants/*; \
36 rm -f /lib/systemd/system/getty@.service; \
37 rm -f /lib/systemd/system/multi-user.target.wants/getty.target; \
38 /usr/bin/systemctl enable sshd.service
39 VOLUME ["/sys/fs/cgroup"]
40

41 # start systemd
42 CMD ["/usr/sbin/init"]

47

Appendix B

libvirt

B.1 libvirt Files

The following source listings provide an example of a libvirt configuration file. These files describe the
“virtual hardware” configuration for the virtual machine. These listings also provide details about the
configurations used in our testing.

Listing B.1. Example libvirt XML for CentOS v7 image, which is setup for bridged net-
working.

1 <domain type=’kvm’>
2 <name>centos7kvm</name>
3 <uuid>70564581-691f-43b5-aeab-c0793fab9071</uuid>
4 <memory unit=’KiB’>50331648</memory>
5 <currentMemory unit=’KiB’>50331648</currentMemory>
6 <vcpu placement=’static’>31</vcpu>
7 <os>
8 <type arch=’x86_64’ machine=’pc-i440fx-rhel7.0.0’>hvm</type>
9 <boot dev=’hd’/>

10 </os>
11 <features>
12 <acpi/>
13 </features>
14 <clock offset=’utc’/>
15 <on_poweroff>destroy</on_poweroff>
16 <on_reboot>restart</on_reboot>
17 <on_crash>destroy</on_crash>
18 <devices>
19 <emulator>/usr/libexec/qemu-kvm</emulator>
20 <disk type=’file’ device=’disk’>
21 <driver name=’qemu’ type=’qcow2’ cache=’none’/>
22 <source file=’/var/lib/libvirt/images/centos7-x86_64.qcow2’/>
23 <target dev=’vda’ bus=’virtio’/>
24 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x04’ function=’0x0’/>
25 </disk>
26 <disk type=’file’ device=’disk’>
27 <driver name=’qemu’ type=’raw’/>
28 <source file=’/var/lib/libvirt/images/user-data.img’/>
29 <target dev=’vdb’ bus=’virtio’/>
30 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ function=’0x0’/>
31 </disk>
32 <controller type=’usb’ index=’0’>
33 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ function=’0x2’/>
34 </controller>

48

35 <controller type=’pci’ index=’0’ model=’pci-root’/>
36 <interface type=’bridge’>
37 <mac address=’52:54:00:17:bd:79’/>
38 <source bridge=’br-eth2’/>
39 <model type=’e1000’/>
40 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’ function=’0x0’/>
41 </interface>
42 <serial type=’pty’>
43 <target port=’0’/>
44 </serial>
45 <console type=’pty’>
46 <target type=’serial’ port=’0’/>
47 </console>
48 <memballoon model=’virtio’>
49 <address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ function=’0x0’/>
50 </memballoon>
51 </devices>
52 </domain>

49

	Front Matter
	Cover Page
	Document Availability
	Title Page

	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Project Scope
	Customizable Computing Resources
	Threat Model

	Report Outline

	Background
	Terminology
	Security Classifications
	Virtualization Classification
	OS Level Virtualization
	System-level Virtualization

	Virtualization
	OS level virtualization
	Namespaces
	Cgroups
	Linux-VServer
	OpenVZ
	LXC
	Docker

	System level virtualization
	Xen
	KVM

	Virtualization and Security Mechanisms
	sVirt
	SELinux
	AppArmor
	Capabilities

	Management Platforms
	OpenStack
	Puppet
	LXD

	Evaluation
	User namespaces
	Shared-storage use case

	HPCCG
	Description
	Setup
	Discussion & Observations

	iperf: TCP Bandwidth
	Description
	Setup
	Discussion & Observations

	Vulnerability Assessment
	Introduction
	Evaluation
	System-level Virtualization
	OS level virtualization
	The Linux Kernel

	Recommendations

	Conclusion
	Synopsis
	Observations
	Vulnerability Assessment
	Initial Benchmarks
	User namespaces
	Security Classifications

	Future Plans
	Acknowledgements

	Bibliography
	Docker
	Docker Files

	libvirt
	libvirt Files

