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ABSTRACT 

The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) 
research and development activities focus on four key areas:   

• Developing assessment methods for evaluating advanced SMR technologies and characteristics; 

• Developing and testing of materials, fuels and fabrication techniques; 

• Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; 
and  

• Developing advanced instrumentation and controls and human-machine interfaces. 

This report focuses on development of assessment methods to evaluate advanced SMR technologies and 
characteristics. Specifically, this report describes the expansion and application of the economic modeling 
effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the 
primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–
based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone 
script within a program such as Python or MATLAB. However, a script-based model requires each 
potential user to have access to a compiler and an executable capable of handling the script. 

Making the model accessible to multiple independent analysts is best accomplished by implementing the 
model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to 
most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based 
method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the 
use of add-ons such as Crystal Ball. 

An alternative method uses propagation of error calculations in the existing Excel-based system to 
estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it 
requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the 
analytical results. In fact, the analysis shows that the propagation of error method introduces essentially 
negligible error, especially when compared to the uncertainty associated with some of the estimates 
themselves. 

The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the 
overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can 
be shown to be an accurate generalization for the current state of reactor cost analysis. However, the 
detailed analysis on a component-by-component basis helps to demonstrate which components would 
benefit most from research and development to decrease the uncertainty, as well as which components 
would benefit from research and development to decrease the absolute cost. 
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1. METHODS FOR COST ESTIMATION 

Cost estimates are typically used to compare alternatives or to identify cost drivers within specific 
options. For example, calculating the levelized cost of electricity provides an estimate of the cost to 
generate electricity using a notional reactor and fuel cycle arrangement. Depending on the detail in the 
cost estimate, the front end and back end fuel cycle costs for two different fuel cycle options can be 
compared and contrasted. 

However, comparing and contrasting single values for components can lead to overstated confidence in 
the analytical results. Reporting a difference in component costs without examining the uncertainty 
associated with each cost can lead to the belief that one alternative is “better” than the other, even for 
small differences. This is especially magnified for alternatives with small differentials relative to their 
values. For example, consider two alternatives at $100/megawatt-electric-hour (MWeh) and $101/MWeh. 
How confidently can an analyst claim the former option is better than the latter? 

1.1 USE OF POINT ESTIMATES 

A high-level or first-order approximation of a cost estimate divides the system into components with their 
own separate costs. A notional reactor and fuel cycle combination can typically be separated into reactor 
capital costs, fuel costs, operation and maintenance costs, and decommissioning costs. Some of these 
costs are tied to commodity costs, such as uranium or enrichment services, while others are estimated 
based on industrial and academic reports, such as capital costs. 

The most straightforward cost estimate method for nuclear power uses reported point estimates for 
aggregated components, such as those reported by the Nuclear Energy Institute (NEI) [Ref. 1]. They 
report estimates of $16.5/MWeh for operations and maintenance, and $7.5/MWeh for fuel, a combined 
$24/MWeh. 

Another resource for point estimates is the Energy Information Administration (EIA) [Ref. 2]. They 
report similar combined fuel and operations costs of $23.6/MWeh. Unlike the NEI, the EIA estimates a 
capital recovery cost of $71.4/MWeh. Assuming these are the primary costs of interest, the total cost of 
nuclear is then $95.0/MWeh. 

1.2 THE NEED TO HANDLE ESTIMATE RANGES 

The problem with using point estimates is that they imply a fixed, uniform cost; this is an unreasonable 
assumption, especially with respect to commodities. Figure 1 shows uranium oxide prices over the last 
five years [Ref. 3]. 

The figure shows fluctuation in the price of the material. While the expected or average price of the 
commodity could be used as a point estimate, a more accurate model allows the price of the commodity to 
be a random variable. 

The recognition that the costs of commodities and services vary with time is almost trivial. However, 
other components of the total cost also vary. Cost estimation efforts within the US Department of Energy 
Office of Nuclear Energy (DOE-NE) have attempted to capture these cost ranges for reference in 
advanced studies, such as in Shropshire, et al [Ref. 4]. Furthermore, other operational parameters can and 
should be treated as random variables. 

For example, Fig. 2 shows the historical distributions of capacity factors in the US nuclear fleet [Ref. 5]. 
The use of quartiles in Fig. 2 demonstrates that there is a range of potential capacity factors within a 
single set of years, and the overall capacity factor varies as a function of time. 
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Fig. 1. Five year uranium oxide prices. 

 
 

 
Fig. 2. US nuclear fleet capacity factor distribution. 

 



 

3 

 
2. METHODS FOR UNCERTAINTY ANALYSIS  

Having acknowledged the need to handle several parameters as random variables, the next step is to 
establish the method. Most engineers are familiar with Monte Carlo methods, which are widely used in 
economic analyses. However, the goal of this modeling effort is to maintain simplicity and relative 
transparency in the methodology. Therefore, Monte Carlo methods would not be the best choice. 

2.1 THE BASIC ASSUMPTION 

The primary assumption for the non-Monte Carlo modeling method is that all variables are independently 
distributed. The primary reason is that the correlation between any two variables is not well understood 
and would itself introduce more uncertainty into the calculation. This is shown clearly in the next section. 

2.2 THE MATHEMATICS OF THE PROPAGATION OF ERROR 

Assume a value is the function of N variables. That is, 𝑦 = 𝑓(𝑥1,𝑥2, 𝑥3,𝑥4, … , 𝑥𝑁). Also assume that each 
variable 𝑥𝑛 has a mean1 𝑥̅𝑛 and variance 𝜎2𝑛.  For this analysis, the variance is the measure of 
uncertainty. Then the variance of 𝑦 is found by: 

 

𝜎2𝑦 = ��
𝜕𝜕
𝜕𝑥𝑛

�
2

𝜎2𝑛 + 2 � �
𝜕𝜕
𝜕𝑥𝑚

𝜕𝜕
𝜕𝑥𝑛

𝜌𝑚𝑚𝜎𝑚𝜎𝑛
𝑚>𝑛

𝑁

𝑛=1

𝑁

𝑛=1

 

 
Using the basic assumption above, the correlation coefficient 𝜌𝑚𝑚 is assumed to be 0 for all 𝑚 ≠ 𝑛.  This 
simplifies the equation to: 

𝜎2𝑦 = ��
𝜕𝜕
𝜕𝑥𝑛

�
2

𝜎2𝑛

𝑁

𝑛=1

 

 
Further, the mean 𝑦� of the function is simply 𝑦� = 𝑓(𝑥̅1, 𝑥̅2, 𝑥̅3, 𝑥̅4, … , 𝑥̅𝑁). Therefore, given a 
multivariable function and knowledge of the basic statistics of its constituent variables, the basic statistics 
of that function can be calculated. While this does not necessarily give information about the type of 
distribution (Gaussian, uniform, log-normal, etc.) it does provide more information than a simple point 
estimate. 

For example, by tracking the different components separately in the analysis, the magnitude of the 
contribution from each component can be compared to find not only the overall cost driver, but also the 
overall uncertainty driver. Components with high relative uncertainty may contribute very little to the 
overall uncertainty; conversely, components with low relative uncertainty may make large contributions 
to the overall uncertainty. This is a result of the partial derivative for the function for each component of 
cost. 

The calculation of system uncertainty is straightforward. However, the complication in the nuclear fuel 
cycle calculation lies in the derivative terms. The total levelized cost contains many linear terms, e.g., the 
capital cost. However, interest rates and uranium enrichment parameters are highly nonlinear. This 
complicates the calculation of the derivative. 

 

                                                      
1The “bar” convention (𝑥̅) is used to denote the mean or expected value, defined by ∫ 𝑥𝑥(𝑥)𝑑𝑑∞

−∞ . 
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2.3 THE MATHEMATICS OF THE DERIVATIVE 

Given a function 𝑦 = 𝑓(𝑥), the derivative at a point 𝑥 = 𝑎 is the slope of the function at that point. The 
slope at the point is given by: 

 

𝑚 =
∆𝑓(𝑎)
∆𝑎

=
𝑓(𝑎 + ∆𝑥)− 𝑓(𝑎)

(𝑎 + ∆𝑥)− 𝑎
=
𝑓(𝑎 + ∆𝑥)− 𝑓(𝑎)

∆𝑥
 

 
Alternatively, the slope can also be given by: 

 

𝑚 =
∆𝑓(𝑎)
∆𝑎

=
𝑓(𝑎) − 𝑓(𝑎 − ∆𝑥)
𝑎 − (𝑎 − ∆𝑥) =

𝑓(𝑎) − 𝑓(𝑎 − ∆𝑥)
∆𝑥

 

 
In either case, the derivative is defined as the slope as ∆𝑥 → 0. 

 
From a numerical perspective, the derivative of the function at 𝑥 = 𝑎 can also be found by: 

 

𝑚 =
∆𝑓(𝑎)
∆𝑎

=
𝑓(𝑎 + ∆𝑥) − 𝑓(𝑎 − ∆𝑥)

(𝑎 + ∆𝑥) − (𝑎 − ∆𝑥) =
𝑓(𝑎 + ∆𝑥)− 𝑓(𝑎 − ∆𝑥)

2∆𝑥
 

 
Using this combined approach helps to account for the fact that a numerical analysis requires ∆𝑥 > 0. An 
example of this approach is, given 𝑦 = 𝑘𝑥,2 from basic calculus the derivative is 𝑦′ = 2𝑘𝑘. Using the 
first method gives: 

 

𝑚 =
𝑓(𝑥 + ∆𝑥)− 𝑓(𝑥)

∆𝑥
=
𝑘𝑥2 + 2𝑘𝑘∆𝑥 + 𝑘∆𝑥2 − 𝑘𝑥2

∆𝑥
= 2𝑘𝑘 + 𝑘∆𝑥 

 
Using the second method gives: 

 

𝑚 =
𝑓(𝑥) − 𝑓(𝑥 − ∆𝑥)

∆𝑥
=
𝑘𝑥2 − 𝑘𝑥2 + 2𝑘𝑘∆𝑥 − 𝑘∆𝑥2

∆𝑥
= 2𝑘𝑘 − 𝑘∆𝑥 

 
Using the third method gives: 

 

𝑚 =
𝑓(𝑥 + ∆𝑥)− 𝑓(𝑥 − ∆𝑥)

2∆𝑥
=
𝑘𝑥2 + 2𝑘𝑘∆𝑥 + 𝑘∆𝑥2 − 𝑘𝑥2 + 2𝑘𝑘∆𝑥 − 𝑘∆𝑥2

2∆𝑥
= 2𝑘𝑘 

 
The combined method does not have a ∆𝑥 term in it; this increases numerical stability in the solution, 
even with a nonlinear function in 𝑥. There are still issues with the use of the numerical method with 
exponential and logarithmic functions.  For example, 𝑦 = 𝑒𝑥: 

 

𝑚 =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)

2∆𝑥
=
𝑒(𝑥+∆𝑥) − 𝑒(𝑥−∆𝑥)

2∆𝑥
=
𝑒𝑥�𝑒∆𝑥 − 𝑒−∆𝑥�

2∆𝑥
 

 
Using 𝑒∆𝑥 = cosh[∆𝑥] + sinh[∆𝑥], cosh[−∆𝑥] = cosh[∆𝑥], and sinh[−∆𝑥] = − sinh[∆𝑥]: 

𝑚 =
𝑒𝑥�𝑒∆𝑥 − 𝑒−∆𝑥�

2∆𝑥
=
𝑒𝑥�(cosh[∆𝑥] + sinh[∆𝑥]) − (cosh[−∆𝑥] + sinh[−∆𝑥])�

2∆𝑥
= 𝑒𝑥

sinh[∆𝑥]
∆𝑥

 
. 
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The  sinh[∆𝑥]
∆𝑥

 factor represents the error introduced by using numerical methods; as ∆𝑥 → 0, the slope 
approaches the correct value of 𝑒.𝑥 Fig. 3 shows that for small ∆𝑥 the introduced error is on the order of 
single-digit percent; this is acceptable considering the relative uncertainty in the estimation of any 
parameter’s statistics is likely in the tens of percent. 
 

 
Fig. 3. Error introduced to exponential derivative by linear method. 

Values associated with exponential functions in levelized cost calculations are products of interest rates 
and payback periods. With annual interest rates on the order of a maximum of 15% (0.15) and payback 
periods on the order of a maximum of 60 years, the product is on the order of 0.15*60=9. Using a 10% 
change in either interest or payback period would result in a ∆𝑥 of 0.9. This corresponds to an 
approximate 14% error in the derivative term. However, most interest rates and payback periods analyzed 
are around 7% and 40 years, so the ∆𝑥 term with a 10% variation is closer to 0.28, or less than 2% error in 
the derivative term. 

Now use the function 𝑦 = ln𝑥. By calculus, the derivative of 𝑦 = ln 𝑥 is 𝑦′ = 1
𝑥
. Using the method above 

yields: 

 

𝑚 =
ln(𝑥 + ∆𝑥) − ln(𝑥 − ∆𝑥)

2∆𝑥
 

 
The values associated with logarithmic functions in levelized cost calculations are enrichment fraction; 
these are typically on the order of 0.1 (corresponding to 10% enrichment), but likely much less. Also note 
that logarithmic functions require 𝑥 − ∆𝑥 > 0 → ∆𝑥 < 𝑥.  Since the definition of the derivative is the 
slope at the point as the ∆𝑥 term approaches 0, the numerical approximation is nearly identical to the 
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analytical answer. Table 1 compares the numerical and analytical values (to two decimal places) for 
selected values of 𝑥 and ∆𝑥. 
 

Table 1. Approximations to the derivative of the natural logarithm 

 Exact m Approximate m 
 𝑥  ∆ 𝑥 = 1% ∆ 𝑥 = 5% ∆ 𝑥 = 10% ∆ 𝑥 = 20% 

10-4 10000 10000.33 10008.35 10008.35 10136.63 
10-3 1000 1000.03 1000.83 1003.35 1013.66 
10-2 100 100.00 100.08 100.34 101.37 
10-1 10 10.00 10.01 10.03 10.14 
100 1 1.00 1.00 1.00 1.01 
101 0 0.10 0.10 0.10 0.10 

 
As the table shows, the error introduced by the numerical approximation for small values of 𝑥 and ∆𝑥 is 
negligible. A 10% ∆𝑥 for 𝑥=10-4 introduces a 0.34% error; this is well within the accuracy of the 
parameter estimations. 

2.4 THE OVERALL METHOD 

The overall method then finds the uncertainty in the cost estimate as calculated from the mean value by 
varying each independent variable around its mean. Combining the numerical derivative method 
described above with the propagation of error method (with assumed independence of all variables) 
yields: 

 

𝜎2𝑦 = ��
𝜕𝜕
𝜕𝑥𝑛

�
2

𝜎2𝑛

𝑁

𝑛=1

≈ ��
𝑓(𝑥̅𝑛 + ∆𝑥𝑛)− 𝑓(𝑥̅𝑛 − ∆𝑥𝑛)

2∆𝑥𝑛
�
2

𝜎2𝑛

𝑁

𝑛=1

 

 
The use of ∆𝑥𝑛 denotes the use of variable-specific numerical variations. This is important in minimizing 
nonlinear error as shown in Fig. 3. 

 
This method can be extended to values other than mean values. For example, a variable with an 
asymmetric distribution has a median greater or less than the mean; for this report, that value is denoted 
𝑥�𝑛. This value may be used as a nominal or anticipated value rather than the mean value. The uncertainty 
analysis then becomes: 

 

𝜎2𝑦 = ��
𝑓(𝑥�𝑛 + ∆𝑥𝑛) − 𝑓(𝑥�𝑛 − ∆𝑥𝑛)

2∆𝑥𝑛
�
2

𝜎2𝑛

𝑁

𝑛=1
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2.5 AN EXAMPLE OF THE METHOD IN USE 

This example is illustrative of how the method is applied in a simplified model. 

Assume a function 𝑦 = 𝑥1𝑒𝑥2𝑥3 + sin[𝑥4] 𝑥52 + ln(𝑥6).  The explicit partial derivatives are: 

 
𝜕𝜕
𝜕𝑥1

= 𝑒𝑥2𝑥3 

𝜕𝜕
𝜕𝑥2

= 𝑥1𝑥3𝑒𝑥2𝑥3 

𝜕𝜕
𝜕𝑥3

= 𝑥1𝑥2𝑒𝑥2𝑥3 

𝜕𝜕
𝜕𝑥4

= cos[𝑥4]𝑥52 

𝜕𝜕
𝜕𝑥5

= 2 sin[𝑥4]𝑥5 

𝜕𝜕
𝜕𝑥6

=
1
𝑥6

 

 
Table 2 lists example values for the mean for each variable. 

 
Table 2. Example values 

Variable Mean 
x1 1000 
x2 0.1 
x3 50 
x4 0.7 
x5 6 
x6 0.02 

 
Table 3 then compares the explicit partial derivatives at the mean with the approximate partial derivatives 
at the mean and 10% ∆𝑥𝑛. That is, ∆𝑥1 = 100, etc. 
 

Table 3. Partial derivatives at the mean values for 10% variation 

Variable Explicit Calculate Percentage of error 
x1 148.413 148.413 0 
x2 7.421E+06 7.734E+06 4.22 
x3 1.484E+04 1.547E+04 4.25 
x4 27.534 27.512 -0.08 
x5 7.731 7.731 0 
x6 50 50.168 0.34 

 
The data in Table 3 show that even at the upper bounds of expected values for exponentials and 
variations, the maximum error introduced by the numerical method is less than 5%. Further, since the full 
implementation of the propagation of error formula sums the uncertainties, the overall error is essentially 
bounded by the largest combined derivative and standard deviation. 
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Table 4 shows the complete agreement achieved using a 1% ∆𝑥𝑛. 
 

Table 4. Partial derivatives at the mean values for 1% variation 

Variable Explicit Calculate Percentage of error 
x1 148.413 148.413 0 
x2 7.421E+06 7.424E+06 0.04 
x3 1.484E+04 1.485E+04 0.07 
x4 27.534 27.534 0 
x5 7.731 7.731 0 
x6 50 50.002 0 
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3. CONCLUSION AND CURRENT AND FUTURE WORK 

The combination of the propagation of error formula with the numerical method for calculating partial 
derivatives has been shown to be a valid approach for uncertainty analysis in levelized cost analyses. The 
method has already been implemented in the current test version of the G4ECONS software in use by the 
Generation IV International Forum. 

The main benefit of this method is the ability to implement it in a stand-alone spreadsheet-based 
analytical tool. Since this does not require a Monte Carlo-based calculation, this method can be used 
without additional software. This is beneficial from the perspective of validation and verification, as well 
as transportability. The main drawback is the complexity in calculating the partial derivatives with respect 
to a large number of variables. 

Future work will include pushing the test version into a production-level version. An application of the 
method is included in a companion letter report [Ref. 6].
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