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Abstract

High-performance computing (HPC) storage systems provide data availability and reliability using
various hardware and software fault tolerance techniques. Usually, reliability and availability are
calculated at the subsystem or component level using limited metrics such as, mean time to failure
(MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure
models (such as exponential failure rate) to achieve tractable and close-formed solutions. However,
such models have been shown to be insufficient in assessing end-to-end storage system reliability and
availability.

We propose a generic simulation framework aimed at analyzing the reliability and availability of
storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-
end storage system, accommodating the various components and subsystems, their interconnections,
failure patterns and propagation, and performs dependency analysis to capture a wide-range of fail-
ure cases. We evaluate the framework against a large-scale storage system that is in production and
analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential
operational impact by studying how different types of components affect the overall system reliability
and availability, and present the preliminary results.

1 Introduction

The reliability and availability of data is at the core of any storage system and of critical concern for storage
system architects. In order to provide reliable data services, a storage system must be able to tolerate
different types of faults and failures. The complexity of this problem increases with scale. Large-scale
storage systems are often built with scalable units. These basic building blocks are replicated to meet the
required capacity and performance targets. Examples of such building blocks include a DDN SFA12K
device with up to 1,680 disk drives [1], an IBM DS8870 system supporting 1,536 disk drives [2], a Panasas
ActiveStor 16 system with 20 hard disk drives and 10 solid state disks per shelf with up to 100 shelves per
system [3], and the NetApp FAS8080 EX series device which can support 12 HA pairs per system, with
each HA pair containing up to 1,440 disk drives [4]. A perhaps dated example is the Google File System
cluster, which is composed of more than 1,000 such building blocks [5].

Therefore, it would be logical to conduct reliability analysis at the scalable unit-level, assuming that
the failures across scalable units are independent. However, many existing studies in this domain heavily
concentrate on analytically estimating the reliability at either the disk population or the redundant disk
array level. While they may be one of the most critical parts of the system, they are not sufficient to
represent the entire system. Simple failure models coupled with imperfect assumptions allow for the use
of close-form calculations, however, they also compromise the overall accuracy and usefulness of the
reliability estimation [6]. As an example, one such common model is built with continuous Markov chains,
which has an underlying assumption that the failure or repair rates are constant (time independent)



[7,8, 9, 10]. However, it has been shown that these rates can vary with time, which makes obtaining an
analytical solution very difficult [11].

In addition to the analytical modeling approach, there have been several research efforts on reliability
estimation through simulation [11, 12, 13]. Compared to analytical modeling, simulations are more intuitive
and easy to understand, and they can capture the temporal variations in failure or repair rates with relative
ease. To the best of our knowledge, existing simulation approaches only focus on disk redundancy group
failures. However, a failure of any given subsystem or component may cause a cascading effect and
significantly impact the overall reliability of a storage system [14]. For instance, if a disk enclosure fails,
all disk drives in that enclosure will be inaccessible until it is repaired. Therefore, failure characteristics
of all hardware components and their dependencies must be evaluated systematically.

We propose a generic simulation framework for analyzing the reliability of storage systems at scale.
The framework has been designed to accommodate a diverse set of components and subsystems, with
different reliability characteristics. It provides flexible mechanisms to support temporal variations for each
component. It is topology-aware, in the sense that the physical connection of components and their failure
dependencies are tracked and analyzed. We validate our framework with real-world failure data, which
was obtained from a large-scale production storage systems (Spider I) deployed at the Oak Ridge National
Laboratory (ORNL) [15]. Our analysis shows that, forklift upgrades can be preferred when increasing
number of data loss events are projected due to accelerated failure rate of aging hardware. The results
further reveal surprising insights on the impact of spare components to the overall system reliability.
This work also demonstrates the necessity of conducting a reliability evaluation at the system-level.

2 Storage System Reliability Simulator

This section aims to present both an overview on the architecture design as well as some implementation
details of the simulation framework, with particular focus on mechanisms for achieving failure dependency
analysis and synthesis of the two-phase simulation results to cover wide-ranging failure scenarios.

2.1 Design Considerations

A large-scale storage system is often complex and comprises of tens of thousands of disk drives and
other hardware components, such as power supplies, RAID controllers, etc. Some of these components
may consist of even smaller subcomponents. For example, a disk drive consists of spindle motor, and
actuators. It is neither feasible nor necessary to simulate every single hardware component inside a disk
drive or a RAID controller. Selecting the right abstraction with the right amount of details to simulate
(and details to ignore) has always been the most challenging aspect of simulations.

System vendors and HPC operators are often, understandably, cagey about sharing detailed errors
and failure data about their systems. Yet, having that data is crucial to validate and provide confidence
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Figure 1: Two-phase Simulation Framework
to any simulation design of this nature. Our experience suggests that information such as field AFR
(annual failure rate) of each FRU (field replaceable units) are more or less maintained by both vendors and
operators alike. Therefore, it is not unreasonable to assume an FRU as a building block. With sufficient
failure logs, we can establish reasonable failure models for each FRU, which will further drive the reliability
estimate at the system level.

As we have alluded to earlier, simulating each FRU standalone is not enough to obtain the estimation
on reliability of the entire storage system. One FRU’s failure might also have a cascading effect on other
FRUs, as there is often a correlation between failures of hardware components in close-coupled storage
systems. For example, a RAID controller’s failure might lead to the unavailability of hundreds of disk drives.
Therefore, in order to estimate the reliability of the entire storage system, our simulation framework must
be able to synthesize the simulation results of all FRUs by analyzing the failure dependencies between
them.

To this end, we put forth a two-phase analysis approach as shown in Fig. 1, which is inspired by a
conventional diagrammatic method for modeling the reliability of complex systems, namely the reliability
block diagram (RBD) [16]. An RBD is composed of a set of blocks connected in parallel or serial, and each
of which represents a component of the system. Essentially, RBD in this context reveals how failures of
one component propagate and contribute to the failures of other components or the entire system.

The input to the simulation framework is a configuration file that contains both specifications of
reliability characteristics for each FRU and layout information for physical topology. In phase 1, each FRU
will be simulated independently based on its reliability characteristics, and the failure events are logged
throughout its lifecycle. In phase 2, the framework extracts failure dependencies from all FRUs, and
builds an RBD based on the topology of the storage system. Given all the extracted failure dependencies,
the framework synthesizes the results across all components, and provides detailed information on the
estimates of the various metrics of interest, such as average number of failed FRUs during the simulation
window, events leading to data unavailability or data loss and for how long.
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2.2 Implementation

2.2.1 Simulate Individual FRU

In prior work, both exponential and Weibull distributions have been widely used to model or simulate
disk failures [11, 12, 13]. Exponential distribution has a constant failure rate, while Weibull distribution
has a non-constant but monotonic failure rate. However, in reality, the failure rates of a component
often follow a “bathtub” curve [17]. Therefore, to make our simulation more realistic, we need to build a
probability distribution that has a non-monotonic failure rate. For this purpose and for greater flexibility,
the framework provides users a mechanism to specify different failure rate characteristics for different
time intervals.

The simulation of each FRU is based on discrete events. As illustrated in Fig. 2, for each FRU, the
simulator creates an individual process which will randomly generate two types of discrete events (failure
and recovery) based on the given reliability parameters. At the beginning of the simulation, the process
generates a random number as the uptime. Then the process is suspended and will not resume until such
amount of (simulated) time has passed to trigger the failure event. Once a failure occurs, the process will
generate another random number as downtime and is suspended again to wait for the recovery event.

2.2.2 Analyze Failure Dependencies

In order to obtain the reliability estimation of the entire storage system, we build the RBD of the storage
system and analyze the failure dependencies between different FRUs. For example, the RBD of a typical
scalable storage unit that contains FRUs listed in Table 1 is shown in Fig. 3, in which each block is assigned
a unique ID to represent an FRU.

Similar to a tree structure (but essentially not), in the RBD, each block can have several child blocks,
which are below it in the diagram. A block that has a child is called the child’s parent block. Particularly,
for the convenience of using graph algorithms, we create a dummy block as the root (block o) of all blocks



Table 1: FRUs in a typical scalable storage unit

Name Number IDs
Controller 2 15-16

Controller’s Power Supply (House) 2 1-2

Controller’s Power Supply (UPS) 2 8-9
Disk Enclosure S 27-31

Disk Enclosure’s Power Supply (House) 5 3-7
Disk Enclosure’s Power Supply (UPS) S 10-14
1/0 Module 10 17-26
Disk Expansion Module (DEM) 40 32-71
Baseboard 20 72-91
Disk Drive 280 92-371

17 18 19 20 21 22 23 24 25 26

27 28
32||33| 34|35/ |36/ /37| |38/ |39
72 73 74 75

92 |.--|105

Figure 3: Reliability Block Diagram
in the RBD, which does not represent any real FRU. Different from the tree structure, a block in the RBD
can have more than one parent. The reliability of each block depends on its parents, while determining
that of its children. For instance, one of the controllers (block 15) has two parents, the house power supply
(block 1) and UPS power supply (block 8). If and only if both of these two parents fail, the controller
will fail. Meanwhile, the controller also has five children which are the I/0 modules (block 17-21). If the
controller fails, all five /0 modules will fail.

2.2.3 Synthesize Simulation Result at System Level

Once we obtain the simulation results of all FRUs, we need to synthesize them based on the RBD we built
(failure dependencies between different FRUs), to derive the duration of temporary data unavailability
and permanent data loss. The following are the concrete steps.
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First, we need to find all paths that start from each disk drive to the root in the RBD using a depth-first
search (DFS). For instance, in the storage unit shown in Fig. 3, there are sixteen paths from each disk drive
to the root. Second, we apply the “AND” operation to up/downtime sequences of FRUs on each path
to calculate the simulation results of each path, as shown in Fig. 2. Third, we apply the “OR” operation
to results of all paths belonging to each disk to obtain the duration data is unavailable, as shown in Fig.
4. Finally, with the knowledge of which disk drive belongs to which RAID group and the RAID level, we
can derive the duration of temporary data unavailability and permanent data loss for each RAID group.
For example, disks in Fig. 3 are organized as RAID level 6, and each RAID group can tolerate up to 2 disk
failures. If more than 2 disks are unavailable at the same time, the RAID group will encounter a temporary
data unavailability, while if more than 2 disks fail at the same time, a permanent data loss will occur.

3 Evaluation

3.1 Disk Subsystem Reliability Evaluation

Following a bottom-to-top approach, we start the evaluation of our simulation with disks. We used the
failure logs from the Spider | production storage system at the Oak Ridge National Laboratory. Spider |
was the 10 PB production storage system for the Jaguar and Titan supercomputers, with approximately
13,400 disks. Spider | was decommissioned after six years of production.

In order to accurately simulate the failure characteristics of a disk population, we used a crafted
distribution that has a non-monotonic failure rate. We used two independent Weibull distributions,
with decreasing and increasing failure rates, respectively. Specifically, we used a method called inverse
transform sampling [18] to build a probability distribution that has the “bathtub” failure rates.

The manufacturer’s specification often indicates that the disk drives have an annualized failure rate
(AFR) less than 1%, or an MTTF of more than 1,000,000 hours. These are too optimistic to be accurate
and real production disk subsystems typically observe 2-4% and up to 13% AFR in practice [19].
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Figure 6: Cumulative Failure Function Comparison

Solid bars in Fig. 5 show the actual AFR for six years (deployment to decommission) for Spider I, while
the curve represents the failure rates calculated by our simulation analysis, using the crafted failure
distribution. The simulation was run 10,000 times. The mission time in simulation was set to 87,600
hours (10 years), since very few disk drives ever survive for more than 10 years of operation.

As can be seen from Fig. 5, our simulation using a crafted distribution is very accurate. Field obtained
disk failure data forms a bathtub curve and the simulated AFR very closely tracks this curve.

The cumulative failure function is illustrated in Fig. 6, where the x-axis represents time and y-axis
represents triple-disk failures per 1,000 disk redundancy groups (RAID 6). As observed in Fig. 6, our
crafted distribution estimates an explosive increase in triple disk failure per 1000 RAID 6 groups after 6
years of operation. The analytical model with a constant failure rate falls short of capturing this.
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Figure 7: The impact of FRU repair times

3.2 Storage System Reliability Evaluation

Storage systems are composed of multiple subsystems and components. Our simulation framework
classifies and captures these subsystems as different FRUs and establishes dependencies among them
to provide an accurate reliability estimation of the end-to-end storage system.

Large-scale storage systems are often built with scalable units. A typical scalable unit consists of
FRUs listed in Table 1. However, since there is almost no dependency between different scalable storage
units, we can estimate the reliability of one unit and simply duplicate the results to obtain the estimation
on the entire storage system. The simulation parameter settings of all FRUs are listed in Table 2. These
values are selected accordingly with field failure data where available (Spider I), or from manufacturers’
data sheets as needed. We ran the simulation of one scalable unit for 10,000 times and the simulated
mission time is 87,600 hours (10 years). The results are shown in Table 3.

The repair time is directly correlated with the on-site availability of spare parts. In order to assess
the overall system reliability with respect to the number of components in the spare pool, we varied the
repair time in our simulation. As an example, an analysis of system reliability with respect to the number
of spare RAID controllers can be found in Fig. 7. Here, the y-axis represents the average number of data
unavailability incidents during a 10 year mission. Similar evaluations for other FRU types can also be
foundin 7.

From the results, we can observe that the availability of spares for all FRUs have a similar impact,
except the disk enclosures. The simulation study suggests that HPC center should provision more budget
for spare disk enclosures.

We also compare the average number of simulated data unavailability incidents with respect to
varying disk enclosure MTTR values in Fig. 8. As can be seen, the average number of data unavailability
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incidents linearly increase with disk enclosure MTTR. As an example, for a large-scale storage system with
48 scalable units and 5 disk enclosures per unit, if one wishes to limit the data unavailability incidents
due to faulty disk enclosures, the average number of data unavailability incidents should be less than
which is ~ 0.0208. Therefore, the MTTR of disk enclosures should be less than 6o hours.

3.3 Discussion

Our evaluation sheds light on how to intelligently balance the depth of spare pools across various
components under a fixed budget. The simulation results summarized in Figure 7 are surprising, as they
show that the availability of spare disk enclosures had the biggest impact on the system reliability. For
other systems the outcome might be different but we strongly believe that performing a similar evaluation
would be beneficial towards optimizing spare pool resources with respect to system availability and
reliability.

A component-level, close-form calculation can provide unrealistic MTTF values (meantime to meaning-
less[6]). As our evaluation shows (Figure 7), all components have an impact on the overall system reliability.
Therefore, we particularly recommend performing a system-level reliability simulation incorporating
failure dependencies among subsystems.

Another insight is on upgrades. A system can be upgraded incrementally. However, performing a
forklift upgrade can be technically more appropriate and cost effective under certain conditions. As
shown in Figure s, our simulation results are indicating a strong possibility of increasing number of disk
failures after the first 6 years of operation. Also, Figure 6 projects a higher possibility of triple disk failures
(i.e., data loss incidents) for the same time window. Given this information, a forklift upgrade is the
right technical and cost-effective solution for an aging storage system, such as Spider | for providing
continued and reliable operations. We highly recommend performing a similar evaluation before making
any upgrade decisions.

10



4 Related Work

Reliability studies for storage system have been conducted on several fronts. Analytical modeling,
coupled with field data analysis and fitting are among the most common approaches. A large body of
existing work focused on building probability models for failures of disk drives and data losses of RAID
groups [7, 8, 9, 10, 20, 21]. Almost all of these models assume that disk failures and recoveries fit the
memory-less, exponential distribution, which means the failure or repair rates of disk drives are constant
(time independent). In cases where these rates can vary over time [19, 22], such time dependency makes
it difficult to derive an accurate analytical solution [11]. For example, by analyzing the disk failure logs
collected from real storage systems, Schroeder and Gibson have shown that the disk failure better fits a
Weibull distribution, which has a decreasing failure rate [19].

Besides analytical modeling, a few existing studies have also tried to estimate the reliability of a
storage system through simulation [12, 11, 13]. In particular, Elerath and Pecht [12] have implemented a
Monte Carlo simulation for RAID 4 groups to evaluate how time dependent failure and repair rates impact
the average number of data loss events that could occur during a given mission time. Greenan developed
a high-fidelity reliability simulator for erasure-coded storage systems which is capable of analyzing the
reliability of arbitrary, linear multi-disk fault tolerant erasure codes [11]. However, most if not all of
the simulation-based approaches focus at the component-level, i.e., disk or RAID group failures. While
some of field data suggests that failures of other hardware components also contribute to considerable
percentages of storage system failures, and therefore, an end-to-end system-level approach is better
suited to capture such failures.

5 Conclusions

We have presented a simulation-driven study for analyzing the reliability and availability of large-scale
storage systems. Our approach considers the end-to-end storage system as a series of connected
components and subsystems. It calculates independent failure models for each and also tracks how
these failures then propagate through out the entire storage system. As a case study, we evaluated our
simulation framework against the field failure data obtained from a large-scale production storage system
located at the Oak Ridge National Laboratory (ORNL), which allowed us to investigate, gain insights, and
make projections on what-if scenarios of interests. We believe the framework and approach are general
enough to have wide-ranging applications.
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Table 2: Parameter Settings of FRUs’ Failure Simulation
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nen- | weibull = 24.0,
Enclosure . 2.6 x10 .
tial location =
5.0
Disk En- shape =
closure’s expo- 1.0, scale
Power nen- rate = weibull =24.0
. 9.1 X 1078 A
Supply tial location =
(House) 2.17
shape =
Power expo- 1.0, scale
Supply nen- rate = weibull =24.0
) 4.4 %104 N
(UPS) tial location =
3.0
shape =
/0 expo- rate = ' 1.0, scale
Module nen- 43% 107 weibull = 24.0,
tial - location =
2.17
Disk Ex- shape =
. expo- 1.0, scale
pansion nen- rate = weibull =24.0
Module fial | 26x107 Iozatiltn’—
(DEM) B
2.17
shape =
Base- expo- rate = ‘ 1.0, scale
nen- - weibull = 24.0,
board . 2.6 x10 .
tial location =
5.0
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Table 3: Reliability simulation for a scalable storage unit

Failure Type Average Number of Failures

Controller Failure 0.9222

Controller’s Power Supply (House) Failure 0.1665

Disk Enclosure Failure 0.1089

Disk Enclosure’s Power Supply (House) Failure 0.0392

Power Supply (UPS) Failure 2.7017

1/0 Module Failure 0.3876

Disk Expansion Module (DEM) Failure 0.906
Baseboard Failure 0.46

Disk Drive Failure 232.2646
Data Unavailability 0.0116
Data Loss 0.0017
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