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ABSTRACT

This report documents the current status of the modeling, control design, and embedded control
research for the active magnetic bearing (AMB) canned rotor pump being used as a demonstration platform
for deeply integrating instrumentation and controls (I&C) into nuclear power plant components. This pump
is a highly interconnected thermo/electro/mechanical system that requires an active control system to
operate. Magnetic bearings are an inherently unstable system, and without active, moment-by-moment
control, the rotor would contact fixed surfaces in the pump, causing physical damage.

This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of
the protective cans, AMBs, power electronics, and interactions between different dynamical models. The
system stability of the AMB rotor in both the unforced and controlled configurations is investigated
analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional
integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a
design optimization problem that joins the electrical, mechanical, magnetic, and control system design into
one problem to balance the opposing needs of various design criteria using the embedded system approach
is presented.
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1 INTRODUCTION

Having embedded sensors and controls in nuclear power plant components is expected to increase their
performance and reliability. A transition of component design and functionality from a static mechanical
design to a flexible dynamic electromechanical system with embedded sensors and controls can realize
components that can adapt in real-time to changing environmental conditions. The device performance can
be optimized over a wide range of operating conditions, while the sensors provide diagnostic and
prognostic capabilities that can increase component lifetime and reduce operating costs. Design margins of
components can be reduced because of tight coupling between sensors, control, and the controller device,
resulting for example in lower mass and hence lower costs.

Embedded sensors and controls can also enable features, performance, and reliability that are not
possible with legacy approaches. Future nuclear power plant reactor concepts include elevated
temperatures and other extreme environmental factors that challenge materials and component designs. For
example, some reactor concepts include operating temperatures of around 700◦C with difficult material
compatibility requirements that exclude most materials from use in component design. These
environmentally driven constraints on materials result in mechanical designs that are not achievable with
current material technology. By deeply embedding sensors and controls into the system, functions that
cannot be realized by pure mechanical design approaches can be realized as an actively controlled
electro-mechanical system that can now operate in this extreme environment. Of course, sensors that work
in this extreme environment are required, without which it would be impossible to develop the feedback
control system necessary for functionality of the device.

1.1 OBJECTIVE

There are many challenges to developing embedded sensors and controls that can operate in extreme
environments. In addition to the new environmental challenges of high-temperatures and material
incompatibility, there are the traditional challenges of high-pressure and high-radiation environments.
Developing sensors and electrical actuators that can operate in these environments presents many new
challenges. For example, high-temperatures exclude standard permanent magnet materials, which reduces
options for sensors and electrical actuation. The sealed canned rotor configuration, which is desirable for
eliminating rotating seals, drives the requirement for non-contact sensor techniques.

The objective of this report is to present research directly related to the modeling and control design
effort performed by Oak Ridge National Laboratory (ORNL) for the Department of Energy’s Advanced
Sensors and Instrumentation program (ASI), a technology crosscutting initiative under the Nuclear Energy
Enabling Technologies (NEET) program. Specific objectives for the embedded I&C project are as follows.

• Explore and quantify the potential gains from embedded I&C – improved component reliability,
increased performance, and reduced cost.

• Identify practical control, sensing, and measurement techniques for the extreme environments found
in high-temperature reactors.

• Design and fabricate a functional prototype high-temperature pump for liquid fluoride salts –
represents target demonstration of improved performance and reliability and has great potential for
widespread usage beyond salt reactor applications.
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By its nature, embedded sensors and controls require tight coupling between their mechanical and
electrical systems to derive full advantage of the embedded concept; hence, the embedded concept needs to
be studied in the context of a physical device to gain the full benefit of the research. For this demonstration
technology, a high-temperature canned rotor pump was chosen. The choice of a reactor coolant pump was
made because this system is not only a major source of potential failures, maintenance cost, and downtime
for nuclear power plants but also when applied to a high-temperature liquid fluoride salt reactor design it
exhibits virtually all of the environmental difficulties that are encountered in the new reactor designs. This
makes the technologies for embedded sensors and controls developed under this research program
applicable to a wide variety of components beside coolant pumps.

The ORNL report Embedded Sensors and Controls to Improve Component Performance and
Reliability: Conceptual Design Report details development of the initial system design requirements, the
interactions between the various systems, material considerations, and basic system architecture and
develops sensor technologies that are required for operation that can survive in the extreme environment.1

Additional information is given in the ORNL report Evaluation of Manufacturability of Embedded Sensors
and Controls with Canned Rotor Pump System on the machining, materials, and manufacturing
technologies that are suitable for high-temperatures, corrosive environments, and operational stresses.2

This document also details assembly issues and the design of the drive electronics.
This technical report documents the results of the modeling, simulation, and control system design

research for the canned rotor pump. The results include modeling the rotor dynamics, fluid bearing effects,
AMBs, electromagnetic effects of the protective cans, and disturbance forces. The development of a
control system similar to those used for industrial AMBs is presented along with the application of some
more advanced control system design techniques that are being deployed in actual applications. Finally,
optimization is presented using the embedded concept to perform a multidisciplinary design.

1.2 OVERVIEW OF PUMP CONCEPT

In this section, a conceptual reactor cooling pump using a canned rotor design is introduced and the
operating environment is described. The functional requirement of this cooling pump design is to pump
liquid fluoride salt at 700◦C for reactor cooling. The required power for the demonstration pump is 10 kW.
The pump will be prototyped and tested using a high-temperature salt loop at ORNL, which provides a
realistic environment. The testing will include the embedded sensors and controls technologies developed
during this project and characterization of performance improvements over the existing system.

The liquid fluoride salts are corrosive to most metals that are not nickel based and create problems with
shaft seal design and reduce useful lifetime. The use of mechanical bearings in this harsh environment is
also problematic. Because of the desire to avoid rotating seals and mechanical bearings, the rotor will be
suspended by AMBs and sealed in a protective can. The current design revision is shown in Fig. 1.

The rotor design is based on the following:

• the rotor design consists of a central shaft that provides an attachment to the fluid impeller
(mechanical structure),

• the shaft contains two sections of radial bearing lamination components that interact with the stator
radial bearing windings (magnetic materials),

• the shaft contains one section of switched reluctance lamination components that interact with the
stator motor windings (magnetic materials),

4



Fig. 1. A cross-sectional view of the initial mechanical design of the canned rotor pump with the
major systems labeled.

• the shaft contains various spacer components that provide the proper geometric locations for other
shaft components (mechanical structure),

• the shaft contains sections of axial bearing lamination components on each end that interact with
stator windings for axial bearing functions (magnetic materials), and

• the entire shaft assembly is sealed in a can to provide a barrier from the molten salt material
(mechanical structural).

As an additional safety feature, touch-down bearings will be included in case of a power loss to the
controller, although the fluid bearing effects of the liquid fluoride salt between the rotor and stator will
provide sufficient rotor stability and damping to prevent any catastrophic damage.

1.3 OVERVIEW OF MODELING, SIMULATION, AND CONTROL DESIGN

This report documents the modeling, simulation, and control system design for the rotor AMB
suspension system. The sensors and controls are coupled to the mechanical and electrical design and the
functionality of the system so that an embedded approach to designing the sensors and controller is
required to fully optimize the system.

To aid in the analytical analysis of the magnetic bearing system, the following assumptions are used:

• the switched reluctance motor operation is not directly coupled to the bearing dynamics and can be
modeled as an external angular velocity dependent disturbance,

• the impeller forces are not dependent on the rotor position and can be treated as external
disturbances,

• the axial magnetic bearing design is functionally identical to the design of the radial magnetic
bearings with the exception of being virtually independent of shaft angular movement, and details
will not be included in this report for brevity, and
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• the shaft will be considered a rigid body because of the large diameter-to-length ratio and the high
shaft material stiffness compared to the effective magnetic bearing stiffness.

These simplifying assumptions allow the development of analytical models of the system which will be
used to analyze the behavior over a wide range of operating conditions and parameters. In future work, the
fully nonlinear models will be implemented to verify the embedded sensor and control design.

The first step in the development of the embedded sensors and controls is the creation of models
describing the dynamic behavior of the subsystems and their interactions. The rotordynamics are described
in Sect. 2.1, the fluid bearing effect of the spinning rotor is detailed in Sect. 2.1.3, the dynamics of the
AMBs are given in Sect. 2.2, the bandwidth limitations imposed by the rotor and stator cans in the
magnetic circuit are given in Sect. 2.3, the combined dynamic model is given in Sect. 3, and the dynamics
of the power electronics are described in Sect. 3.4. The switched reluctance motor torque ripple can be
treated as an external disturbance on the system that is a function of rotor speed.

Fully parameterized simulations were created in Simulink c© in both linearized and nonlinear versions.
The nonlinear simulation includes continuous nonlinearities from the magnetic properties of the materials
in addition to non-continuous nonlinearities arising from contact of the rotor and stator and current
limitations.

The development of control systems based on the linearized models is detailed in Sect. 3. An
unsophisticated approach to designing a control system for AMBs that is currently used in a large number
of industrial AMBs is to use the controller to emulate a spring-damper system.3 This has been applied
successfully in many applications and has the advantage of being intuitively satisfying. This approach is
applied to the canned rotor pump in Sect. 3.2. The addition of an integral term to the controller is outlined
in Sect. 3.3. The integral term allows the controller to follow reference commands by the operator and
removes the steady state error due to uncertainties in the system parameters. A more advanced control
design is presented in Sect. 3.4 that incorporates the power amplifier dynamics into the system model. This
allows the controller to use voltage-based actuation instead of current-based actuation. While this requires
a more complex control strategy that is not physically intuitive, a voltage controller can be implemented in
simpler hardware than a current following power amplifier and take advantage of modern pulse width
modulation (PWM) technologies. In Sect. 3.5, an optimal control strategy is applied to the system that
utilizes the off-diagonal elements of the control gain matrices to compensate for the cross coupling of the
rotordynamics due to gyroscopic effects and fluid bearing effects. This control design provided the best
performance of any of the methods investigated. Section 4 compares the response of four control designs,
while Sect. 5 outlines the use of the embedded systems concept to perform a holistic multidisciplinary
design optimization. Finally, in Sect. 6 conclusions and future work are discussed.
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2 PUMP SECTION MODELS

The difficult physical and electrical operating environment of the pump and the reliance on the control
system for stable operation necessitate a detailed understanding of the pump behavior over the range of
operating conditions. High-fidelity dynamic models of the pump system are useful for understanding the
physical behavior and sensing requirements and designing the controller. They will also provide insight
into the system time constants, input-output sensitivities, and degree of coupled behavior. These models
need to capture the physics of the dynamic behavior of the pump and AMBs during operation and contain
parametric features for design optimization and feasibility studies. Because the impeller and switched
reluctance motor forces can be decoupled from the motion of the rotor, these forces will be included as an
external disturbance and not explicitly modeled. The analysis of the axial bearings is functionally similar to
the analysis of the radial bearings with the simplification that the axial bearings do not contend with the
rotordynamic forces. For brevity, the analysis of the axial bearings will not be explicitly included. In this
section, models are developed for the rigid body motion of the rotor, the electromagnetics of the AMBs,
and the fluid forces acting on the rotor. Finally, the interaction between the different dynamical systems is
analyzed.

2.1 DYNAMICS OF A RIGID ROTOR

In this subsection, the rigid rotor dynamics of the canned rotor pump system are analyzed. All
numerical values used in the specific examples and simulations are based on the current system design
concept. The rotor dimensions are depicted in Fig. 2.

Fig. 2. A cross section of the initial mechanical design of the rotor and associated dimensions in
meters.

For the conceptual design, the rigid body model instead of the flexible rotor model will be used. The
diameter to length ratio of the conceptual rotor coupled with the high flexural stiffness of the rotor
compared to the effective stiffness of the AMBs make the effects of rotor flexure minimal compared to the
rotordynamics. For other AMB systems with low diameter-to-length ratios, this assumption is no longer
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valid, and the first flexible modes of the rotor have frequencies near or below the operating frequency of the
rotor and can no longer be ignored. The rotordynamics model used is the standard Euclidean rotation and
translation model about the center of mass (COM) using lumped mass and inertia parameters.

2.1.1 Equations of Motion

The rigid rotor equations of motion will be implemented in a 4 degree of freedom (DOF) system. The
4 DOF model only includes axial translation and rotation and assumes a constant rotor speed Ω. The rotor
position is given by Euclidean coordinates z = [x, y, θx, θy] for the rotor COM, where x and y are the two
radial translations and θx and θy are the rotations around the x and y axes, respectively. The equation of
motion is given by

Mz̈ + (G + Cb)ż + (K + Kb)z = u(t), (1)

where M is the symmetric mass/inertia matrix, G is the skew-symmetric gyroscopic matrix, Cb = CT
b ≥ 0 is

the symmetric positive definite damping matrix, K is the symmetric stiffness matrix, Kb = −KT
b is the

nonconservative stiffness matrix, and u(t) are the external forces including the AMB suspension forces.
The damping term Cb and the stiffness term Kb are due to fluid film effects between the rotor and the stator.
These matrices will be calculated in Sect. 2.1.3. Finally, most rotational machinery utilizes physical
bearings that have a stiffness matrix K due to the bearing material properties; for AMBs, the matrix K = 0
because there is no physical contact between the rotor and a stationary mechanical bearing. To maintain
stable operation, the stiffness matrix K has to be implemented virtually by the control system. This shows
how the embedded instrumentation and control is fundamentally linked to the dynamic behavior of the
system.

Based on the structure of the Euclidean position tensor x(t), the lumped parameter mass/inertia matrix
is defined as

M =


m 0 0 0
0 m 0 0
0 0 Ixx 0
0 0 0 Iyy

 , (2)

where m is the mass of the rotor and Ixx and Iyy are the rotational inertias about the x axis and y axis,
respectively. This formulation of the mass/inertia matrix assumes that the rotor has no imbalances and that
the physical and inertial axes are perfectly aligned. In the case when imbalances exist, specifics of the
necessary modifications to the mass/inertia matrix are given in Sect. 2.1.2.

The conical modes of the rotor motion are due to coupling between the x-axis and y-axis motion due to
gyroscopic effects. This coupling is captured in the gyroscopic matrix given by

G =


0 0 0 0
0 0 0 0
0 0 0 Izzω

0 0 −Izzω 0

 , (3)

where Izz is the rotational inertia around the axis of rotation of the rotor and ω is the angular velocity of the
rotor in rad/s.

While defining the rotor movement and position at the COM simplifies the specification of the
equations of motion, the AMBs operate away from the COM. The coordinates of the rotor centerline
located at the AMBs are given by zb = [xA, yA, xB, yB]T . Defining a coordinate transform from the COM to
AMB coordinate system and from the AMB to COM coordinate system allows the AMB forces to be
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expressed in the AMB coordinate system, which simplifies the equation structure. These equations will
then be transformed to the COM coordinate system and the AMB forces translated to the equivalent forces
and moments about the COM. The nonlinear transformations from the COM and AMB coordinates are
given by

xA = x − L1 sin(θx),

xB = x + L2 sin(θx),

yA = y − L1 sin(θy), and

yB = y + L2 sin(θy).

(4)

The small motions of the rotor allow the use of the small angle theorem to linearize the coordinate
transformation. This linear transformation matrix BT from the COM coordinates to the bearing reference
frame is

BT =


1 0 −L1 0
0 1 0 −L1
1 0 L2 0
0 1 0 L2

 , (5)

where L1 ≥ 0 and L2 ≥ 0 are shown in Fig. 3 and (·)T denotes a matrix transpose. In matrix form, the linear
transformation of the COM to AMB coordinate transform is

zb = BT z. (6)

Fig. 3. The location of the magnetic bearings in relationship to the COM.

The transformation from the AMB coordinates to the COM coordinates is given by

z = Bzb. (7)

2.1.2 Inertial Properties

While the simple mass and inertia matrix given in Eg. (2) are sufficient for many situations, the effects
of rotor imbalance on the rotordynamics and AMB stability can be large. To study the effects of mass
imbalance on the system behavior, a more detailed description of the inertial properties of the rotor and a
parameterized description of mass imbalance effects on the mass/inertia matrix are derived. To simplify the
development of the inertial properties, the standard method of describing the motion about the COM will
be utilized.
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The inertial properties of a rigid body undergoing rotation are described by six mass moments of
inertia. In a fixed-body reference frame P − xyz where P is the origin and [x, y, z]T are three mutually
orthogonal axes, the inertial properties are given by

Ixx =
∫

(y2 + z2) dm, Iyz =
∫

yz dm,
Iyy =

∫
(z2 + x2) dm, Izx =

∫
zx dm, and

Izz =
∫

(x2 + y2) dm, Ixy =
∫

xy dm.
(8)

The inertial properties of the system can be combined into a single symmetric matrix given by

IP =

 Ixx −Ixy −Izx

−Ixy Iyy −Iyz

−Izx −Iyz Izz

 . (9)

This inertia matrix can be rotated about the origin P− xyz by a transformation matrix T to a new coordinate
system P′ − x′y′z′ where the new inertia matrix is given by

IP′ = T IPT T , (10)

and the axes transformation is given by

[x, y, z]T = T [x′, y′, z′]T . (11)

It is well understood that there always exists a transformation T0 such that the inertia matrix is diagonal and
given by

IO =

 Ix0 0 0
0 Iy0 0
0 0 Iz0

 , (12)

and the diagonal elements Ix0, Iy0, Iz0 are known as the principal moments of inertia. In the specific case of
the rotor shown in Fig. 2 the symmetry of the rotor design allows the principal axes of inertia to be defined
as shown in Fig. 4.

Analyzing the conceptual rotor design shown in Fig. 2. The rotor has a mass M = 25.75 kg. The COM
is located at x = 0 m, y = 0 m, z = 0.268 m. With principal moments of inertia Ix = 0.6175 kg · m2,
Iy = 0.6175 kg · m2, and Iz = 0.05153 kg · m2, the inertia matrix for the rotor is

I =

 Ixx −Ixy −Izx

−Ixy Iyy −Iyz

−Izx −Iyz Izz

 =

 0.6175 0 0
0 0.6175 0
0 0 0.05153

 kg · m2. (13)

Imbalances in the rotor will cause the COM to shift slightly, which will cause coupling between the x and y
axes during rotation. This can be modeled as a small mass ∆m attached to the rotor at location (a, b, c).
When translating the origin of the body reference frame P − xyz by an amount (a, b, c) to a new origin
S − xyz, the inertial properties change according to the following

:
Ix = IPx + m(b2 + c2), Iyz = IPyz + mbc,
Iy = IPy + m(c2 + a2), Izx = IPzx + mca, and
Iz = IPz + m(a2 + b2), Ixy = IPxy + mab.

(14)
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Fig. 4. Principal axes corresponding to the principal moments of inertia for the rotor.

Applying the eccentricity mass ∆m at the point (a, b, c) and applying Eg. (14) to the principal inertial
matrix IO given by Eg. (12) yield the inertial matrix of the disturbed rotor:

IS = IO + ∆I =

 Ix0 0 0
0 Iy0 0
0 0 Iz0

 +

 b2 + c2 −ab −ca
−ab c2 + a2 −bc
−ca −bc a2 + b2

 ∆m. (15)

Applying this result to the 4 DOF model results in the new mass matrix given by

M =


m + ∆m 0 0 0

0 m + ∆m 0 0
0 0 Ixx + ∆m(b2 + c2) −∆m(ab)
0 0 −∆m(ab) Iyy + ∆m(c2 + a2)

 , (16)

and the new gyroscopic matrix given by

G =


0 0 0 0
0 0 0 0
0 0 0 (Izz + ∆m(a2 + b2))ω
0 0 −(Izz + ∆m(a2 + b2))ω 0

 . (17)

It can be seen from the cross-coupling terms −∆m(ab) in the mass matrix that an imbalance in the rotor will
cause a steady state circular motion of the geometric COM.

As an example, from the ISO 1940/1 standard for balance, the maximum permissible unbalance for a
balance grade of G100, the maximum allowable unbalance for the conceptual design rotor at 377 rad/s is
0.715 g-mm. With a rotor mass of 25.7539 kg, using a mass offset at the location (0.001, 0.001, 0) m, the
corresponding allowable eccentricity mass is ∆m = 0.506 g.
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2.1.3 Fluid Effects

The rotor for the conceptual pump design is fully immersed in the fluid being pumped. The rotor fluid
interactions are a major source of external forces on the rotor. Understanding this interaction is important
to developing the control system because the fluid interactions will generate cross-coupling rotor
instabilities with significant dynamic forces on the rotor.

The first source of fluid force on the rotor arises from the impeller. The impeller design used is
identical to the existing impeller used on the high-temperature salt loop at ORNL that will be used to test
the prototype system. This impeller is a two-blade design. The impeller forces are independent of the radial
movement of the rotor so they will be expressed as an external disturbance force on the shaft end. This
disturbance force consists of two components – an axial component that is related to the pump suction head
and consequently the rotor angular speed and a radial sinusoidal component due to pressure pulses from the
discrete impeller blades.

The second main source of fluid force on the rotor is due to interactions between the liquid fluoride salt
and the rotor and stator can. The small fluid-filled gap between the rotor and stator cans acts like a fluid
bearing. During normal operation, the rotor and stator geometric centers are aligned by the control system
and these fluid forces are purely tangential to the surface of the rotor can due to the velocity differential
between the rotor and stator cans. Any small movement of the rotor from geometric center will
immediately develop fluid forces on the rotor. These forces are functions of rotor movement and the
rotational speed.

The model of the tangential forces on the rotor due to viscous effects from the angular velocity
differential is equivalent to the standard model of two large plates moving relative to each other. For large
identical flat plates moving relative to each other, the shear force due to fluid viscosity is given by

F =
µAv

y
, (18)

where µ is the fluid viscosity, A is the area of one plate, v is the plate relative velocity of the plates, and y is
the distance between the two plates. If the plates are infinite, this is analogous to the cylindrical Couette
flow under the assumption that the edge effects are insignificant compared to the surface effects4. The
cylindrical version of Eg. (18) is given by

T =

(
2πµr3L

s0

)
θ̇z = dzθ̇z, (19)

where r is the radius of the rotor, L is the length of the rotor, s0 is the nominal gap between the rotor and
stator, and θ̇z is the axial rotational velocity in rad/s.5 The torque given in equation 19 only describes the
resistance to rotation; to determine the effect of transverse rotor motion, a different approach is needed.

Under dynamic loading conditions, the rotor and stator will not remain concentric which leads to
changes in the rotational fluid damping and the addition of damping in the x and y directions. The forces
due to the dynamic motion of the rotor about the origin due to fluid bearing effects is given by[

Fx

Fy

]
=

[
C11 C12
C21 C22

] [
ẋ
ẏ

]
+

[
K11 K12
K21 K22

] [
x
y

]
. (20)

The relationships between the dimensionalized coefficients of the stiffness matrix, damping matrix, and
non-dimensional stiffness and damping matrices coefficients are given by

Ki j =
F0

s0
K∗i j, Ci j =

F0

ωs0
C∗i j, i, j = 1, 2, (21)
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where s0 is the nominal gap between the rotor and stator cans and

F0 = FµS ∗ =
µL3ωri

2s2
0

S ∗ =
µL3ωri

2s2
0

ε
√
π2 − π2ε2 + 16ε2

2(1 − ε2)2 , (22)

is the static load at a given deflection e = εs0 =
√

x2 + y2, where 0 ≤ ε ≤ 1 is the eccentricity ratio.6

The values of the non-dimensional stiffness matrix are given by6

K∗11 = [2π2 + (16 − π2)ε2]Ψ(ε),

K∗12 =
π

4

(
π2 − 2π2ε2 − (16 − π2)ε4

ε(1 − ε2)1/2

)
Ψ(ε),

K∗21 = −
π

4

(
π2 + (32 + π2)ε2 + (32 − 2π2)ε4

ε(1 − ε2)1/2

)
Ψ(ε), and

K∗22 =
π2 + (32 + π2)ε2 + (32 − 2π2)ε4

1 − ε2 Ψ(ε),

(23)

and the values of the non-dimensional damping matrix are given by6

C∗11 =
π(1 − ε2)1/2

2ε
[π2 + (2π2 − 16)ε2]Ψ(ε),

C∗12 = C∗21 = −[2π2 + (4π2 − 32)ε2]Ψ(ε), and

C∗22 =
π

2

(
π2 + (48 − 2π2)ε2 + π2ε4

ε(1 − ε2)1/2

)
Ψ(ε),

(24)

where

Ψ(ε) =
4(

π2 + (16 − π2)ε2)3/2 . (25)

This analysis in standard journal bearings is utilized at nominal rotor positions of ε > 0 due to the constant
loading on the bearing. In the case of the canned rotor with AMBs levitating the shaft, the eccentricity ratio
ε→ 0 as t → ∞. For small perturbations around the origin, the damping is given by limε→∞Ci j(ε, ω) and
the stiffness by lime→∞ Ki j(ε, ω) for i, j = 1, 2.

For the conceptual design, Table 1 gives the relevant physical parameters, the variation in the stiffness

Table 1. Model parameters used to calculate
the fluid stiffness and damping

Parameter Value Units
L 0.418 meters
ri 0.0645 meters
ω 377 rad/s
s0 0.001 meters
µ 0.001 Pa-s

coefficients due to changes in the nominal eccentricity ratio are shown in Fig. 5, and the variation in
damping coefficients due to changes in the nominal eccentricity ratio are shown in Fig. 6.
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Fig. 5. Dimensionalized stiffness coefficients for the current rotor design.

Fig. 6. Dimensionalized damping coefficients for the current rotor design.
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For small movements of the rotor about the origin when the rotor angular velocity ω is 377 rad/s, the
nonconservative fluid stiffness matrix in N/m for the current design is

[
K11 K12
K21 K22

]
=

[
0 1.395x106

−1.395x106 0

]
. (26)

Likewise, the fluid damping matrix in N-s/m is

[
C11 C12
C21 C22

]
=

[
7, 400 0

0 7, 400

]
. (27)

During startup, the rotation will cause a vertical force on the shaft that counteracts the gravitational
force. Equation 22 can be used to calculate these forces. A closed-form solution for the eccentricity ratio as
a function of the shaft speed does not exist, so numerical methods will be used to calculate the shaft
position as a function of rotational speed. As Fig. 7 shows, the rotor moves closer to the geometric center
as the shaft speed increases. The numerical error in the calculation is shown in Fig. 8.

Fig. 7. The eccentricity ratio as a function of shaft speed in rad/s. The assumed shaft mass is
25.7539 kg, length is 0.418 m, radius is 0.129 m, and the nominal gap s0 is 0.001 m.

Note that the fluid stiffness and damping matrices only assume radial motion of the rotor and do not
take into account rotation of the rotor axis about the COM. This type of motion is expected in the
conceptual design. The effect of rotor axis rotational movement can be approximated by applying the fluid
stiffness and damping matrices in the AMB coordinate system and transforming the matrices to the COM
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Fig. 8. Eccentricity error due to the quantization of the search space used in the numerical method
for calculation eccentricity as a function of shaft speed.

coordinate system. The fluid force equations in the AMB coordinate system are
FxA

FyA

FxB

FyB

 =


K11 K12 0 0
K21 K22 0 0
0 0 K11 K12
0 0 K21 K22




xA

yA

xB

yB

 +


C11 C12 0 0
C21 C22 0 0
0 0 C11 C12
0 0 C21 C22




ẋA

ẏA

ẋB

ẏB

 and (28)

Fb = Kbzb + Cbżb. (29)

This can be transformed to the COM coordinate system by

F = FbBT = KbBT z + CbBT ż. (30)

2.1.4 Unforced Response

In the case of the unforced system, we will analyze the eigenvalues using the parameters from Table 2,
which includes the values from Table 1.

Due to the lack of physical bearings, in this case, the stiffness matrix K is identical to zero; however,
the fluid bearing effect is still present. Combining Eg. (1),Eg. (2), Eg. (3), Eg. (27), and Eg. (26)
calculated at the values given in Table 2 yields the second-order matrix differential equation given by

Mz̈ + (G + CbBT )ż + KbBT z = 0. (31)

Transforming this into state-space form yields

ż = Az =

[
0 I

−M−1KbBT −M−1(G + CbBT )

]
z, (32)
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Table 2. Model parameters used to calculate
the fluid stiffness and damping

Parameter Value Units
L 0.418 meters
ri 0.0645 meters
m 25.7539 kg
Ixx 0.6189 kg/m2

Iyy 0.6189 kg/m2

Izz 0.0515 kg/m2

L1 0.1746 m
L2 0.0818 m
ω 377 rad/s
s0 0.001 meters
µ 0.001 Pa-s

where z = [x, y, θx, θy, ẋ, ẏ, θ̇x, θ̇y]T is the new state vector of the rotor COM. Solution of the characteristic
equation det(λI − A) = 0 gives the eigenvalues of the physical system, which yields information about its
stability characteristics. Note that the gyroscopic matrix G is a function of the rotor speed. The unforced
open loop eigenvalues are shown in Fig. 9. The presence of eigenvalues in the right half plane shows that

Fig. 9. Eigenvalue variation of the unforced rotor system with fluid damping as a function of rotor
angular velocity.

the geometric center for the open loop system is unstable at all rotor speeds. From standard stability
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analysis for fluid bearings,5 the rotor stable position in the absence of AMB control will have a non-zero
eccentricity and exhibit a limit cycle behavior. This will have an impact on the controllability of the
switched reluctance motor and the pump performance but will prevent damage to the pump in the event of
loss of control or other catastrophic event.

2.2 ACTIVE MAGNETIC BEARING MODEL

The AMBs design chosen to control the radial motion of the rotor consists of two bearings spaced
axially on the shaft used to control the radial motion and two bearings at either end of the shaft to stabilize
the shaft axially. The axial bearing design is functionally the same as the radial bearing design and will not
be expressly stated. The switched reluctance motor will be located in between the two radial magnetic
bearings. The locations of the specific components of the AMBs and switched reluctance laminations are
shown in Fig. 10 and the configuration of the radial AMBs is shown in Fig. 11.

Fig. 10. Locations of the magnetic laminations for the AMBs and the switched reluctance motor.

The pump stator is separated from the rotor laminations by two thin protective metal cans and the
molten fluoride salt. While the gap between the rotor and stator does not contain air, the standard
terminology in literature for this is an air gap. The air gap in the conceptual design will also be referred to
occasionally as a fluid gap.

The following are descriptions and notation for the variables used.

• N - number of turns per double poles

• A - projected surface area of each AMB pole

• ix+ , ix− , iy+ , iy− - coil currents

• sx+
1
, sx+

2
, sx−1

, sx−2
, sy+

1
, sy+

2
, sy−1

, sy−2
- air gaps for each individual pole

• s0 - the nominal air gap when the rotor is centered

• (x, y) - rotor COM position in the Euclidean coordinate frame

• (r,Θ) - rotor COM position in the polar coordinate frame
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• Θx+
1
,Θx+

2
, . . . ,Θy−1

,Θy−2
- the angular position of each pole

Fig. 11. Representation of the axial bearing stator configuration and some selected variables.

The two axial magnetic bearings will be denoted by superscript A and B, respectively. The states of the
system are the air gaps, or in the case of the conceptual design, fluid gaps
[sA

x+ , sA
x− , s

A
y+ , sA

y− , s
B
x+ , sB

x− , s
B
y+ , sB

y−]
T and the shaft angles θx, θy, and θz. The control variables are the

individual coil currents [iA
x+ , . . . , iA

y− , i
B
x+ , . . . , iB

y−]
T . This does not include any power amplifier dynamics.

These will be discussed in Sect. 3.4. The location of the COM of the rotor in relation to the two bearings is
shown in Fig. 10. The magnetic force of the bearings is related to the coil current and the distance between
the rotor and stator.

To calculate the air gaps in the eight poles we will analyze the system in polar coordinates. The air gap
of pole i is given by

si = s0 − r cos(Θi − Θ). (33)

If the poles are symmetric about the x and y axis, this symmetry can be used to decouple the sx air gaps and
the y-axis movements. Likewise the sy air gaps and the x-axis movement can be decoupled. The decoupled
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equations for the total air gaps for all four axes in a single radial bearing become

sx+ = 2(s0 − x cos Θ0),

sx− = 2(s0 + x cos Θ0),

sy+ = 2(s0 − y cos Θ0), and

sy− = 2(s0 + y cos Θ0),

(34)

where 2Θ0 is the angle between two poles. For the configuration shown in Fig. 11, the angle Θ0 is π/8 rad
(22.5 deg).

2.2.1 Magnetic Circuit

AMBs use coil windings to develop magnetic flux in the stator magnetic laminations, rotor laminations,
and the gap between them forming a magnetic circuit. The flux density B in the magnetic circuit is given by

B = µ0
Ni
2s
, (35)

where µ0 = 4π × 10−7 V-s/A-m is the magnetic permeability of vacuum, N is the number of coil windings, i
is the coil current, and 2s is the total air gap. This calculation of flux density assumes a constant
cross-sectional area of the stator, no flux leakage or other losses, and that the magnetic reluctance in the
gap between the rotor and stator is much higher than the reluctance of the laminations.

Assuming each of the eight electromagnets on both radial AMBs have coil currents that can be
controlled independently, Eg. (35) for a single coil becomes

Bk
j = µ0

Nikj
sk

j

, j ∈ {x+, x−, y+, y−}, k ∈ {A, B}, (36)

where sk
j are given by Eg. (34).

The force generated by the each magnetic bearing axis is given by

Fb =
B2A
µ0

, (37)

where B is the magnetic flux given by Eg. (36) and A is the cross-sectional area of a magnetic bearing
stator tooth. Combining Eg. (36) and Eg. (37) yields

Fk
j =

1
4
µ0N2A

(ikj)
2

(sk
j)

2
cos Θ0 = k

(ikj)
2

(sk
j)

2
cos Θ0, j ∈ {x+, x−, y+, y−}, k ∈ {A, B}. (38)

2.2.2 Linearization

It is common practice to linearize the magnetic bearing force Eg. (38) to aid in the analytical analysis
of the bearing behavior and control system design. This is a valid assumption because of the small
movement of the shaft; however, care must be taken to validate any controller developed using the
linearized model on the nonlinear model to ensure that the unmodeled dynamics do not destabilize the
control system.
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By linearizing with respect to both bearing state variables, the linearized force equation for each
separate coil can be written as3

f (x, i) = kii − ksx. (39)

The two constants ki and ks are calculated by linearizing Eg. (38) around the operating points i0 and s0.
Assuming that the bearing has rotational symmetry, the constant ki related to the current is given by

ki =
∂ f
∂i

∣∣∣∣∣
i=i0,s=s0

= 2k
i
s2 cos Θ0

∣∣∣∣∣
i=i0,s=s0

. (40)

Likewise, the spring constant ks related to the rotor movement is given by

ks =
∂ f
∂s

∣∣∣∣∣
i=i0,s=s0

= −2k
i2

s3 cos Θ0

∣∣∣∣∣
i=i0,s=s0

. (41)

Table 3 summarizes the magnetic properties of the system design.

Table 3. Magnetic parameters for the model

Parameter Value Units
µ0 4π × 10−7 V-s/A-m
N 100 turns
A 0.0012 m2

i0 30 A
s0 0.001 m
k 3.14159 × 10−9

ki 0.17415
ks -5224.416

2.2.3 Operational Boundary Conditions

During normal operation, the pump will be subjected to various disturbances. These external forces
can have a detrimental impact on pump performance and, if sufficiently large, can overload the magnetic
bearings and cause physical damage to the pump. Characterizing these extremes in operating condition and
designing the AMBs with sufficient performance margins is an important step in analyzing the system.

During startup, the magnetic bearings are required to lift the rotor off of the touchdown bearings. In
this case, the distance over which the magnetic bearings must act is twice the nominal air gap. The
maximum load capacity of the bearing is related to the air gap, maximum current, and magnetic saturation.
Additionally, the maximum current and magnetic saturation are related. The magnetic properties of
Vacodur 50,7 the material chosen to be the rotor magnetic laminations for the magnetic bearings and
switched reluctance motor due to the fact that it is practically the only material that has magnetic properties
at 700◦C, are shown in Fig. 12. The maximum force that the magnetic bearing can maintain can be derived
from Eg. (37) with a flux area of 0.0012 m2 and assuming a magnetic flux saturation at 2.2 T of 4622 N.

The coil current is physically limited by the conductor ampacity. A practical limit should be chosen
based on the coil magnetic flux saturation. In this case the required field strength to achieve a magnetic flux
of 2.2 T is 308 A/m. This will be the maximum field strength Hmax for this design. The maximum field
strength can be related to the maximum current and number of turns by

Hmaxl = Nimax, (42)
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Fig. 12. Magnetic properties of Vacodur50 at 750◦C.

where l is the flux path length through the rotor and stator. Given an approximate path length of the flux in
Vacodur 50 of 237 mm, the maximum useful current for N = 100 turns is imax = 73 A. The coil currents are
also limited by the wire gauge chosen and the number of parallel windings per pole.

2.3 EFFECTS OF THE ROTOR AND STATOR CANS

The rotor and stator protective cans are critical to protect the materials in the rotor and stator from the
corrosive effects of the liquid fluoride salt. The rotor can will experience potential delamination, growth,
creep, and fatique in addition to the corrosive effects experienced by the stator can. The can thickness also
has a significant impact on the control system performance. Creation and destruction of eddy currents in
the rotor and stator cans due to the time-varying magnetic fields of the AMBs will limit the achievable
bandwidth for varying the magnetic field. A reduced bandwidth magnetic field results in reduced
bandwidth actuation, which can limit the control system bandwidth. The limitation on the control signal
bandwidth will in turn limit the achievable controller gains. Figure 13 shows the maximum achievable
bandwidth for a Hastelloy N can as a function of the can thickness. The frequency response of the can acts
like a low pass filter and affects the control system by limiting the maximum controller gains, limiting the
achievable loop speed of the controller hardware, and reducing high-frequency signal content in both the
actuator signals and the sensor signals.
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Fig. 13. Maximum achievable bandwidth of a Hastelloy N can as a function of the can thickness.





3 CONTROL DESIGN

In Sect. 2, models of the pump rotordynamics, fluid forces, and the AMBs were developed. In this
section, these models will be used to develop and characterize different control system formulations. The
primary single-variable control design technique used for a large number of linear systems is the
proportional integral derivative (PID) controller. The next control design technique that will be applied is
the linear quadratic regulator (LQR) controller. This technique can improve the system response by taking
advantage of the coupling between the orthogonal axes due to gyroscopic effects and fluid rotor
interactions. While some simulation results are shown in this section, its primary purpose is to describe the
mathematical development of the control system.

The basic system expressed in the COM coordinates system is given by Eg. (43). The rotor position is
given by Euclidean coordinates of the COM z = [x, y, θx, θy]T , where x and y are the radial translations and
θx and θy are the rotations around the x and y axes, respectively. The equation of motion is given by

Mz̈ + (G + CbBT )ż + KbBT z = u(t), (43)

where M is the symmetric mass/inertia matrix, G is the skew-symmetric gyroscopic matrix, Cb = CT
b ≥ 0 is

the damping matrix, K is the symmetric stiffness matrix, Kb = −KT
b is the nonconservative stiffness matrix,

BT is a transformation from the AMB coordinate system to the COM coordinate system, and u(t) are the
external forces.

3.1 STATE-SPACE FORMULATION

In designing the control system gains, it is desirable to express the AMBs as a linear state-space
system. There are two basic coordinate systems that have physical meaning – the coordinates that describe
the movement of the COM of the rotor and the coordinates that describe the actuation of the bearings in the
bearing coordinate system. This requires a state change from the COM coordinate system z = [x, y, θx, θy]T

to the bearing coordinate system zb = [xA, yA, xB, yB]T , where A denotes the axial bearing that is L1 m away
from the COM opposite the impeller and B denotes the axial bearing that is L2 m from the COM closest to
the impeller, as depicted in Fig. 3. The coordinate linearized transformation is given by

zb = BT z =


1 0 −L1 0
0 1 0 −L1
1 0 L2 0
0 1 0 L2

 . (44)

The input states u(t) are chosen to be the bearing forces ub = [ fxA, fyA, fxB, fyB]T . Translating the inputs
from the bearing coordinate system ub(t) to the COM coordinate system u(t), the input is given by

u = Bub =


1 0 1 0
0 1 0 1
−L1 0 L2 0

0 −L1 0 L2

 , (45)

which is identical to the transpose of BT . The linearized bearing derived in Sect. 2.2.2 acting in the AMB
coordinate system can be expressed using the rotor COM states z(t) and the coil currents i(t) by

ub(t) = −KsBT z(t) + Kii(t), (46)
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where Ks = diag(ks, ks, ks, ks), Ki = diag(ki, ki, ki, ki), and ks and ki are given in Table 3. The bearing forces
ub in the AMB coordinate system can in turn be translated to the COM coordinate system using

u(t) = −BKsBT z(t) + BKii(t). (47)

Finally, after the appropriate transformations are applied, the second-order linearized ordinary differential
equation (ODE) in COM coordinates is given by

Mz̈(t) + (G + CbBT )ż(t) + (KbBT + BKsBT )z(t) = BKii(t). (48)

Transforming Eg. (48) into a state-space formulations yields

ẋ(t) = Ax(t) + Bu(t) =

[
04×4 I4×4

−M−1(KbBT + BKsBT ) −M−1(G + CbBT )

]
x(t) +

[
04×4

M−1BKi

]
u(t) and

y(t) = Cx(t) =
[

BT 04×4
]

x(t),
(49)

where x(t) = [x, y, θx, θy, ẋ, ẏ, θ̇x, θ̇y]T is the system state, y(t) is the vector of position sensor measurements
in the bearing coordinate system, and I4×4 is an identity matrix. In this case, from Eg. (44), y(t) ≡ zb(t).
The control variable u(t) in this formulation is the bearing coil current vector i(t). Section 3.4 will
incorporate the power supply behavior to transform the input to voltage control.

3.2 PD CONTROL

This section will detail the design of a proportional derivative (PD) controller for the AMB. This is
equivalent to the addition of a virtual mechanical spring and virtual damper to the system. This approach
has been used in many AMB control systems because of the intuitive nature of the control design. However,
it does not take advantage of the performance increases and robustness properties of more advanced control
system design techniques that cannot be expressed intuitively as mechanical springs and dampers.3

To begin, the PD control law is defined as

ixA = −kPAxA − kDA ẋA, (50)

iyA = −kPAyA − kDAẏA, (51)

ixB = −kPBxB − kDB ẋB, and (52)

iyB = −kPByB − kDBẏB. (53)

Stated in matrix form,
i(t) = −KPy(t) − KDẏ(t) = −KPBT z(t) − KDBT ż(t), (54)

where u(t) = [ixA, iyA, ixB, iyB]T , KP = diag(kPA, kPA, kPB, kPB), and KD = diag(kDA, kDA, kDB, kDB).
Substituting the PD control law into the state-space equation given by Eg. (49) yields the closed-loop
equation

ẋ = Ax
[

04×4 I4×4

−M−1(KbBT + BKsBT + BKiKPBT ) −M−1(G + CbBT + BKiKDBT )

]
x, x(0) = x0. (55)

The stability and frequency response of the closed-loop system can be analyzed through the closed-loop
eigenvalues that solve the equation det(λI − A) = 0, where λ are the eigenvalues. Note that the gyroscopic
matrix G is a function of the rotor speed θz, so the eigenvalues will also be a function of the rotor speed.
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Figure 14 show the variations in the closed-loop eigenvalues as a function of rotor speed. The rotor speed
varies between 10 and 500 rad/s (pump operating speed is 377 rad/s), the darker points denote higher rotor
speeds, and the controller gains are given as

kPA = kPB = −2
ks

ki
and

kDA = kDB =
1
ki

√
−mks

2
.

(56)

As the figure shows, at higher speeds the eigenvalues related to an oscillatory mode move closer to the
imaginary axis, and consequently, the oscillatory damping characteristics of the controller degrade at
higher rotational speeds.

Fig. 14. Closed-loop eigenvalues with a PD controller as a function of rotor speed. Darker points
denote a higher rotor speed with a maximum speed of 500 rad/s.

Figures 15 and 16 show the response of the controller to the impact of a 1 in. diameter ball bearing on
the impeller.

The system maximum shaft displacement is well within the 1 mm fluid gap between the rotor and
stator. Increasing the proportional and damping parameters can increase the performance of the system at
the cost of increasing the sensitivity to sensor and other system noise.

3.2.1 Current Bias

It should be noted that in this formulation the bearing coil currents are in R. This is not physically
feasible because both a positive and negative coil current will produce a positive force. In reality, the dual

27



Fig. 15. Rotor COM movement of the closed-loop system to an impact on the impeller.

Fig. 16. Rotor COM angular disturbance to an impact on the impeller using PD control
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coils on each bearing axis can only provide a pull force, not a push, hence the need for opposite actuators
for each axis. This means that the command current is made up of two individual coil currents as given by

ixA = i+xA − i−xA, i+xA ≥ 0, i−xA ≥ 0,

iyA = i+yA − i−yA, i+yA ≥ 0, i−yA ≥ 0,

ixB = i+xB − i−xB, i+xB ≥ 0, i−xB ≥ 0, and

iyB = i+yB − i−yB, i+yB ≥ 0, i−yB ≥ 0.

(57)

This leads to nonlinearities in the individual coil currents around the zero amplitude currents. This can be
overcome by the addition of a bias current to the coils, i.e., ixA = (i+xA + i0) − (i−xA + i0). If i0 > |ixA|, then the
individual coil currents will never reach zero during normal operation. This is analogous to pretensioning
springs.

3.3 PID CONTROL

The proportional derivative controller can provide stability and rejection of impulse-type disturbances
but cannot reject constant disturbances which makes the controller highly sensitive to errors in the physical
or estimated parameters for the system. This can be solved by the addition of an integral term into the
controller that will remove any steady-state errors in the system. The combined controller is known as a
proportional integral derivative (PID) controller.

Applying a local PID controller to each bearing axis is equivalent to

ixA = −kPAxA − kIA

∫
t
exA − kDA ẋA, (58)

iyA = −kPAyA − kIA

∫
t
eyA − kDAẏA, (59)

ixB = −kPBxB − kIB

∫
t
exB − kDB ẋB, and (60)

iyB = −kPByB − kIB

∫
t
eyB − kDBẏB. (61)

where exA, eyA, exB, and eyB are the errors between the reference inputs and the current system states. In
state-space notation, this becomes

u(t) = −(KPy + KI

∫
y + KDẏ), (62)

where KP = diag(kPA, kPA,kPB, kPB), KI = diag(kIA, kIA, kIB, kIB), and KD = diag(kDA, kDA, kDB, kDB). This
assumes that the sensors are collocated with the AMBs. Substituting Eg. (62) into the closed-loop equation
of motion is

Mz̈ + (G + CbBT )ż + (KbBT + BKsC)z = −BKiKPBT z − BKiKI

∫
(r(t) − BT z) − BKiKDż. (63)

Representing Eg. (63) in state-space form requires an augmentation of the system states x(t) by the state
xi(t) = e(t) = r(t) − BT z(t).8 The augmented closed-loop differential equation becomes[

ẋ
ẋi

]
=

[
A BKI

−BT 04×8

] [
x
xi

]
+

[
08×4

I4×4

]
r(t) and

y =
[

C 04×4
] [ x

xi

]
,

(64)

29



where A, B, and C are from Eg. (49).9 The additional states add four additional eigenvalues and modify
the existing eigenvalues of A.10

As with the PD control, selection of the controller gains influences the close-loop eigenvalues of the
system. The integral term allows the system to track the reference input r(t) and removes any offset error
due to disturbances or uncertainties in the linearized model parameters.

3.4 VOLTAGE CONTROL

One important aspect of control system design is the choice of the actuation method. In the case of
AMBs it is advantageous to use the bearing coil voltage instead of the bearing coil current as the actuation
methods. By controlling the voltage, the dynamic characteristics of the power electronics and resistance of
the bearing coil to changes in current can be incorporated into the system model. Additionally a
voltage-controlled amplifier has a simpler architecture without the need for an underlying current following
feedback circuit. However, the change of the input variable from current to voltage also presents greater
challenges for the design of the control system and the controller parameters can no longer be interpreted
physically as springs and dampers, as is the case with current control.3

Changing the input variable from current control to voltage control is equivalent to augmenting the
system states with the bearing coil currents ixA, iyA, ixB, iyB. The coil currents are governed by the
differential equation

v(t) = Ri(t) + L
d
dt

i(t) + Ku ẋ(t), (65)

where R = diag(RxA,RyA,RxB,RyB) is the coil resistance, L = diag(L, L, L, L) is the coil inductance, and
Ku = diag(ku, ku, ku, ku) is related to the motion-induced voltage. Theoretically it can be shown that

ku = ki (66)

and coil inductance is related to the magnetic bearing coefficients by

L =
k2

i

|ks|
(67)

due to the translation of energy between electrical and mechanical.11, 12 This assumes lossless energy
conversion but is sufficient for use in designing the controller.

Rearranging Eg. (65) gives

d
dt

i(t) = L−1v(t) − L−1Ri(t) + L−1Kix(t), (68)

and incorporating it into Eg. (48) yields the coupled differential equations

Mz̈(t) + (G + CbBT )ż(t) + (KbBT + BKsBT )z(t) = BKii(t) and
d
dt

i(t) = L−1v(t) − L−1Ri(t) − L−1Ki ẋ(t).
(69)

Converting this equation into the state space formulation yields

ẋ(t) = Ax(t) + Bu(t) =

 04×4 I4×4 04×4

−M−1(KbBT + BKsBT ) −M−1(G + CbBT ) M−1BKi

04×4 −L−1Ki −L−1R


 x(t)

ẋ(t)
i(t)

 +

 04×4

04×4

L−1

 u(t)

y(t) = Cx(t) =
[

BT 04×4 04×4
]

x(t).
(70)
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This formulation can be used in conjunction with pulse width modulation (PWM) technologies that
allow for the implementation of complex control topologies that would otherwise be out of reach.

3.5 LINEAR QUADRATIC REGULATOR

PD and PID control treat each bearing axis as independent states. This is directly evident because of
the diagonal form of the controller gain matrices. However, it can be seen from the structure of the
gyroscopic matrix G and the fluid bearing matrices Kb and Cb that the motion of each axis is coupled. The
two primary motion modes are conical and parallel.3 By utilizing the off-diagonal terms of the controller
gain matrices, the coupling effect of the gyroscopic and fluid bearing forces can be better controlled.

A linear quadratic regulator (LQR) is an optimal controller that can be used in this instance to obtain
the optimal closed-loop performance of the system. Given a linear time-invariant state space equation of
the form

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0, (71)

the designer seeks to minimize the quadratic cost function

J =
1
2

∫ t f

t0
xT Qx + uT Ru dt, (72)

where Q = QT and R = RT are weighting matrices specified by the designer. This cost function is
analogous to minimizing the overall energy of the system. The state weighting matrix Q is used to
minimize deviations due to disturbances, and the input weighting matrix R is used to reduce the control
effort. There are many commercially available tools for solving this minimization problem given proper
definition of the system dynamics.

3.5.1 Observer

One key aspect of the LQR controller is that it requires full-state feedback. Due to the
high-temperature and extreme environment, it is unlikely that direct measurements of the position and
velocity of the rotor will be available. In this instance, a state estimator can be employed to estimate the
unmeasured states based on knowledge of the system dynamics and the available sensor measurements.
The estimator (also known as an Luenberger observer) equations are

˙̂x(t) = Ax̂(t) + Bu(t) + L[y(t) − ŷ(t)] and

ŷ(t) = Cx̂(t),
(73)

where x̂(t) is the estimated state, ŷ(t) is the expected output from the estimated state, L is the observer gain,
and e(t) = y(t) − ŷ(t) is the error between the sensor signals and the estimated sensor signals. The objective
is to define the observer gain L such that the observer error e(t)→ 0 as t → ∞. This can be easily done by
pole placement techniques so that the eigenvalues of the observer are to the left of the eigenvalues of the
closed-loop system, or in other words, the observer bandwidth must exceed the closed-loop system
bandwidth. This ensures that the observer which is implemented virtually can respond quickly enough to
the system.
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4 SIMULATION RESULTS

In this section, simulation results for various controller architectures and design theories are presented
to compare controller performance. The system is subjected to an input disturbance that is equivalent to a
106 N (23.83 lbf) static load. This load is applied instantaneously at t = 1 s,and the response of the
closed-loop system to the disturbance is calculated. In the simple case of the PD controller, the disturbance
force is simulated as both the static disturbance and an impulse response lasting 0.01 seconds. This is to
contrast the PD and PID steady state error. The simulations were built in MATLAB c© and Simulink c© using
the equations presented in Sect. 2 and Sect. 3. All numbers used in the simulations were taken directly
from the conceptual rotor design and are listed in Tables 1, rotor.parameters, and mag.param.

4.1 PD CONTROL

For the PD controller, the proportional gain was chosen to be kP = 2.5 × 107 and the derivative gain
was chosen as kD = 6 × 104. This proportional gain corresponds to a frequency of 985 rad/s, which is well
above the operating angular speed of the rotor. Figure 17 shows the variation in the system’s closed-loop
eigenvalues as the rotor speed is varied between 10 rad/s and 500 rad/s. As Fig. 17 shows, the controller
has decreased the sensitivity of the system response to changes in rotational speed.

Fig. 17. Variations in the closed-loop eigenvalues for the PD controller as a function of rotor speed.
The lighter points denote lower speeds, and conversely, the darker points denote higher rotor speeds. The
rotor speed range is 10 rad/s to 500 rad/s.

Figure 18 show the movement of the rotor COM to an impulse disturbance on the impeller that lasts for
0.01 s and has a force amplitude of 106 N. The rotor remains well withing the physical constraints imposed
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by the fluid gap and returns to nominal operation within a fraction of a second without excessive overshoot
or oscillations.

Fig. 18. Rotor COM translational disturbance to an impulse impact on the rotor with a PD
controller.

The lack of an integral term in the controller means that the system will alway exhibit a steady-state
error in response to unmodeled dynamics or external forces. Figure 19 show the movement of the rotor
COM in response to a constant disturbance with a magnitude of 106 N. After the transients settle, the rotor
is offset and the shaft maintains a small angle with respect to the geometric center, as shown in Fig. 20.

Figures 21 and 22 depict the coil current for the radial magnetic bearings. As they show, the coil
currents do not rise above 2 A.
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Fig. 19. Rotor COM translational movement to a constant disturbance on the rotor with a PD
controller.

Fig. 20. Rotor rotational movement about the COM in response to a constant disturbance on the
rotor with a PD controller.
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Fig. 21. Coil input currents in amps for the AMB denoted by A using a PD controller. Physically, the
A bearing is on the opposite end of the shaft from the impeller.

Fig. 22. Coil input currents in amps for the AMB denoted by B using a PD controller. Physically, the
B bearing is on the end of the shaft nearest to the impeller.
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4.2 PID CONTROL

The addition of an integral component to the controller removes any steady state error due to
disturbances or other system unknown. A comparison of Fig. 17 and Fig. 23 shows that the integral
controller does not change the eigenvalues of the original system, but adds eigenvalues close to the origin
that correspond to the integrator dynamics. The proportional gain and derivative gain are identical to those
chosen for the PD controller, and the integral gain was chosen as kI = 1 × 107.

Fig. 23. Variations in the closed-loop eigenvalues for the PID controller as a function of rotor speed.
The lighter points denote lower speeds, and conversely, the darker points denote higher rotor speeds. The
rotor speed range is 10 rad/s to 500 rad/s.

Figure 24 shows the movement of the rotor COM to a constant 106 N disturbance that is applied
instantaneously at 1 second. Comparing Fig. 19 and Fig. 24 illustrates the steady-state disturbance
rejection properties of the integral portion of the controller. Figure 25 depicts the angular movement of the
rotor about the COM.

Figures 26 and 27 show that while there is an increase in the maximum coil current due to the integral
term, the difference is small. As expected, there is a non-zero steady-state coil current to offset the
disturbance force; however, unlike the PD controller, the off-axis currents approach zero as the system
transients die out.
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Fig. 24. Rotor COM translational movement to a constant disturbance on the rotor with a PID
controller.

Fig. 25. Rotor rotational movement about the COM in response to a constant disturbance on the
rotor with a PID controller.
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Fig. 26. Coil input currents in amps for the AMB denoted by A using a PID controller. Physically, the
A bearing is on the opposite end of the shaft from the impeller.

Fig. 27. Coil input currents in amps for the AMB denoted by B using a PID controller. Physically, the
B bearing is on the end of the shaft nearest to the impeller.
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4.3 LQR CONTROL

To develop the LQR control, the weighting matrices R and Q given by Eg. (72) need to be specified.
The coefficients of these matrices determine the balance between the control effort and the transient error
of the optimized controller. The matrix to minimize the energy of the system states is given by

Q =



1 × 1018 0 0 0 0 0 0 0
0 1 × 1018 0 0 0 0 0 0
0 0 1 × 1014 0 0 0 0 0
0 0 0 1 × 1014 0 0 0 0
0 0 0 0 1 × 106 0 0 0
0 0 0 0 0 1 × 106 0 0
0 0 0 0 0 0 1 × 106 0
0 0 0 0 0 0 0 1 × 106


, (74)

and the matrix to minimize the energy of the control inputs is given by

R = I4×4. (75)

Figure 28 shows the closed-loop eigenvalues of the optimal LQR controller.

Fig. 28. The closed-loop eigenvalues for the LQR controller.

As Fig. 29 shows, the performance of the LQR controller is superior to that of the PD controller
because it controls the coupled behavior of the system, unlike the PD controller, which assumes that each
state is independent. Figure 30 shows the rotation of the shaft around the COM.

Figures 31 and 32 show that the LQR control effort maximum magnitude is smaller than the PD or PID
controller, while the maximum deviation of the rotor is an order of magnitude smaller for the LQR
controller, as shown in Fig. 29.
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Fig. 29. Rotor COM translational movement to a constant disturbance on the rotor with an LQR
controller.

Fig. 30. Rotor rotational movement about the COM in response to a constant disturbance on the
rotor with an LQR controller.
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Fig. 31. Coil input currents in amps for the AMB denoted by A using an LQR controller. Physically,
the A bearing is on the opposite end of the shaft from the impeller.

Fig. 32. Coil input currents in amps for the AMB denoted by B using an LQR controller. Physically,
the B bearing is on the end of the shaft nearest to the impeller.
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4.4 LQR CONTROL WITH INTEGRATOR

Similarly to the PD controller, the LQR controller does not contain an integrator, which means that the
LQR controller will exhibit steady-state errors in response to disturbances, parameter uncertainties, and
unmodeled dynamics. The addition of an integrator into the LQR controller with appropriate gains will
remove the steady-state error and allow the controller to track a reference signal. Figure 33 shows the
additional eigenvalues related to the integrator and the slight movement of the eigenvalues related to the
system dynamics due to the cost balancing mechanism of the optimization.

Fig. 33. The closed-loop eigenvalues for the LQR controller with an integrator.

As Fig. 34 shows, the LQR controller with the integrator exhibits a significant improvement over the
PID controller in both maximum deviation of the rotor and settling time in response to a constant
disturbance.

Figure 35 shows that the maximum angular deviation of the shaft in response to the disturbance is
similar for both the PID and LQR with integrator controllers. However, the settling time of the LQR
controller with the integrator is an order of magnitude better.

Figures 36 and 37 show that the addition of the integrator into the controller increases the control effort
slightly but that the maximum amplitude of the control effort is almost identical to that required by the PID
controller.
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Fig. 34. Rotor COM translational movement to a constant disturbance on the rotor with an LQR
controller with an integrator.

Fig. 35. Rotor rotational movement about the COM in response to a constant disturbance on the
rotor with an LQR controller with an integrator.
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Fig. 36. Coil input currents in amps for the AMB denoted by A using an LQR controller with an
integrator. Physically, the A bearing is on the opposite end of the shaft from the impeller.

Fig. 37. Coil input currents in amps for the AMB denoted by B using an LQR controller with an
integrator. Physically, the B bearing is on the end of the shaft nearest to the impeller.
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5 OPTIMIZATION AND EMBEDDED DESIGN

While this section is beyond the scope of the this project, it is closely related to the embedded sensors
and controls concept. It illustrates an additional advantage of designing the control system as an embedded
system.

An important element in the modeling, simulation, and control system design is understanding the
behavior of the system under a variety of circumstances. This becomes more critical when the system
operates in extreme environments. These environments make designing functional devices that rely on
material properties or other types of classical segmented design techniques difficult or impossible,
depending on the environmental factors and the device functionality.

The embedded system design approach where sensors and controls are deeply integrated into the
device operation can take advantage of virtualizing the functionality of a device so that it no longer relies
solely on the physical properties of the materials or the device geometry to drive operation. As an example,
four-stroke engines typically rely on a cam shaft to govern the timing with which the engine valves open
and close. Some auto manufacturers are moving to electronically or hydraulically actuated valves so that
the valve timing can be controlled by computer. Embedding sensors and control improves the system
performance by adding a level of flexibility and responsiveness to the system that is not achievable with a
constant geometry cam shaft. Specifically, the system can now be optimized for power or fuel economy
over the full range of engine operating conditions and variations in driving conditions in real time.

This ability to optimize performance during operation that is gained from embedding sensor and
controls can also have advantages during the design phase. To take advantage of the embedded systems
approach, the dynamic behavior of the system must be understood. This is particularly true with the canned
rotor pump, which is the test-bed for demonstrating the performance gains possible with embedded system
design. It is a highly interconnected system, so designing each subsystem in isolation and then combining
them would not yield a workable system. The design of the mechanical and electrical system affects and
limits the performance of the control system, and in return, the control system performance bounds the
mechanical and electrical design space.

The AMBs, switched reluctance motor, rotordynamics, fluid bearing effects, power electronics, sensors,
impeller characteristics, temperature dependent properties, and electrical characteristics all interlink and
affect the behavior of the other systems. For example, equations Egs. (66) and (67) both demonstrate the
interchange of energy between the magnetic system, the electrical system, and the mechanical system. By
looking at the system’s dynamic behavior and analyzing the system as a whole, the designer can choose
critical parameters of interest and formulate the design process as a series of optimizations.

As an example, the design of the AMB requires defining a few key parameters, specifically s0 the
nominal air gap, the bearing parameters ki and ks, N the number of coils in a bearing winding, i0 the coil
current bias, Fmax the maximum bearing force desired, and A the stator tooth area.

Initially, some of the bounds on the design variables can be set algebraically due to material
constraints. From Eg. (37), with Bmax denoting the maximum magnetic field at operating temperature that
is a function of the stator lamination material properties, the minimum tooth area Amin can be calculated as

Amin =
Fmaxµ0

B2
max

. (76)
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The standard constrained nonlinear optimization problem can be expressed as follows:

min
x

f (x) subject to

c(x) ≤ 0,

Ax ≤ b,

xlb ≤ x ≤ xub,

(77)

where f (x) is the cost function, x is a vector of design variables, c(x) ≤ 0 and Ax ≤ b are the constraints,
and xlb, xub are the lower and upper bounds on the design variables, respectively.

Applied to the design of the magnetic bearing, multiple cost functions can be defined depending upon
the performance requirements for the system. In this case, the cost function will be defined to minimize the
deflection of the rotor under dynamic loads, i.e.,

f (kP,N, i0, s0) =
2kN2i0

s2
0

kP +
2kN2i20

s3
0

s.t.

0 ≤ i0 ≤ imax,

0 ≤ s0 ≤ smax,

0 ≤ N ≤ Nmax,

kP ≤ 0,
Fd

2kN2(i0s0kP + i20)
−

1
4s2

0

≤ 0,

(78)

where imax is the maximum desired bias current, smax is the upper bound on the rotor/stator gap, Nmax is the
maximum number of turns on the stator windings, which is related to the wire gauge and stator lamination
geometry, k = 1/2(µ0A) is a constant, and Fd is the maximum expected disturbance force on the system.
This function is derived from Eg. (55) and is related to the effective spring rate of the closed-loop system.
The last condition guarantees that the maximum rotor movement under the maximum disturbance force is
less than one-fourth of the total air gap. Figure 38 shows the cost function when N = 100. The boundary
conditions are not shown in the figure.
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Fig. 38. Cost function to optimize the magnetic bearing design. None of the boundary conditions are
included in this figure.





6 CONCLUSION AND NEXT STEPS

In this report, nonlinear models were developed to describe the dynamic behavior of the
rotordynamics, fluid forces, rotor can electromagnetic behavior, and AMB dynamics. These models were
then used to analytically examine the unforced behavior of the system. The models were then used to
design controllers using the industry standard PD controller technique, a PID controller design, a voltage
control scheme, and an LQR controller. These models and controllers were validated using simulations in
MATLAB c© and Simulink c©. Design optimization techniques were also formulated for the conceptual pump
design that integrate mechanical, electrical, magnetic, and control system design considerations.
Optimization techniques such as these allow the embedding of instrumentation and controls to be
approached in a manner that balances all the competing design criteria.

The majority of AMBs are operated without fluid in the gap between rotor and stator, and the addition
of this fluid bearing effect adds cross-coupling between the rotor modes beyond the gyroscopic coupling.
The control system validation shows that the control design techniques employed for the AMBs are
sufficient to stabilize the system and that advanced techniques such as LQR control are better able to
stabilize the system because they do not assume that each state is decoupled from the other states. Further
work on analyzing controller response to rotor imbalance needs to be done. Additionally, analysis of the
effects on the system dynamics of the axial bearing forces and non-constant rotor speed should be
undertaken.

Now that the theoretical feasibility of the control system design and conceptual pump design has been
established using the linear models, design and control system optimization activities can begin and the
prototype test-bed design finalized. This activity includes performing a sensitivity analysis of the controller
to variations in model parameters such as the protective can thickness. This sensitivity analysis will
provide limits on magnetic and controller bandwidth along with a better characterization of controller
performance. These limits in turn will be used to establish the feasibility of the measurement techniques to
provide sufficient bandwidth and acceptable error. More work is needed to determine requirements for
implementation of the control algorithms. These requirements include the computation throughput,
calculation precision, measurement sampling, output actuation, etc., needed to perform the measurements,
process the algorithm, and provide the desired actuation.

After the prototype test-bed has been built, system model identification and validation activities and
comparison of the analytical dynamical models with the experimentally identified dynamical models can
begin. Once the models have been validated, the test-bed can be used to develop and compare the
performance of advanced embedded instrumentation and controller designs.
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