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Abstract

The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory
seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor.
The work described in this report is a part of the effort focusing on graph generation. A previously
developed benchmark, SystemBurn, allows the emulation of a broad spectrum of application behavior
profiles within a single framework. To complement this effort, similar capabilities are desired for
graph-centric problems. This report examines existing synthetic graph generator implementations in
preparation for further study on the properties of their generated synthetic graphs.
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1. INTRODUCTION

A common challenge facing academic, government, and industrial institutions today is that of
acquiring appropriate computer hardware to support a growing demand for computational resources in
scientific research, national security, and corporate development. In order to maximize return on
investment, it is critical for strategic tradeoffs between architectures to be evaluated for factors such as cost,
energy consumption, and performance/suitability for the intended applications. In the high performance
computing community, benchmarks play an increasingly important role in this process. Specifically
designed to mimic access patterns, computational complexity, and communication behavior of target
algorithms or applications, benchmarks provide a standardized test which can be used to compare disparate
architectures using concrete, objective metrics.

As the extensive literature on benchmarking illustrates (see, for example, [2, 28, 68, 82]), designing
(one or more) kernels which reproduce application behaviors closely enough to yield accurate predictions
of a machine’s future performance is a non-trivial task. In particular, many aspects of execution – and their
interactions – must be reflected. For example, a program’s performance is affected by the quantity and
(relative) timing of its I/O usage, floating point operations, integer operations, fetches to different levels of
the memory hierarchy, inter-core and inter-processor communication (for parallel jobs). Traditional
benchmarks test performance for each factor independently, (for example, GUPS as tested by
RandomAccess in [64] measures the performance of random memory accesses), but this has proven
insufficient in the face of increasingly complex workloads and machine heterogeneity. To enable effective
evaluation in this environment, recent research [62] has focused on developing tools which allow emulation
of a broad spectrum of application behavior profiles within a single framework.

Although these tools play a vital role in guiding development and acquisition of computational
infrastructure, they often fall short when target applications are data-intensive, as is often the case when
performing sparse network analysis in domains such as bioinformatics, cyber-physical systems, and social
networks. As these applications encounter exponential growth in problem size due to the increased ability
to generate, collect, and store relational data, being able to evaluate an architecture’s suitability for
data-intensive computing has become a pressing need. Network analysis plays a large and critical role in
many of these data-intensive application domains, a fact recognized by recent efforts to design benchmarks
with kernels based on graph algorithms such as SSCA2 [11] and Graph500 [10]. Unfortunately, real-world
input graphs for testing are frequently unavailable, since the data may be proprietary or impossible to
collect. This necessitates the ability to create synthetic networks which are “similar” to real data with
respect to salient features, which can have subtle and surprising impacts on analysis. For example, the
Graph500 benchmark originally used the R-MAT generator [20] to create its random instances, which was
shown to significantly impact the expected performance of the breadth-first-search kernel due to large
numbers of isolated vertices [78], and a multinomial degree distribution [38]. Efficiently generating
“realistic” graphs at all scale sizes is a hard open problem; many generators exist, but a comprehensive
comparison and associated tool for invoking them is currently unavailable. This led to the desire for an
open infrastructure for generating and testing network data, as is described in this report.

In order to identify computer architectures which are best suited for massive complex network analysis
tasks, we believe one must be able to (1) generate synthetic graph data at all scales, with well-understood
and user-tunable network characteristics, and (2) emulate the run-time behavior of analysis algorithms
made up of common key kernels, for example graph search or spectrum computation. In this report, we
describe recent work on developing such an infrastructure for (1), including comprehensive testing of
existing synthetic graph generator implementations for scalability and the integration of algorithms
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calculating appropriate graph features/statistics into an open source framework.
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2. BENCHMARKING: BACKGROUND & RELATED WORK

Computers vary widely in their architecture, core components, and capabilities. In order to be able to
make a comparison between systems, one must identify a set of one or more objective measures of
performance. Such metrics are especially critical to the High Performance Computing (HPC) community,
where they are used as input to – and often requirements of – the procurement process. These performance
measures, together with a prescribed process for generating them, are commonly referred to as benchmarks.

Over time, a large number of benchmarks have been proposed in the HPC community, some embraced,
others not as much. In the remainder of this section, we describe several of the most prominent such
benchmarks, and provide a summary of their history and current status.

We begin with three benchmarks which each focus on a single aspect of interest - Top500, Graph500,
and Green500. It is worth noting that, as mentioned by Johnson [48], a better holistic approach might be a
conglomeration of the three. However, he points out that this is extremely difficult, since not all systems
submitting to the Top500 list also submit to the Graph500 list, and vice versa. In fact, in 2012 there were
only about 120 supercomputers on the Graph500. To this end, we also include descriptions of three
benchmarks which attempt to provide a standard which accounts for more than one aspect of interest in
high performance computing: HPCC, SystemBurn, and HPCG.

2.1 HPL/TOP500

The Top500 list was started in 1993 by Hans Meuer at the University of Mannheim [2]. Published
twice a year, for some this is the “gold standard” used to bestow the coveted title of most powerful
supercomputer. Systems are benchmarked using Linpack (or High Performance Linpack (HPL)), with the
fastest 500 maintained as part of the list.

Performance is measured by having the computer solve a system of dense linear equations, then
reporting the largest problem solved and the number of FLOPS (floating point operations per
second) [53, 68]. The benchmark has strict requirements on the algorithms and accuracy/precision used in
computing the solution, and the advantage that the number of FLOPS (or, more recently, petaflops) is a
single reportable number which is easily comparable across systems. Several researchers have put forth
arguments against the Top500 benchmark, advocating that a single number is not a good representation of
the overall system performance. In [23], the author details the seven primary algorithms used in high-end
science on HPC platforms. Although the Linpack benchmark may be a good indication of system peak
performance, dense linear algebra is only a small part of the overall makeup of an HPC application. As
shown in Table 6 of [8], applications frequently use many of these kernels, and some have no dense linear
algebra at all. We also observe the decision by NCSA (the HPC center overseeing the Blue Waters
machine) to no longer submit results for the Top500 benchmark. Several important reasons given include
the lack of relationship between the rankings and the system’s usability by researchers, the fact that this
race to the top encourages organizations to make poor choices when designing a new system, and lastly
that what is actually being measured is the amount of funding organizations can secure for a new
system [53]. One is left to conclude that Top500/HPL may not be an adequate solution for benchmarking
HPC architectures going forward.

2.2 GRAPH500

Among others, Bader et al. [1, 10] realized that the problems represented by the Top500 benchmark
were 3D-physics-type simulations, yet analytics (and specifically graph analytics) were becoming a
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significant fraction of large computation. To address this, they proposed and developed the Graph500
benchmark as a complement to the Top500 in 2010, with a list that is also revised twice annually.

In the Graph500, FLOPS are replaced by a primary performance metric of TEPS (the number of
traversed edges per second) during breadth-first searches (BFS, v.1.1) and single shortest paths searches
(SSSP, v.2.0) in a large undirected graph. These algorithms stress the communications subsystem of a
machine instead of measuring the speed with which it can perform double precision floating point
operations. The problem instances here are random graphs constructed using a kernel based on the R-MAT
model [20] or a Stochastic Kronecker Graph (SKG) model.

Unfortunately, this benchmark has several notable shortcomings that have led to a mixed review within
the community. One common complaint was about the single method of generating input data, based on
the R-MAT model. We note that the current implementation, Graph500 does offer an SKG generator as the
default, as well as R-MAT. In addition, it has been shown that the reference implementations are actually
not scalable in a large distributed environment [85]. Others argue that the benchmark is too limited to
represent a “typical” graph workload (it has only two kernels, with SSSP just having been added in 2012),
and does not encourage vendor innovation [1]. Lastly, results are accepted by the committee in a predefined
format, but are not validated and (unlike Top500) site-specific implementations are not subject to peer
review.

2.3 GREEN500

The third related benchmark is the Green500, which strives to measure the energy efficiency of
supercomputers [34] while running the Linpack/HPL benchmark. Conceptualized in 2005, and formally
introduced in 2007, the Green500 list aims to raise awareness of the environmental impact of
supercomputing. It is important to note that the Green500 is not a separate benchmark algorithm in itself -
it simply relates the power usage of a supercomputer while running the HPL benchmark, resulting in a
FLOPS/watt score. It is worth noting that the Green500 is still searching for the best way to quantify and
report the energy efficiency using a single, easily comparable number. “The Green Index” (TGI) is the
currently proposed metric [82], seeking to supplant the FLOPS per watt metric.

2.4 HPCC

Introduced in 2003, the High Performance Computing Challenge (HPCC) benchmark is a suite of
seven tests: HPL, DGEMM, STREAM, PTRANS, RandomAccess, FFT and communication bandwidth &
latency [28]. HPCC was designed to include more memory intensive tests which augmented the traditional
HPL benchmark [64], and its authors claim this is a better indicator of overall system performance since it
captures processor, memory and interconnect performance characteristics. We previously discussed HPL
and RandomAccess. DGEMM measures the floating point performance of matrix multiplication, while
STREAM measures sustained memory bandwidth. PTRANS, on the other hand, looks at communications
while executing a parallel matrix transpose, and the FTT tests measures floating point performance while
performing a 1-D Fourier Transform.

Unfortunately, the HPCC benchmark has failed to gain traction in the HPC community. Additionally, it
has been criticized for only containing discrete workloads, yet not addressing integer-centric computations.
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2.5 SYSTEMBURN

The SystemBurn benchmark, developed in 2012 at Oak Ridge National Laboratory, is an attempt to
measure a more comprehensive set of a system’s hardware features under maximal load [62]. It comprises
configurable testing, but no discrete kernels or inputs are currently supported. Nineteen modules are
included, several of which are also found in HPCC (e.g. DGEMM). Users have the ability to easily create
and include new modules. However, SystemBurn was originally developed to create maximal load on a
system, and not necessarily to measure performance, and its measurement capabilities are incomplete.

2.6 HPCG

The recently proposed HPC Preconditioned Conjugate Gradient [45] (HPCG) benchmark can be seen
as an effort to produce a more relevant performance metric for current HPC applications. Rather than
solving a dense linear system, HPCG computes a conjugate gradient on a large sparse matrix. As currently
proposed, HPCG addresses a wider range of problems and computational kernels than HPL, but still fails
to address issues such as integer-only calculations. Additionally, the options available for generation of the
test problems (sparse matrices) is still unclear, and it appears to be constrained to storing the matrix in
Compressed Sparse Row format. Since there is no available implementation yet, it is difficult to make a
judgement on its real-world relevance and community impact.
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3. RANDOM GRAPH MODELS

A graph is a mathematical object used to represent a set of objects (vertices) and the pairwise
relationships among them (edges). For example, one might consider the set of students in a school as the
vertices, and create edges between pairs of students who are friends. More formally, a graph G = (V, E)
consists of a set of vertices V and a set of edges E ⊆ V × V . Different types of graphs may have additional
restrictions or information associated with them – for example, if E is a multi-set, then G is called a
multigraph; alternatively, simple graphs forbid repeated entries in E and self-loops (edges of the form
(u, u)). Other common variations include directed graphs, where the pairs in E are ordered, and weighted
graphs, where members of V and/or E may have numerical weights associated with them.

The idea of creating and evaluating “random” graphs dates back to the late 1950s, when
mathematicians defined several models [32, 37]. Formally, a random graph can be defined as a probability
space over the set of graphs on a vertex set (of size n) determined by P[ei, j ∈ G] = p, where 0 ≤ p ≤ 1 [81].
There is a significant body of literature evaluating the behavior of random graphs, including results on
necessary and sufficient conditions for the formation of a giant component, expected degree distribution,
and many other properties. Work on random graph models burgeoned as application communities became
interested in generating synthetic graphs that were “realistic” (matched certain desired properties of their
datasets). Some cited desired characteristics displayed by real graphs include heavy tail distributions for
degrees and eigenvalues/eigenvectors, small diameters, edge densification and diameters that shrink over
time [57]. We discuss graph features at length in Section 4.. It is also worth noting that more recent work
on generators has emphasized their scalability, or ability to create massive graphs efficiently, a property that
is especially important to the HPC benchmarking community, which requires very large problem instances
to stress supercomputing architectures.

Through a search of the literature, the on-line community, and personal communications with
researchers, a list of commonly-used models was assembled. We chose to restrict the scope to those models
that had an existing and available implementation. Many current model implementations are limited in
their ability to synthesize large scale graphs, and are not easily adapted for inclusion within a benchmark
suite. Input parameters and underlying algorithms all contribute to controlling graph output properties and
have been the source of much research – as illustrated by the variations in models. For additional
background on previous work in graph generation, the most recent survey on the topic can be found in [19].

Our review of the models revealed a semi-natural grouping into four major classes: classic models
(random graphs), Internet topologies, geometric models, and other real-world models, each of which is
enumerated in this section. For a comprehensive list of models (and packages) explicitly studied as part of
this report, see Table 3. A comprehensive description of all models can be found in Appendix A. Finally, in
Table 1 we detail the runtime complexities of the studied models, as well as the potential for parallelization
based on our understanding of the underlying algorithms. Where possible, we present references for formal
proofs of these complexities; otherwise, these complexities are the result of approximations by the authors.

3.1 CLASSIC MODELS

We define classic models to be those random graph models which were conceptualized for the general
study of random graphs, in the context of graph theory and theoretical computer science, not modern
complex network analysis. These models typically have simplistic generative processes (such as a coin-flip
to establish an edge between two vertices), and have a rich body of literature analyzing their average and
limiting behavior as one varies the associated parameter(s).

Erdös and Rényi are often cited as the pioneers of random graph generation models [32]; Gilbert’s

8



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88

89

90

91

92

93

94

95

96

97

98

99

100

(a) Classical (ER, p = 0.1)

1

2

3

4

5

6

7

8

9

10
1112

13

14 15

16

17

18 19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36 37

38
39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57

58

59
60

61

62

63

64

65

66

67

68

69

70

71

72

73

74 75

76

77
78

79

80

81

82

83

84
85

86

87

88

89

90

91

92

93 94

95

96

97

98

99

100

(b) Internet (Tiers, 2 MANS, 3 LANS)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

6061

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

(c) Geometric (Waxman, L = .6, α = .2, β = .1)

1

2

3

4

5

6

7

89

101112

13

14

15

16

17

18

19

20

21

22

23

24

25
26 27

28

29

30

31

32

33

34
35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

6263

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80 81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899
100

(d) Real World (Small world, r = 4, p = .02)

Fig. 1. Examples of 4 model classes, 100 vertices, using a spring force directed layout algorithm

early work in the area was also influential [37]. The Ërdos-Rényi random graph model (often abbreviated
ER, or referred to as the classical model) constructs a random graph by fixing a probability p ∈ [0, 1] and
probabilistically creating edges between pairs of vertices using independent Bernoulli trials. This
well-studied model generates graphs whose degrees follow a Gaussian distribution, which is far from the
heavy-tailed behavior seen in many real-world networks. One model developed to overcome this limitation
while maintaining the simplicity necessary for rigorous mathematical analysis is the configuration model,
which allows the user to specify the desired degree sequence. Each vertex is assigned a degree di, and thus
di associated “half-edges”. These “half-edges” are then paired randomly to create the final graph (the
requested sequence of degrees must be realizable). Chung and Lu proposed a slight modification where an
expected degree (weight) is assigned to each vertex, and similar to Erdös-Rényi, edges are generated using
independent Bernoulli trials, but with probabilities now based on the ratio of the product of the endpoints’
weights to the sum of all weights (see Appendix A.1 for more details).

This survey includes the following classic models: Erdos-Renyi [37], the configuration model [89], and
partial k-trees [50] (which are designed to control a structural graph parameter called treewidth).

3.2 INTERNET TOPOLOGIES

The Internet is a prime example of a network topology with many vertices and edges (links). While
certainly Internet topologies are a subset of real-world graphs, there is an extensive amount of work that
focuses solely on generating networks with the specific properties of Internet topologies. Within this
category, some have suggested a further breakdown of models based on the main properties they try to
replicate (specifically random topology, hierarchy, and degree-related properties), though we do not draw
such distinctions here.

It is worth noting that there has been some discussion as to the deficiency of these models [43] based
on the discovery by Falutsos et al. [33] that the Internet-level Autonomous Systems (AS) topology has a
degree distribution which follows a power-law, not replicated by many models in this category. Several
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alternative models (for example, Barabasi-Albert, which we include in real-world models) have been
created post- [33] publication.

This survey includes the following internet topology models: inet [47], Tiers [27] and
Transit-stub [18]. All of these were developed to capture the hierarchical nature of the Internet [84].

3.3 GEOMETRIC MODELS

Here we describe a set of generative models which assume an underlying geometry influences the
creation of edges between vertices. Although many internet topology models assume an inherent geometry
in creating the vertex layout, we restrict our attention here to those which are not specialized to a particular
application. For example, Young and Scheinerman proposed Random Dot Product Graphs (RDPG), which
is a simple, fairly scalable model that associates a random vector in Rm with each vertex, and determines
edges based on the inner product of the endpoints’ vectors [91]. Unfortunately, there is not much empirical
work comparing the outputs from this model with real-world data. A more recent model introduced by
Krioukov et al [54] builds on the observation that many real-world networks are better visualized using
embeddings in hyperbolic space (instead of Euclidean).

This survey includes the following geometric models: Waxman [87] (which some identify as a
precursor to Internet models), Random Dot Product Graphs (RDPG) [76, 91], and the Krioukov hyperbolic
generator [54].

3.4 REAL-WORLD MODELS

The world around us contains constantly evolving networks such as social interactions, road
connections, or even corporate networks. Models that fall into this class were explicitly designed to mimic
one or more properties of networks that has been empirically observed in real-world data. Three major
concerns with classical models were the lack of a natural notion of network growth, non heavy-tailed
degree distributions, and low clustering coefficients.

To address the need for higher clustering coefficients, Watts and Strogatz introduced the Small World
model [86]. At a very high level, Watts-Strogatz small world graphs are created by starting with a regular
ring lattice on the prescribed number of vertices, then “re-wiring” a certain number of edges with their new
endpoints depending on a probability β and the distance in the original lattice. The resulting graphs have a
short average path length and high clustering coefficients. Unfortunately, this model tends to create
unrealistic degree distributions and forces a fixed number of vertices, which inhibits its use to model
network growth.

Although the configuration model technically addressed the need for generating graphs with a
power-law degree distribution, many researchers were unsatisfied, since it was not based on a natural
notion of network growth over time (and thus could say nothing about the mechanisms likely responsible
for formation of heavy-tailed degree distributions). The notion of preferential attachment (new vertices are
more likely to connect to other high-degree vertices) inspired a number of generative models, including one
of Barabási and Albert, denoted BA, which many refer to as generating scale free graphs [13]. However,
the graphs generated with the BA do not have the high levels of clustering seen in real networks, have a
fixed power law exponent [5], and have an exponential cutoff. Several authors, including Barabási and
Albert themselves, have suggested modifications to the initial scale free model, primarily to the linear
growth and linear preferential attachment components [5, 71].

More recently, an interest in the scalability of random graph models has prompted a new wave of
generators, including R-MAT/SKG, RDPG, and BTER. Citing the inability of previous models to match
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“real-world” degree distributions (which are typically unimodal and exhibit a power-law), to exhibit
“community” structures, and satisfy criteria such as a small diameter or certain eigenvalue distribution,
Chakrabarti et al. introduced the R-MAT model [20]. Widely adopted, the highly parallel model uses four
probability parameters recursively to rapidly dictate edge creation. Leskovec et al. proposed a
generalization of R-MAT named the Stochastic Kronecker Graph model (SKG) [57, 59] which uses the
Kronecker product. The SKG model is easily parallelizable, requires few inputs, and quickly generates
graphs. SKG is the current default kernel in the Graph500 benchmark, while R-MAT variants are still
available as options.

More recently, Seshadri et al. have proposed the Block Two-Level Erdös-Rényi (BTER) model [52, 77]
which integrates ideas from both the ER and Chung-Lu configuration models. The authors report results of
a generated graph with over 4.6 billion edges. The primary motivation behind their work was to maintain
scalability while improving the reproduction of realistic community structure. Finally, we mention an
approach rooted in multiscale methods – the MUSKETEER model [40] was recently introduced in an
effort to create networks closely representing reality with respect to structure and at multiple scales. A
diversity of other models continue to be introduced in an effort to address the needs of various communities
or improve upon existing models (see for example, variations on the preferential attachment model which
include the “forest fire” model [60] and “winner does not take all” [71]).

This survey includes the following “real-world” models: Exponential Random Graph Model
(ERGM) [46], MUSKETEER [40], preferential attachment [80], small world models [86], and Stochastic
Kronecker/R-MAT [20, 57].
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Table 1. Model complexities and scalability

Model Complexity Ref.
Scalability/

Parallelization

BTER
O(|E| log dmax) where dmax is the maximum

degree of the input distribution [52] b

Configuration model O(|E|) a c

Ërdos-Rényi O(|V |2) [66] d

Ërdos-Rényi (fast) O(|V | + |E|) [14] e

Inet O(|V ||E|) a c

Krioukov O(|V |2) [54] f

Kronecker O(|E|) [57] b

Musketeer O(|E|) [40] f

Partial k-trees O(|V | + |E|) a f

Preferential attachment O(|V |2) [14] g

Preferential attachment
(with sampling) O(|V | + |E|) [14] g

RPDG O(|V | + |E|) for sparse graphs a f

R-Mat O(|E| log |V | log |E|) [20] b

Small-world O(k|V |) where k is neighborhood size a f

Tiers O(|V |2) [27] f

Transit-stub
O(|V |2), based on construction

of Ërdos-Rényi or Waxman graphs
a f

Waxman O(|V |2) [27] f

a complexity determined by inspection of algorithm
b highly parallel implementation exists
c dependence on current graph state makes parallelization difficult
d parallel implementation should be trivial
e dependence on current algorithm state makes parallelization difficult
f parallel implementation should be possible but perhaps non-trivial
g not as currently specified - possibility exists for modification of algorithm
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4. GRAPH FEATURES

In order to compare graph generators, one must define a set of measures on the
algorithm/implementation and its output. In this section, we focus on how one might evaluate the output,
typically by analyzing and comparing some set of features/statistics of the resulting graph.

While no report currently exists with a comprehensive comparison of all random graph generators,
various metrics are used in the evaluations that do exist, and no real consensus exists on which graph
properties are most important/salient/appropriate for evaluating how realistic a synthetic graph is. In our
work, we include a broad spectrum of graph features which have been used in one or more prior
comparisons. This section first describes each feature for which we have an implementation (along with
some intuition as to why it is relevant for evaluating random graphs), then gives the computational and
storage complexities, and concludes with a discussion of how these features can impact graph analysis
algorithms.

Rather than integrating multiple specialized graph analysis codes, all features listed in Section 4.1 have
been implemented in the INDDGO framework detailed in Appendix B. INDDGO provides a much more
straightforward interface than other libraries such as the Boost Graph Library, which enabled us to rapidly
design and implement the desired feature calculations. Additionally, this gives us complete control over the
statistics output. We also incorporated OpenMP parallelism where appropriate, as we intend to perform the
majority of our analysis on large shared-memory machines. While the use of INDDGO this may affect the
speed of some calculations, we believe the ease of use provided by using a single package outweighs the
potential losses. Likewise, the use of OpenMP should give us an advantage over many of the existing serial
codes.

4.1 FEATURE DESCRIPTIONS

Unless otherwise noted in the feature descriptions, all calculations are performed on both the entire
graph (which may have multiple components), and on its largest connected component. Both results are
reported back to the user.

• All Pairs Shortest Paths (APSP) [94] is an algorithm which calculates a shortest path between all
pairs in the graph. We also use the term to refer to the graph feature consisting of the pairwise
distance matrix obtained from this calculation. Practically, this may be computed by running a single
source shortest path (SSSP) [94] algorithm, which finds the shortest paths (minimum edge weight
sum in a weighted network) from a given vertex (the source s) to all other vertices in the graph. Both
of these are often used in the computation of other metrics (such as eccentricity), but are also useful
independently (e.g. in determining optimal network routing).

• A graph’s average degree [65] is the ratio of the number of edges to the number of vertices in the
graph. This metric implies other statistics, such as the minimal degree of a subgraph. Additionally, it
is used in evaluating things like the equilibrium of a graph (how the degree distribution affects the
density) [73].

• The average path length [90] of a graph is the arithmetic mean of all
(
n
2

)
shortest path distances

(usually computed using All Pairs Shortest Paths), and is an indicator of the efficiency with which
information flows through a network. When a graph has multiple connected components, we average
only the finite lengths.

• Betweenness centrality [65] is a popular measure of the “importance” of nodes in a network,
relative to the flow of information along shortest paths (as is common in routing and other
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applications). The centrality is calculated as the ratio of the number of shortest paths which pass
through a given node to the total number of shortest paths in the network. It is determined by
calculating the fraction of shortest paths passing through a given node to all shortest paths. This
metric is computationally intensive, and numerous algorithms and implementations exist (see, for
example, [12]).

• The clustering size [67] or coefficient [58, 65] deals with the number of triangles in a graph. The
global clustering coefficient of a graph is the number of “closed” triplets (subsets of 3
fully-connected vertices) in a graph divided by the number of possible triplets (

(
n
3

)
). A related

measure, the local clustering coefficient, is computed for each vertex, and measures how close the
neighbors of that vertex are to being a complete graph. Clustering metrics can give insight into
properties of communities within a graph.

• Since graphs generated may not be connected, we calculate a sorted list of the component sizes
(number of vertices in each connected component). For connected graphs, this will be a single
number (equal to the graph size, below).

• The degeneracy [61] of the graph is the maximum k-shell number among the vertices in the graph.
As we discuss in section 4.2, this can be useful in bounding the complexity of other graph
algorithms.

• A graph’s degree assortativity [69, 70] measures the tendency of vertices of degree d to connect to
other vertices of similar degrees. To calculate the degree assortativity of a graph, we iterate over
every edge of the graph, xy. Let dx be the excess degree of vertex x (i.e. deg(x) − 1), and define dy

likewise. We calculate 3 sums over all the edges: n1 =
∑
xy

dx·dy
m , n2 =

∑
xy

dx+dy
2m , and de =

∑
xy

d2
x+d2

y
2m . The

degree assortativity is then r =
n1−n2
de−n2

. In an Internet network, degree assortativity indicates the
tendency for highly-connected vertices (routers) to connect to other high degree vertices (a similar
phenomenon is observed among vertices with very few connections (servers)). Assortative mixing is
often studied in social network analysis and epidemiology as discussed in [70].

• The degree distribution [58, 65] describes the connections of the vertex degrees of the graph. We
define ∆ to be the maximum vertex degree. For each integer 0 ≤ d ≤ ∆, the number of vertices with
degree d is computed, and a probability distribution is fit to the results. See [21] for details on
power-law fitting. Since many real-world networks are known to have heavy-tailed or power-law
degree distributions, this is one of the most commonly used graph features for determining how well
a model approximates realistic data.

• The δ-hyperbolicity of a graph [22] provides a measure of how well distances are preserved if a
graph is embedded into a hyperbolic space. More specifically, δ is large if there is significant
distortion in shortest-path distances between vertices when they are approximated by distances along
the “best-fit” tree. When δ is zero, all shortest paths are unique, and no distortion occurs (this is true
in trees and complete graphs, for example). On the other hand, n × n grids are n/2-hyperbolic
(intuitively because there are many different shortest paths between pairs of vertices). This measure
is only computed on the largest component, since its calculation involves distances between sets of
four points, and is not meaningful when some of those values are infinite (for vertices in different
connected components).

• A graph’s diameter [56] is the maximum shortest path distance between any pair of vertices (we
define the distance between vertices which are not connected to be infinity). This measure is
susceptible to outlier values.
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• The edge density [67] is the ratio of the number of edges (|E|) to the maximum number of possible
edges (

(
n
2

)
for a simple, undirected graph). This measure of sparsity is commonly used to help

determine appropriate storage formats (compressed sparse row, dense adjacency matrix, edge list,
etc.).

• Similar to diameter, the effective diameter [19, 58] is the minimum number of hops (shortest-path
distance) in which some percentage of all connected pairs of vertices can reach each other. In the
literature, 90% is a commonly agreed-upon threshold, and is used in this study. This measure was
developed as an alternative to diameter that is not as susceptible to outliers.

• The eigenvalues or eigenvalue spectrum [44, 65, 84] (often referred to simply as the spectrum) are
the eigenvalues of the 0/1 adjacency matrix. Due to computational complexity, we restrict ourselves
to computing the three largest and three smallest eigenvalues (currently using the SLEPc [44]
library). We note the solver may return fewer results depending on the size of the matrix and the
maximum number of allowed iterations.

• The expansion [84] or distance distribution (normalized expansion) [65] of a graph measures the
average fraction of vertices at distance at most h from a given vertex. For each integer
1 ≤ h ≤ diameter(G), the number of vertices reachable with paths of length at most h is computed
for every vertex in the graph, then averaged (and possibly normalized). The distribution reported is
the averages over the range of h. Alternate definitions may refer to a “ball of radius h centered at
node x”. This metric reflects how rapidly neighborhood sizes grow as you expand from a vertex, and
is important in evaluating the performance of routing algorithms and the potential impact of
viruses/worms in a computer network.

• The graph size [67] is the number of vertices in the graph, and is the usual measure of “scale.”

• The k-core [61] of a graph is the maximal subgraph where all vertices have degree at least k in the
subgraph. A vertex has k-shell number κ if it is in the κ-core, but not in the (κ + 1)-core. This metric
can be useful in evaluating community structure and hierarchy in networks.

• The node diameter distribution [84] provides a distribution of the lengths of the longest shortest
path from each vertex (the eccentricity). Practically, this is computed as the maximum observed at
each vertex during the All Pairs Shortest Paths (APSP) computation. This metric can be usefuli in
determining the worst-case scenario in routing networks, and is closely related to the effective
diameter.

4.2 FEATURE IMPACT

Although we seek to understand the behavior of these features in order to better emulate real-world
graphs with synthetic data, many of these characteristics also have an impact on the performance
(complexity, average case running time, or memory usage) of important graph algorithms. The complexity
can be expressed in terms of |V | and |E|, and in some cases in terms of their ratio (the edge density). For
example, the best known bound for calculating betweenness centrality is O(|V | · |E|). See Table 2 for
additional complexity bounds.

One way in which features may impact algorithmic efficiency is through fixed parameter tractability
(FPT) [36]. That is, when a specific property of the graph has bounded value, there are polynomial time
algorithms for solving otherwise NP-hard problems. For example, the problem of finding a dominating
set [29] is NP-complete, but has been shown to have FPT algorithms (and even polynomial kernels) in
graphs of bounded degeneracy [6, 72]. Similarly, the classic NP-hard problem of graph isomorphism [29]
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can be solved in polynomial time when bounding the multiplicity of eigenvalues [9] or the maximum
degree [63].

In the cases above, special algorithms have been designed to reduce worst-case complexity by taking
advantage of the graph structure implied by the bound on a graph feature. In other situations, properties of
the graph can have significant effect on the typical running time of an algorithm (but not a theoretical
impact on the worst-case complexity). One common example of this occurs in parallel breadth-first-search
algorithms (BFS), whose performance can depend heavily on degree distribution. There have been many
papers providing empirical reports on the effect of a skewed degree distribution, and suggesting alternative
algorithms which are specialized to handle graphs with this characteristic (for example, see [79] and [16]).
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Table 2. Feature complexitiesa

Algorithm name Best known
bound (dense)

Best known
bound (sparse)

Implemented
bound

Best storage
bound

Implemented
storage bound

Reference

All pairs shortest
paths (APSP)

O(|V |3) O(|V | · |E|)b O(|V |3) O(|V |2) [74]

Average degreed O(1) O(1) O(1) O(1) O(1) [65]

Average path
length

O(|V | · |E|) O(|V |2) e O(1) e [90]

Betweeness
centrality

Θ(|V | · |E|)b Θ(|V | · |E|)b O(|V | · |E|) Θ(|V | + |E|) O(|V | · |E|) [17]

Clustering coeff.
(triangle

counting)

O(|V |2.376) Θ(|E|3/2) Θ(|E|3/2) Θ(|V |) Θ(|E|) [55]

or O(|V |2.376) [7]

Degeneracy O(|E|) O(|E|) O(|E|) O(|V |) [15]

Degree
assortativity

O(|E|) O(1) given
degrees

[69]

Degree
distribution

O(|V |) O(|V |) O(|V |) [65]

δ-hyperbolicity O(|V |3.69) O(|V |3.69) O(|V |4) O(|V |2 + |E|2) [35]
or better or better [22]

Diameter O(|V |3) O(|V |2) e O(1) e [56]

Eccentricity O(|V |2) e O(|V |) e [83]

Edge density e O(1) O(1) O(1) O(1) [67]

Effective
diameter

O(|V |3) O(|V |2) e O(|V |) [58]

Eigenvalues O(|V |2) O(|V |2)

Expansion O(
√

log |V |)c O(|V |2) e O(|V |) [75]

Graph size d O(1) O(1) O(1) O(1) O(1)

K-cores O(|E|) O(|E|) O(|E|) O(|V |) [15]

Node diameter
(eccentricity)

distribution

O(|V | · |E|) O(|V |2) e O(|V |) e [83]

a for exact algorithms, undirected graphs
b unweighted graphs
c approximation for the sparsest cut; Cheeger’s inequality
d algorithm depends on values already maintained for all graphs, thus can be calculated in constant time
e given APSP matrix, otherwise add O(|V |3) computational and O(|V |2) storage complexity
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5. INFRASTRUCTURE FOR INSTALLATION AND TESTING

5.1 BUILD AND INSTALLATION FRAMEWORK

Implementations of all generators detailed in Appendix B were downloaded and stored in a centralized
git repository. The choice to keep the generators in a revision-controlled repository allows us to see what,
if any, changes were required to make the generators function in our environment. In addition, a README
file is maintained for each generator, detailing reasons for the changes. These were kept to a minimum
necessary to work within our testing framework. This included adding additional output formats, adding
timing routines, and, for many of the generators written in Matlab, Python, and R, writing short wrapper
scripts to call the libraries.

To automate the configuration/build/install process with consistent naming conventions across all
generators, custom scripts were written for each package. This allows us to easily write a wrapper that
rebuilds each generator appropriately, and extend to include additional packages in the future. These scripts
are often a simple "make ; make install," however some generators require more steps, and capturing
these steps in a script creates an interface which does not require the user to manually build the package,
ensuring consistency and removing potential user implementation error.

As seen in Table 4, the tested graph generators are implemented in a wide variety of languages, using
numerous libraries. One difficulty presented by the breadth of generators considered is the necessary
comparison of compiled languages, such as C++, with interpreted languages like Python and R. The latter
are often slower than their compiled counterparts. Furthermore, just as compiler choice can affect runtime,
the choice of interpreters can drastically influence the runtime characteristics of an algorithm, as shown
in [3]. As a result, while runtime statistics are collected for all generators, they will not be used as one of
the primary comparison metrics.

Another consideration is output format for the generated graphs; we standardized to use simple ASCII
edge lists or adjacency lists, and modified generators that did not originally support these formats to enable
them. Choosing just two plain, human-readable output formats simplifies the post-processing work
required for calculating graph features, and standardizes the approximate amount of I/O required at a given
scale.

5.2 TEST FRAMEWORK

After building and installing the graph generators, a repeatable framework was desired for testing
purposes. Additionally, the ability to record and easily extract metadata from the testing runs was
considered crucial in this study. Given these requirements, we designed a relatively simple Python
template script that may be copied and modified when adding new generators. The testing script takes a
configuration file as an argument, and generates graphs based on the parameters specified in the file. After
the run, the script also writes a .meta file containing relevant metadata for each graph produced. The
metadata includes the total runtime of the generator, the time the generator spent in actual generation
versus the time spent writing the file to disk, memory usage, date and time of the run, as well as the exact
command line invoked to produce the output graph.

We present an example of the script used to generate ER graphs using the APGL package in Listing 1.
As input to this script, we pass a filename. The format of this file is seen in Listing 2. This input file will
generate 7 · 3 = 21 different output graphs, one for each possible combination of vertices and probability.
Along with the graphs, we get a metadata file that is show in Listing 3.

Additional scripts were written to aggregate output from multiple .meta files into a format easily
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Listing 1. Python Wrapper Script
# ! / u s r / b i n / env p y t ho n

import s y s
import r e
import o r n l g r a p h s u r v e y as og

# d e f i n e t h e s e f o r your g e n e r a t o r
command = " . . / g e n e r a t o r s / b i n / er −a p g l . py "
d e f a u l t _ c o n f i g = " . . / c o n f i g s / er −a p g l . d e f a u l t "
r e q u i r e d _ a r g s = [ ’ v e r t i c e s ’ , ’ f i l e n a m e ’ ]

def main ( ) :
i f l e n ( s y s . a rgv ) == 1 :

p r i n t " u s i n g � d e f a u l t � c o n f i g u r a t i o n "
c o n f i g _ f i l e = d e f a u l t _ c o n f i g

e l i f l e n ( s y s . a rgv ) == 2 :
c o n f i g _ f i l e = s y s . a rgv [ 1 ]

e l s e :
p r i n t " Usage : � "+s y s . a rgv [0 ]+ " : �< c o n f i g f i l e >"
s y s . e x i t ( 0 )

a r g s = og . p a r s e _ c o n f i g ( c o n f i g _ f i l e )

i f not og . v a l i d a t e _ a r g s ( a rgs , r e q u i r e d _ a r g s ) :
p r i n t " P l e a s e � check � your � c o n f i g u r a t i o n � f i l e � f o r � r e q u i r e d � a rgumen t s "
s y s . e x i t ( 1 )

# change t h i s f o r your p a r t i c u l a r g e n e r a t o r
f o r v in a r g s [ ’ v e r t i c e s ’ ] :

f o r p in a r g s [ ’ prob ’ ] :
fname = a r g s [ ’ f i l e n a m e ’ ] [ 0 ] + " _v "+ s t r ( v )+ " _p "+ s t r ( p )
fname = og . g e t _ u n i q u e _ f i l e n a m e ( fname )
meta = fname+" . meta "
cmd = command+" �−v� "+ s t r ( v )+ " �−e� "+ s t r ( p )+ " �− f � "+fname
p r i n t " r u n n i n g � "+cmd

# w r i t e r e q u i r e d / common header i n f o
m = og . m e t a _ i n i t ( meta , cmd )

# run t h e command and c a p t u r e t h e o u t p u t and memory usage
( o u t p u t , mem) = og . g e t _ o u t p u t _ a n d _ u s a g e ( cmd )

# w r i t e any o t h e r u s e f u l i n f o r m a t i o n
# we assume t h a t t h e g e n e r a t o r o u t p u t s g e n e r a t i o n and f i l e w r i t e t i m e

m. w r i t e ( "Memory : � "+ s t r (mem)+ " \ n " )
m. w r i t e ( " V e r t i c e s : � "+ s t r ( v )+ " \ n " )
m. w r i t e ( " P r o b a b i l i t y : � "+ s t r ( p )+ " \ n " )
m. w r i t e ( o u t p u t )
m. c l o s e ( )

i f __name__ == " __main__ " :
main ( )

19



Listing 2. Harness configuration file
# g e n e r a t e g r a p h s a t d i f f e r e n t power o f 2 s c a l e s and p r o b a b i l i t i e s
# save t o f i l e n a m e s t a r t i n g wi th er −a p g l
v e r t i c e s 1024 2048 4096 8192 16384 65536 262144
prob 0 .001 0 . 0 1 0 . 0 5
f i l e n a m e / d a t a / graph / er −a p g l

Listing 3. Output metadata
Command : . . / b i n / er −a p g l . py −v 1024 −e 0 .001 − f / d a t a / graph / er −apgl_v1024_p0 . 0 0 1
Hostname : xxxx01 . c c s . o r n l . gov
Time : 2013−08−26−14:32:39
Memory : 44016
V e r t i c e s : 1024
P r o b a b i l i t y : 0 .001
G e n e r a t i o n t ime : 0 .250616788864
Outpu t t ime : 0 .0188760757446
T o t a l t ime : 0 .269492864609
Outpu t edges : 500
Outpu t v e r t i c e s : 1024
Outpu t f o r m a t : edge
Outpu t f i l e n a m e : / d a t a / graph / er −apgl_v1024_p0 . 0 0 1

parsed by common data analysis packages such as GNUPlot. In the next phase, we intend to create plots of
features such as the degree distribution. Additionally, for smaller graphs, we may utilize INDDGO [39]
routines in conjunction with GraphViz [30] to visualize the graphs themselves.

5.3 INITIAL EVALUATION RESULTS

After installation and verification of the various generators’ ability to run, a few basic tests to gauge
any initial limitations were performed. After this first round, the main restrictions appear due to slow serial
algorithms, memory (the generator uses all of the computer memory during generation), and the
implementation language (e.g., Matlab, R). Another challenge is determining whether poor generator
performance is due to the algorithm itself or an inefficient implementation.

For the scope of this report, the acceptable runtime limit is set to 24 hours per individual graph. Thus,
while some generators can surely generate graphs larger than analyzed here, the results will not be included
as part of this study. It is possible that future optimized versions of these generators (e.g. in C/C++ or even
parallel implementations) and their resulting graphs will be used. A list of the packages and models
implemented, as well as the initial limitations discovered, can be found in Table 3.
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Table 3. List of generators and limitations

Generator Package Limit Limitation

Configuration model APGL ∼ 37 million vertices a

Configuration model NetworkX ∼ 37 million vertices a

Erdos-Renyi APGL 218 vertices time

Erdos-Renyi (block 2-level) BTER 228 vertices memory

Erdos-Renyi (gnp method) GGEN ∼ 218 vertices memory

Erdos-Renyi (layer method) GGEN ∼ 218 vertices memory

Erdos-Renyi NetworkX depends on parameters time

Erdos-Renyi (fast variant) NetworkX ran @ 222 vertices, not @ 224 time

ERGM ergm
√

232−1
2 vertices Int_max = 232−1

2

Hyperbolic Krioukov 220 vertices time

Inet inet-3.0 3037 < n ≤ 217 time, model limitation

Kronecker (R-Mat) pywebgraph 220 vertices time

Kronecker (R-Mat+noise) Graph500 230 vertices memory

Musketeer Musketeer 218 vertices with 8% and 7% edit rates time

Partial k-tree INDDGO 227 vertices memory

PLRG Boost 230 vertices memory

Preferential Attachment (B-A) APGL 216 vertices memory and/or time

Preferential Attachment (B-A) NetworkX 223 vertices time

RDPG MFR <46000 vertices memory

Small World (Watts-Strogatz) APGL at least 226 vertices time

Small World (Watts-Strogatz) NetworkX 224 vertices time

Tiers tiers 226 vertices memory

Transit-stub gt-itm ∼ 218 vertices unknown; gt-itm bug?

Waxman stocksim <180000 vertices memory

Waxman NetworkX 8000 vertices with default a=0.4,
b=0.1

time

a 37 million vertices was largest degree distribution generated at the time of testing
Tests were run on a 48-core HP DL585 G7 with 384GB of RAM. Refer to Table 4 for details on package implementation languages,
which may have an effect on the limitations.
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6. CONCLUSIONS AND NEXT STEPS

The impetus for this study came from the desire to have a graph-centric benchmarking capability
similar to that of Systemburn (designed for computational profiling under maximum load). The need to be
able to generate synthetic graphs at larger scales is widely recognized, but the plethora of different model
types may leave researchers in a decision quandary. In this report, we describe the implementation of an
open framework for compiling and instantiating a broad spectrum of readily available generators (including
those which required minor source code modification). Additionally, we report on initial testing of some
common limitations, illustrating how some models and implementations may or may not be useful in a
future benchmarking suite. To enable further testing and comparison, a comprehensive suite of graph
features and statistics was compiled and implemented in a common open-source framework. With the
elements described here in place, the testbed is set to run all identified generators with user-configurable
parameters, compute and compare calculated features of the graphs created, and determine whether stated
expectations (from existing literature) are met. We can also evaluate the behavior of both the generation
and output statistics as the scale of graphs being generated is increased.

The initial set of gathered generators is large and might be considered unwieldy; we anticipate a
continual down-selection of models and implementations based on testing results and sponsor
input/community interest. The primary criteria for inclusion will be a generator’s ability to match desired
graph features and ability to create or identify a scalable implementation. Future work includes evaluating
whether various generator codes can be improved through parallel implementation, as well as their
behavior when instantiated on different computer architectures.

This report describes the necessary foundational work required to set up the generator test-suite. A
follow-on report is anticipated describing the results from the down-selection, analysis, OpenSHMEM or
UPC generator implementation and finally the integration with sparse benchmarks.
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Appendices
A DESCRIPTION OF MODELS

A.1 IMPLEMENTED MODELS

BTER [52, 77] Proposed by Seshadri, Kolda and Pinar, the Block Two-Level Ërdos-Rényi (BTER) model
seeks to better capture community structure.

The main algorithm operates in two phases with an initial pre-processing step. The model can handle
any degree sequence di, which must be given as input. This also dictates |V |. In the pre-processing
step, groups are created by first ordering the degrees with d1 ≤ d2 ≤ ... ≤ dn. Starting with the
smallest degree, di + 1 vertices are removed from the list to form a community. The process is
repeated until the list is empty. Within a given community, vertex degrees are as uniform as possible.
In Phase 1, small independent communities Ci are generated following an ER model. Edges are
created within each community with probability p = f (log(smallest degree) in Ci). In Phase 2, the
Ci are connected using a Chung-Lu model. For some set of the isolated vertices, edges are manually
created. For the theory and further details, we refer the reader to the original description in [77].

Results from initial comparisons with the Chung-Lu model [77] indicate that the clustering
coefficients of BTER graphs have a closer match to real data. The authors note that since these
results in are more in tune with true community structure, other parameters such as the eigenvalues
also have a better match to their actual expected values.

The current generator implementation is in Matlab, though the algorithm is parallelizable. The
creators of BTER claim that the model is quite scalable, with tests up to 4.6 billion edges (using
Hadoop) resulting in very realistic models.

Configuration model [70, 89] A random graph model that creates a graph with an arbitrary degree
sequence. Given a desired degree sequence d1 ≤ ... ≤ dn, we can construct a graph with vertices
v1, ..., vn where vertex i has degree di. Initially, each vi is assigned di empty “slots” to which
connections can be made. Two empty slots are chosen at random from the graph and an edge is
created. This process continues until there are no more free slots in the graph. The resulting graph
will have vertices with the exact specified distribution but may contain vertices with self-loops or
multiple edges.

Chung and Lu proposed a slight modification where an expected degree (weight wi) is assigned to
each vertex, this sets the expected degree sequence as opposed to the actual sequence. Edges are then
constructed through independent Bernouilli trials where the probability of forming edge ei j is given
by pi j =

wiw j∑
k wk

. This change provides a more natural extension of the Ërdos-Rényi model, which was
presented as one disadvantage of the unmodified version.

Ërdos-Rényi [31, 37] Ërdos-Rényi random graphs are synthetic graphs generated using one of two models
first described in 1959.

These graphs are among the most straightforward synthetic graphs to construct. In [31], Ërdos and
Rényi describe a method for choosing a random graph from among all possible graphs given n
vertices and M edges. This is equivalent to the method in [37], in which a graph is constructed with n
vertices and probability p of an edge between two given vertices. For each vertex ni ∈ |V |, an edge is
created between ni and each other vertex with probability p.
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Inet [47, 88] The Inet generator is a purpose-built model intended to produce graphs that model the
Internet and its growth at an Autonomous System (AS) level. By analyzing actual data collected
about the Internet AS topology from 1997-2000, the authors are able to observe patterns in the
growth of the network. Using this data, the claim is that Inet can generate these AS level topologies
for time scales into the future.

As input, Inet takes two parameters: the number of vertices N, and k the fraction of vertices that have
a degree of 1. Using the gathered data and resulting exponential growth parameters, the method
calculates the time t that it would take the number of ASes on the Internet to grow to N. Using this
information, it is possible to calculate a degree distribution for the given vertices (with some
modifications based on the real-world observations).

Once a degree distribution is established, Inet creates a spanning tree among all vertices with
degree > 1. Starting with an empty graph, G, a random vertex not in G is added to the graph. Once
all vertices with degree > 1 are connected to G, the degree 1 vertices are then connected, at random,
to existing vertices in G with unfilled outdegrees. Finally, any remaining unfilled outdegrees are
connected, beginning with the largest degree vertex. This appears to intuitively mimic some of the
network growth behavior observed when looking at the interconnection between ASes on the
Internet.

Krioukov [54] The Krioukov graph generator draws on ideas from hyperbolic geometry. The authors
contend that current simple random graph models do not accurately reproduce strong heterogeneity
and clustering which are common properties of large networks. Using hyperbolic geometry, a new
graph generator capable of integrating these properties is proposed.

Conceptually, the algorithm works by taking a compact region in a hyperbolic space. N vertices are
placed within the space via a Poisson point process and edges are created between sets of vertices if
the distance is less than a specified parameter (for example, R in the case of a circle with radius R).
The claim is that this accurately replicates real vertex degree distributions. Further details about
model parameters and cases are given in [54].

Kronecker [56] A generative model that uses the Kronecker product to create graphs (denoted as
“Kronecker graphs”). This method was proposed to address shortcomings seen with other generators.
The claim is that the Kronecker method can generate graphs with a power-law degree distribution
and a small diameter. Further, it is claimed that the generator more closely models temporal effects
seen in real-world networks, such as densification and a shrinking diameter over time [56].

Given a graph G with n vertices, we can generate a new graph using the Kronecker model by taking
the Kronecker product (denoted ⊗) of G’s adjacency matrix with itself, or
ad j(G′) = ad j(G) ⊗ ad j(G). G′ will have 2n vertices.

MUSKETEER [40] Many times when generating graphs similar to real-world networks, there is not a
readily available model that reproduces all of the features present in the real-world network.
MUSKETEER is a multiscale graph generator that claims to solve this problem to some degree. The
model takes an input graph, and given some parameters subsequently detailed, generates a new graph
with features similar to the original graph.

Several transformations are available to generate new graphs from the original one such as: editing
edges or vertices, and adding edges or adding vertices. Each of these edits may be applied at a
different level of coarseness. MUSKETEER coarsens the graph a given number of times (specified
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by the levels at which the edits are applied) by computing a projection of the Laplacian [40]. Once
changes are made at the lowest level, the graph is un-coarsened by computing the reverse projection
of the original vertices. In the case of new/edited vertices, vertices are copied from the original graph.

New vertices added at the coarsest levels are expanded during the uncoarsening process to multiple
vertices. As a result, small changes at the deepest levels can have a large effect on the resulting
graph. The resulting graph replica consists of the original graph, plus the results of inserting
resampled portions of the original graph into the edit sites. Given this, the replica should have good
fidelity with respect to features of the original.

Partial k-trees In computational graph theory, numerous NP-hard graph problems can be solved in
polynomial time for graphs with bounded treewidth (a parameter measuring how “tree-like” the cut
structure of a network is) [25]. Generating graphs with a known upper bound on its tree-width
uniformly at random is possible using partial k-trees.

The class of k-trees is defined recursively. In the smallest case, a clique on k + 1 vertices is a k-tree.
Otherwise, for n > k, a k-tree G on n + 1 vertices can be constructed from a k-tree H on n vertices by
adding a new vertex v adjacent to some set of k vertices which form a clique in H. A k-tree has
treewidth exactly k (the bags of the optimal tree decomposition are the cliques of size k + 1). The set
of all subgraphs of k-trees is known as the partial k-trees.

It is easy to see that any partial k-tree has treewidth at most k (one can derive a valid tree
decomposition of width k from that of the k-tree which contains it). Furthermore, any graph with
treewidth at most k is the subgraph of some k-tree [50]. Thus the set of all graphs with treewidth at
most k can be generated by finding all k-trees and their subgraphs, leading to an easy randomized
generator for graphs of bounded treewidth.

Preferential Attachment [13] The Preferential Attachment model identified by Barabási and Albert
in [13] posited that real-world networks often exhibit two behaviors for which previous models such
as the Ërdos-Rényi model did not account: growth and a tendency for new vertices in the network to
preferentially attach to existing vertices with higher degrees. This lead to the concept of a
"scale-free" graph, or a graph whose degree distribution follows a power law.

To generate a graph using the Preferential Attachment model, one first seeds the graph with an initial
set of vertices, m0. Some generators [26] then assign each vertex an equal probability without
creating any edges, while others [41] then create a clique from these. New vertices are added
individually to the graph, connecting each one to m ≤ m0 others with probability pi where pi =

di
|E| .

As the network grows di and |E| change. Vertices attach “preferentially” to existing high degree
vertices.

RDPG [91] The Random Dot Product Graph (RDPG) was initially formalized by Kraetzl, Nickel,
Scheinerman and Tucker and furthered by Young and Scheinerman. The extension models allow for
both undirected and directed graphs and generalize Ërdos-Rényi and configuration models.

The basic algorithm operates as follows. In step 1, random coordinate vectors Xi are selected i.i.d. in
Rd for each vertex i from a chosen distribution. In step 2, edges are created for each pair of vertices
(i, j) with probability XT

i X j.

In [91], the authors suggest that the dot product models the idea of varying levels of talkativeness for
social network members with the vertex vectors representing varying interests. Their work also
extends RDPG for directed graphs.
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With respect to the obtained graph properties, it has been shown that power law (in) degree
distributions can be obtained by appropriately selecting the sampling distribution. Additionally, the
diameter of the graph is largely constant for directed and undirected graphs and they show evidence
of clustering. The two primary downsides to RDPG are its inability to create weighted graphs and a
quadratic runtime (or O(n+m) for sparse graphs).

R-MAT [20] The R-MAT or Recursive MATrix model was first introduced by Chakrabati et al. [20].
Designed to be a simple, parsimonious model, it can quickly generate a diverse set of realistic graphs.

The basic algorithm operates on the adjacency matrix A where ai j = 1 if there is an edge between i
and j. Initially, all entries in A are 0. To create edges, the adjacency matrix is divided into 4
quadrants. The algorithm chooses a quadrant with probability a,b,c or d respectively where
a + b + c + d = 1. This method recursively divides the selected quadrant (into 4 quadrants) until it
reaches a 1x1 array where it “places” an edge. Duplicate edges may occur, thus the final number of
edges may be less than anticipated.

R-MAT claims to be able to generate a wide range of graph types including directed, undirected,
power-law, and bipartite graphs. The model can quickly generate large graphs, is readily available
and easily parallelized. As such, it has been used in a wide variety of applications [38] and was
selected for the Graph500 benchmark.

Small-World (Watts-Strogatz) [86] Vertices in small-world networks tend to have many "local" edges,
and a relatively small numbers of "remote" edges. More formally, these graphs have a small average
shortest path length, and a large clustering coefficient.

In [86], Watts and Strogatz introduced a straightforward method for generating graphs which exhibit
this property. First, construct a ring with n vertices. Choose k < n, and connect each vertex to its k
nearest neighbors. This is our starting point. Next, choose a rewiring probability, p. Make k/2 passes
clockwise around the ring, visiting each vertex. On the i-th pass, re-wire, with probability p, the ith

edge closest to the current vertex to another randomly selected vertex.

TIERS [18, 27] Tiers is a network topology generator proposed by Matthew Doar as an improvement to
the Waxman generator (and several variations thereof) in order to better reflect the hierarchical
domain structure of the Internet. This is done using a three-level hierarchy which simulates
Wide-Area (WAN), Metropolitan-Area (MAN) and Local-Area networks (LAN).

The total number of vertices N is a function of NW (number of WAN), NM (number of MAN), NL

(number of LAN), S W (number of vertices per WAN), S M (number of vertices per MAN), and S L

(number of vertices per LAN) where N = NWS W + NMS M + NMNLS L. The model also allows for
optional redundancy parameters and bandwidth.

At a high level, the algorithm first creates NW transit domains with S W vertices placed randomly in
the grid. Edges are created using a minimum spanning tree then intra-network redundancy is
corrected. The process is repeated for the MAN. To create the LAN networks, one vertex is chosen
to be the center of the star and all others are connected to it. To connect these 3 levels together, each
MAN is connected to the WAN with a single edge by randomly selecting vertices in the WAN. A
similar procedure is followed connecting the star-center vertex in the LAN to the MAN. For
additional algorithm details and caveats see the original paper [27]. One drawback of the current
implementation is that it supports a maximum of 1 WAN.
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Transit-stub [92] The transit-stub model described in [92] was an attempt to extend the state of the art in
graph generation beyond the then-current practices of using purely random graphs, regular
topologies, and existing real-world topologies. In particular, the authors looked at network
topologies such as the Internet, and designed their model to approximate the hub-like properties they
observed. In particular, transit-stub defines 2 different types of domains - transit and stub.

Stub domains can be thought of as networks where all traffic between any two vertices on a network
stays within that network. Transit domains, on the other hand, connect stub domains to one another.
This behavior reflects what is seen on the Internet - some domains (stub domains) are operated by a
single entity, and traffic among that entity’s nodes stay within the domain, whereas the transit
domains represent interconnection points between different operators. See Figure 5 in [92] for an
example of what this looks like in practice.

To construct a graph using the transit-stub model, generate a connected random graph, and then
replace the vertices of that graph with another randomly generated graph. These new graphs are each
a transit domain. For each vertex in these domains, we attach it to some number of new connected
random graphs, and these become the stub domains connected to that transit domain. The final step
is to create random edges between a transit domain and a stub, or between two stub domains.

Waxman [87] The Waxman generator is a geographic model where vertices are placed randomly and
uniformly throughout a two-dimensional space and edges are created with probability p based on
euclidean distance between vertices.

The Waxman generator was introduced as a means of generating synthetic graphs to use in analyzing
network routing algorithms. As such, graphs generated in this manner should display characteristics
that are more similar to real-world networks than generators such as Ërdos-Rényi .

Formally, the probability P({u, v}) of creating an edge between vertices u and v is given by:
P({u, v}) = β

−d(u,v)
Lα where d(u, v) is simply the euclidean distances between vertices u and v. The

parameter β controls the overall density of the graph and α dictates the ratio of short edges to long
edges. L is the length of the longest edge in the graph.

A.2 OTHER MODELS

In this section we give a brief overview of other models we found, but did not test for various reasons.

ERGM [46] The Exponential Random Graph Model (ERGM) belongs to the exponential family of
models. ERGMs create a way to study the probability of observing a set of relationships (edges)
between a given set of actors (vertices). Formally, this is given by P(Y = y) =

exp{θT g(y)}
k(θ) where g(y) is

a vector of network statistics, θ is a vector of model parameters and k(θ) is a normalizing constant.
Through appropriate model term choices things such as propensities for homophily, mutuality, and
friend-of-a-friend triad closure can be simulated.

Typically, one starts with a set of network data and a (hypothesised) model (statistics of interest).
From there, the maximum likelihood estimates (MLE) (θ̂) for the model are sought out. Direct
computation of the MLEs is not feasible though, because k(θ) is difficult to compute, thus a Markov
Chain Monte Carlo is employed. Given the outcome based on the supposed model and θ̂ parameters,
the model fit can be assessed, the parameters interpreted and additional network realizations with the
specified probabilities can be performed. It should be noted that these models can only represent
(non) existence of edges (binary), thus limiting the scope. A large body of work exists for those

28



interested in more details on model creation, fitting and statistics of interest. We note however, that
to generate synthetic graphs using this technique a pre-fitted and parameterized model is required.

PLRG [4] PLRG is a “curve fitting” power-law topology generator, which takes an explicit scale-free
degree distribution, then interconnects the vertices to fit this “curve.” Typically, the input sequence is
generated as a set of independent random variables, each drawn from an underlying power law
distribution (ignoring the correlation among degrees implied by their sum being required to equal
twice the number of edges). Given an input sequence (d1, . . . , dn), PLRG first assigns the sequence to
the n vertices of the graph, then randomly matches degrees among all the vertices. This may result in
self-loops and duplicated links (and is also not guaranteed to give a connected graph as a result).
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B DESCRIPTION OF PACKAGES

APGL [26] APGL is a general purpose graph library written in Python. It provides a set of graph classes,
kernels that operate on them, as well as additional classes to generate synthetic graphs. While APGL
is no longer actively developed, we utilize it in order to provide additional implementations of
models provided by other packages. Installation of APGL requires the NumPY and SciPY [49]
libraries. Minimal modifications were made to the code, however we did add exception handling
code to the edge removal functions in sparse graphs. This allowed us to use different matrix storage
options that used less memory.

ergm [46] ergm is part of the statnet [42] statistical analysis package, and is written in R. It provides
functions for working with exponential random graph models. ergm installation requires a number of
additional packages available from the CRAN, however no changes were required to the ergm code.

GGEN [24] This package focuses on generating random directed acyclic graphs. Created in 2009, GGen
proposes to standardize the generation of random graphs for studying scheduling simulations in an
effort to remove bias and errors when validating scheduling algorithms via simulation. Many of the
classical methods are implemented including 2 versions of the Erdös-Rényi method (G(n, p) and
G(n,M)), layer-by-layer, fan-in/fan-out and random-orders.

Implemented in C++ on top of the Boost graph library, the authors show that the generated graphs
adhere to the desired statistics while remaining significantly different from each other.

Graph500 Written in C using OpenMP and MPI, this is the reference implementation of the Graph500
benchmark, used for generating RMAT and Kronecker graphs. The default output of the
make-edgelist executable is a binary format; the code was modified to instead output an ASCII
edgelist format.

gt-itm [93] gt-itm is the Georgia Tech Internet Topology Models software package. It is written in C and
primarily implements the transit-stub model. Installation requires the Stanford Graph Base [51]
(SGB) library. Since gt-itm is an older code, it required more changes than other generators. Fixes
had to be made in the Makefile for it to compile correctly, as well as fixing a non-compliant
linebreak in edge.c. Additionally, we created a new binary, sgb2adjlist, to convert the SGB
output files to a more common and portable adjacency list format. We believe there may be bugs in
gt-itm or SGB that limit the maximum graph size. Finding and fixing these bugs is outside the scope
of this paper.

INDDGO Written in C++, and using both OpenMP and MPI, INDDGO (Integrated Network
Decomposition and Dynamic Programming for Graph Optimization) is an open source library for
studying and leveraging the structure of large graphs. Originally designed to enable users to calculate
and use tree decompositions for solving optimization problems (such as maximum weighted
independent set), this framework has been significantly enhanced to enable the calculation and
evaluation of a broad spectrum of graph features/statistics on both original networks and their
associated tree decompositions (if desired). It supports output in Graphviz format to enable
visualization of networks and vertex statistics, and integrates with third party libraries such as
METIS, SuiteSparse, Boost, and SLEPc to improve efficiency. Utilities have also been written to
enable easy conversion between different graph storage formats.
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inet The inet package implements the inet model in C. Changes were made to use a random seed for the
random number generator on every run, instead of the original default of 0. Functionality was also
added to allow for basic edgelist output, as well as output to a file rather than stdout.

Krioukov The Krioukov generator is written in FORTRAN and is the only studied generator that is not
publicly available. Changes were made to hard-coded limits in the source files to allow for larger
graphs to be generated.

MFR A minimal free resolution (mfr) of a graph is a set of graph invariants. The MFR package, written in
R, computes the mfr of the edge ideal of a graph and for some special graph types. We utilize
functionality from the package to produce Random Dot Product Graphs.

Musketeer A Python code built on top of NetworkX, Musketeer is a purpose-built code implementing
the Musketeer model discussed previously. It may be necessary to convert the line endings in the
files to be compatible with the operating system being used. The code is also modified to prevent
output of a Python “pickle” object that is unused in our analysis.

NetworkX [41] Like APGL, NetworkX is a general purpose Python library for graph programming, and
requires NumPy and SciPy. It provides an extensive array of graph analysis algorithms, as well as
numerous input and output functions for retrieving and storing graphs to disk. The only major
change made is the addition of a function to output edgelists in the format we desire.

pywebgraph pywebgraph, as the name implies, is written in Python. It generates a web-like graph using a
threaded RMAT variant. It was necessary to modify the setup.py script to install all the necessary
pre-requisite Python modules; otherwise, no changes are needed.

stochsim Written using Matlab, stochsim is a stochastic simulation code. We utilize one of the examples to
generate Waxman model graphs. Modifications were made to enable output in our preferred format.

tiers tiers is a generator package written in an older dialect of C++. Due to this, we had to update some of
the header includes, add a namespace, and change some variable declarations to extern in order to
get it to compile correctly. Additionally, like many of the other generators, we added functions to
output to a standardized edge list format.
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Table 4. Generator packages

Package Ver. Obtained from Lang. Changes

APGL v0.7.3 http://pythonhosted.org/apgl/ Python provided as library: added wrapper script; required
scipy and numpy

Boost v.1.41 provided by OS C++ no changes

BTER http://www.sandia.gov/
~tgkolda/bter_supplement/

Matlab added wrapper script

ERGM v.3.0-3 CRAN mirror (iastate) R added script to provide required model class as input
and specific parameters as base

GGEN v3.0.1 http://ligforge.imag.fr/frs/
?group_id=77

C++ requires supporting libraries (boost)

Graph500 v2.1.4 http://graph500.org C added wrapper code

gt-itm http://www.cc.gatech.edu/
projects/gtitm/

C requires SGB library; wrote Makefile; some code
changes

INDDGO https://github.com/
bdsullivan/INDDGO

C++ none (for partial k-tree generation)

inet-3.0 v3.0 topology.eecs.umich.edu/inet/ C none

Krioukov n/a provide by author Fortran increased size limits in code

MFR v1.04 CRAN mirror (Indiana) R none

Musketeer v1.02 http://people.cs.clemson.edu/
~isafro/musketeer/index.html

Python added timing information

NetworkX v1.7 http://networkx.lanl.gov/ Python provided as library: added wrapper script

pywebgraph v2.72 http://pywebgraph.
sourceforge.net/

Python changes to install modules correctly

stocksim v2.1 http://www2.math.uu.se/
research/telecom/software/

Matlab removed plotting; added calculation of matrix mem-
ory usage; added wrapper to store results to file

Tiers v1.1 http://www.isi.edu/nsnam/ns/
ns-topogen.html#tiers

C++ replaced deprecated header files; defined variables in
source file to handle “extern” variables
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