
ORNL/TM-2012/239 
 

 

 

 

 

 

 

 

 

 

 

 

 

Methodology for Determining Radiation 
Portal Monitor Availability from Daily 
Files 
 

 

 

 

 

 

 

 

 

 

 

December 2012 
 

 

 

Prepared by  

Tyler Guzzardo 
Alex Enders 
Scott Alcala 
 

 

 

 



 

 

 

DOCUMENT AVAILABILITY 

 
Reports produced after January 1, 1996, are generally available free via the U.S. Department of 
Energy (DOE) Information Bridge. 
 
 Web site http://www.osti.gov/bridge 
 
Reports produced before January 1, 1996, may be purchased by members of the public from the 
following source. 
 
 National Technical Information Service 
 5285 Port Royal Road 
 Springfield, VA 22161 
 Telephone 703-605-6000 (1-800-553-6847) 
 TDD 703-487-4639 
 Fax 703-605-6900 
 E-mail info@ntis.gov 
 Web site http://www.ntis.gov/support/ordernowabout.htm 
 
Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange 
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from 
the following source. 
 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831 
 Telephone 865-576-8401 
 Fax 865-576-5728 
 E-mail reports@osti.gov 
 Web site http://www.osti.gov/contact.html 

 

 
This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United States 
Government or any agency thereof. 

 



 

ORNL/TM-2012/239 
 

 

 

 

Global Nuclear Security Technology Division 

 

 

 

 

 

 

 

METHODOLOGY FOR DETERMINING RADIATION PORTAL 

MONITOR AVAILABILITY FROM DAILY FILES 
 

 

Tyler Guzzardo 

Alex Enders 

Scott Alcala 

 

 

 

 

 

 

 

 

 

 

Date Published: December 2012 

 

 

 

 

 

 

 

 

 

 

Prepared by 

OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tennessee 37831-6283 

managed by 

UT-BATTELLE, LLC 

for the 

U.S. DEPARTMENT OF ENERGY 

under contract DE-AC05-00OR22725 



 

 



 

iii 

CONTENTS 

Page 

1. OVERVIEW ........................................................................................................................................ 1 
 

2. DAILY FILES ..................................................................................................................................... 1 
 

3. ORNL SLD RPM DATABASE ......................................................................................................... 2 
 

4. METHODOLOGY ............................................................................................................................. 2 
4.1 EMPTY DAILY FILES .............................................................................................................. 3 
4.2 HOURS OF MISSING DATA ................................................................................................... 3 
4.3 HOURS WITHOUT A BACKGROUND UPDATE .................................................................. 4 
4.4 GAMMA AND NEUTRON FAULTS ....................................................................................... 4 
4.5 TWO NEUTRON SIGNALS MEASURING ZERO ................................................................. 5 

 

5. EXCLUDED METRICS .................................................................................................................... 6 
5.1 BAD FORMAT .......................................................................................................................... 6 
5.2 OVERSIZE FILES ...................................................................................................................... 6 

 

6. CONCLUSION ................................................................................................................................... 7 
 

APPENDIX A .......................................................................................................................................... A-1 
A.1 CALCULATION OF MINIMUM REQUIRED NEUTRON SIGNAL LINES ..................... A-3 
A.2 PROGRAMMING SOURCE CODE FOR ALGORITHM .................................................... A-5 

 

 

 



 

 

 

 



 

1 

1. OVERVIEW 

The Second Line of Defense (SLD) Program works with partner countries to enhance their capabilities in 

deterring, detecting, and interdicting the illicit trafficking of nuclear and radiological materials through 

international borders by providing radiation detection equipment and related training. With agreement 

from SLD partner countries, the program collects daily file data from installed TSA Systems pedestrian, 

conveyor, vehicle, and rail radiation portal monitors (RPMs).
1
 Analysis of the data can provide 

information related to the state of health and configuration of the radiation monitoring equipment. By 

analyzing this data from the field over long periods of time, the program is able to determine valuable 

information such as the general reliability of the deployed equipment. In order to characterize the 

program’s overall effectiveness, data from daily files is used to determine the availability of RPMs that 

submit daily files to Oak Ridge National Laboratory (ORNL). Availability in this context is the 

proportion of time the RPM is in a functioning condition.  The RPM is available when all the components 

of the system are functioning properly, thereby allowing the proper functioning of the RPM as a whole.  

This document explains the methodology and assumptions used to arrive at an availability metric for the 

RPMs from which ORNL receives data. 

2. DAILY FILES 

Data from the RPMs is stored in the form of daily files that contain a log of operations performed by the 

RPM for 24 hours. Each line in the daily file contains a two-character code that defines the contents of the 

line, followed by several data elements that pertain to the two-character code. The definitions of each type 

of two-character code are listed in Fig. 1. Some of the basic information contained in the daily files 

includes gamma and neutron background count rates, gamma and neutron signal count rates, alarm 

conditions, current RPM settings, and fault conditions. Although numerous countries send data to ORNL, 

 

 

 

 

 

 

 

 

 

Fig. 1. Sample of daily file (left) and line types (right). 

                                                      
1 Train Monitor TM-850 Operations and Service Manual, Doc 5022 Rev B, TSA Systems, Ltd., January 2011. Vehicle Monitor 

VM-250 Operations and Service Manual, Doc 5039 Rev A, TSA Systems, Ltd., January 2011. Pedestrian Monitor PM-700 

Operations and Service Manual, Doc 5038 Rev A, TSA Systems, Ltd., January 2011. 

Daily File Line Types 

GB Gamma Background 

NB Neutron Background 

GS Gamma Scan 

NS Neutron Scan 

SP Speed Message 

GX End of Occupancy 

GA Gamma Alarm 

NA Neutron Alarm 

SG Gamma Setting 

SN Neutron Setting 

TT Tamper Fault 

TC Tamper Cleared 

GH Gamma High Fault 

GL Gamma Low Fault 

NH Neutron High Fault 



 

2 

the files received are only a small subset of all possible daily files. Therefore, RPM availability is only 

representative of the sites that send data to ORNL. 

3. ORNL SLD RPM DATABASE 

ORNL receives approximately 40 gigabytes of data per month in the form of daily files from partner 

countries. Data is extracted from the daily files and uploaded to the RPM database to organize the data 

and increase access speeds. It is because of the database that ORNL data analysts can quickly query daily 

file data and troubleshoot potential issues with the RPMs. The large dataset allows statistically significant 

conclusions to be drawn about the deployed RPMs. Instead of reading directly from daily files, scripts 

written at ORNL query the database and extract the data required for calculating availability. 

Since ORNL receives a large quantity of data, measures were taken to reduce the amount of data 

uploaded to the database. As a result, all the data in the daily files is not present in the database. Gamma 

Background lines are written to daily files every 5 seconds but are only recorded in the database every 

10 minutes. Similarly, faults are recorded in the database every 10 minutes, and the precise time of 

occurrence is not stored. For non-alarming occupancies, only eight entries (four gamma and four neutron) 

are stored for each occupancy as compared to higher frequency data for alarming occupancies. These 

differences between the daily files and the database were considered when determining the methodology 

for calculating availability. 

4. METHODOLOGY 

When calculating RPM availability, ORNL adopted a philosophy to restrict “unavailable” to those times 

where the RPM was demonstrably inoperable, per the data available. There are many instances where the 

data received by ORNL is not continuous, but the absence of data is insufficient evidence to consider the 

RPM as unavailable: RPMs may be turned off when not in use, or daily files may be overlooked in the 

data collection process. Thus, no credit or penalty is applied for missing data. 

For the data that ORNL does receive, daily files are examined against five criteria that provide evidence 

of a broken RPM component. Only one component of the RPM needs to be broken to make the system 

unavailable. Availability is calculated by analyzing all the daily files received and determining what 

fraction of the daily files shows evidence of RPM failure: 

             
                                                                     

                        
 

 

The criteria used in the availability algorithm were chosen specifically for their ability to differentiate 

between when an RPM is operable and inoperable and should not be confused with metrics to determine 

system effectiveness. It is possible an RPM deemed available through the methodology used here may not 

be capable of effectively detecting special nuclear material (SNM). To accurately define system 

effectiveness, an algorithm needs to consider RPM alarm rate, staffing requirements for the site, 

secondary inspection ability, minimum detectable quantity of SNM, accuracy of settings, and numerous 

other factors that contribute to a site’s ability to interdict SNM. Therefore, the availability metric should 

not be used to determine when a system is effective, but only to calculate when the system is available. 

The criteria that provide evidence of an RPM failure are empty daily files, hours of missing data, hours 

without a background update, fault conditions, and days with two neutron signals constantly measuring 

zero counts. No single criterion can measure system availability, and these criteria can only approximate 



 

3 

when an RPM component is broken. However, the methodology uses the data available in the RPM 

database to form a justifiable and reproducible approximation of availability. Each criterion is described 

in detail below. 

4.1 EMPTY DAILY FILES 

Criterion Condition Decrement 

Empty Daily file <1 kB in size? 24 hours of availability 

 

An empty daily file is defined as a daily file with a file size of less than 1 kilobyte. A file this small is 

evidence of a communication failure between the RPM and the CAS (Central Alarm Station), which can 

prevent alarm indicators from being sent to the CAS. As a result, the CAS operator may only be notified 

of an alarm by the RPM relay (alarm lights and audible annunciator) if the CAS operator is stationed near 

the RPM. However, the RPM relay is often disabled at Megaports sites, making the CAS the sole 

provider of alarm indicators. Overall, an empty daily file is evidence of an RPM system whose alarms 

may not be received by the operator. An empty daily file removes 24 hours from RPM availability. 

Empty files are evidence of a communication failure and not a failure of the software that writes the daily 

file. If the daily file writer was broken, all the daily files for the site would be empty. This has not been 

observed in the data; usually empty files are seen for particular lanes while the other lanes at the site 

produce regular daily files. 

An empty daily file is treated differently from not receiving a daily file because the creation of the daily 

file shows there was a failed opportunity to record data. When a daily file is not received by ORNL, 

nothing is known about the contents of the file. For instance, the RPM may have operated normally, but a 

poor internet connection may have prevented the file from being transferred. A lack of daily files cannot 

remove time from system availability since the system may be functioning properly whether or not ORNL 

receives the file. However, an empty daily file contains information that demonstrates the CAS was 

operating but was unable to communicate with the RPM. 

4.2 HOURS OF MISSING DATA 

Criterion Condition Decrement 

Hours Missing Data present each hour? 1 hour of availability 

 

Daily files that are not empty can have periods of time where data is missing within the file. Just as with 

empty files, this missing data is evidence of a communication failure between the RPM and the CAS. To 

quantify the missing data, ORNL examines daily files to determine if the timestamp at the end of each 

line is present for every hour of the day. Every missing hour of timestamps removes 1 hour from RPM 

availability.
2
 The system is only counted as unavailable when all the lines are missing from the hour. 

Even if one line is present, the whole hour will be counted as available. This metric ensures the system is 

                                                      
2 Partial days of missing data are measured in terms of whole hours, but evaluating every minute of data was considered. 

However, it was determined that using a time resolution of 1 minute would likely not increase the accuracy of the availability 

calculation. This is especially true when the monitor is recording background. Since Gamma Background lines are only stored in 

the database every 10 minutes, there is no knowledge of whether the system continued to record background between the 

10 minute entries. As a result, using a time resolution of 1 minute could imply a detailed precision that is not present in the 

calculation. 



 

4 

truly unavailable by checking for the presence of multiple lines that should have been uploaded to the 

database within the hour. 

4.3 HOURS WITHOUT A BACKGROUND UPDATE 

Criterion Condition Decrement 

Hours no Bkgd GB or NB line present each hour? 1 hour of availability 

 

When the background radiation level is not updated regularly, the alarm threshold can no longer be 

considered valid for current occupancies. This can result in false alarms when the recorded background is 

less than the current background and in false negatives (missed sources) when the recorded background is 

greater than the current background. Broken occupancy sensors, vehicles parking between the RPM 

pillars, and extreme tailgating are possible pathways to preventing the RPM from updating background 

appropriately. If an hour in the database does not contain a Gamma Background or Neutron Background 

line, 1 hour is removed from RPM availability. 

4.4 GAMMA AND NEUTRON FAULTS 

Criterion Condition Decrement 

Faults GH, GL, or NH present? 5 seconds of availability / fault 

 

When a background line is written to the daily file, a boundary check is performed that can produce 

Gamma High, Gamma Low, and Neutron High faults. If a gamma or neutron background measurement is 

out of range, the associated fault line is written to the daily file instead of the regular Gamma Background 

or Neutron Background line. The purpose of the faults is to notify the operator of unusual background 

data. Due to the likely invalid background values, when the RPM is in a fault condition it is unable to 

make a reliable alarm decision based on the detection system that caused the fault. Incorrect background 

data can lead to false alarms, missed sources, and operator frustration. To warn the operator of this state, 

the RPM annunciator is triggered every time the RPM is occupied regardless of the count rate during 

occupancy. Since the RPM cannot perform the task it was designed to do, the RPM is considered 

unavailable for every 5 second interval labeled Gamma High, Gamma Low, or Neutron High.
3,4,5

 The 

cause of the faults is irrelevant with regard to availability since anytime a RPM is in a fault condition, no 

reliable alarm decisions can be made by the associated detection system.  

 

                                                      
3 Tamper faults produced from power failure, power restoration, and opening and closing a cabinet are not considered evidence 

of RPM failure. Routine checks often involve opening the RPM cabinet, and the loss of RPM power is accounted for by checking 

for missing data. 
4 When the monitor is in occupied mode, fault lines are not written to the daily file, so this time is not removed from availability. 

The average down time due to faults could be calculated and then extrapolated over the time the RPM is occupied, but 

assumptions about absent data were avoided when possible. Furthermore, hours of constant occupancy without a background 

update are already removed from availability, so the daily files that would contribute the most to this positive bias are already 

accounted for. 
5 Due to limitations of the database, it is possible a pair of Gamma High and Neutron High faults occurring at the same time 

could decrement availability for 10 seconds when only occurring over a 5 second interval. To minimize this bias, a threshold was 

established to limit the maximum availability decrement of a 10 minute time period to 10 minutes. In addition, simultaneously 

triggering Gamma High and Neutron High faults is not a common occurrence. 



 

5 

4.5 TWO NEUTRON SIGNALS MEASURING ZERO 

Criterion Condition Decrement 

Neutron Failure Neutron Signal = 0 for detector pair? 24 hours of availability 

 

A Gamma Low fault is built into the RPM fault logic to detect an abnormally low signal from the gamma 

detectors, which is often indicative of failing detector electronics. Similar logic does not exist for the 

neutron detectors, since a reading of zero counts is a valid and common background. Consequently, an 

alternative failure condition is required for quantifying neutron detector failure. 

The derivation of the failure condition is complex because the values stored in the database for non-

alarming occupancies are not the exact values found in the daily files. As an effort to conserve disk space, 

only four neutron entries are stored for each non-alarming occupancy. These include the signal values 

from the last Neutron Background line prior to occupancy, the lowest signal values from the Neutron 

Scan lines during the occupancy, the highest signal values from the Neutron Scan lines during the 

occupancy, and the signal values from the last Neutron Background line prior to occupancy (again). As a 

result, non-zero values are only expected from the highest signal values of non-alarming occupancies and 

the Neutron Scan lines from alarming occupancies. All of the lines stored in the database used to 

determine neutron detector failure will be referred to as neutron signal lines. 

Vehicle and rail RPMs normally output four neutron signal values on a neutron signal line during 

occupancy.
6
 When two of the four signal values are repeatedly zero, this is evidence that half the neutron 

detectors are not functioning correctly. If all the neutron signal lines in the database from one day (with a 

minimum of 10 neutron signal lines) contain a pair of signal values equaling zero, then the RPM is 

considered unavailable for the day.
7,8

 If less than 10 neutron signal lines are present in the database during 

the day, by default the RPM is considered available since the availability of the system is not statistically 

certain. All pedestrian and conveyor RPMs are not analyzed and considered available by default since 

certain configurations of these RPMs will only output two non-zero neutron signal values. 

For an RPM to be deemed unavailable by means of the neutron failure condition, the same two signal 

values must be zero for the entire day. If different signal values are zero throughout the day, the system is 

deemed available: 

 

 

                                                      
6 Neutron Scan lines are recorded in the daily file once per second during an occupancy. 
7 Using only Neutron Background lines for calculating availability was considered. Neutron Background lines are written to the 

daily file every 5 seconds and contain a 20 or 120 second (depending on firmware) average of the measured background. When 

calculating the average, the result is truncated. This often produces Neutron Background lines that contain all zeros. For instance, 

if 119 neutron counts were recorded within the last 120 seconds, the neutron background would equate to 0 counts/second. 

However, since Neutron Scan lines are written to the daily file every second, no division or truncation is required and non-zero 

numbers are often recorded. For this reason, Neutron Scan lines are considered when determining if a neutron detector is 

functioning correctly. 
8 Conducting the neutron analysis with a time resolution of 1 hour instead of 1 day was also considered. However, unresponsive 

neutron detectors do not frequently change between available and unavailable. Typically, the detectors will stay unresponsive 

until a maintenance team is able to fix them. As a result, analyzing the neutron signals every hour may artificially increase 

availability; when no neutron signal lines are present in the hour, the system would be deemed available by default, when in 

actuality the detectors may very well still be unresponsive during the hour without any occupancies. Conducting the neutron 

analysis on a daily basis provides more opportunity for neutron signal lines to be present in the dataset and for an accurate 

determination of availability. 



 

6 

Unavailable: 

NS,000000,000000,000001,000002,04-30-42.653 

NS,000000,000000,000001,000001,04-30-43.653 

NS,000000,000000,000001,000004,04-50-14.778 

NS,000000,000000,000002,000003,04-50-15.762 

Available: 

NS,000000,000000,000001,000002,04-30-42.653 

NS,000001,000000,000000,000003,04-30-43.653 

NS,000001,000002,000000,000000,04-50-14.778 

NS,000000,000000,000002,000003,04-50-15.762 

A minimum threshold of 10 neutron signal lines is required to ensure a statistical occurrence does not 

deem the system unavailable. For example, with no threshold, a daily file with a single neutron signal line 

containing two signal values of zero would deem the system unavailable. The threshold value was 

determined by sampling all the neutron signal values in the database from 2011 and calculating the 

fraction of neutron signals with a value of zero. This fraction was used to determine that 10 sequential 

pairs of zeros are required to ensure the readings of zero are not caused by random statistical events.
9
 

5. EXCLUDED METRICS 

Numerous metrics were considered when defining the RPM availability algorithm, and some were 

deemed to not accurately represent whether part of the detection system was broken. The justifications for 

excluding metrics from the algorithm are described in detail below. 

5.1 BAD FORMAT 

A set of rules govern the content of daily files so every file can be processed the same way. Daily files are 

defined as bad format when more than 1% of the lines in the daily file do not follow the daily file line 

convention. Although a daily file not formatted correctly is difficult to post-process, it is not necessarily 

evidence of RPM failure. Software on the CAS is responsible for writing the data transmitted from the 

RPM to the daily file. The RPM may be operating correctly, but if the daily file writer is set up 

incorrectly, the daily file will be in the wrong format. If the majority of the daily file is in the correct 

format, it is not well understood what component of the system causes single lines to be printed 

incorrectly. Therefore, badly formatted daily files are not included in the RPM availability algorithm. 

5.2 OVERSIZE FILES 

Daily files are flagged as oversize when their file size is greater than a set limit. Over time, this limit has 

been adjusted for various reasons but is normally in the range of 5 to 10 megabytes. Using this file size as 

a metric of system availability was considered but ultimately not incorporated into the algorithm. Daily 

files often become oversize when the RPM is constantly occupied and many signal lines are written to the 

daily file. During an occupancy, one Gamma Signal line is written to the daily file every 200 milliseconds 

as compared to background mode where one Gamma Background line is written to the file every 

5 seconds. As a result, extremely large daily files are less likely to contain background lines at appropriate 

intervals. Large daily files can be caused by a variety of situations including broken occupancy sensors, 

                                                      
9 See Appendix for detailed calculation. 



 

7 

vehicles parking between the RPM pillars, extreme tailgating, and daily files having two timestamps per 

line. Although some of these situations are evidence of RPM failure, the root cause of the failure is due to 

a lack of background lines. By spot checking large daily files, files as large as 28.7 MB (double 

timestamps) and 22.2 MB (single timestamp) were found that included at least one background line. In 

addition, a file with no background lines could have a small file size due to partial days of missing data. 

Due to these inconsistencies, it was deemed inappropriate to use file size as a metric for system 

availability. Instead of file size, every hour of the daily file is checked to determine if the RPM 

background was updated within the hour. Utilizing this method provides the closest link between the 

daily file and system availability. 

6. CONCLUSION 

The methodology used to determine RPM availability from daily files is thoroughly defined, and the 

assumptions made to create the algorithm are described in detail. Since a set of well-defined metrics 

define the availability algorithm, RPM availability is a reproducible value that does not require the 

subjective view of data analysts. The algorithm for calculating RPM availability from SLD daily files can 

be utilized to justifiably track the operation of RPMs across the program.  

 



 

 

 



 

 

APPENDIX A 

  



 

 

 

 



 

A-3 

A.1 CALCULATION OF MINIMUM REQUIRED NEUTRON SIGNAL LINES 

The probability of a neutron signal value of zero occurring by means of random statistical events (i.e., 

chance alone) was estimated by sampling all the available data from 2011.  The fraction of all the neutron 

signal values in the database with a value of zero was 0.45.  However, this method assumes all RPM 

configurations have an equal likelihood of measuring neutron signal values of zero.  This is unlikely since 

many factors such as the number of He-3 tubes and the altitude of the installation influence the neutron 

signal value.  Consequently, a histogram of daily average neutron signal values recorded during 

occupancies (Fig. A.1) was created to determine the extent of variation between RPM configurations.  

Since daily averages are presented, each data point is representative of the average neutron signal value 

from a particular lane.  Averaging the data in this manner allows neutron signal value trends to be 

exposed. 

 

Fig. A.1. Histogram of daily average neutron signal values in 2011. 

The distinctive peaks are evidence the average neutron signal value is dependent on the RPM 

configuration and that all RPM configurations will not experience the same probability of a neutron signal 

value measuring zero.
10

  However, the peaks in the distributon do not vary so greatly that it is 

unreasonable to sample the entire database to estimate the probability of measuring a neutron signal value 

of zero.  The histogram illustrates the inherent uncertainty in this calculation and provides an explanation 

to why the probability of 0.45 is an estimation. 

 

Given the probability, p, of one neutron signal value measuring zero, the probability, P, of a sequence of 

L trials also measuring zero can be determined: 

 

                                                      
10 Determining the RPM configurations responsible for these trends is outside the scope of this work. 



 

A-4 

     
 
However, the probability of a sequence of zeros in at least two of the four neutron signal values is in 

question. A binomial distribution is used to represent a combination of possible successful outcomes and 

is set equal to the acceptable probability of occurrence, one in one million. The successful outcomes 

include two of four neutron signal values measuring zero, three of four measuring zero, and four of four 

measuring zero. 

  

        
               

where  
k = number of successes (number of neutron signal values measuring zero), 

n = number of events (number of neutron signal values on a neutron signal line), 

P = probability of success for any single event (p
L
), 

x = probability of at least two of four neutron signal values measuring zero in a sequence of L trials. 

                                  

            
 
This probability is then used to determine the required number of trails in the sequence. 

     

             

     
 
As a result, at least 10 neutron signal lines must be present in the database to deem the system unavailable 

by means of the neutron failure criterion. To make the failure condition more conservative, more neutron 

signal lines may be analyzed. 



 

A-5 

A.2 PROGRAMMING SOURCE CODE FOR ALGORITHM 

 
Imports System.Data.SqlClient 
Imports System.IO 
Imports System.Reflection 
Imports System.Resources 
 
Public Class rptAnnualDsa 
 
    REM Data Access variables 
    Dim appConn As SqlConnection 
    Dim sqlDA As SqlDataAdapter 
    Dim command As SqlCommand 
    Dim appConnStr, sqlStr As String 
 
    REM Output File Stuff 
    Dim outputFile As System.IO.File 
    Dim dataArray(0) As String 
 
    REM General Use variables 
    Dim reportFrom, reportThru As Date 
    Dim fileId, countryId, siteId, laneId As Integer 
    Dim fileName, cname, sname, laneNum, reportFile As String 
    Dim cntDays, cntExpected, cntReceived, cntEmpty, faults, cntFault, cntNS, cntGHF, cntGLF, cntNHF As Integer 
    Dim totReceived, totEmpty, totFault, totNS, upHours As Integer 
    Dim downTime, totDownTime, cntGood, totGood, utPct, totPct As Double 
    Dim passedExclusion, exceedsLimit As Boolean 
    Dim faultThreshold As Integer = 100 
    Dim tb As String = "   " 
 
    REM Config Variables hard-coded for this version 
    Dim cfg_basePath As String = "c:\DART Files" 
    Dim cfg_dataSource As String = "NNPRDDB-SLD" 
    Dim cfg_srcCatalog As String = "RpmFy2012" 
 
    Private Sub rptAnnualDsa_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

MyBase.Load 
        Call initialize() 
    End Sub 
 
    Private Function initialize() As Boolean 
 
        Dim initialized As Boolean = False 
 
        reportFrom = New Date(2011, 10, 1) 'fileDate as zeros for time, so this is sufficient 
        reportThru = New Date(2012, 9, 30) 'fileDate as zeros for time, so this is sufficient 
        cntExpected = DateDiff(DateInterval.Day, reportFrom, reportThru) + 1 
        reportFile = cfg_basePath + "\Reports\Detection System Availability\DSA_" + Format(reportThru, 

"yyyy_MM_dd") + ".csv" 
 



 

A-6 

        REM Derive source connection info 
        REM ============================== 
        appConnStr = "Data Source=" + cfg_dataSource + ";Initial Catalog=" + cfg_srcCatalog + ";User 

ID=dartUser;Password=dartUserPassword;Connect Timeout=30;MultipleActiveResultSets=True" 
 
        Try 
            appConn = New SqlConnection(appConnStr) 
            appConn.Open() 
            initialized = True 
        Catch ex As Exception 
            MsgBox(tb + "rptDSA: unable to connect to source database: " + ex.Message) 
            MsgBox(tb + "rptDSA: process aborted.") 
        Finally 
            appConn.Close() 
        End Try 
 
        REM Setup Heading Row 
        REM ================== 
        dataArray(0) = "Country,Site,Lane#,Expected,Received,Empty,Faults,Failed Neutron,downTime,Uptime (%)" 
 
        Return initialized 
 
    End Function 
 
    Private Sub btnRun_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnRun.Click 
        Call processDriver() 
    End Sub 
 
    Private Sub processDriver() 
 
        If fileExists(reportFile) Then 
            MsgBox(tb + "rptDSA: .csv file for this month already exists.") 
        Else 
            'MsgBox(tb + "rptDSA: generating .csv file...") 
            Try 
                sqlStr = "SELECT um.id, um.countryId, um.siteId, um.laneId, um.oversize, um.noData, um.badFormat, 

um.fileName, " 
                sqlStr += "c.name, s.name, l.laneNumber FROM " 
                sqlStr += "uploadMaster um " 
                sqlStr += "JOIN RpmCurrent.dbo.country c ON c.id=um.countryId " 
                sqlStr += "JOIN RpmCurrent.dbo.site s ON s.countryId=um.countryId AND s.id=um.siteId " 
                sqlStr += "JOIN RpmCurrent.dbo.lane l ON l.countryId=um.countryId AND l.siteId=um.siteId AND 

l.id=um.laneId " 
                sqlStr += "WHERE um.fileDate BETWEEN @fromDate AND @thruDate " 
                sqlStr += "ORDER BY c.name, s.name, l.laneNumber, um.fileDate " 
                command = New SqlCommand(sqlStr, appConn) 
                command.Parameters.AddWithValue("@fromDate", reportFrom) 
                command.Parameters.AddWithValue("@thruDate", reportThru) 
                appConn.Open() 
                Using dataReader As SqlDataReader = command.ExecuteReader 
                    If dataReader.HasRows Then 
                        Do While dataReader.Read 
 



 

A-7 

                            REM Lane Change 
                            REM =========== 
                            If laneId = 0 Then 
                                countryId = dataReader.GetValue(1) 
                                siteId = dataReader.GetValue(2) 
                                laneId = dataReader.GetValue(3) 
                                cname = dataReader.GetValue(8) 
                                sname = dataReader.GetValue(9) 
                                laneNum = dataReader.GetValue(10) 
                            ElseIf laneId <> dataReader.GetValue(3) Then 
                                Call updateValues() 
                                countryId = dataReader.GetValue(1) 
                                siteId = dataReader.GetValue(2) 
                                laneId = dataReader.GetValue(3) 
                                cname = dataReader.GetValue(8) 
                                sname = dataReader.GetValue(9) 
                                laneNum = dataReader.GetValue(10) 
                            End If 
 
                            cntReceived += 1 
                            fileId = dataReader.GetValue(0) 
                            fileName = dataReader.GetValue(7) 
 
                            REM Main Processing Driver 
                            REM ======================= 
                            If dataReader.GetValue(5) = 1 Then 'Empty  
                                cntEmpty += 1 
                            ElseIf passedNsExclusions() Then 
                                If exceedsNsLimit() Then 
                                    cntNS += 1 
                                Else 
                                    downTime += getDowntime() 
                                    cntFault += faults 
                                End If 
                            End If 
 
                        Loop 
                    End If 
                End Using 
            Catch ex As Exception 
                MsgBox(tb + ex.Message) 
                MsgBox(tb + "rptDSA: process aborted.") 
            Finally 
                appConn.Close() 
            End Try 
 
            REM Final Calcs and output 
            REM ====================== 
            Call finalCalcs() 
 
            REM Output to file 
            REM ============== 
            Try 



 

A-8 

                outputFile.WriteAllLines(reportFile, dataArray) 
                'MsgBox(tb + "rptDSA: .csv file created") 
            Catch ex As Exception 
                MsgBox(tb + ex.Message) 
            End Try 
 
        End If 
 
    End Sub 
 
    Private Sub updateValues() 
 
        cntGood = cntReceived - (cntEmpty + cntNS + downTime) 
        utPct = Math.Round((cntGood * 100) / cntReceived, 2) 
 
        ReDim Preserve dataArray(dataArray.Length) 
        dataArray(UBound(dataArray)) = cname + "," + sname + "," + laneNum + "," + cntExpected.ToString + "," + _ 
            cntReceived.ToString + "," + cntEmpty.ToString + "," + cntFault.ToString + "," + cntNS.ToString + "," + _ 
            Format(downTime, "#0.00") + "," + Format(utPct, "#0.00") 
 
        totReceived += cntReceived : totEmpty += cntEmpty : totFault += cntFault : totNS += cntNS : totDownTime += 

downTime 
        cntReceived = 0 : cntEmpty = 0 : cntFault = 0 : cntNS = 0 : downTime = 0 
 
    End Sub 
 
    Private Sub finalCalcs() 
 
        REM Update for last lane 
        REM ===================== 
        Call updateValues() 
 
        REM Total Calcs 
        REM =========== 
        totGood = totReceived - (totEmpty + totNS + totDownTime) 
        totPct = Math.Round((totGood * 100) / totReceived, 2) 
 
        REM Add Totals to Array 
        REM ==================== 
        ReDim Preserve dataArray(dataArray.Length) 
        dataArray(UBound(dataArray)) = "Totals,,,," + totReceived.ToString + "," + totEmpty.ToString + "," + 

totFault.ToString + "," + _ 
        totNS.ToString + "," + Format(totDownTime, "#0.00") + "," + Format(totPct, "#0.00") 
 
    End Sub 
 
    Private Function passedNsExclusions() As Boolean 
 
        passedExclusion = True 
 
        REM Mobile Detection Sensor is excluded 
        REM ==================================== 
        If InStr(fileName, "MDS") > 0 Then 



 

A-9 

            passedExclusion = False 
        End If 
 
        REM If still in the running... 
        REM ========================== 
        If passedExclusion Then 
            Try 
                sqlStr = "SELECT r.monitorType FROM " 
                sqlStr += "RpmCurrent.dbo.lane l " 
                sqlStr += "JOIN RpmCurrent.dbo.rpm r ON r.id=l.modelId " 
                sqlStr += "WHERE l.id=@laneId " 
                command = New SqlCommand(sqlStr, appConn) 
                command.Parameters.AddWithValue("@laneId", laneId) 
                Using dataReader As SqlDataReader = command.ExecuteReader 
                    If dataReader.HasRows Then 
                        dataReader.Read() 
                        If dataReader.GetValue(0) = "Pedestrian" Then 
                            passedExclusion = False 
                        ElseIf dataReader.GetValue(0) = "Conveyor" Then 
                            passedExclusion = False 
                        End If 
                    End If 
                End Using 
            Catch ex As Exception 
                MsgBox(tb + ex.Message) 
                MsgBox(tb + "rptDSA: nsExclusionCheck aborted.") 
            End Try 
        End If 
        Return passedExclusion 
 
    End Function 
 
    Private Function exceedsNsLimit() As Boolean 
 
        exceedsLimit = False 
        Try 
            sqlStr = "SELECT sum(det1), sum(det2), sum(det3), sum(det4), count(*) FROM " 
            sqlStr += "(SELECT det1, det2, det3, det4 FROM " 
            sqlStr += "detectorData " 
            sqlStr += "WHERE fileId=@fileId AND particle='n' AND occupFlag=1) work " 
            command = New SqlCommand(sqlStr, appConn) 
            command.Parameters.AddWithValue("@fileId", fileId) 
            Using dataReader As SqlDataReader = command.ExecuteReader 
                If dataReader.HasRows Then 
                    dataReader.Read() 
                    If dataReader.GetValue(4) >= 22 Then 
                        If (dataReader.GetValue(0) = 0 And dataReader.GetValue(1) = 0) Or _ 
                           (dataReader.GetValue(0) = 0 And dataReader.GetValue(2) = 0) Or _ 
                           (dataReader.GetValue(0) = 0 And dataReader.GetValue(3) = 0) Or _ 
                           (dataReader.GetValue(1) = 0 And dataReader.GetValue(2) = 0) Or _ 
                           (dataReader.GetValue(1) = 0 And dataReader.GetValue(3) = 0) Or _ 
                           (dataReader.GetValue(2) = 0 And dataReader.GetValue(3) = 0) Then 
                            exceedsLimit = True 



 

A-10 

                        End If 
                    End If 
                End If 
            End Using 
        Catch ex As Exception 
            MsgBox(tb + ex.Message) 
            MsgBox(tb + "rptDSA: nsLimitCheck aborted.") 
        End Try 
        Return exceedsLimit 
 
    End Function 
 
    Private Function getDowntime() As Double 
 
        Dim downDays As Double = 0 
        Try 
            sqlStr = "SELECT COALESCE(NULLIF(COUNT(HH),0),24), COALESCE(SUM(faultCount),0) FROM " 
            sqlStr += "(SELECT LEFT(CONVERT(varchar(8),timestamp,108),2) HH, COALESCE(SUM(faultCount),0) 

faultCount FROM " 
            sqlStr += "(SELECT g.timestamp timestamp, " 
            sqlStr += "     CASE WHEN g.highFaultCount+g.lowFaultCount+n.highFaultCount > 120 THEN 120 ELSE " 
            sqlStr += "         g.highFaultCount+g.lowFaultCount+n.highFaultCount END faultCount " 
            sqlStr += "FROM detectorData g " 
            sqlStr += "LEFT JOIN detectorData n ON g.fileId=n.fileId AND g.timestamp=n.timestamp AND n.particle='n' " 
            sqlStr += "WHERE g.fileId=@fileId AND g.particle='g' AND g.occupFlag=0) work1 " 
            sqlStr += "GROUP BY LEFT(CONVERT(varchar(8),timestamp,108),2)) work2 " 
            command = New SqlCommand(sqlStr, appConn) 
            command.Parameters.AddWithValue("@fileId", fileId) 
            Using dataReader As SqlDataReader = command.ExecuteReader 
                If dataReader.HasRows Then 
                    dataReader.Read() 
                    upHours = dataReader.GetValue(0) 
                    faults = dataReader.GetValue(1) 
                    downDays = (24 - ((upHours - (faults * 5) / 3600))) / 24 
                Else 
                    downDays = 0 
                End If 
            End Using 
        Catch ex As Exception 
            MsgBox(tb + ex.Message) 
            MsgBox(tb + "rptDSA: downTime calculation aborted for file: " + fileId.ToString) 
        End Try 
        Return downDays 
 
    End Function 
 
    Private Function fileExists(ByVal FileFullPath As String) As Boolean 
 
        Dim f As IO.FileInfo 
        Try 
            f = New IO.FileInfo(FileFullPath) 
            Return f.Exists() 
        Catch ex As Exception 



 

A-11 

            MsgBox(FileFullPath + "-" + ex.Message) 
            Return False 
        End Try 
 
    End Function 
 
    Private Sub btnClose_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnClose.Click 
        Me.Close() 
    End Sub 
 
End Class 
 


