
Approximation and error estimation in high dimen-

sional space for stochastic collocation methods on ar-

bitrary sparse samples

Richard K. Archibald1, Ralf Deiterding1, Cory Hauck1, John Jakeman2, and
Dongbin Xiu3

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831
2Sandia National Laboratories, Albuquerque, NM 87185
3Department of Mathematics, Purdue University, 150 N University St, West Lafayette,
IN 47907-2067

E-mail: archibaldrk@ornl.gov

Abstract. We have develop a fast method that can capture piecewise smooth functions
in high dimensions with high order and low computational cost. This method can be
used for both approximation and error estimation of stochastic simulations where the
computations can either be guided or come from a legacy database.

1 Introduction

We have developed a method for generating function approximations with high-order accuracy
from arbitrary point-wise values. The method is a variation of stochastic collocation. In the
context of uncertainty quantification, each function value represents the quantity of interest for
a deterministic run of a complex scientific application and a specified input value. Allowing
for function sampling on arbitrary points means, among other things, that the method can
be used on legacy databases of application simulations. The method also provides high-order
error estimation and edge capturing, can be used to lead ensemble adaptation, and provides
the necessary tools to gauge the reliability of information extracted from simulation ensembles.
Finally, the curse of dimensionality that is problematic for stochastic collocation in high di-

mensions is mitigated through the use of fast algorithms that scale with O
(
N ln(N)

)
, where

N is the number of samples.

2 General Formulation for Interpolation and Edge Detection

Let us first introduce the following notations which will be used throughout this paper. We
denote the point in x ∈ Rd as x = (x1, · · · , xd). For any finite set of points S in Rd we
use the notation KS for the convex hull of the set S. We denote by N := {1, 2, · · · , } the
set of natural numbers and Z+ := {0, 1, 2, · · · , } the set of non-negative integers. For any
α ∈ {(α1, . . . , αd) : α1, . . . , αd ∈ Z+} := Zd+, we set |α| :=

∑d
k=1 αk, |α|10 :=

∑d
k=1 10k−1αk,

and α! := α1! · · ·αd!. Throughout α is a multivariate non-negative integer that will change
dimension based upon the dimension under discussion. If this multivariate non-negative integer
is used as a subscript to a point, xα, this is used as index to a single point in Rd. However, if
α is a superscript, then xα = xα1

1 xα2
2 · · ·x

αd
d .
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For any m ∈ Z+, Πd
m denotes the space of all polynomials of degree ≤ m in d ∈ N variables

where the dimension of Πd
m is denoted by

md :=

(
m+ d

d

)
. (1)

For α, β ∈ Zd+ (
α

β

)
=

(
α1

β1

)
· · ·
(
αd
βd

)
. (2)

Finally, we recall the kronker delta function

δi,j =

{
1, if i = j,
0, if i 6= j.

(3)

We present here the formulation and key properties of the block multivariate Lagrange
interpolation method studied in [7]. The notation introduced in [7] is modified to conform to
the new methods presented in this paper. A block of points is denoted as

xm = {xα : |α| = m}, for m = 0, 1, 2, . . .. (4)

A set of interpolation points, irregularly distributed points in a bounded domain Ω ⊂ Rd, is
given in block notation as

Smd := {x0,x1, . . . ,xm}. (5)

If Smd is poised, then there exist polynomials qα ∈ Πd
|α| for |α| ≤ m, such that

qα
(
xβ
)

= δα,β, |α|, |β| ≤ m (6)

If these polynomials exist, they are called the Lagrange fundamental polynomials and interpo-
lation is given for a function f sampled on points in Smd by,

fSmd
(
x
)

=
∑

xα∈Smd

f
(
xα
)
qα
(
x
)

(7)

The Lagrange fundamental polynomials are given explicitly as

qα
(
xβ
)

=
τmα
(
X|x

)
τm
(
X
) (8)

where τm
(
X
)

is the determinant of the Vandermonde matrix

X =
[
xβα
]
, (9)

and τmα
(
X|x

)
is the determinant of the vandermonde matrix where xα is replaced by x. The

interpolation problem given in (7) is called poised when Vandermonde matrix (9) has a nonva-
nishing determinant.

The Newton formula for the Lagrange interpolation polynomials use the Newton fundamen-
tal polynomials, pα ∈ Πd

|α|, and are defined by

pα
(
xβ
)

=

{
0, if |β| < |α|,
δα,β, if |β| = |α|. (10)
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The Newton fundamental polynomials can be given for each |α| = n ≤ m using only a
reduced vandermonde matrix from the set of points {x0,x1, . . . ,xn} and given explicitly as

pα
(
xβ
)

=
τnα
(
X|x

)
τn
(
X
) (11)

The finite difference Newton formula for interpolation is given by

fSmd
(
x
)

=
∑

xα∈Smd

λ|α|
[
x0,x1, . . . ,xm

]
f · pα

(
x
)

(12)

with remainder formula

f
(
x
)
− fSmd

(
x
)

= λm+1

[
x0,x1, . . . ,xm, x

]
f, (13)

where the block finite difference is defined recursively as,

λ0
[
x
]
f = f

(
x
)

λm+1

[
x0,x1, . . . ,xm, x

]
f = λm

[
x0,x1, . . . ,xm−1, x

]
f

−
∑
|α|=m

λ|α|
[
x0,x1, . . . ,xm−1, xα

]
f · pα

(
x
)
. (14)

An edge detection method on the set of irregularly distributed points in a bounded domain
Ω in Rd was introduced in [2]. Let S be a set of discrete points in Ω and f be a piecewise
smooth function known only on S. In order to identify the jump discontinuities of f , we
construct a function LSmdf , m ∈ N and Smd (5), which can be characterized by the asymptotical
convergence property,

LSmdf(x) −→ 0,

for any x away from discontinuities, with the convergence rate depending in part on the given
positive integer m which influences the size of the local stencle, Smd . The choice of m is user
dependent but higher number m provides a faster rateof convergence in smooth regions of f .

The edge detection method presented here is based on a local polynomial annihilation
property. The general form of LSmdf is given by the following two step method. In the first
step, for any x ∈ Ω, we choose a local set, Smd (5), of md (1) points around x.

In order to annihilate polynomials up to degree m − 1, we solve a linear system for the
coefficients cα(x) given by∑

xα∈Smd

cα(x)pβ(xα) =
∑
|α|=m

p
(α)
β (x), α ∈ Zd+, (15)

where set of pβ form a basis for Πd
m. Note that the solution (15) exists and is unique. Our edge

detector LSmdf is defined using the solution of (15) as

LSmdf(x) =
1

Nm,d(x)

∑
xα∈Smd

cα(x)f(xα). (16)

Here Nm,d(x) is a suitable normalization factor depending on m, the dimension d, and the local
set Smd (5).
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3 Connecting Adaptation, Interpolation, and Error Estimation

The previous section demonstrates how interpolation can be done explicitly for poised sets
Smd . There exist fast algorithms for interpolation evaluation of these explicit formulations [4].
Next we present a theorem that provides an explicit formulation of global approximation of the
interpolation error.

Theorem 3.1. Given a poised set Smd with interpolation formulation give in (12) the interpo-
lation error is given explicitly as

f
(
xα
)
− fSmd\xα

(
xα
)

=
Nm,d(xα)

cα
LSmdf(xα),

=
1

cα

∑
xα∈Smd

cα(x)f(xα) (17)

where LSmdf is the edge detector given in (16)

The proof of Theorem 3.1 is given in [1]. This theorem demonstrates how the edge detector
given in (16) can be modified to give the exact error for every xα ∈ Smd of the function
evaluation at xα as compared to the evaluation of the interpolation formulation give in (12),
where the interpolation is based on the set Smd \xα. The power of this result is that given a set
Smd , by solving for the edge detection coefficients (15), error estimates can be given nodally for
every member of Smd providing an estimate around nodally sampled points. Naturally, regions
with large error estimates would be prime candidates for further adaptation.

The results of Theorem 3.1 can be extended to sets of arbitrary length [1]. We build the
algorithms in this paper around interpolation and error estimation of sets of arbitrary length.

4 Mitigating the Curse of Dimensionality
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Figure 1: Two dimensional example of a k-d tree. First
node at (2, 4) performs a binary split of the data along a
hyperplane in the first dimension. Second level nodes (1, 1)
and (3, 2) performs a binary split of the data in their branch
along a hyperplane in the second dimension. Dimensional
binary splits cycle among dimensions until no points remain
in new branches.

The curse of dimensionality comes
about when the complexity of a
method grows exponentially with
respect to the dimension. This
problem is especially relevant for
stochastic collocation methods
since dimension size grows with
the number of random variables
in the simulated system. The
benefit of the multivariate La-
grange interpolation given in (12)
is that for a smooth function, f ,
sampled on a set of N points
S ⊂ Rd a high order reconstruc-
tion can be achieved with the
largest computational cost com-
ing from Vandermonde matrix
determinate which can be calcu-
lated in O

(
N ln(N)

)
[5]. How-

ever, suppose that f is a piece-
wise smooth function. High order
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reconstruction is possible if multivariate Lagrange interpolation is done on smooth sub-regions.
The problem becomes how to partition S into smooth sub-regions.

Suppose we are given a piecewise smooth function, f , sampled on a set of N points S ⊂ Rd.
A high order reconstruction of f is possible if we use the multivariate Lagrange interpolation
given in (12) to reconstruct in smooth sub-regions. The problem becomes how to partition S
into smooth sub-regions.

Given any suitable partition, {S1, . . . ,SM}, of S we can use Theorem 3.1 to provide an error
estimate of the multivariate Lagrange interpolation. A suitable partition would require that
KSi

⋂
KSj = ∅ for all i 6= j. Given that the number of points in the ith partition is Ni, the error

estimation of that partition can be solved using the Lagrange fundamental polynomials (8) at a

cost of O
(
Ni

)
1. Thus, given any partition the error estimation of the entire partition will cost

O
(
N
)

. Developing a suitable partition requires that convex hull of any two partitioned sets do

not overlap. A notion of how points in S are connected is required to develop a suitable partition.
One well studied method to map the connections of points Rd is by delaunay triangulation,
which for poised that do not lie on lower dimensional manifold, would have a computational

and memory cost of O
(
N
d d
2
e

i

)
[6]. This method, like many partitioning techniques, suffer from

the curse of dimensionality. We use a k-d tree, first introduce in [3], to search for the best

suitable partition. The generation of the k-d tree can be done in O
(
N log(N)

)
and we use

the form of the k-d tree to generate fast partitioning and edge representation algorithms. A
two dimensional example is given in Figure 1 to explain the basic concepts around the k-d tree
algorithm.

5 Fast Algorithms for Adaptation, Interpolation, and Error Estimation

Based on the k-d tree algorithm we give a fast algorithm to generate a suitable partition of a
piecewise smooth function, f , on a finite set of sampled points S ⊂ Rd.

algorithm 5.1 (Fast suitable partition). Given a poised set S ⊂ Rd that samples a piecewise
smooth function f , initialize the binary partition dimension to one, the partition as S, and set
some smoothness criterion, τs, for the smoothness estimator (17).

1. Estimate smoothness of S. If maxxα∈S
1
cα

∑
xα∈S cα(x)f(xα) ≤ τs then smoothness re-

quirement is satisfied and exit, else split S along the binary partition dimension, cycle the
binary partition dimension and continue.

2. Estimate smoothness of all newly split partitions. If partition is smooth, merge to neigh-
boring partitions that have a combined smooth estimate. If partition is not smooth and
has more that one point, split along the binary partition dimension.

3. If new partitions have been created, cycle the binary partition dimension and repeat step
2, else exit.

The computational cost for Algorithm 5.1 will be the cost of estimating the smoothness of a
partition times the number of partitions that are estimated. The binary partitioning scheme of
this algorithm combined with fast error estimation produces a computational cost for Algorithm

5.1 of O
(
N ln(N)

)
. Finally, a binary partition of a set of points consists of splitting the set at

the median point in a list of points that is sorted along the binary partition dimension.

1Using these polynomials results in a diagonal system with the only cost coming from finding the derivatives
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The execution of Algorithm 5.1 will produce a suitable partition and the error estimate for
this partition. The edges in between partitions and domain boundaries are also required to fully
characterize the high order approximation of a piecewise smooth function. Below we present

an algorithm that O
(
N ln(N)

)
that uses the suitable partition to characterizes theses edges.

algorithm 5.2 (Fast edge representation). Given a suitable partition, {S1, . . . ,SM}, of S,
initialize the binary partition dimension to one. The edges between partitions can be determined
by

1. If the suitable partition contains only S, return no edge, else continue.

2. Perform k-d tree algorithm, terminating each branch if the subset branch is contained
completely in Si for some i = 1, . . . ,M .

3. Edges are determined by merging branches of the partial k-d tree that are in the same
partition.

4. Margins around these edges can be determined by finding the closest data point in S normal
to each edge and the total volume of all margins is given as Vm.

The important measure from Algorithm 5.2 is the total volume of all margins Vm. This
measure gives a estimate to how well the edges between piecewise smooth regions can be ap-
proximated. A suitable stoping criteria for adaptation with respect of edge estimation is that
the volume of the margins fall below some given threshold, or Vm ≤ τv.

To demonstrate these algorithms and approach, consider the following example.

Example 5.1.

f1(x) :=

{
sin
(
πx
)

0 ≤ ‖x‖ < 1
2 ,

− sin
(
πx
)

1
2 ≤ ‖x‖ ≤ 1.

(18)

Figure 2 displays the progression of the high order approximation of this piecewise smooth
function. Given an initial set of random points, Figure 2a displays the suitable partition gener-
ated by Algorithm 5.1. Using this partition, Figure 2b displays the edge representation of the
suitable partition generated by Algorithm 5.2. For each partition there is an inner and outer
edge representation, yielding a marginal area. Adaptation proceeds by adding new points that
will reduce the marginal areas and reduce the error estimates in the smooth partitions. The
final partition is given in Figure 2c, were the stoping criteria of is satisfied with a total of 24
points. The stoping criteria for adaptation in smooth regions is a L2 error estimate of less than
τs = 2e−2 and a marginal area of less than τv = 5%. The final L2 error estimate was 1.9e−2,
the actual error was 1.5e−2. High accuracy with low point density is maintained by having
two stopping requirements. The first stopping criteria, τs, controls the convergence in smooth
regions, which can be approximated well with polynomials. The second criteria, τv, controls
the margin which contains the edges. The margin gives a robust measure of the edge position,
and prevents dense sampling around these edges.
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