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ABTRACT 
 

The multiscale modeling scheme encompasses models from the atomistic to the 

continuum scale. Phenomena at the mesoscale are typically simulated using reaction rate 

theory (RT), Monte Carlo (MC), or phase field models. These mesoscale models are 

appropriate for application to problems that involve intermediate length scales (µm to 

>mm), and timescales from diffusion (~µs) to long-term microstructural evolution 

(~years). Phenomena at this scale have the most direct impact on mechanical properties 

in structural materials of interest to nuclear energy systems, and are also the most 

accessible to direct comparison between the results of simulations and experiments. 

Recent advances in computational power have substantially expanded the range of 

application for MC models. Although the RT and MC models can be used simulate the 

same phenomena, many of the details are handled quite differently in the two approaches. 

A direct comparison of the RT and MC descriptions has been made in the domain of 

point defect cluster dynamics modeling, which is relevant to both the nucleation and 

evolution of radiation-induced defect structures. The relative merits and limitations of the 

two approaches are discussed, and the predictions of the two approaches are compared 

for specific irradiation conditions. 
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1. INTRODUCTION 

In many important cases, changes in the physical and mechanical properties of materials 

during thermal aging or under irradiation occur because of the formation and growth of point 

defect clusters (e.g. voids and dislocation loops) and second-phase precipitates. In order to 

understand these changes quantitatively, it is important to have a method for describing the 

evolution of these clusters covering all stages from their nucleation to growth and coarsening. If 

a random spatial distribution of the defect clusters is assumed, the microstructural evolution can 

be described in terms of a defect size distribution function (SDF) in the framework of the so-

called mean field approximation. Evolution of this SDF can be accounted for though the use of a 

Master Equation (ME) that describes both growth and dissolution of the clusters due to reactions 

with mobile defects (or solutes), thermal emission of these same species, and cluster coalescence 

if the clusters are mobile. The relevant physical processes require accounting for clusters 

containing a very large number of point defects or atoms (>106), leading to a system with the 

same number of differential equations in which time is an explicit variable. Such calculations are 

time consuming and, especially for high irradiation doses or long ageing times and can be 

performed only if the number of equations is reduced significantly. Practical solutions to the ME 

by numerical methods employ some grouping procedure to significantly reduce the number of 

equations [1-4].  

The object kinetic Monte Carlo technique (OKMC) is another way to calculate cluster 

evolution. This method has become practicable during last decade because of progress in 

computer technology. In the framework of OKMC, each point defect or defect cluster is treated 

as an object located in a specific position in the simulation box. Irradiation is simulated by 

introducing new point defects or defect clusters at discrete times and in specific locations in the 

box, and evolution occurs as the various objects migrate and participate in a series of predefined 

reactions with other objects. Each object has an associated reaction volume. The reaction 

probabilities for physical transition mechanisms, which are basically migration jump rates and 

defect emission rates from larger defects or from traps, are calculated based on Arrhenius 

frequencies for thermally activated events. The Monte Carlo algorithm [5] is used at each step to 

select the event that is going to take place based on the corresponding probabilities. After a given 
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event is chosen, the time is increased according to a algorithm that depends on the jump 

frequencies for all the possible events in the system. 

An advantage of the ME approach is there are essentially no limits to the density or size of 

the clusters when calculating their evolution, which provides the opportunity to compare with a 

broad range of experimental observations. However, the spatial and time correlations in defect 

production are not accounted for, which in some cases lead to a loss of specific information. 

OKMC on the other hand is capable of accounting for these spatial and time correlations in 

defect production, although limitations can arise related to the available computer power. The 

main limitation is on the size of the simulation cell in order to maintain a reasonable simulation 

time. The practicable box size, which normally is taken to be of order of 100 nm, limits the total 

cluster number density which may be calculated by this method. For example, if there is only one 

cluster in a cubic box with a 100 nm edge length, the corresponding to cluster number density is 

1021 m-3. This is a typical defect density for many relevant irradiated materials, and no lower 

cluster density can be treated by OKMC in a box of this size. Even for the relatively high defect 

density of 1022 m-3, the number of clusters in the simulation box would only be 10, which may 

not be enough to provide a good statistical simulation of defect cluster evolution. Another 

problem with statistics may arise when simulating clusters which are not stable in a certain size 

range, i.e. when cluster nucleation requires reaching a certain critical size at which they become 

stable enough to be able grow continuously. Such nucleation is possible due to fluctuations in the 

cluster growth and resolution processes and will be properly calculated by OKMC only if the 

density is sufficiently high to maintain such fluctuations.  

Thus, both the RT and OKMC have advantages and limitations based on the underlying 

nature of the technique; the major features of these models are briefly summarized in Table 1. 

Perhaps the best way to assess these methods is to apply both of them to a well-defined problem 

and determine if the results are consistent between the two, or if the results indicate that one of 

the other is preferable. In order to reach this point, the limitations have to be systematically 

studied and this is the main objective of the present study. Since the two techniques provide two 

different mathematical ways of solving the same problem, they should provide similar results for 

well designed sample problems. Since the RT approach has been very well established by broad 

use during last few decades, the approach taken in this present work was to use RT calculations 
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as a reference point to evaluate the predictions of the OKMC method for several different types 

of simulations. The RT model used for this comparison is presented in the next section, and a 

more detailed description of both techniques is presented in Section 3. The results of the 

calculations and a short summary of the conclusions are given in Sections 4 and 5, respectively. 

Table 1: Comparison of reaction rate theory and object kinetic Monte Carlo methods 

Feature or Treatment of 
Variable Rate Theory Object Kinetic Monte Carlo 

solution method deterministic stochastic 

time explicit variable inferred from possible 
processes and reaction rates 

space homogeneous effective medium, 
possible multi-region RT full spatial dependence 

defect production time and space-averaged, but 
c.f. cascade diffusion model [6] discrete in time and space 

sink strength explicit input parameter or 
analytical expression 

inferred from fate of point 
defects 

defect or sink density essentially unlimited 
limited (computationally) by 
simulation cell size, i.e.:    
Nmin ≥ 1/(box volume) 

 

2. MODEL DESCRIPTION 

The comparison of the two methods is more straight forward if we consider a particular 

case. Here we will investigate the evolution of the size distribution function of vacancy and self-

interstitial atoms (SIAs) clusters in a pure metal under irradiation with network dislocations as a 

fixed sink. in the following discussion, the term void is used in a generic way to refer to a 

vacancy cluster of any size. The formulated model makes use of the following assumptions: 

1. The primary damage is produced either: (a) in the form of Frenkel pair, i.e. only single 

vacancies and SIAs; or (b) Frenkel pair plus small clusters of either vacancies or SIAs 

generated by cascades 

2. The point defects execute a three-dimensional random walk 
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3. The nucleation of vacancy and SIA clusters proceeds via a homogeneous mechanism, 

that is due to monodefect + monodefect = di-defect in the case of 1(a), or by both 

homogeneous and in-cascade clustering mechanisms at the same time for 1(b). 

4. Vacancy clusters are treated as spherical voids that are neutral sinks for point defects, and 

with a size-dependent stability against thermal vacancy emission 

5. SIA clusters are treated as either planar loops or three dimensional spherical clusters, 

with a preference (bias) for absorbing SIAs relative to vacancies, and are stable against 

thermal SIA emission 

6. Edge dislocations are a fixed matrix sink with a preference (bias) for SIAs that is the 

same as the SIA clusters. 

7. The vacancy and SIA clusters are immobile. 

These assumptions are only used for simplification and do not lead to any restrictions in 

comparing the two methods. 

 

2.1. Kinetic equations 

Essentially, in the case when the both techniques may be used for the calculations a set of 

equations describing cluster evolution is the same. Having this in minds, the set of equations for 

the case under consideration is formulated within the framework of RT. 

For the model described above, one can write the following Master Equations for the SDF 

of voids, fv(x,t), and SIA clusters, fi(x,t), where x is the number of point defects in the cluster [7, 

8]. 

 ( , ) ( ) ( 1, ) ( , ),v
v v v

f x t K x J x t J x t
t

∂
∂

= + − −  (1a) 

 ( , ) ( ) ( 1, ) ( , ),i
i i i

f x t K x J x t J x t
t

∂
∂

= + − −  (1b) 

 

 ( ) ( )
2 2

( ) 1 , ( ) 1 ,v v NRT r i i NRT r
x x

xK x G xK x Gε ε ε ε
∞ ∞

= =

= − = −∑ ∑  (1c) 

 
where ( ), ( )v iK x K x  are the rates of in-cascade generation of voids and SIA loops, respectively, 

rε is the fraction of Frenkel pair which recombine during the cascade cooling, ,v iε ε  are the in-
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cascade clustering fractions for vacancies and SIAs, respectively, GNRT is the NRT Frenkel pair 

generation rate, and Jv(x,t), Ji(x,t) are the void and SIA loop fluxes in cluster size space, 

respectively. 

 ( , ) ( , ) ( , ) ( 1, ) ( 1, ),v v vJ x t P x t f x t Q x t f x t= − + +  (2a) 

 ( , ) ( , ) ( , ) ( 1, ) ( 1, ).i i iJ x t P x t f x t Q x t f x t= − + +  (2b) 

In Eqs. (2), Pv(x,t) and Pi(x,t) are the rates of vacancy absorption by a void and SIA 

absorption by a SIA cluster, respectively; Qv(x,t) is the sum of the rates of SIA absorption and 

vacancy emission from a void, and Qi(x,t) the rate of vacancy absorption by a SIA cluster. These 

rates depend on the cluster concentration and the diffusion properties of the mobile defects, i.e. 

vacancies and SIAs. In the case of 3-D diffusion of point defects to voids and SIA loops the rates 

take the following form [7, 8]: 

 1
3( ) ( ),v v v vP x w x D C t=  (3a) 

 ( )1
3( ) exp ( ) ( ) ( ),b i v

v v i i v v v vQ x w x D C D E x kT Q x Q x⎡ ⎤= + − = +⎣ ⎦  (3b) 

 1
2( ) ( ),l

i i i i iP x Z w x D C t=  (4a) 

 1
2( ) ( ),l

i v i v vQ x Z w x D C t=  (4b) 

 
1/ 3 1/ 22

2

48 4, .v iw w
b

π π⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟Ω Ω⎝ ⎠⎝ ⎠
 (5) 

 
Ci,v(t) and Di,v are the concentrations and diffusion coefficients, respectively, of vacancies 

(subscript v) and SIAs (subscript i), ,l l
v iZ Z  are the dislocation loop capture efficiencies for 

vacancies and SIAs, ( )b
vE x is the binding energy of a vacancy to a vacancy cluster of size x, kB is 

Boltzmann’s constant, T is the absolute temperature, Ω is the atomic volume, and b is the 

magnitude of the SIA loop Burgers vector. In the case when the dislocation loops are treated as 

3-D clusters, which is used in the OKMC calculations, the parameter iw has to be replaced by vw  

and x1/2 replaced by of x1/3 in Eqs. (4a) and (4b). 

Note that if the SDFs described by Eqs. (1a) and (1b) are written in x-space, the cluster 

densities are dimensionless. That is, the total density of clusters, , ,
2

( )v i v i
x

N f x
∞

=

= ∑ , has the units 
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[1/atom]. The capture efficiencies given by Eqs. (3) and (4)  have dimensions of [m-2], and the 

cluster sink strengths, which are given by 

 2 1/ 3

2 2

( ) ( ) ( ),v v v v v
x x

k P x f x w x f x
∞ ∞

= =

= ≡∑ ∑  (6a) 

 2 1/ 2
, ,

2 2

( ) ( ) ( ),i v i i i v i i i
x x

k P x f x Z w x f x
∞ ∞

= =

= ≡∑ ∑  (6b) 

 

have the same dimensionality of [m-2]. For the purpose of comparing the results obtained by the 

two different techniques, it will be useful to show that the sink strengths given by Eqs. (6) are 

fully equivalent to those that are normally used in the mean size approximation: 

 2 2
, , , , ,4 , 2 ,l

v v i v v i v i v i i ik R N k Z R Nπ π= < > = < >  (7) 

which describe damage accumulation in the form of voids and loops by using the mean cluster 

radii <rv>, <ri> and the corresponding total number densities Nv, Ni in the units of m and m-3, 

respectively. In order to show this, the SDF can be calculated in the domain where the size of a 

cluster is defined by its radius, r, instead of x. The SDFs can be calculated by taking into account 

that a sum of the SDF over all sizes in any phase space used for the ME has to be equal to the 

total number of clusters, Ntot. Replacing the sums with integrals, the total number density of the 

clusters in the case under consideration may be written as 

 
min2

( ) ( ) .tot
x R R

N f x dx f R dR
∞ ∞

= =

= ≡∫ ∫  (8) 

The two integral can be equal to each other if 

 ( ) ( ) .f x dx f R dR=  (9) 

Taking into account that the radii of voids, rv, and loops, ri, and the total number of defects in the 

clusters, xv, xi, related to each other as follows 

 3 24 , ,
3 v v i iR x R b xπ π= Ω = Ω  (10) 

and using Eq. (9) the functions fv(rv) and fi(ri) can be easily calculated 

 
1/ 3 1/ 2

2 / 3 1/ 236 4( ) ( ) , ( ) ( ) .v v v i i i
bf R f x x f R f x xπ π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

 (11) 
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Note that dimensionality of the functions ( ), ( )v v i if R f R  is [ 1 1
m atom

]. On the other hand 

the SDFs in r-space are normally presented as a number of clusters per unit volume. This can be 

obtained by dividing the right hand sides of Eqs. (11) by the atomic volume, Ω, i.e. 

, , , ,
1( ) ( )v i v i v i v iF R f R=
Ω

. Here the capital F is used to distinguish between the dimensional SDF 

(1/m4) and SDFs ( ), ( )v v i if R f R ). Using Eqs. (10), (11) and replacing the sums in Eq. (6) by the 

corresponding integrals one can easily find that: 

 
,min

1/ 32
2 1/ 3

2
2

48 ( ) 4 ( ) 4 ,
v

v v v v v v v v
x R

k x f x dx R F R dR R Nπ π π
∞ ∞

=

⎛ ⎞
= = ≡ < >⎜ ⎟Ω⎝ ⎠

∫ ∫  (12a) 

 
,min

1/ 2
2 1/ 2

, , , ,
2

4 ( ) 2 ( ) 2 ,
i

i v i v i i v i i i i i v i i i
x R

k Z x f x Z R F R dR Z R N
b
π π π

∞ ∞

=

⎛ ⎞= = ≡ < >⎜ ⎟Ω⎝ ⎠ ∫ ∫  (12b) 

where 

 ,min ,min

,min ,min

( ) ( )

, .
( ) ( )

v i

v i

v v v v i i i i
R R

v v

v v v i i i
R R

R F R dR R F R dR

R R
F R dR F R dR

∞ ∞

∞ ∞< >= < >=
∫ ∫

∫ ∫
 (13) 

Although the integral of the SDFs shown in Eq. (7) has the same value for either phase 

space, the difference in dimensionality means the two SDF have quite different shapes in r- or x-

space. This is shown in Fig. 1, where r- and x-space SDFs calculated using the RT for a specific 

case are compared. Although use of the x-space description may be more convenient for 

purposes of the calculations, the r-space SDF is more appropriate for comparing with 

experimental observations such as TEM measurements. 
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2.2. Initial and boundary conditions 

The initial and boundary conditions for SDFs of void, SIA loops and point defect 

concentrations are taken to have the following form 

 0( , 0) ( 1), ( , 0) 0, ( 1),v v if x t C x f x t xδ= = − = = ≥  (14a) 

 ( 1, ) ( ), ( 1, ) ( ),v i if x t C t f x t C tv= = = =  (14b) 

 ( , ) ( , ) 0,v if x t f x t= ∞ = = ∞ =  (14c) 

 0( 0) , ( 0) 0,v v iC t C C t= = = =  (14d) 

where 0 exp
f

v
v

B

EC
k T

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 is the thermal equilibrium vacancy concentration ( f
vE is the vacancy 

formation energy) and ( )xδ is the Kronneker delta. 

 

2.3. Equations for point defect concentrations 

In order to complete the system of equations, we must add equations for the evolution of 

the vacancies, Cv, and SIAs, Ci, which are given by [3] 
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Fig. 1. Void size distribution function calculated for the case of 2vE =0.3: F(x) in phase 
space x (x=number of vacancies), and F(d) in phase space d (d= void diameter). 
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( ) ( ) ( )

( ) ( )

0
2

1

( ) 1 1 ( ) ( ) ( ) ( ) ( , )

(1) (1, ) (2) (2, ) (2) (2, ) ( ) ( , ) ( 1) ( 1, ) ,

x
dv

NRT r v R i i v v v v v i i
x

x
v v

v v v v i v v v v v
x

dC t G D C t C t Z D C t C P x f x t
dt

P f t Q f t P f t P x f x t Q x f x t

ε ε µ ρ
=∞

=

=∞

=

⎡ ⎤= − − − + − +⎢ ⎥⎣ ⎦

⎡ ⎤− − − − − + +⎣ ⎦

∑

∑
(15) 

 
( ) ( )

[ ]

1

1

( ) 1 1 ( ) ( ) ( ) ( , )

(1) (1, ) (2) (2, ) ( 1) ( 1, ),

x
di

NRT r i R i i v i i i i i
x

x
i

i i v i v v
x

dC t G D C t C t Z D C P x f x t
dt

P f t P f t Q x f x t

ε ε µ ρ
=∞

=

=∞

=

⎡ ⎤= − − − + +⎢ ⎥⎣ ⎦

− − − + +

∑

∑
 (16) 

where GNRT is the point defect generation rate, Rµ  is the recombination coefficient, ρ  is the 

dislocation density, and ,d d
v iZ Z  are the dislocation capture efficiencies for vacancies and SIAs, 

respectively (here d
vZ is set equal to 1.0). The first term on the right hand side of Eqs. (15) and 

(16) represents the generation rates of the mobile point defects, and the second term represents 

the capture rates by mutual point defect recombination, dislocations and the SIA loops. The third 

term accounts for the fact that reactions between two vacancies and two SIAs eliminate both of 

them at the same time, and the generation of vacancies and SIAs by reactions between a di-

vacancy and SIA and di-SIA and vacancy. The last term represents the point defect capture rates 

by voids. 

Eqs. (1)-(4) and(15), (16) are a set of coupled nonlinear equations and, in the general case, 

can be only solved by numerical methods. Eqs. (1) are systems of a large number of differential 

equations, which can be solved by numerical methods employing some grouping procedure in 

which the continuous distribution is represented as a histogram. In the present work the grouping 

method developed by Golubov, et al. [3] is used for the calculations. 

Within the OKMC framework the same physical model simulated in a different way. 

Instead of assigning the values of the sink strengths for different defects, as in the framework of 

RT, the point defects are allowed to freely migrate in the simulation box of a given size filled 

with specified densities of defect sinks such as dislocations and point defect clusters distributed 

in the box. A brief description for the calculation techniques used in present work by the two 

methods is presented in the next section. 
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3. COMPUTATIONAL METHODS 

3.1. The grouping method for approximate numerical solution of ME 

As shown in [3], there are two conservation laws which have to be satisfied within a 

grouping method in order to provide an accurate description, both the total number of clusters as 

well as the total number of defects contained in the clusters. A simple and accurate method to 

obtain such a description is to approximate the SDF within a given group clusters (specified by a 

range of sizes) by a linear function of the type [3]: 

 ( )0 1( ) .j j
j jf x L x x L= − 〈 〉 +  (17) 

 
The discrete cluster size classes are collected in groups of widths 1j j jx x x −∆ = −  which include 

clusters of the sizes 

 ( )1 , 1,2,... ,j j jx x k k x−= + = ∆  (18) 
 
where the subscript j indicates the group number. Thus, each group consists of j jn x= ∆  numbers 

of clusters of different sizes and is defined by the index “j”. It can be shown that the mean 

cluster size within the j-th group, jx< > , is equal to: 

 ( )1 1 .
2j j jx x x< > = − ∆ −  (19) 

Note that in a case when 1jx∆ =  the mean size is equal to j jx x< > =  which permits treating the 

case of 1jx∆ =  the same way as other groups with 1jx∆ ≠ . Note also that the first term in the 

right hand side of Eqs. (1) describing cascade cluster generation are normally non-zero only for 

the clusters of small sizes. In the following calculations, these smallest clusters are treated 

discretely, i.e. with 1jx∆ = . Because of this fact, the grouping method presented below for 

1jx∆ ≠  does not include these terms. 

By appropriate manipulation of the set of kinetic equations of type Eq. (1), the following 

equations for the coefficients 0
jL  and 1

jL  can be obtained [3] 
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[ ]0

1

1
12

1 ( ) ( ) ,

1 1 1( ) ( ) 2 ( ) ,
2 2

i

i x i
i

i
i

x i i i
i i

dL J x J x
dt x

dL x J x J x J x
dt x σ

−

−

= −
∆

⎛ ⎞∆ − ⎧ ⎫= − + − < > −⎨ ⎬⎜ ⎟∆ ⎩ ⎭⎝ ⎠

 (20) 

 
where 2

iσ  is the dispersion of cluster sizes in the group: 

 
1 1

2

2 2

1 1

1 1 .
i i

i i

x x

i
x xi ix xα α

σ α α
− −= + = +

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟∆ ∆⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (21) 

 
Eqs. (20) describe the evolution of the SDF within the group approximation. These equations 

satisfy the conservation laws obtained from the ME for the total number density of the clusters 

and the total number density of defects accumulated in the clusters. Note that Eqs. (20) are 

identical with Eqs. (1) in the limiting case when 1ix∆ = . Because of this there is no problem in 

describing the SDF in the boundary region between the discrete and grouped clusters. Indeed, the 

first Eq. (20), which depends on ix∆ only, transforms to Eqs. (1) for 1ix∆ = , that is 0( ) i
if x L=  

and 1 0iL = . This is in contrast to the method suggested by Kiritani [1], where the equation 

describing the number density of the size class at the interface has a special form. Note that for 

the same group widths, this method requires twice as many equations as the Kiritani method but, 

as it was shown by calculations [3]. However, it has been shown to rather insensitive to the 

group widths; therefore, much wider (fewer) groups can be used. Note that due to a 

typographical error the term 1

ix
−
∆

in the second Eq. (20) was omitted in Eq. (31) in [3] and the 

last term in brackets, 12 ( )
2iJ x< > − , is equal to that given by Eq. (31) in [3] when the rates 

P(x,t) and Q(x,t) are taken to be constant within a group. 

 

3.2. OKMC computation method 

The general features of the OKMC code used in the present work, LAKIMOCA, have been 

described in [9]. Briefly, the model treats radiation produced defects (vacancies, self-interstitials 

atoms – SIA - and clusters thereof) as objects that have specific reaction volumes and that are 

located in particular positions in the simulation box. Each object can migrate and participate in a 
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series of predefined reactions. The probabilities for physical transition mechanisms, which are 

basically migration jumps and emission from larger defects or from traps, are calculated in terms 

of Arrhenius frequencies for thermally activated events, ,exp a i
i i

B

E
k T

ν
⎛ ⎞

Γ = −⎜ ⎟
⎝ ⎠

, where iν is the 

attempt frequency (pre-factor) for event i, and Ea,i is the corresponding activation energy. The 

Monte Carlo algorithm [5] is used at each step to select the event that is going to take place, 

based on the corresponding probabilities. After a certain event is chosen, time is increased 

according to the residence time algorithm, 
1 1

th ext
e eN N

i j
i j

Pτ
= =

⎛ ⎞
∆ = Γ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

-1
 [10], where the Pj are the 

probabilities of external events, such as the appearance of a cascade or of isolated Frenkel pair 

produced by impinging particles. The choice of this expression is in the long term equivalent to 

choosing ' ln *Rτ τ∆ = − ∆ , where R is a random number between 0 and 1 [11]. In addition, the 

model includes non-thermally activated events, such as the annihilation of a defect after 

encountering either a defect of opposite nature (i.e. a SIA encountering a vacancy) or a sink, as 

well aggregation, either by adding a point-defect to a cluster or by forming a complex between a 

defect and a trap for it. These events occur only on the basis of geometrical considerations 

(overlap of reaction volumes) and do not participate in defining the progression of time. It is 

possible to introduce different classes of immobile traps and sinks, characterized by specific 

geometrical shapes (spheres, infinite cylinders, surfaces etc.) suitable for mimicking voids and 

other defects such as dislocations and grain boundaries.  

In the present work, the OKMC technique is used to simulate damage accumulation in the 

according to the framework of the model formulated above. A bcc iron lattice containing edge 

dislocations is simulated, with the evolution of two types of point defect clusters, voids (vacancy 

clusters) and SIA loops. To simplify the calculations, both types of defect clusters are treated as 

spherical absorbers. The only difference between the vacancy clusters and the SIA loops is that 

the first ones are described as neutral sinks, whereas the second are considered to be biased, i.e. 

having preference for absorption of SIAs. Thus, instead of using the second Eq.( 6), the sink 

strength of the SIA clusters is given by: 

 2 1/ 3
, , ,

2

( ) 4 , ( 1, 1).l l l l
v i v i v i v i i i v i

x

k Z w x f x Z R N Z Zπ
∞

=

= ≡ < > = >∑  (22) 
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The bias of the SIA clusters is equal to ( ) / 1l l l l
l i v v ip Z Z Z Z= − ≡ −  and in the following 

calculations is chosen to be equal of that for the dislocations, i.e. l d
i iZ Z=  . Note that such an 

approach for the shape of SIA clusters in the following calculations is quite reasonable since the 

sink strengths of small spherical clusters and that of dislocation loops are similar when the 

cluster size is not large. Using Eqs. (6) one can find that the ratio of the sink strengths is given by 

 
( )
( ) ( )

1/ 6
2

3/ 2 1/ 6 1/ 6
2 3 1.592 ,

i sperical

i loop

k
x x

k
π − −≈ =  (23) 

 
i.e. it only weakly depends on the number of defects in the cluster (it varies in a factor 2 when x 

varies in a range from 2 to 104). This size range matches well the calculations presented in this 

work since the highest irradiation dose used in the calculations is rather small (10-2 dpa). 

The situation with simulation of dislocations is more complicated. One way of simulating 

this sink is direct introduction of an absorbing cylinder of a certain length, Ld, corresponding to 

the desired dislocation density, ρ, and with specified capture efficiencies for point defects. In this 

case, one may expect to reproduce the sink strength given in Eqs. (15) and (16) with the 

efficiencies 
( ), 1

,

2

ln
d
v i

cv ci

Z
kR

π
−

=
⎡ ⎤
⎣ ⎦

, which leads to a dislocation bias to be equal to: 

 ( )
( ) 1

ln /
,

ln

d d
di dvi v

d
v di

R RZ Zp
Z kR −

−
= =

⎡ ⎤
⎣ ⎦

 (24) 

 
where rdi, rdv are the cylinder capture radii for SIAs and vacancies, respectively, and 2k k=  

(where 2k is the total sink strength in the crystal). This approach looks quite natural and simple, 

but in fact this is not the case. The first problem arises with choosing the cylinder length. In order 

to simulate a given dislocation density, ρ, the length of the cylinder has to be taken to be equal 

to d boxL Vρ= , which may be too small or too large to fit conveniently in the simulation 

box, 1/ 3
box boxL V= . In addition, ρ can vary by several orders of magnitude whereas the maximum 

box size is essentially fixed by computational limitations. As a result, such a cylinder will have 

its ends inside the simulation box; thus it cannot reproduce the actual cylindrical symmetry of a 

dislocation. The impact of this on the dislocation sink strength requires further investigation, 
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which is beyond the scope of the present work, and is not directly relevant to the comparison of 

the RT and OKMC methods. A second issue arises from the fact that the dislocation sink 

strength and corresponding bias depends on the total sink strength, see Eq. (24), 2k , which 

changes during the irradiation. Accounting for this would lead to an increase of the number of 

variable parameters that may complicate the comparison.  

A way to avoid these complications is to simulate the dislocation sink by introducing 

another kind of spherical absorbers, which maintain the two main properties of dislocations as a 

sink for point defects: (a) a preference for SIA absorption, i.e. maintain a constant dislocation 

bias, and (b) maintain constant sink strength during irradiation. This may be achieved by 

introducing additional spherical absorbers with invariable (during irradiation) density and size as 

follows 

 2 4 ,d d
vd vk R Nπ ρ= ≡  (25a) 

 2 4 , ( ).d d d d
id i i vk R N R Rπ= >  (25b) 

 
Thus choosing a specific capture radius for vacancies, d

vR , the density of the absorbers, dN , can 

be calculated from the first Eq. (25), 
4

d
d
v

N
R
ρ
π

= . The bias in the case is equal to 

 
2 2

2 1,
d

i v i
d

v v

k k Rp
k R
−

= = −  (26) 

i.e. it depends on the ratio of /d d
i iR R  only. Taking the ratio /d d

i iR R  to be equal to d
iZ one may 

expect that Eqs. (25) will reproduce the sink strength of dislocations with respect to their ability 

to capture point defects. Thus, Eqs. (25) and (26) permit calculating the absorber properties of 

dislocation at any given dislocation density and bias.   

A box of 300×300×300 lattice parameters was used in all the simulations discussed here. 

Given the lattice parameter of α-Fe (see Table 2), this leads to a volume equal to 6.423x10-22 m-3. 

When the spherical absorber approximation is used for the dislocations, the “dislocation” 

absorbers with capture radii of 0.4 , 0.48d d
v iR nm R nm= = for vacancies and SIAs, respectively, 

are randomly distributed in the simulation box. If the cylinder approximation is used for 

dislocations, a cylinder of a given length is introduced in the middle of the simulation box along 

a cubic axis. Irradiation is simulated by introducing isolated point defects (Frenkel pair 



 Preliminary Comparison of Reaction Rate Theory and Object Kinetic 
Monte Carlo Simulations 

 

 15 

production), or, for simulating cascade damage production, together with small vacancy or SIA 

clusters that are introduced in randomly selected positions within the simulation volume. 

Essentially three types of irradiation are considered: 

1. Pure Frenkel pair (FP) production, 

2. Defect generation by cascades (type I): 35% of vacancies produced in a form of nano-

voids), or 

3. Defect generation by cascades (type II): 35% of SIAs produced in a form of nano- spherical 

clusters) 

The cascade efficiency, i.e. the fraction of point defects that survive after cascade cooling phase, 

is taken to be the same in all three cases.  

The binding energy of a vacancy with a void of size x is described using the capillarity 

model adjusted to a specific di-vacancy binding energy, 2vE . The general expression for the 

vacancy binding energy takes the following form: 

 ( ) ( )2 / 32 / 3

2 2 / 3

1
( ) .

2 1
b f f
v v v v

x x
E x E E E

⎛ ⎞− −
= + − ⎜ ⎟⎜ ⎟−⎝ ⎠

 (27) 

 

The energy 2vE  is treated as a variable parameter to permit investigation of the stability of the 

vacancy clusters. The SIA clusters are taken to be thermally stable. The material and irradiation 

parameters are given in Table 2. 
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Table 2. Material and irradiation parameters used in calculations 

Temperature, T 373, 523 K 
Lattice parameter, a 0.2876 nm 

Atomic volume, 3 / 2aΩ =   1.189x10-29 m3 

Number of atoms in unit volume, 1/N = Ω  8.407x1028 m-3 

Box volume of a cube of size 300a, boxV  6.423x10-22 m3 

Number of atoms in the box, /box boxN V= Ω   5.4x107 

Number density equivalent to one cluster in, 1/cl boxN V=  1.557x1021 m-3 

NRT displacement rate, GNRT 10-6 dpa/s 
Fraction of point defect recombined in cascades, rε  0.60 

Fraction of SIAs in cluster form, iε  (x=2, 3 and 4) 0.35 

Fraction of voids in cluster form, vε  (x=6) 0.35 

Effective displacement rates, Gv=Gi= GNRT(1-εr) 4.0x10-7 dpa/s 

Recombination coefficient, ( )4 /R v ir rµ π= + Ω , ( 0.4466v ir r+ =  nm) 4.72x1020 m-2 

Attempt frequency, ν  6.0x1012 s-1 

Vacancy diffusion coefficient, 0 exp
m
v

v v
ED D
kT

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

pre-exponential, 2
0

1 3,
6 2vD r r aν

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

migration energy, m
vE  

 
 
 
6.02x10-8 m2/s 
 
0.65eV 

SIA diffusion coefficient, 0 exp
m
i

i i
ED D
kT

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

pre-exponential, 2
0

1
6iD r ν=  

migration energy, m
iE  

 
 
 
6.02x10-8 m2/s 
 
0.30eV 

Binding energy of di-vacancies, 2vE  0.2 - 0.8 eV 

Capture efficiencies of dislocations and SIA clusters, ,l l
v iZ Z  1.0, 1.20 

Dislocation density, ρd 1014 m-2 

Capture radii for “dislocation” spherical absorbers, ,d d
i vR R   0.48 and 0.4 nm 

(p=0.2) 
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4. RESULTS OF CALCULATIONS 

If point defects and defect clusters generated by irradiation appear randomly in space and 

uniform in time, the RT approach is fully applicable, i.e. the cluster evolution in this case can be 

rationalized on the basis of the results obtained from the RT calculations. Thus, in order to 

characterize the main features of point defect cluster evolution, we will first present the results 

obtained from the RT method at the specified irradiation conditions for the case of FP and then 

will make a comparison the RT results and those obtained from the OKMC simulation for the 

same irradiation conditions.  

4.1. Cluster evolution at Frenkel pair production at 373K 

The simplest type of irradiation, production of only Frenkel pair, will be analyzed first. 

This approximately corresponds to damage production under high energy electron irradiation. 

Since only homogeneous nucleation of point defect clusters is possible in this case, void 

nucleation is very sensitive to the cluster stability, see Eq. (27). Recall that SIA clusters are 

considered to be thermally stable. The binding energy of a vacancy to voids calculated using Eq. 

(27) for different values of 2vE in the range of 0.2 to 0.8 eV is presented in Fig. 2. The binding 

energy increases quickly with cluster size and increases at a given size for larger values of 2vE . 

One would therefore expect that void evolution will proceed in such a way that the void density 

will increase with increasing of 2vE .  
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Fig. 2. The binding energy of vacancies with voids at different magnitude of the binding 
energy of di-vacancy, 2vE , calculated with use of Eq. (27). 
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The dose dependence of the total number density of voids and SIA clusters calculated for 

different energies 2vE  is presented in Fig. 3. The calculations indicate that the void density at 

100°C is essentially insensitive to 2vE  for values greater than 0.5 eV, i.e. for 2vE =0.5 eV void 

stability at this temperature is high enough that vacancy emission does not play any role. It can 

be seen that the void density is much higher than that of the density of SIA clusters in all cases. 

Such a difference may be understood by taking into account that the homogeneous cluster 

nucleation is also very sensitive to the point defect concentrations. Since the vacancy diffusivity 

is much lower than that of SIAs, the steady state vacancy concentration is much higher than that 

of the steady state SIA concentration as can be seen in Fig. 4 where the point defect densities 

calculated for three different di-vacancy binding energies are presented. As can be seen from Fig. 

4, the point defect concentrations obey a typical behavior: the SIA concentration reaches steady 

state by a dose of about 10-9 dpa, whereas the steady state vacancy concentration reaches a much 

higher value at much higher dose (about 10-5 dpa). The slow change in point defect 

concentrations at doses higher than ~10-5 dpa reflects the impact of growing voids on the total 

sink strength. This increasing sink strength slowly reduces the point defect concentrations.  
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Fig. 3. Dose dependence of the total number density of voids and SIA clusters calculated at 373K 
for different di-vacancy binding energies. Note that the SIA cluster density is much low than that 
of the voids and practically insensitive the void energetic. 
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Fig. 4. Dose dependence of point defect concentration calculated at 373K for different di-
vacancy binding energies. Note that the short red line marks the concentration which corresponds 
to a case when one defect only placed in the OKMC simulation box. 

The short red line on Fig. 4 marks the concentration which corresponds to the case when 

one point defect is placed in the OKMC simulation box. The “one defect” concentration is much 

higher than the steady state SIA concentration. Thus, one may conclude that it may be difficult or 

even impossible to compare the RT and OKMC results for the SIA concentration for the 

specified box size. The steady state vacancy concentration on the other hand is high enough for 

such a comparison at these conditions. However, at higher temperatures or lower displacement 

rates, the same problem may arise for the vacancy concentration also. This is illustrated in Fig. 5 

where the calculated dose dependence for point defect concentrations is presented for three 

different temperatures. As shown in Fig. 5, the vacancy concentration at 523K is smaller than 

that which corresponds to the case of only one defect in the OKMC simulation box. This implies 

that OKMC simulations at temperatures of 523K and higher for a point defect generation rate of 

about 10-6 dpa/s may not be capable of accurately reproducing point defect evolution. The impact 

of this issue can be demonstrated by systematic comparisons of damage accumulation calculated 

by the two simulation techniques for different irradiation conditions. 
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Fig. 5. Dose dependence of vacancy concentration calculated at different temperatures for the 
case 2vE =0.5 eV. Note that the vacancy concentration at 523K is already below of that which 
corresponds to a case when one defect only placed in the OKMC simulation box. 

To complete the description of the results obtained with the RT method, the SDFs 

calculated for the different vacancy binding energies, and the corresponding dose dependence of 

swelling and the void sink strength will be discussed. 
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Fig. 6. Size distribution function of voids calculated for the cases of 2vE =0.2, 0.3 and 0.5 eV: 
functions F(x) in (a) and corresponding functions F(r) in (b). Note that the SDFs in x- and r-
space have quite different shape, scale and dimensionality. 

Void size distribution functions calculated for the cases of 2vE =0.2, 0.3 and 0.5 eV are 

shown in Fig. 6. The functions F(x) are shown in Fig 6(a) and the corresponding functions F(r) 
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in Fig. 6(b). As mentioned above, the SDFs have quite different shape, scale and dimensionality 

in x and r phase space. The vacancy cluster SDF shown in Fig. 6 follows the expected behavior; 

an increase in void stability results in higher density and smaller mean size. 

The dose dependence of swelling and the sink strength of voids calculated for the cases of 

2vE =0.2, 0.3 and 0.5 eV are presented in Fig. 7a and 7b, respectively. The plots demonstrate that 

total vacancy accumulation increases with an increase in void stability. The main reason for this 

is the faster increase in the sink strength in the case of more stable voids which permits the void 

sink strength to reach values close to that of the dislocation sink strength, which normally results 

in a higher swelling rate [12]. This is clearly seen in Fig. 8 where the dose dependence of the 

swelling rate corresponding to the swelling shown in Fig. 7a is presented (see the thick curves). 

The swelling rate is of orders of magnitude larger in the case of the stable voids compared to that 

of less stable ones. Moreover the swelling rate in the case of stable voids differs qualitatively 

from that of unstable ones, showing non-monotonic behavior with a maximum value larger than 

that which may be expected from analytical considerations (see below). In order to demonstrate 

the reason for this difference in swelling rate in the case when Kv(x)=0, one can integrate the 

product of the first ME (Eq. 1(a)) multiplied by x, in order to get an equation for the swelling 

rate, ( )dS t
dt

 [3]: 

 
2 2

( ) ( , ) (1, ) ( , ).v
v v

x x

dS t f x tx J t J x t
dt t

∂
∂

∞ ∞

= =

≡ = +∑ ∑  (28) 
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Fig. 7. Dose dependence of swelling, a, and the sink strength of voids, b, calculated for the cases 
of 2vE =0.2, 0.3 and 0.5 eV. Note that the thin dash line corresponds to the sink strength of 
dislocations. 
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Neglecting thermal emission of vacancies from the voids, which does not play any 

significant role in vacancy accumulation, Eq. (28) may be presented in the following form: 

 
2

( ) 2 (1, ) ( ) (2, ) (2, ) ( , ) ( , ) ( , ).i i
v v v v v

x

dS t P t C t Q t f t P x t Q x t f x t
dt

∞

=

⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦∑  (29) 

Taking into account Eqs. (3) and (6), the swelling rate may be finally presented in the following 

form: 

 [ ] 2( ) 2 (1, ) ( ) (2, ) (2, ) .i
v v v v v i i v

dS t P t C t Q t f t D C D C k
dt

⎡ ⎤= − + −⎣ ⎦  (30) 

The first term on the right hand side of Eq. (30) represents impact of void nucleation, i.e. 

production of di-vacancies, whereas the second one represents vacancy accumulation in voids of 

all sizes. Because void nucleation decreases as the irradiation dose increases, the second term on 

the right hand side of Eq. (30) becomes dominant. This can be used to check validity of the 

calculated results obtained via any numerical technique. However, the direct use of Eq. (30), 

which may be easily done in the framework of RT, may be difficult in the case of OKMC. The 

reason is that the steady state point defect concentrations, particularly the SIA concentration, Ci, 

may be much lower than can be calculated in a general case (see Fig. 4). However, taking into 

account that the point defect concentrations reach steady state when the void density reaches 

saturation as given by [14]: 
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 (31) 

 
where G is the rate of stable Frenkel pair generation. Combining Eqs. (30) with Eq. (31), the 

swelling rate at a high enough dose, i.e. beyond the nucleation stage, can be written as: 
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an expression which can be easily used by OKMC since the sink strength of the spherical 

absorbers is reproduced by the technique with very high accuracy [9, 13]. Note that Eq. (32) can 

be easily generalized for the case when cascade generation of voids and SIA clusters is taken into 

account and the corresponding in-cascade clustering fractions are equal to each other, i.e. at 

v iε ε= . In this case, the swelling rate consists of two parts: accumulation via freely migrating 

point defects, and accumulation via cascade clustering (see Eq. (1a). The swelling rate is then 

given by: 

 
( ) ( ) ( )
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The multiplier ( )1 vε− in the first term of Eq. (33) accounts for the reduction in production 

of freely migrating vacancies and SIAs. The negative term in the square bracket in the second 

term accounts for reactions of voids with that fraction of SIAs which is not subject to the mutual 

recombination with vacancies. 
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Fig. 8. Dose dependence of swelling rate corresponding to swelling presented in Fig. 7a by the 
thick curves. Note that the two plots are equivalent – the difference is the scaling of the axes.  

 

The thin curves in Fig. 8 represent the results of calculations based on Eq. (32) with the 

sink strengths presented on Fig. 7b. As can be seen from Fig. 8, the swelling rate at low doses is 

much larger than that described by Eq. (32). This demonstrates the impact of void nucleation on 
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vacancy accumulation. Note that in the case of stable voids, 2vE =0.5 eV, the instantaneous 

swelling rate is even larger than the maximum swelling rate obtained from Eq. (32). However, at 

large enough doses void nucleation does not play an essential role and the swelling rate is fully 

determined by the total sink strength of voids and dislocations. At this point, the numerical 

results coincide with those given by Eq. (32). This indicates that the numerical results obtained 

from the RT using the grouping method presented above are fully consistent with the analytical 

analysis. 

4.2. Comparison of results obtained by use of RT and OKMC methods. 

4.2.1 Cluster evolution for Frenkel pair production only and with dislocation bias equal to zero. 

Although it is strictly unrealistic case, the case of zero bias is considered to test both 

methods’ ability to reproduce cluster evolution when point defect accumulation can only take 

place due to homogeneous cluster nucleation. Generally speaking, the point defect concentration 

should reach a quasi-steady-state when the cluster densities reach terminal values. Thus, the 

results are very sensitive to the accuracy of calculated reaction rates of point defect defects with 

each other, and with different sinks. 

The dose dependence of point defect concentrations obtained by the two methods is 

presented in Fig. 9a. The vacancy concentration obtained by OKMC is slightly higher than that 

obtained by RT but the difference is not large and decreases with dose. In contrast the SIA 

concentration calculated by RT is almost two orders of magnitude smaller than that obtained by 

OKMC. The reason for this is obvious since the OKMC SIA density is practically equal to that 

of one defect per simulation box, i.e. the minimal density achievable at the given box size. Thus 

one may conclude that the SIA concentration is rather artificial in the case of OKMC and, 

consequently no valid comparison of the SIA concentrations can be made. 
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Fig. 9. Dose dependence of point defect concentrations calculated for the case of Frenkel 
pair production with p=0 using RT and OKMC methods (a). In part (b) the dose 
dependence of vacancy concentration is presented with results obtained by OKMC from 
5 runs which differ in the initial spatial distribution of the dislocation sinks. 

 

The dose dependence of cluster density obtained by the two methods is presented in Fig. 

10a. The void density obtained by RT is substantially smaller than that obtained by OKMC. 

Formally speaking the same result can be seen for the SIA clusters. However it will be more 

correct to conclude that there are no SIA clusters at all in the case of OKMC since only one SIA 

cluster was found at a single dose. Thus one may conclude that the OKMC method is not 

relevant to analyze SIA cluster formation at these irradiation conditions. 
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Fig. 10. Dose dependence of point defect cluster number density calculated for the case 
of Frenkel pair production with p=0 using RT and OKMC methods (a). In part (b), only 
the dose dependence of voids is presented with results obtained by OKMC for 5 runs 
which differ in the initial spatial distribution of the dislocation sink. 
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The comparison of the dose dependence of vacancy concentration and the void number 

density obtained by the RT calculations and those obtained by OKMC from 5 runs for the case of 

p=0, which differ from each other by the initial spatial distribution of the “dislocation sink” 

simulated by the spherical absorbers is presented on Fig. 9b and 10b. The figures provide an 

indication of the statistical variations in the OKMC results for the void density and vacancy 

concentration. The results span a significant range, but the values all fall higher than that 

obtained by RT. The reason for such difference is not clear and will be studded later. It is worth 

to noting that the OKMC results are self-consistent: the higher vacancy concentration leads to the 

nucleation of a higher density of vacancy clusters compared to that of the RT results.  

Void size distribution functions calculated by the two methods are presented in Fig. 11. 

There are substantial differences between the two: (a) the SDF obtained by OKMC is not 

continuous in contrast to the one obtained by RT, (b) the void density at small sizes obtained 

from OKMC is almost one order of magnitude larger that that from the RT, and (c) there is a 

group of voids in the OKMC that are much larger than those obtained from the RT calculations. 

As a result the total number of vacancies accumulated in voids calculated by OKMC is almost 

one order of magnitude higher than that calculated by RT.  
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Fig. 11. Size distribution functions of voids at 0.01 dpa calculated by the two methods for the 
case of 2vE =0.2 and p=0. 
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4.2.2 Cluster evolution with Frenkel pair production only and a dislocation bias of 20%. 

The dose dependence of point defect concentrations obtained by the two methods in the 

case of p=20% are presented in Fig. 12. The vacancy concentrations obtained by both methods 

are close to each other, similar to that in the case of p=0. The situation with the SIA 

concentration is also the same as described above. Thus, one may conclude that OKMC and RT 

provide very similar values of the vacancy concentration regardless of the magnitude of the 

dislocation bias at these irradiation conditions and simulation box size. 
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Fig. 12. Dose dependence of point defect concentrations calculated for the case of Frenkel pair 
production with p=20% using RT and OKMC methods. 

Size distribution functions of voids calculated by the two methods for the case of p=20% 

are presented in Fig. 13. The differences between the results obtained from the two methods are 

very similar to that obtained for the case p=0. The SDF obtained by OKMC is not continuous, 

the void density from OKMC at small sizes is almost one order of magnitude larger than that 

from RT, and there is a group of voids in the OKMC simulation which are much larger than 

those from the RT calculations. As a result, the total number of vacancies accumulated in voids 

calculated by OKMC in the case of non-zero bias is almost one order of magnitude higher than 

that calculated by RT. The total number density of voids calculated by OKMC in this case is also 

much larger than those calculated by RT. 
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Fig. 13. Size distribution functions of voids at 0.01 dpa calculated by the two methods for the 
case of 2vE =0.2 and p=20%. 

4.2.3. Cluster evolution with in-cascade generation of voids and a dislocation bias of 20%. 

The total point defect production rate is the same in this case, but the production rate of 

single vacancies is reduced by 35%. The corresponding number of vacancies is introduced into 

the simulation box in the form of di-vacancies and tri-vacancies. The dose dependence of point 

defect concentrations obtained by the two methods in this case is presented in Fig. 14. The 

vacancy concentration obtained by OKMC is somewhat larger than that obtained by RT at low 

doses and lower at higher doses. The situation with the SIA concentration is the same as 

described above. The agreement between the values of the vacancy concentration calculated by 

the two methods in this case is not as good as in the case of only FP production. This difference 

may be partially explained by the statistical variation in the OKMC results shown in Fig. 9(b). 
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Fig. 14. Dose dependence of point defect concentrations calculated for the case of cascade 
generation of voids with p=20% using RT and OKMC methods. 

The voids size distribution function calculated by the two methods for this case are 

presented in Fig. 15. The SDFs calculated are quite different than that obtained for the case of 

only FP production (Fig. 13). The reason for this is very simple: the in-cascade cluster 

production mechanism provides continuous production of the smallest vacancy clusters at a rate 

which is independent of irradiation dose. For the case of only FP production the situation is 

qualitatively different since the mechanism providing void nucleation is reactions between two 

vacancies, whose concentration rapidly decreases as the cluster density increases with dose. 

Therefore, the void density reaches a near steady state value very rapidly giving rise to a regime 

of voids growth. However, under in-cascade nucleation conditions, the density of small voids 

continuously increases which restricts their capacity to grow. This situation is reproduced by the 

OKMC method. However, the OKMC SDF retains a tail at large sizes that is absent in the RT 

results. The origin of this difference is not clear at the time. 
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Fig. 15. Size distribution functions of voids at 0.01 dpa calculated by the two methods for the 
case of in-cascade void generation, 2vE =0.2 and p=20%. 

The dose dependence of the void number density calculated using the RT and OKMC 

methods is presented in Fig. 16 for all three of the irradiation conditions that have been 

discussed. 
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Fig. 16. Dose dependence of number density of voids calculated in all three cases using RT and 
OKMC methods. 
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As can be seen from Fig. 16, there is a significant difference between the results obtained 

by the two methods for the two cases in which only FP production is considered. In particular,  

the void density calculated by OKMC is substantially smaller than that calculated from the RT 

for either zero or finite dislocation bias. Moreover, the void number density from the OKMC has 

a tendency to saturate at the higher doses while the RT value continues to increase with dose 

within the whole dose range calculated. However in the case of in-cascade void generation the 

agreement between the two methods is very good over the whole dose range. It shows that 

OKMC method is more reliable in the case when stable clusters directly produced under cascade 

irradiation conditions and, consequently, cluster density reaches a much higher value.  

4.2.3. OKMC calculations of swelling rate. 

Calculating the swelling rate for the case of FP production with fixed values of the void 

and dislocation sink strengths provides an additional consistency check on point defect 

accumulation between the two methods. The swelling rate given by Eq. (32) can be used as a 

basis of comparison of the swelling rate from the OKMC calculations in the void growth regime. 

For this comparison, 13 spherical absorbers with a radius of 0.4 nm were introduced in the 

simulation box to represent voids with a density of about 2x1022 m-3. Another 13 spherical 

absorbers were introduced that had capture radii of 0.4 nm and 0.48 nm for vacancies and SIAs, 

respectively, to represent dislocations with an interstitial bias of 20%. The simulation was 

designed to keep the void sink strength constant (i.e. the voids did not grow) during the 

irradiation while accounting for the total number of point defects captured by voids and 

dislocations. In this case, the sink strength of voids and dislocations are equal (1014 m-2) which 

should lead to a swelling rate of 1.3 %/dpa in accordance with Eq. (32). The calculations were 

run to a dose high enough to reach the steady state regime corresponding the specified swelling 

rate.  

The calculated dose dependence of vacancy accumulation in voids and SIA accumulation 

in dislocations calculated is presented in Fig. 17. As can be seen from the plot, accumulation of 

SIAs in dislocations is positive already at very low doses, whereas accumulation of vacancies in 

the voids becomes positive at doses higher than about 2x10-4 dpa. This difference is related to the 

difference between the vacancy and SIA diffusivity. However, at doses higher than 2x10-4 dpa, 

the vacancy concentration also reaches a steady state level and the accumulation of point defects 
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in voids and dislocations follow one other. Note that vacancy accumulation in voids is smaller 

than that of SIA accumulation in dislocations over the whole dose range. This difference is 

accounted for by the higher steady state vacancy concentration accumulated in the simulation 

box. 
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Fig. 17. Dose dependence of point defect accumulation in voids of a given density and size and 
in dislocations of a given density. 

Differentiating the accumulation curves presented in Fig. 17 one can calculate the effective 

instantaneous swelling rate, i.e. the net rate of accumulation of vacancies and SIAs in voids and 

dislocations, respectively. The results of this differentiation are presented in Fig. 18. After the 

vacancy concentration reaches steady state, the average swelling rate from the OKMC is equal to 

about 1.5%/dpa which is somewhat higher than the value predicted above from Eq. (32). 

However the fluctuations in the instantaneous value of the swelling rate are several times larger 

than the average value. There are several possible effects that may be responsible for such a 

variation in the swelling rate, e.g. differences in the vacancy and SIA diffusivity lead to a 

separation in time for the capture of newly-introduced SIAs and vacancies by the sinks. The box 

size limitations on the sink density also may be responsible for the strong variation in the 

swelling rate. 
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5. SUMMARY AND FURTHER WORK 

The comparison between the rate theory and object kinetic Monte Carlo methods has found 

a persistent difference between the results obtained for the two codes, particularly for the case of 

only Frenkel pair production. The primary basis of this difference appears to be that, for a given 

simulation condition, the OKMC obtains a slightly higher vacancy concentration. This leads to 

somewhat greater vacancy accumulation in voids, as indicated in the void SDFs and in the 

swelling rate comparison. There are several possible reasons for the observed differences that 

have been discussed above. Some follow directly from the differences between the two methods 

listed in Table 1: statistical variations in the OKMC, effects related to OKMC box size (for 

example the steady state interstitial concentration is much less than one in the simulation cell), 

and subtle differences in the way the point defects are introduced by the two methods’ source 

term. In the case of FP production, only homogeneous void nucleation occurs, so the nucleation 

rate is very sensitive to the effective vacancy supersaturation. The accuracy of the vacancy 

supersaturation may suffer when the absolute point defect densities (number per box) are 

relatively low in the OKMC simulation. The agreement between the two methods is much better 

for irradiation conditions with in-cascade vacancy cluster formation. In this case, the cascade-

driven nucleation of voids gives a higher density, which improves the statistics in the OKMC 

simulation. Finally, specific simulations must be structured very carefully to ensure that exactly 
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Fig. 18. Dose dependence of the swelling rate based on the instantaneous rate of vacancy 
accumulation in voids. 
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the same problem is being solved by the two methods. In the end, it is not as simple as first 

thought to cross-compare these two methods. 

Further work is underway to resolve the remaining differences using several approaches. 

One part involves setting up a series of simulations to isolate individual processes, e.g. matrix 

recombination point defects vs. their absorption at sinks, to verify unit mechanisms. Further 

investigation of statistical variations as illustrated by Figs. 9 and 10 planned. A second statistical 

source of differences being investigated is the impact of accessible sink densities based on the 

OKMC box size. Once the final cross validation is completed on the sample problems, the two 

methods will be applied to a broader selection of problems. These will include the addition of in-

cascade interstitial clustering, point defect cluster mobility, and variations in the irradiation 

temperature and displacement rate. This will help define irradiation regimes in which one of the 

two methods may be preferred over the other. For example, current box size limitations imply 

that it may be difficult to use the OKMC at low displacement rates and high temperatures. 

However, the OKMC does a better job of accounting for spatial correlations in the primary 

damage source term under cascade damage conditions.  
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