Reducing Application Runtime Variability on Jaguar XTS5

Sarp Oral Feiyi Wang

David A. Dillow
Galen M. Shipman

Ross Miller
Don Maxwell

Oak Ridge National Laboratory Leadership Computing Facility

{oralhs,fwang2,dillowda,rgmiller,gshipman,maxwellde } @ornl.gov

Dave Henseler

Jeff Becklehimer

Jeff Larkin

Cray Inc.
{dah,jlbeck,larkin} @cray.com

1 Abstract

Operating system (OS) noise is defined as interference
generated by the OS that prevents a compute core from per-
forming “useful” work. Compute node kernel daemons,
network interfaces, and other OS related services are ma-
jor sources of such interference. This interference on indi-
vidual compute cores can vary in duration and frequency,
and can cause de-synchronization (jitter) in collective com-
munication tasks and thus results in variable (degraded)
overall parallel application performance. This behavior
is more observable in large-scale applications using cer-
tain types of collective communication primitives, such as
MPI_Allreduce.

This paper presents our effort towards reducing the over-
all effect of OS noise on our large-scale parallel applica-
tions. Our tests were performed on the quad-core Jaguar,
the Cray XTS5 at the Oak Ridge National Laboratory Leader-
ship Computing Facility (OLCF). At the time of these tests,
Jaguar was a 1.4 PFLOPS supercomputer with 149,504
compute cores and 8 cores per node. We aggregated OS
noise sources onto a single core for each node. The sci-
entific application was then run on six of the remaining
cores in each node. Our results show that we were able to
improve the MPI_Allreduce performance by two orders of
magnitude. We demonstrated up to a 30% boost in the per-
formance of the Parallel Ocean Program (POP) using this
technique.

2 Introduction

OS noise is defined as interference generated by OS that
prevents the CPU from performing “useful” work. This

interference can vary in duration and frequency and can
cause de-synchronization (jitter) in collective communica-
tion tasks. Recent research [3, 5, 7, 8, 11, 12, 13, 14]
showed that OS noise can seriously vary and degrade
overall parallel application performance. This behavior
is more observable in large-scale applications using cer-
tain types of collective communication primitives, such as
MPI_Allreduce.

Petrini et al. [11] described efforts towards identifying
performance bottlenecks for the SAGE application on a then
large-scale (8,192 nodes) machine. The modeled and ob-
served performance for the SAGE on the ASCI Q super-
computer did not match. They established a correlation be-
tween the frequency (low/high) and duration (short/long)
of the noise and application’s granularity (fine/coarse).
They concluded that fine-grained applications are more
susceptible to high-frequency short-duration noise, while
coarse-grained applications are more susceptible to low-
frequency long-duration noise. They found that many MPI
collective primitives are highly susceptible to OS noise,
MPI_Allreduce in particular.

Agrawal et al. [2] studied the OS noise problem theo-
ratically and concluded that it can impede the parallel per-
formance drastically for applications heavily using collec-
tive communication primitives. They further stated that this
negative impact is more pronounced for heavy-tailed and
Bernoulli noise distributions.

Ferreira et al. [7] stated that micro-benchmarking the
impact of noise on collective communication performance
does not necessarily correlate with the impact of noise on
application performance. They introduced a new classifi-
cation for applications based on their OS noise responses
as absorbing and amplifying/accumulating. Using POP,

SAGE, and CTH, they concluded that some collective prim-
itives are OS noise absorbing (e.g. MPI_Wait), while
some others are accumulating (e.g. MPI_Allreduce). They
also observed that unloaded system noise presents different
noise characteristics than loaded system noise. An unloaded
system is defined as a quiet system (i.e. no application is
running). They stated that the signature of unloaded sys-
tem noise is realistic (e.g. application generated I/O inter-
rupts are not OS noise sources as such are not included in
the unloaded system noise profile). The authors concluded
that POP spends most of its time in collective communica-
tions — up to 70% for 512 nodes — and that MPI_Allreduce
is the dominant consumer of time for MPI primitives. In
other words, MPI_Allreduce has been shown to have an OS
noise accumulating effect on application performance. It
was also shown that the smaller MPI_Allreduce message
size, the more susceptible to low-frequency high-duration
noise the primitive becomes.

Beckman et al. [4] also investigated the OS noise prob-
lem on large-scale platforms and suggested that using a
global clock to synchronize timer interrupts or using a tick-
less configuration for the kernel can provide even higher
levels of synchronization.

Beckman et al. [3] stated that duration of the noise inter-
ferance is important and they need to be quite large in order
to significantly impact performance on extreme-scale archi-
tectures. Authors concluded that unless extra processes or
interrupt processing dramatically desynchronizes a Linux
cluster, OS noise does not cause significant performance
degradation.

On Jaguar XTS5, we identified the OS noise problem due
to varying and degraded parallel application performance.
This was especially true for the Parallel Ocean Program
(POP) application [9]. As stated, POP heavily uses the
MPI_Allreduce parallel communication primitive. We mea-
sured the effect of OS noise on our parallel applications and
implemented a prototype solution to alleviate the perfor-
mance degradation. We identified noise sources, aggregated
them to a specific core on each compute node, and ran ap-
plications on select remaining cores.

Section 3 describes our methodology and prototype Re-
duced Noise kernel design. Section 4 presents our test and
discusses results. Finally, Section 5 presents our conclu-
sions.

3 Prototype Reduced Noise Kernel Design

We observed highly variable application performance on
the Jaguar XTS5 system, and worked to identify the source.
Testing demonstrated very high levels of operating system
activity on the compute cores of Jaguar when compared to
other specialized HPC platforms. These high levels of ac-
tivity were present regardless of the location of the node on

the 3D torus network, and frequently interrupted the CPU,
preventing the application from doing useful work.
Collaboration with Cray identified several sources of
noise in the CLE architecture. Many sources come in the
guise of interrupts, timer events, and related activities:

e TCP/IP protocol processing

e Time-of-Day clock maintenance

e Kernel work queues

e Non-fatal machine checks

e Flushing dirty data from page cache

e DVS protocol handling (read-ahead)

e Lustre protocol handling (lock and RPC timeouts)
e BEER helper threads for network reliability

e Virtual-to-physical mapping for received packets
e Other generic timer events

In addition, the CLE infrastructure has noise sources that
live in userspace:

e Application Level Placement Scheduler (ALPS) dae-
mons

e RCA (heartbeat, console)
e SSH (admin logins)
e NTP (time synchronization)

To reduce the effect of these noise sources, operating
system services were largely moved to the first CPU — core
0 —on each node. Application processes can then run on the
remaining cores with less system interference. This tech-
nique to reduce noise is not new, and was previously imple-
mented on the Intel Paragon [6].

Cray prototyped this in the UNICOS 2.2 Reduced Noise
kernel. The noise reduction is selectable on a per-job basis,
and is selected by specifying that applications are restricted
to cores 1 to 7 on each node — aprun -cc 1-7 -N 7.
Core 0 is then reserved for system activities.

In the Reduced Noise kernel, nearly every service listed
above is pinned to core 0. However, Lustre/DVS processing
and the mapping of incoming packets are not restricted, as
most of these interrupts are in response to traffic generated
by the application and are not considered noise. Addition-
ally, there is substantial performance benefit from spreading
this work among all available cores.

Although it may seem paradoxical to sacrifice cores to
gain more performance, as these “overhead cores” do not

participate in with the pool of “application cores” in syn-
chronization, they do not cause an overall performance
degradation for applications that are sensitive to OS noise.
However, applications that do not make heavy use of col-
lective communications — such as embarrassingly parallel
applications — or use absorbing collective tasks — MPI_Wait
for example — may see degraded performance due to the lost
computational power.

4 Experiments

We targeted our intial testing at understanding the OS
noise patterns of various computing platforms. We used the
FTQ/FWQ benchmark [1, 10] to profile the systems in the
OLCEF center.

Kurtosis is one of the statistical measures used in these
micro-benchmak programs to broadly assess the noise level
of a system. In a nutshell, this number measures the
“peakedness” of a given distribution. A pronounced or a rel-
atively high peak in a distribution results in a high kurtosis.
The following formula can be used for calculating kurtosis
for a variable x, with x; representing individual data points:

Yy (i —%)*

(n—1)s*

Basically, the closer a given distribution to the normal
distribution, lower the kurtosis becomes.

We compared an IBM BG/P (single socket quad-core
850 MHz CPU), a Cray XT4 (dual-socket dual-core 2.1
GHz CPU), a regular Linux cluster (quad-socket quad-core
2.0 GHz CPU), “Chester” a single cabinet Cray XT5 (dual-
socket quad-core 2.4 GHz CPU), and Jaguar XT5. Our
results showed that the IBM BG/P platform is very quiet
and the cores behave similarly, if not identically, to each
another, exhibiting a uniform noise pattern. On Cray XT4
system, we observed that while every core was quite noisy,
core 0 had the highest levels of noise. The Linux clus-
ter was the most noisy platform — almost half of the cores
were extremely noisy. Both XTS5 platforms were running
the stock UNICOS 2.2 Stock kernel and exhibited slightly
better noise levels than the Linux cluster. Chester was more
quiet than Jaguar. We believe this difference is due to the
difference in scale of the network traffic and interrupts be-
tween the XT5 systems. Overall, Cray CNL on XT4/5 was
found to be very noisy compared to BG/P. It exhibited sim-
ilar noise levels as a Linux cluster running an unmodified,
off-the-shelf, Linux distribution with a stock kernel.

We then tested the UNICOS 2.2 Reduced Noise kernel
on Chester. Figure 1 shows data collected using the FWQ
benchmark from IBM BG/P (top), Chester with Stock ker-
nel (middle), and Chester with Reduced Noise (RN) kernel
(bottom) platforms, normalized with respect to each plat-
form’s CPU clock cycle. The FWQ benchmark measures

kurtosis =

&)

BGP kernel, Kurtosis= 6.76

les (Normalized)
8

L

Clock Cycl

T T T T
0 5000 10000 15000 20000

FWQw=18, 20000 samples

Chester 2.2 stock kernel, Kurtosis= 595.98

les (Normalized)
8

Clock Cycl

0 5000 10000 15000 20000

FWQw=18, 20000 samples

Chester 2.2 reduced noise kernel, Kurtosis= 4.27

les (Normalized)
8

Clock Cycl

0 5000 10000 15000 20000

FWQw=18, 20000 samples

Figure 1. Kurtosis for XT5 (with and with-
out the Reduced Noise kernel) and IBM BG/P
platforms

FWQ Datasel N 8-8

Kurosis
log scaled

2 3 4 5 i} K 8
Core 0-7, no skipping

Figure 2. Threaded FWQ results on a XT5
node with 8 cores

the time spent to perform a fixed work quanta per each sam-
ple point. Therefore, a “low noise” kernel should exhibit
a uniform FWQ sampling (in terms of amplitude and fre-
quency), which means at each sample the CPU was inter-
rupted more or less for the same amount of time — since all
CPUs in the system will be interrupted in a roughly simi-
lar manner, the overall syncronization should not be greatly
disturbed. The benchmark was ran for a w value of 18, and

Stock Kernel, Rank 0, First Data Point Removed

3e+08 4e+08 5e+08 6e+08
1 1 1]

Cycle Counts

2e+08
1

1le+08
1

0e+00
|

T T T
1000 2000

o

T T T
3000 4000 5000

Samples

(a) Rank 0 with Stock kernel

Reduced Noise Kernel, Rank 0, First Data Point Removed

2500000 3000000
Il 1

2000000
Il

Cycle Counts

1500000
Il

1000000
Il

500000

T T T
1000 2000

o

T T T
3000 4000 5000

Samples

(b) Rank 0 with Reduced Noise kernel

Figure 3. MPI-FWQ completion times for Stock and Reduced Noise kernels

2,000 data samples were collected.

Kurtosis for each platform was then calculated from the
FWQ data. Figure 1 also shows calculated kurtosis values
for these three platforms. Based on the kurtosis values —
6.76, 595.98, and 4.27, for IBM BG/P, Chester with Stock
kernel, and Chester with (RN) kernel, respectively — the
IBM BG/P system provides a more uniform OS noise dis-

tribution compared to the XT5 system running a 2.2 stock
kernel. However, the OS noise characteristics for the XT5
platform improved drastically with the 2.2 Reduced Noise
kernel. Kurtosis was significantly reduced to 4.27.

A further look at the FWQ benchmark on a single XT5
node revealed an interesting behavior, shown in Figure 2.
The results suggested that although noise levels on cores

POP completion times
= 800 -
8 -
£ € < -
' - -
2 ‘ !
g R
< o N
£ , AN
8 & g0 @
S & P
Gl
Number of processes
(a) POP completion times
POP strong scaling efficiency (reduced noise vs. stock kernel)
35 1
= 30
c
g 257
% 20 -
8 15 1
g 10 -
®]
5 L
0 T T 1
384 1536 6144 24576
nprocs

(b) Reduced Noise kernel efficiency

Figure 4. POP completion times and efficiency with Reduced Noise kernel

2-7 were significantly reduced with the RN kernel, kurto-
sis for cores 0 and 1 were similar to each other and they
were four orders of magnitude higher than the remaining
cores. Core 1’s behavior was not expected at the time. Thus,
we restricted our remaining tests to six cores (cores 2-7) to
avoid masking any improvements with inconsistent behav-
ior while using the prototype UNICOS 2.2 Reduced Noise
kernel'.

Tests were performed at scale on Jaguar XTS5 in the sum-
mer of 2009, when Jaguar was in a quad-core configuration.
We first ran the MPI-FWQ micro-benchmark to measure the
performance of the MPI_Allreduce primitive. MPI-FWQ is
an in-house code that combines the “work™ segment of the

'This anomaly has since been tracked down to certain interrupts being
inadvertantly pinned to core 1. This is fixed for the production Reduced
Noise kernel.

FWQ benchmark with a user selectable MPI collective com-
munication task. Each process executes a single threaded
FWQ work quanta, and then measures the time required to
complete the specified MPI collective task.

We ran MPI-FWQ with a w value of 18 and
MPI_Allreduce as the collective task for 49,152 cores. Mes-
sage size per task was 1 MB and rank 0 was the root of the
collective. We used 6 cores out of the 8 available on a node,
skipping cores O and 1 (-N 6 —cc 2-7). Figure 3 shows
completion times at the root of the collective as the num-
ber of CPU cycles for the Stock kernel (Figure 3a) and the
Reduced Noise kernel (Figure 3b). The first data point from
each data set is discarded as it includes the overhead of start-
ing the test. As can be seen, per iteration completion times
is reduced on average by two orders of magnitude when
running on the Reduced Noise kernel.

Table 1. POP comparision for UNICOS 2.2 Reduced Noise and Stock kernels on OLCF’s Jaguar. Step
times are given in seconds and total run was for 1,000 steps.

Number of Processes Reduced Noise kernel Stock kernel

Step 435 | Step 870 | Step 1,000 | Step 435 | Step 870 | Step 1,000
384 289.68 575.48 660.03 291 578.09 663.13
1,536 75.27 149.16 149.16 77.46 151.94 173.98
6,144 35.33 69.17 79.13 39.17 79.25 90.89
24,576 42.7 81.78 94.58 68.43 122.79 137.94

Table 2. POP comparision for UNICOS 2.2
Reduced Noise and Stock kernels on Cray’s
Shark. Step times are given in seconds and
total runs were for 2,000 steps for both Re-
duced Noise and Stock kernels.

Number of Processes | Step 2,000
Reduced Noise 7,168 379.03
Stock 8,192 499.00

We then ran POP at 384, 1,536, 6,144, and 24,576 pro-
cesses to observe the strong scaling performance when run-
ning on the Reduced Noise kernel, and reran the same tests
under the Stock kernel. For each test we used 6 cores
out of the 8 available on a node, skipping cores 0 and
1 (-N 6 -cc 2-7). Our total mesh size was 3072 by
2048, nx_global and ny_global, respectively. Our block size
(nx_block, ny_block) per process was 132 by 132, 68 by 68,
36 by 36, and 20 by 20 for 384, 1,536, 6,144, and 24,576,
respectively.The max_blocks_clinic and max_blocks_tropic
were set to 1. For each test the stop_option was set as nstep
and we had 1,000 steps per run. We ran with balance for the
baroclinic distribution, and cartesian for the barotropic dis-
tribution. The options for history, movie, tavg, and xdisply
options were disabled. We maintained the same options for
both OS kernels. Table 1 shows completion times for steps
435, 870, and 1,000 (total) for 384, 1,536, 6,144, and 24,576
processes for both UNICOS 2.2 Reduced Noise and Stock
kernels.

Figure 4 plots the POP results given in Table 1. Figure 4a
shows the POP completion times for each test configura-
tion and POP step. Figure 4b shows the overall run time
efficiency achieved with the UNICOS 2.2 Reduced Noise
kernel. Our strong scaling results show that we realized a
performance improvement of over 30% on the largest scale
POP run tested (24,576 cores).

A second application test was conducted at Cray’s fa-
cilities. POP was run on “Shark”, a 12 cabinet XT5 sys-

tem with 1065 dual-socket, quad-core nodes running at 2.4
GHz. This test was run with a mesh of 3584 by 2240, and
2000 steps per run. The block size per process was 32 by
44, and the simulation was run for 2000 steps. POP was
run with 8192 processes on the Stock kernel to maximize
processing power (-N 8), and with 7168 processes on the
RN kernel to minimize OS noise (-N 7 -cc 1-7). In both
cases, 1024 nodes were used for the computation; only the
number of cores used on each node was varied. Even with
the reduced computing capacity used for the RN kernel run,
Table 2 shows a similar performance gain as on the Jaguar
XTS5 tests.

5 Conclusions

Operating system (OS) noise is a key limiting fac-
tor for large-scale parallel application performance. In-
terrupt sources for timers and network interfaces, ker-
nel daemons, and other related OS services are major
sources of OS noise interference. This noise can cause de-
synchronization (jitter) in collective communication tasks
such as MPI_Allreduce.

We identified a major parallel application performance
degredation on our Cray XTS5 platform. Our tests indicated
OS noise was the source of the problem, and we prototyped
a Reduced Noise kernel for the XT5. This prototype ker-
nel aggregated most OS noise sources onto a specific core
on each compute node. It also provided a user controllable
mechanism to prevent the scientific application from run-
ning on this core. Our results show that we were able to
improve the performace of MPI_Allreduce by two orders of
magnitude. We demonstrated up to a 30% boost in the per-
formance of the Parallel Ocean Program (POP).

Acknowledgements

The authors would like to thank the staff and colleagues
who have contributed material to this paper. Authors also
would like to express their thanks and gratitude to George
Ostrouchov, Jeff Kuhen, Terry Jones, Collin McCurdy, and

Vinod Tipparaju for their OS noise related ideas, discus-
sions, and comments and to Jim Rosinski for his help with
understanding and configuring POP application during test
runs.

Research sponsored by the Mathematical, Information,
and Computational Sciences Division, Office of Advanced
Scientific Computing Research, U.S. Department of En-
ergy, under Contract No. DE-AC05-000R22725 with UT-
Battelle, LLC.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Advanced Simulation and Computing, Lawrence Liv-
ermore National Laboratory. ASC Sequoia Bench-
mark Codes. https://asc.llnl.gov/sequoia/
benchmarks/#ftqg, 2008.

Saurabh Agarwal, Rahul Garg, and Nisheeth Vishnoi. The
Impact of Noise on the Scaling of Collectives: A Theoretical
Approach. In Lecture Notes in Computer Science, High Per-
Sformance Computing HiPC 2005, pages 280-289. Springer
Berlin/Heidelberg, 2005. ISBN 978-3-540-30936-9.

Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan
Coghlan. The Influence of Operating Systems on the Perfor-
mance of Collective Operations at Extreme Scale. In /IEEE
International Conference on Cluster Computing, pages 1—
12, 2006.

Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan
Coghlan. Operating system issues for petascale systems.
SIGOPS Oper. Syst. Rev., 40(2):29-33, 2006. ISSN 0163-
5980. doi: http://doi.acm.org/10.1145/1131322.1131332.

Pete Beckman, Kamil Iskra, Kazutomo Yoshii, Susan Cogh-
lan, and Aroon Nataraj. Benchmarking the effects of operat-
ing system interference on extreme-scale parallel machines.
Cluster Computing, 11(1):3-16, 2008. ISSN 1386-7857.
doi: http://dx.doi.org/10.1007/s10586-007-0047-2.

T.H. Dunigan. Early Experiences and Performance of the In-
tel Paragon. Technical Report ORNL/TM-12194, Oak Ridge
National Laboratory, 1993.

Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. Char-
acterizing application sensitivity to os interference using
kernel-level noise injection. In SC ’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, pages 1—
12, Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-
1-4244-2835-9. doi: http://doi.acm.org/10.1145/1413370.
1413390.

T.R. Jones, L.B. Brenner, and J.M. Fier. Impacts of Op-
erating Systems on the Scalibility of Parallel Applications.
Technical Report UCRL-MI-202629, Lawrence Livermore
National Laboratory, 2003.

Darren J. Kerbyson and Philip W. Jones. A Performance
Model of the Parallel Ocean Program. International Journal

(10]

(11]

(12]

(13]

[14]

of High Performance Computing Applications, 19:261-276,
2005.

Collin B. McCurdy and Jeffrey S. Vetter. Understanding the
Behavior of the FWQ System Noise Microbenchmark. Tech-
nical Report FTGTR-2008-10, Oak Ridge National Labora-
tory, Future Technologies Group, 2008.

Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The
Case of the Missing Supercomputer Performance: Achieving
Optimal Performance on the 8,192 Processors of ASCI Q.
In SC °03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, page 55, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 1-58113-695-1.

D. Skinner and W. Kramer. Understanding the causes of per-
formance variability in HPC workloads. In Proceedings of
the IEEE International Workload Characterization Sympo-
sium, pages 137-149, 2005.

William T, C. Kramer, and Clint Ryan. Performance Vari-
ability of Highly Parallel Architectures. In Computational
Science ICCS 2003, Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2003.

Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, and Scott Kirk-
patrick. System noise, os clock ticks, and fine-grained par-
allel applications. In ICS ’05: Proceedings of the 19th
annual international conference on Supercomputing, pages
303-312, New York, NY, USA, 2005. ACM. ISBN 1-59593-
167-8. doi: http://doi.acm.org/10.1145/1088149.1088190.

