
 ORNL/TM-2009/240

C++ Coding Standards for the
AMP Project

September 2009

Prepared by
T. M. Evans
K. T. Clarno

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-2009/240

Nuclear Science and Technology Division

C++ CODING STANDARDS FOR THE AMP PROJECT

T. M. Evans
K. T. Clarno

Date Published: September 2009

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

Page

1. INTRODUCTION.. 1

2. ORGANIZING AND WRITING CODE ... 1

 2.1 File Names.. 1
 2.2 Template Model... 1
 2.3 Write Unit Tests .. 2
 2.4 Syntax Names and Code Formatting .. 2
 2.5 Code Comments and Documentation.. 3

3. USE OF LANGUAGE FEATURES... 4

 3.1 Use A Nameplate ... 4
 3.2 Enforce Const-Correctness... 4
 3.3 Use Design-By-Contract (DBC) ... 4
 3.4 Classes Should Hide Their Data... 4
 3.5 Avoid Friend .. 5
 3.6 Avoid Macro Functions .. 5
 3.7 Avoid Raw Pointers... 5
 3.8 Avoid Circular Object Dependencies .. 6
 3.9 Explicitly Use The Std-Namespace .. 6
 3.10. No Using Statements in Header Files .. 6

REFENECES... 6

C++ Coding Standards for the AMP Project

Thomas M. Evans and Kevin T. Clarno

ORNL/TM-2009/240

Revision 0
September 30, 2009

1 Introduction

This document provides an initial starting point to define the C++ coding standards used by the AMP nuclear
fuel performance integrated code project and a part of AMP’s software development process. This document
draws from the experiences, and documentation [1], of the developers of the Marmot Project at Los Alamos
National Laboratory.

Much of the software in AMP will be written in C++. The power of C++ can be abused easily, resulting in
code that is difficult to understand and maintain. This document gives the practices that should be followed
on the AMP project for all new code that is written. The intent is not to be onerous but to ensure that
the code can be readily understood by the entire code team and serve as a basis for collectively defining a
set of coding standards for use in future development efforts. At the end of the AMP development in fiscal
year (FY) 2010, all developers will have experience with the benefits, restrictions, and limitations of the
standards described and will collectively define a set of standards for future software development.

External libraries that AMP uses do not have to meet these requirements, although we encourage external
developers to follow these practices. For any code of which AMP takes ownership, the project will decide on
any changes on a case-by-case basis.

The practices that we are using in the AMP project have been in use in the Denovo project [2] for several
years. The practices build on those given in References [3–5]; the practices given in these references should
also be followed. Some of the practices given in this document can also be found in [6].

2 Organizing and Writing Code

This section deals mainly with how code should be organized and written in terms of files, file names, code
formatting, and documentation.

2.1 File Names

AMP will follow the Nemesis naming convention for file names [7]. Each class is defined within its own set
of files, as summarized in Table 1. See Appendix B for examples. Note that multiple classes should not be
defined in a single set of files, except in very special circumstances where the classes are closely related (for
example, nested classes, or an iterator class for a container).

There may be other translation units outside of classes, such as for main() (for example, main.cc), and
header files that contain free functions or constants (both of which must be in a unique namespace). Such
file names should begin with a lowercase letter.

2.2 Template Model

Following Nemesis, there are two models that are used for template instantiation, based on usage:

1. Automatic: This is for templated classes for which it is unlikely that the template arguments are known
beforehand. Examples are containers and smart pointers (which can contain or point to any data type).
These classes include their function definitions within their header file (.hh), either explicitly or via a
.i.hh file. Hopefully, to avoid code bloat and excessive compile times, these classes are small.

1

Table 1: File Naming Convention for Class A.

File Required Contents

A.hh Yes Header file. Contains definition of class A. It may also contain
member function definitions, although preferably, function def-
initions should be in one or more of the files A.cc, A.i.hh, and
A.t.hh.

A.cc No Implementation file. If A is non-templated, then contains non-
templated member function definitions of A. If A is templated,
contains member function definitions of specializations of A.

A.t.hh No Template implementation file. May be used if A is a templated
class, or if A contains templated member functions. In these
cases, contains the corresponding function definitions which will
be explicitly instantiated by A.t.cc.

A.i.hh No Implementation file for member functions. This file should al-

ways be included at the bottom of A.hh. If A is templated, or
has templated member functions, then this file can be used for an
automatic instantiation model. For non-templated entities, this
file may contain inline function definitions.

A.t.cc No Instantiation file. Used for explicit template instantiation of the
definitions in A.t.hh. For specific template arguments, contains
instantiations of A or its templated member functions.

test/test A.cc Yes Unit test file. The unit test for A. Other files may also be used by
the unit test.

2. Explicit : This is for templated classes for which the range of template arguments is known. An example
is a finite-volume class that is templated on the mesh type (the number of mesh types one typically
requires is known and fairly small). Here, the function definitions (.t.hh) are included by the template
instantiation file (.t.cc). The instantiation file instantiates the class for each desired template argument.

See Appendix B for examples. Note that the STL follows the automatic instantiation model.

2.3 Write Unit Tests

The author of a class must write a unit test for that class. The unit test not only tests the functionality of
the class but also helps serve as an example of how to use the class. Some authors actually prefer to write
the test before the class. See §2.1 for where the unit test should reside.

2.4 Syntax Names and Code Formatting

Rules for names and code formatting can be onerous. We believe many such rules are based more on personal
preference and do not significantly add value to a code’s readability. If too many rules are specified, teams
tend to ignore all the rules, or become unhappy with enforcement. The intent here is to have code that
is quickly understandable by anyone on the AMP team. But individual team members may not find each
other’s style “pretty.”

Consequently, we have narrowed the list of rules to those we believe are the most important:

1. Indent your code as follows:

• Do not indent curly braces relative to their control statements.

• Do not indent namespace blocks.

• Indent public, private, protected statements two spaces relative to their class’s braces.

• For other code blocks, indent four spaces relative to their enclosing braces.

2

• Comments on their own line should be indented to the same level as the code they are commenting.

2. Be consistent in spacing, bracket placement, formatting, etc. If modifying someone else’s code, respect
and attempt to follow their style (otherwise, you are introducing inconsistency).

3. Separate words and acronyms within a name with an underscore.

4. Use complete words or acronyms in names. For example, use is anal retentive instead of is anl ret.

5. Distinguish variable and function names from user-defined type names as follows: Begin all words in
type names with a capital letter. Begin all words in variable and function names with a lowercase
letter.

6. One should not have to search outside of a file, or parse an entire function definition, to determine
the origin of a name used within that file (ideally, apply this down to function definitions). This rule
implies the following:

• A convention for member data names, such as using the prefix ”d ”, or the prefix this->. One
could extend this idea to nested types, but one rarely defines new types within function scope, so
the origin of types not fully scoped is usually clear.

• Even within an implementation file, avoid ”using namespace”. One exception here is ”using
namespace std”, as long as you are using very common stuff from std (cout, endl, vector,...).
It is still preferable that you explicitly specify which names you are using (e.g., using std::cout).
See also §3.10.

7. Limit the body of a function definition to approximately one page in length.

8. Declare only one variable per line, including within function declarations:

int i ;
int j ;

void blorp (int i ,
int j) ;

9. Do only one operation per line. For example, avoid

a = z ; b = std : : s i n (a) ;
c = d = g = 0 ;
i f (a = b)
{

// execu te s i f ’ a ’ i s t rue ; note there i s only one ’= ’
}

An example with the naming and format conventions described in this section is shown in Appendix A.
Templates will be developed to ease the use of the source code indentation and comment formatting.

2.5 Code Comments and Documentation

Code must be reasonably commented and documented using Doxygen. Templates will be developed to
provide uniform headers throughout the code that reconize the tri-laboratory development of the software and
consistent formatting for documenting the code using Doxygen. Our preference is to put one-line comments
for each member function in the header file and its documentation in the implementation file. See Appendix
A for an example.

User documentation is separate from the code’s documentation. Standards for user documentation are
not covered by this document.

3

3 Use of Language Features

This section gives rules on language features to use and to avoid.

3.1 Use a namespace

All implementations must have their own namespace. The name of the namespace will be determined by
the AMP project.

3.2 Enforce const-correctness

See Effective C++ [3, Item 21]. When declaring a variable or function, use the const qualifier whenever
possible. If unsure when declaring the variable, then go ahead and add the const qualifier. You can always
remove the qualifier later. We discourage strongly the practice of adding const-correctness after major
features have been implemented.

AMP may have to use external libraries that do not enforce const-correctness. Such libraries must be
wrapped in the equivalent functionality that enforces const-correctness. Otherwise, if wrapping is not done,
the external library potentially could force all of AMP to abandon const-correctness. Wrapping has other
benefits, such as that the external library can be swapped out.

3.3 Use Design-by-Contract (DBC)

The design-by-contract macros defined in Nemesis’s rtt dsxx::Assert, or an equivalent, must be used
extensively. Example 1 shows how DBC can be used.

#include <ds++/Assert . hh> // de f i n e s Require , Check , Ensure , . . .

double pre s su r e (const double temperature ,
const double dens i ty)

{
Require (temperature >= 0 . 0) ; // use Require () to check input va lue s
Require (dens i ty >= 0 . 0) ;

double p ; // pressure t ha t i s re turned

// . . . code t ha t computes i n i t i a l guess f o r p . . .

Check (p >= 0 . 0) ; // use Check () f o r in termed ia te c a l c u l a t i o n s

// . . . code t ha t computes f i n a l va lue o f p . . .

Ensure (p >= 0 . 0) ; // use Ensure () f o r f i n a l va lue s

return p ;
}

Code Example 1: Example that uses Design-By-Contract (DBC). There is other functionality in Nemesis’s
DBC not shown here, such as Insist() and Remember().

3.4 Classes Should Hide Their Data

See Effective C++ [3, Item 20]. Aside from pure data structures (i.e., a struct), class member data should
be accessed only through member functions. There are several suggestions for accessors:

• If the class is a data container (for example, a container of cell-centered pressures on a mesh), then data
container semantics may be used to access the underlying data. These semantics include operator[],
operator(), and iterator access.

4

class So lu t i on
{

// DATA

typedef std : : vector<double> CCF; // c e l l −centered f i e l d
CCF d pre s su r e ;
CCF d dens i ty ;

public :

// ACCESSORS

CCF &pre s su r e () { return d pr e s su r e ; }
const CCF &pre s su r e () const { return d pr e s su r e ; }

CCF &dens i ty () { return d dens i ty ; }
const CCF &dens i ty () const { return d dens i ty ; }

// ITERATORS

CCF: : i t e r a t o r b eg i n p r e s su r e () { return d pr e s su r e . begin () }
CCF: : i t e r a t o r end pre s su r e () { return d pr e s su r e . end () }

// . . . e t c . . .
} ;

Code Example 2: Example with accessors to large data structures; presumably, the CCF class contains a
large amount of data. Care must be taken that Solution is not destroyed while handles it has returned are
still available. We might want to revisit this issue.

• If the member data is a large data structure, then for efficiency, handles to that data may be returned.
The handles may be in the form of iterators or references, as in Example 2.

• Otherwise, “get/set” semantics should be used. The “get” function must not return a non-const
handle to the data.

3.5 Avoid friend

There are specialized cases where friend is useful (such as an iterator class for a container class), but
generally, the use of friend is strongly discouraged. The use of friend violates data hiding, which was
covered in the previous section.

3.6 Avoid Macro Functions

See Effective C++ [3, Item 1]. Macro functions are not type-safe and should be avoided.

3.7 Avoid Raw Pointers

The use of raw pointers (for example, double *x) can be a major source of bugs. Often, the use of raw
pointers can be avoided by substituting one of following techniques:

• Use a “smart pointer” [4, Item 28] instead (for example, see rtt dsxx:SP in Nemesis).

• Use a reference. See More Effective C++ [4, Item 1].

There are situations where using a raw pointer cannot be avoided. For example, raw pointers cannot be
avoided when communicating with other languages, such as Fortran or C. In other cases, their use should
be encapsulated. For example, container classes often use a pointer for their underlying data storage and
may define its iterator type as pointer via a typedef. However, the pointer implementation in this case is
encapsulated from the user of the container class.

5

Finally, pointers-to-functions are a relic of C and can be avoided through the use of virtual functions.

3.8 Avoid Circular Object Dependencies

See the discussion on levelized design in Large-Scale C++ Software Deesign [6]. A simple example of a
circular dependency is shown in Example 3. Because both classes A and B refer to one another, they cannot
be tested independently. Again, there may be special cases where circular dependencies are acceptable, such
as between a container and its iterator type.

class B; // forward dec l a ra t i on

class A
{

int do b (const B &b) ; // r e f e r s to c l a s s B
} ;

class B
{

int do a (const A &a) ; // r e f e r s to c l a s s A
} ;

Code Example 3: Example of a Circular Dependency. Classes A and B both refer to one another.

3.9 Explicitly Use the std-namespace

For example, use ‘#include <cmath>’ instead of ‘#include <math.h>’. In general, do not use the ‘.h’
system header files, which pollute the global namespace. See also Effective C++ [3, Item 2].

3.10 No using Statements in Header Files

Do not place using statements where they might pollute the global namespace. Unless within the scope
of an inline function, using statements should not be placed within header files (.hh). Even within
implementation files, using statements preferably should appear only within function scope.

You might argue that namespace using abuse is “yours,” and you are free to pollute it all you like.
However, someone else might have to maintain your code in the future. Also, placing using statements with
header files may affect those who want to use your class, as illustrated in Example 4.

References

[1] R. Lowrie and T. M. Evans, “C++ coding standards for the Marmot project,” Research Note CCS-
4:03–52(U), Los Alamos National Lab., 2002.

[2] T. Evans, A. Stafford, and K. Clarno, “Denovo—A new three-dimensional parallel discrete ordi-
nates code in SCALE,” Nuclear Technology, 2009. submitted for publication.

[3] S. Meyers, Effective C++. Addison Wesley, second ed., 1998.

[4] S. Meyers, More Effective C++. Addison Wesley, 1996.

[5] S. Dewhursh, C++ Gotchas. Addison Wesley, 2003.

[6] J. Lakos, Large-Scale C++ Software Design. Addison Wesley, 1996.

[7] T. Evans, “The Nemesis build system.” In development, 2009.

6

File A.hh

#include <iostream>

namespace us ing abuse
{

using namespace std ; // Not here ! ! !

class A
{

public :
void pr int someth ing () { cout << ” I am lazy .\n” ; }

} ;

} // end o f namespace us ing abuse

File uses A.cc

#include ”A. hh”

int main ()
{

// The f o l l ow i n g us ing statement i s OK, because i t ’ s in an implementation
// f i l e . Unforunately , i t asks f o r us ing abuse , but got s t d too ! ! !
using namespace us ing abuse ;

A a ; // us ing abuse : :A i s OK too
a . pr in t someth ing () ;

cout << ”Where did cout come from ???\n” ; // Answer : v ia us ing abuse .
}

Code Example 4: Example showing the improper placement of using in a header file. File uses A.cc never
explicitly asks to use namespace std.

A Sample Code

This appendix shows an example for a class named My Class, which uses the preferred naming and formatting
conventions given in §2.4.

7

File My Class.hh

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗−C++−∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
/∗ !
∗ \ f i l e my Component/My Class . hh
∗ \ author Kevin Clarno
∗ \ date Wed Oct 22 12:12 :09 2003
∗ \ b r i e f
∗ \note Coopera t i ve l y dev leoped by Oak Ridge Nat ional Laboraotry ,
∗ Idaho Nat ional Laboraaory , and
∗ Los Alamos Nat ional Laboratory .
∗/

//−−−//
// $Id : My Class . hh , v 1.1 2003/11/20 17:27 :37 tme Exp $

//−−−//

#ifndef rtt my component My Class hh
#define rtt my component My Class hh

#include <vector>

#include <ds++/Assert . hh>

namespace rtt my component
{

//===//
/∗ !
∗ \ c l a s s My Class
∗ \ b r i e f This i s a sample c l a s s .
∗
∗ This i s a sample c l a s s , showing the p re f e r r ed naming
∗ scheme , comment s t y l e , and Doxygen documentation .
∗
∗ \ sa My Class . cc f o r d e t a i l e d d e s c r i p t i on s .
∗
∗ \example my Component/ t e s t /My Class t e s t . cc
∗
∗ de s c r i p t i on o f example
∗/

//===//

class My Class
{

public :

// NESTED CLASSES AND TYPEDEFS

typedef std : : vector<int> My Vector Int ;

// CREATORS

// ! d e f a u l t cons t ruc to r s
My Class () ;

// ! copy cons t ruc tor
My Class (const My Class &rhs) ;

// ! d e s t ru c t o r
˜My Class () ;

// MANIPULATORS

// ! Assignment operator f o r My Class
My Class& operator=(const My Class &rhs) ;

// ! Example o f a pu b l i c func t i on
int my pub l i c funct i on (const double t ,

const int j) ;

8

// ACCESSORS

// ! Returns the courant number
double ge t courant () const { return d courant ; }

// ! Se t s the courant number
void s e t c ou ran t (double courant)
{

Require (courant > 0 . 0) ; d courant = courant ;
}

// ! Returns the i t e r a t i o n count
int g e t i t e r a t i o n c o un t () const { return d i t e r a t i o n c oun t ; }

private :

// NESTED CLASSES AND TYPEDEFS

// IMPLEMENTATION

// ! Example o f a p r i v a t e func t i on
double my pr iva t e func t i on () ;

// DATA

// ! I t e r a t i o n count o f l i n e a r s o l v e r
int d i t e r a t i o n c oun t ; // member data beg ins with d

// ! Courant number f o r time s t ep con t ro l
double d courant ; // member data beg ins with d

} ;

} // end namespace rtt my component

#endif // rtt my component My Class hh

//−−−//
// end o f my component/My Class . hh
//−−−//

9

File My Class.cc

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗−C++−∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
/∗ !
∗ \ f i l e my Component/My Class . cc
∗ \ author Kevin Clarno
∗ \ date Wed Oct 22 12:12 :09 2003
∗ \ b r i e f
∗ \note Coopera t i ve l y dev leoped by Oak Ridge Nat ional Laboraotry ,
∗ Idaho Nat ional Laboraaory , and
∗ Los Alamos Nat ional Laboratory .
∗/

//−−−//
// $Id : My Class . cc , v 1.1 2003/11/20 17:27 :37 tme Exp $

//−−−//

#include ”My Class . hh”
#include <cmath>

namespace rtt my component
{

//−−−//
/∗ !
∗ \ b r i e f De fau l t cons t ruc tor
∗/

My Class : : My Class ()
: d i t e r a t i o n c oun t (0)
, d courant (0 . 0)

{
return ;

}

//−−−//
/∗ !
∗ \ b r i e f Destructor
∗/

My Class : : ˜ My Class ()
{

return ;
}

//−−−//
/∗ !
∗ \ b r i e f Sample pu b l i c func t i on
∗
∗ \param t Time spent on marmot
∗ \param j Number o f complete pa i r s o f socks
∗ \ re turn Your es t imated l i f e s pan , in years
∗/

int

My Class : :
my pub l i c funct i on (const double t ,

const int j)
{

using std : : f l o o r ;

Require (t > 0 . 0) ;
Require (j >= 0) ;

int i = j ∗ f l o o r (my pr iva t e func t i on () ∗ t) ; // l o c a l v a r i a b l e

Ensure (i >= 0) ;

return i ;
}

//−−−//
// PRIVATE FUNCTIONS

10

//−−−//

//−−−//
/∗ !
∗ \ b r i e f Computes the maximum nondimensional t o t a l time .
∗
∗ \ re turn The de s i r ed r e s u l t .
∗/

double

My Class : :
my pr iva t e func t i on ()
{

i f (d i t e r a t i o n c oun t > 50)
{

// . . . encase in braces , even i f i t ’ s a s i n g l e s tatement
d courant ∗= 0 . 1 ;

}

Check (d courant > 0 . 0) ;

return d i t e r a t i o n c oun t ∗ d courant ;
}

} // end namespace rtt my component

//−−−//
// end o f My Class . cc
//−−−//

B Examples of Uses of the Various File Extensions

This appendix shows examples of the various file extensions covered in §2.1. Code Example 5 is a main
program that uses a templated class B. Code Examples 6 and 7 show how the implementation of B may be
organized using automatic instantiation. Code Example 8 shows the implementation using explicit instanti-
ation.

File uses B.cc

#include ”B. hh”

int main ()
{

B<int> bi (1) ;
B<double> bd (2 . 3) ;
b i . p r i n t da ta () ;
bd . p r i n t da ta () ;

}

Code Example 5: Example use of templated class B.

11

File B.hh

#include <iostream>

#ifndef rtt my component B hh
#define rtt my component B hh

template <class T>

class B
{

T d data ;
public :

B(const T &data) : d data (data) {}
void pr in t da ta () ;

} ;

template <class T> void B<T> : : p r i n t da ta ()
{

std : : cout << d data << std : : endl ;
}

#endif

Code Example 6: Automatic instantiation model for class B.

File B.hh

#ifndef rtt my component B hh
#define rtt my component B hh

template <class T>

class B
{

T d data ;
public :

B(const T &data) : d data (data) {}
void pr in t da ta () ;

} ;

#include ”B. i . hh”

#endif

File B.i.hh

#include <iostream>

template <class T> void B<T> : : p r i n t da ta ()
{

std : : cout << d data << std : : endl ;
}

Code Example 7: Automatic instantiation model for class B, using B.i.hh file.

12

File B.hh

#ifndef rtt my component B hh
#define rtt my component B hh

template <class T>

class B
{

T d data ;
public :

B(const T &data) : d data (data) {}
void pr in t da ta () ;

} ;

#endif

File B.t.hh

#include ”B. hh”
#include <iostream>

template <class T> void B<T> : : p r i n t da ta ()
{

std : : cout << d data << std : : endl ;
}

File B.t.cc

#include ”B. t . hh”

template class B<int >;
template class B<double>;

Code Example 8: Explicit instantiation model for class B. In this case, B.t.o must be linked with uses B.o.

13

