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ABSTRACT 
 
 
The presence of activated corrosion products (ACPs) in a water cooling system is a key factor in the 

licensing of ITER and affects nuclear classification, which governs design and operation. The 

objective of this study is to develop a method to accurately estimate radionuclide concentrations 

during ITER operation in support of nuclear classification. A brief overview of the PACTITER 

numerical code, which is currently used for ACP estimation, is presented.  An alternative analytical 

approach for calculation of ACPs, which can also be used for validation of existing numerical codes, 

including PACTITER, has been proposed. A continuity equation describing the kinetics of 

accumulation of radioactive isotopes in a water cooling system in the form of a closed ring has been 

formulated, taking into account the following processes: production of radioactive elements and their 

decay, filtration, and ACP accumulation in filter system. Additional work is needed to more 

accurately assess the ACP inventory in the cooling water system, including more accurate simulation 

of the Tokamak cooling water system (TCWS) operating cycle and consideration of material 

corrosion, release, and deposition rates.  

 

ix 



 

 

.

 



 

1.  INTRODUCTION 
 
 
Activated corrosion products (ACP) will be present in ITER in-vessel and vacuum vessel coolant 

loops as well as in coolant loops related to test modules and auxiliary heating or diagnostics 

equipment. All surfaces that come in contact with water in the ITER Tokamak cooling water system 

(TCWS) will corrode and release material to the cooling water. For components exposed to the 

neutron flux (copper and stainless steel in particular), these corrosion products will be radioactive and 

could contribute to occupational exposure, routine release effluents to the environment, and potential 

releases during accidents. This fact has made the ACP inventory evaluation a critical task for ensuring 

ITER public and occupational safety.  

 

ACP levels are a key factor in the licensing of ITER and may have a large impact on its design and 

operation in order to keep ITER in the lowest possible safety category. As a result, accurate estimates 

of radioactivity concentrations for various components have to be established beforehand. This 

information can also help guide the operation of ITER to ensure that activity inventories are below 

regulatory limits and that As Low As Reasonably Achievable (ALARA) principles are met.  This may 

be accomplished by estimating the ACP inventory accumulated in filters and resins of TCWS cleanup 

system (Chemical and Volume Control System). 

 

The PACTITER code, which exists as several versions, is the main instrument used for calculations 

and is derived from the PACTOLE code, developed by the French Atomic Energy Commission 

(CEA) for predicting ACPs in pressurized water reactor (PWR) primary circuits [1, 2]. The operating 

conditions, material compositions, and water chemistry of the various Primary Heat Transfer Systems 

of ITER required that the PACTOLE code be modified. PACTITER was developed based on 

dedicated experiments, namely, those devoted to determining copper solubility and stainless steel 

release under ITER primary cooling systems conditions, which are rather different from those in a 

PWR (i.e., water chemistry and temperatures). The PACTITER code has been used extensively in 

support of the ITER Generic Site Safety Report in the field of accident analysis and worker collective 

dose assessment.  

 

The PACTITER code is based on a control volume approach; the primary circuit is represented by an 

arrangement of several volumes in which transient mass balance equations are solved: 

( ) ,  i
s e m m

Source Sink

dm
m m J J

dt
     
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where mi is the mass of the ith isotope in the form of corrosion products in a given volume, t is the 

time, s em m  is the convective term (balance between input and output), and Jm is the exchange mass 

rate between two different volume elements. The convective term does not account for nuclear 

reactions (e.g., N-16, 17, and C-14 production) which involve mass production and loss within the 

considered volume. Although such an approach provides a feasible way for carrying out the 

calculations, it does not provide a simple way for checking the accuracy of the calculations. In the 

framework of such a model, it is not possible to obtain simple analytical solutions which can be used 

as benchmarks for the more detailed numerical calculations. Thus, an alternate approach for the 

activity calculations which may provide such an opportunity could be very useful [3].  

 

An initial analysis was performed during FY 2007 to quantify the level of activated corrosion 

products being released to the ITER cooling water system [4]. The EASY-2003 code was used to 

simulate the activation of 316 stainless steel and copper as a function of ITER operating time and 

neutron fluence. The key long-lived isotopes generated in stainless steel included Co-58, Tc-99, 

Co-60, Co-57, and Mn-54, consistent with previous studies. The simulations for copper predicted that 

Cu-64, Co-60, Ni-63, Zn-65, Co-58, and Fe-59 will be the dominant, long-lived isotopes, which is 

also consistent with previous work. The simulations show that the activity level produced from 

copper will remain constant throughout the ITER lifetime as production and decay rates reach a 

steady state almost immediately. For stainless steel, however, activity will build throughout the 

projected lifetime.  

 
These activation rates were then used to calculate the release rate of activated material into the 

cooling water system by simply multiplying the activation rate by the corrosion release rates 

calculated in other studies [5, 6]. An additional study has been performed to assess the decay of ACPs 

as the water flows through the system [7]. This analysis indicates that the total ACP inventory in the 

water cooling system is lower than originally calculated, but is still a significant quantity. 

 

While the initial simulations and analysis provide useful information, the current effort is still very 

simplistic relative to the complexity of the actual ITER design. Additional work is needed to more 

accurately assess the ACP inventory in the cooling water system, including more accurate simulation 

of TCWS operating cycle and consideration of ACP deposition.  
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The objective of this work is development of a simplified model for calculating ACPs which permits 

analytical treatment of the problem and analysis of these processes. Results of this analysis will be 

compared with PACTITER results to ensure consistency.  

 
 

2.  GENERAL APPROACH 
 
 
In order to formulate the problem in a rigorous way, let us assume that a vacuum vessel coolant loop 

can be illustrated as a pipe in the form of a ring, with a radius R and length of L = 2πR. Let us also 

assume that the activation area on this pipe may be considered as a point activity source located at the 

beginning of a coordinate system, x = 0, where x is a coordinate measured along the cooling ring 

(note that the points with the coordinates of x = 0 and x = 2πR are equal). Let us label the  velocity of 

water flow, the period of water cycle, total number of “i” isotope atoms produced per unit time, and 

half-life time of the isotope as V, T,  and0
iQ i , respectively. Note that the values L, V and T are 

connected to each other by the following equation: 

 .L VT  (1) 

Let us also introduce an activity unit, , which is equal to the total amount of “i” isotopes 

added to water for a period of T, that is, during one cycle. The parameter (and ) is a function of 

several parameters, including isotope production and decay/removal, as well as analytically and/or 

experimentally determined material corrosion, release, and deposition rates.

0Ti iQ Q

0
iQ iQ

* The ratio 

describes the activity density, that is, an average amount of “i” isotope atoms injected into 

water of a unit length of the pipe during one cycle with a unit of measurement of “atoms per meter.”  

/ L iQ

 

To formulate the main equation describing accumulation of corrosion elements in water flowing in 

the pipe, let us consider first the simplest case when there is one non-radioactive element only 

(   ). Let us assume also that the velocity of the isotope is equal to that of cooling water; that is, it 

moves along the pipe with the velocity V. Introducing the density of the isotope activity (i.e., the total 

amount of isotope atoms) at a point with coordinate x at time t, ( , )f x t  (index “i” is omitted for 

simplicity), an equation describing distribution of the isotope along the ring is given by 

 
( , ) ( , )

.
df x t df x t

V
t x

 
 

 (2) 

The general solution of Eq. (2) has a form 
                                                      
*Consideration of corrosion, release, and deposition rates of material is beyond the scope of this report. 
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 ( , ) ( ) ,f x t x Vt   (3) 

where ( )z is an arbitrary function, showing that a certain “state” (isotope activity in this case)  

moves in a space with velocity V. The form of function ( )z in Eq. (3) depends on initial and 

boundary conditions. Taking into account that the pipe has the form of a ring, the boundary condition 

in the case is 

 ( , ) ( , ) .f x t f x L t   (4) 

Initial conditions depend on the problem under consideration. In the simplest case, when an isotope is 

initially homogenously distributed along the ring with concentration C0, the initial condition is given 

by 

 0 0( ) .tf x C   (5) 

The solution of Eq. (2) in this case is 

 0( , ) ,f x t C  (6) 

which is physically correct since movement of stable isotopes along the ring cannot change their 

distribution.  

 
The situation with activation of the cooling pipe under ITER conditions is more complicated since 

radioactive isotopes are produced continuously in a certain part of the pipe. For the sake of simplicity, 

let us assume that the size of the isotope “production area” is much smaller than that of the pipe size. 

In this case a reasonable approximation can be obtained assuming that the activity source can be 

considered to be dimensionless at a certain coordinate on the pipe, x = xs. If, for example, the isotope 

source is located at the beginning of coordinate, xs = 0, an equation describing the process of activity 

accumulation can be readily obtained from Eq. (2) by adding the source term 

 
( , ) ( , )

( ) ,
df x t Q df x t

x V
t L x

 
 

  (7) 

where ( )x  is a Dirac delta function. The initial condition for the density function ( , )if x t in the case 

is given by 

 0( , ) 0 .tf x t    (8) 

Equation (7) with the initial and boundary conditions given by Eqs. (8) and (4) can be solved. Thus 

for a time less than the period, t < T, taking into account Eq. (8), the density ( , )f x t  is given by 
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 0

,
( , ) ( ) ,

0 ,
t T

Q
x Vt LQ

f x t Vt x L
L

Vt x L
 

     
  

  (9) 

where the function θ(z) is the Heaviside step function (θ(z) = 1 at z ≥ 0 and θ(z) = 0 at z < 0). At the 

time equal to the period, t = T, the isotope distribution is equal to ( , ) .
Q

f x T
L

   In the same way one 

can find that at t = nT, where n is an arbitrary integer, the density is equal to ( , )
Q

f x nT n
L

 . The 

total amount of the element accumulated during this time can be easily calculated by integrating along 

the ring: 

 
0

( , ) .
L

nR f x nT dx nQ    (10) 

Equation (10) describes the conservation law:  the total amount of isotope in this case is proportional 

to the number of cycles, taking into account that the value of Q is equal to the amount of the element 

produced during the period.  

 

The analysis just presented demonstrates how a problem of impurity accumulation in water 

circulating in pipe with can be rigorously formulated. Moreover, it shows how Eq. (2) for the density 

( , )f x t  can be generalized to describe different mechanisms affecting isotope accumulation. In the 

next section, this approach will be applied to the ACP problem, taking into account radioactive decay 

and water filtration.  

 
 

3.  ACCUMULATION OF UNSTABLE ISOTOPES 
 
 
Taking into account the half-life, τ, an equation describing the accumulation of an isotope can be 

obtained by adding a decay term 
( , )f x t


 in Eq. (7). Thus it takes the following form: 

 
( , ) ( , ) ( , )

( ) .
df x t Q df x t f x t

x V
t L x

  
 




 (11) 

The general solution of Eq. (11) is given by 

  (12) /( , ) ( ) ,tf x t x Vt e   
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where Ψ(z) is an arbitrary function. Taking into account the initial and boundary conditions 

formulated in Sect. 2, the density ( , )f x t  at t < T takes the following form: 

 0

,
( , ) ( ) .

0 ,

x
x V

V
t T

Q
Q e x Vt L

f x t e Vt x L
L

Vt x L




 


    

  


  (13) 

From Eq. (13) it follows that ACP accumulated during the first period (i.e., when t = T) is equal to  

 1( ) ( , ) .
x

V
Q

f x f x T e
L


    (14) 

The total ACP accumulated in the ring for the first period can be readily calculated: 

  (15)  /
1 1

0

( ) 1 .
L

TR f x dx Q e    

Note that in the limiting case of the stable isotope (  ), the activity 1 ,R Q  as it has to be in 

accordance with the conservation law [see Eq. (10)]. Since the period T is orders of magnitude less 

than the operation time of ITER, it can be considered as a natural time unit for the calculations 

presented below. 

 

It can be easily shown that ACP accumulation during the second and third periods (i.e., at t = 2T and 

t = 3T, is given by 

 
 

 

/
2

/ 2 /
3

( ) 1 ,

( ) 1 .

x
T V

x
T T V

Q
f x e e

L

Q
f x e e e

L



 

 

  

 

  

 (16) 

Equation (16) allows us to generalize the solution for an arbitrary number of periods, t = nT, 

     
 

/
1 // 2 /

/

1
( ) 1 ... .

1

nTx x
n TT T V

n T

eQ
f x e e e e e

L L e


  




     




  V

Q 
 


 (17) 

Total ACP accumulated after n cycles can be calculated as follows: 

   
/

/
/

0

1
( ) 1 1 .

1

L nT
T

n n T

e
R f x dx Q e Q e

T e T







    







  /nT   (18) 

Equations (17) and (18) are the closed form solutions for the isotope activity distribution along the 

pipe and the total amount accumulated in the whole pipe, respectively.  
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In the two limiting cases of (1) a very short half-life ( nT  ) and (2) a very long one ( nT  ), 

Eq. (18) leads to the following results:  

 
, 1

.

, 1
n

Q
T nTR

Qn
nT

 



  
 


 (19) 

In the first case, the activity reaches a steady-state value which is proportional to the half-life, 

whereas in the second case it increases proportional to the number of cycles (i.e., irradiation time). In 

both cases the results show that the analysis presented above gives a reasonable description of the 

activity accumulation.  

 

Results for the ACP distribution along the pipe calculated using Eq. (17) are presented in Figs. 1 and 

2 for two cases, τ/T = 1 and 10, respectively, and for a different number of cycles.  
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Fig. 1. ACP distribution in water along the pipe 
calculated for τ/T = 1 and for 1, 3, and 5 cycles. 
The case n = 5 represents the saturation distribution 
in water, which does not change for n > 5. 
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Fig. 2. ACP distribution in water along the pipe 
calculated for τ/T = 10 and for the number of 
cycles ranging from 1 to 50. The case n = 50 
represents the saturation distribution in water, which 
does not change for n > 50. 

 
For the general case in which the half-life has an arbitrary magnitude, the total amount of the ACP 

accumulated in the system depends on the number of cycles, that is, the operation time. In Fig. 3, the 

function Rn is plotted as a function of the ratio τ/T when the number of cycles ranges from 1 to 1000. 

As can be seen from the plot, the activity tends to saturate with an increasing number of cycles at a 

level that depends on the half-life. 
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Fig. 3. Total ACP accumulation in water calculated using 
Eq. (18) as a function of the ratio τ/T for a different 
number of cycles. 
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4.  IMPACT OF FILTER ON ACP ACCUMULATION 
 
 
Let us assume that the size of a filter is small compared to the loop size; thus, it can be described as a 

dimensionless point located at a certain position on the water pipe. Defining a filter with efficiency α, 

that is located at x = x0, one finds that an equation describing ACP accumulation in the ring can be 

obtained by generalizing Eq. (11) in the following way: 

 0

( , ) ( , ) ( , ) 1
( ) ( , ) 1 ( ) .

df x t Q df x t f x t
x V Vf x t

t L x
          

 
 

x x  (20) 

The last term on the right-hand side of Eq. (20) accounts for a decrease in the activity in α time after 

passing the filter. Note that the magnitude of the filter efficiency defined in this way is 1  . The 

filter efficiency measured in percent, as normally used in practice, say γ, is related to  in the 

following way: 

 
1

100% .






 (21) 

 

The relationship between these two parameters is presented in Fig. 4, showing that a very small 

deviation of the parameter   from unity results in a large increase in the filter efficiency γ. 
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Fig. 4. Relationship between the filter efficiency γ 
and the efficiency parameter α. 

 
Solution of Eq. (21) can be obtained the same way as it has been done above. It can be shown that 

after the first period, t = T, the ACP density,  (the function  is used to distinguish it 

from the case considered in previous paragraphs), is given by 

( , )F x t ( , )F x t
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0

0

,
( , ) .

1
,

x

V

x

V

e xQ
F x T

L e x






 

 








x

x
 (22) 

After the second and third periods, t = 2T and t = 3, the distributions  are given by ( , )F x t

 
0

2

0

,1
( ) 1 ,

1
,

x

VT

x

V

e xQ
F x e

L e x








     

   









x

x
 (23) 

 

 

0

3

0

2

0

0

,1 1
( ) 1 1

1
,

,
1 .

1
,

x

VT T

x

V

x
T T

V

x

V

e xQ
F x e e

L e x

e x xQ e e

L e x x



 




 




         

     


                  



 




 



 


 


x

x


 (24) 

Thus after the n cycles, t = nT, one can find that 

 

2 1

0

0

/

0

/

0

,
( ) 1 ...

1
,

1 ,
.

1
,1

xnT T T
V

xn
V

nT
x

V

xT
V

e xQ e e e
F x

L e x

e
e x xQ

L e e x x

 
  






 

                                       

      


      


  










  






x

x


 (25) 

 
Using Eq. (25) one can find the total ACP accumulated after n cycles is given by 

   0 0

/

/ / /

/

1
1

1

1

nT

T T T
n T

e

R Q e e e
T e



  


 
  
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where  Equations 0 0 / .T x V (25) and (26) are closed form solutions for the activity accumulation in 

the case under consideration. Note that in the limiting case of 1   (no filter), Eqs. (25) and (26) are 

transformed to Eqs. (17) and (18).  

 

The ACP distribution along the ring for the case of 10%   is illustrated in Fig. 5. The same 

parameters were employed as used to calculate f (x,t) for the case when the filter is absent (Fig. 1b).  
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Fig. 5. ACP distribution in water along a pipe calculated 
for τ/T = 10 and the number of cycles ranging from 
1 to 50. The case n = 50 represents a steady-state 
distribution, which does not change for n > 50. 

 
The total ACP accumulated in the ring after a different number of cycles as calculated using Eq. (26) 

is presented in Fig. 6. For comparison, the total activity accumulated after the same number of cycles 

calculated using Eq. (18) (no filter case) is also presented in Fig. 6. It can be seen from the plot that 

the filter significantly decreases activity in the case of the long-lived isotope (τ/T >> 1). Moreover, 

after a certain number of cycles the amount of activity is practically saturated. Correspondingly, the 

activity accumulated in the filter increases with increasing operation time.  
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Fig. 6. Total ACP accumulation as a function of the ratio τ/T 
for a different number of cycles and filter efficiency 
γ = 1%. The calculations have been done for the case when 
x0 = L/2 (T0 = T/2). 

 
 

5.  ACP ACCUMULATION IN FILTER  
 
 
The ability to calculate total ACP accumulation in the filter, after n cycles, , is very 

important for practical purposes. It can be calculated by integrating the difference between 

the activity distributions described by Eqs. 

n

(17) (no filter case) and (25) (filter case). One can 

find that  
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 (27) 

An example of the ACP calculated accumulation in a filter with an efficiency of 1% is presented in 

Fig. 7 for a number of cycles ranging from 50 to 5000. 
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Fig. 7. Total ACP accumulated in the filter as a function of 
the ratio τ/T for a different number of cycles and 
filter efficiency γ = 1%. 

 
 

6.  ACCUMULATION OF MULTIPLE ISOTOPES IN FILTER  
 
 
Assuming that production and accumulation of different isotopes are independent, the activity 

distribution along the cooling pipe, , and total activity after n cycles,( , )tot
nF x t tot

nR , can be calculated 

as a linear superposition of  activities of particular isotopes:  
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nF x F x R R
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    (28) 

where m is the total number of the isotopes. Thus the activity distribution in the pipe after n cycles, 

, takes the following form: ( , )tot
nF x t
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 (29) 

where ,i iQ  and i  are the rates of isotope production, their half-life times, and the filter efficiency. 

Equation (29) is given for the case when the filter location is the same for all isotopes. The total 

activity for n cycles in this case can be calculated as follows: 
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The total activity accumulated in the filter during n cycles is given by 
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 (31) 

Note that Eqs. (29)–(31) describe the activity accumulation in the cooling ring filter in the case when 

a source of activity and a filter can be considered as the point objects. This is a good approximation as 

long as the length of pipe exposed to irradiation is much less than the total length of pipe. If this is not 

the case, the equation may be generalized to take this into account.  

 
 

7. ACCUMULATION OF ISOTOPES WITH TIME-DEPENDENT ACTIVITY SOURCE 
 
 
More generally, three parameters may depend on time: (1) the rate of production of an “i” isotope, 

Qi(t); (2)  the velocity of cooling water, V(t); and (3) the filter efficiency, αi(t). The solution is more 

complicated in this case since practically all coefficients in the main equation for activity distribution 

may depend on time: 

 0

( , ) ( ) ( , ) ( , ) 1
( ) ( ) ( ) ( , ) 1 ( ) .

( )

df x t Q t df x t f x t
x V t V t f x t x x

t L x t

 
         

 
 

 (32) 

ACP accumulation under such conditions is of very practical interest. First, it permits calculating the 

activity accumulation for different scenarios of ITER operation, which may be useful in choosing the 

final operational design. Second, it will provide more a realistic description of activity accumulation 

during  the actual operation of ITER. This case will be considered here, and it may be shown that 
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Eq. (32) can be also solved analytically. For the sake of simplicity, only the time dependence of the 

rate of ACP production is taken into account and presented in this report.   

 

The main equation in this case takes the following form: 

 0

( , ) ( ) ( , ) ( , ) 1
( ) ( , ) 1 ( ) .

df x t Q t df x t f x t
x V Vf x t

t L x
         

 
 

x x  (33) 

Like the previous analysis, we assume that the period of water circulation, T = L/V, is much smaller 

than that of the operation time; thus, it can be employed as a natural time step. 

 

After one cycle (i.e., when t = T), the ACP is distributed as 
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The total ACP accumulated in the pipe can be obtained by integrating Eq. (34) to yield 
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After two cycles (t = 2T), the ACP distribution takes the following form: 
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The ACP accumulation during the two periods is given by 
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For the three periods, the ACP distribution is given by 
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The structure of Eqs. (34), (36), and (38) permits us to write the ACP distribution function and total 

ACP accumulation after n cycles as follows: 

 

( ) /

0( )
1

( ) /

0( )
1

, 0

( ) ,
1

,

n k Tn
x

n kV
k

n n k Tn

n k
k

e x
Q kT x x

Ve
F x

L e x
Q kT x x L

V

 

 


 




        
      













 


 (39) 

      
0

0

( ) /

( )
10 0

1 1
( , ) .

xL Lx xn k Tn
V V

n n n k
k x

e x x
R F x nT dx Q kT e dx Q kT e dx

L V V

   




               
       

  


 

 
 (40) 

Equations (39) and (40) are the closed form solutions for the ACP distribution in a cooling pipe and 

the total ACP accumulated in the pipe at any time for the case when the rate of activity production is 

an arbitrary function of time. ACP accumulation in the filter, n , can be calculated using Eq. (40). 

As was shown above,  is equal to the difference between the activity accumulated in the cases 

with and without a filter. Equations for the last case can be readily obtained from Eqs. (39) and (40), 

taking 

n

1.  Equations (39) and (40) in that case take the following form: 
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Thus, one can find that the total ACP accumulation in the filter is given by 
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Note that in the limiting case when the source of activity is independent of time, Q(t) = Q, Eqs. (39) 

and (40) transform to  
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which are identical to the Eqs. (25) and (26). 
 
It has to be emphasized that the model considered above is rather simplified since all essential 

elements of the cooling system, that is, the activity source and filter, are considered to be 

dimensionless. However, the main equation formulated, Eq. (32), can be generalized for more 

realistic conditions. For example, the ACP source and filter terms can be presented as follows: 
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where ( ),j jQ t x  are the rates of ACP production and locations of these sources and ( ) ,k kt x are a 

filter efficiency and their location. In this case the source of ACP production can be described in a 

way which is more realistic and to some extent similar to that used in the PACTITER code. 

Equation (32) can be also generalized for the case when precipitation of ACP has to be taken into 

account. In this case an additional equation for evolution of the precipitates has to be added to the 

generalized continuity equation in accordance with the physics of the process.  

 
It should be noted that due to the complexity of these analytical solutions, it may be more practical to 

solve the continuity equation using numerical integration. Indeed, Eq. (32) can be presented in the 

following form: 
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f x t t x V t V t f x t x x

L x t
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 

 (47) 

which is suitable for numerical solution by any of the different methods used to integrate differential 

equations of this type and can be applied to calculate accumulation of isotopes in water given time-

dependent activity source. 
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8.  CONCLUSIONS 
 
 
Accurate estimation of the concentration of radioactivity in different components of TCWS loops will 

be the key factor in licensing of ITER for construction and operation. An analytical approach for 

calculation of ACP  accumulation has been proposed. A continuity equation describing the kinetics of 

accumulation of radioactive isotopes in a water cooling system in the form of a closed ring has been 

formulated, taking into account the following processes: production of radioactive elements and their 

decay and filtration. The main advantage of the equation formulated is that it provides the ability to 

solve the equation in a closed form. It has been shown that analytical solutions can be obtained even 

in the case when an operational parameter such as the rate of ACP production is an arbitrary function 

of the operation time. Additional work is needed to more accurately assess the ACP inventory in the 

cooling water system, including more accurate simulation of the TCWS operating cycle and 

development of experimental data or analytical methods for determining material corrosion, release, 

and deposition rates. This approach can be used to cross-check the results of numerical calculations 

obtained by using different approaches, and to design an alternative code to PACTITER for analytical 

calculation of ACP accumulation in the cooling water system.  
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