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Presentation Outline
• Salt-cooled reactor systems
• Fast spectrum molten salt reactors (FS-

MSRs)
− Description
− Accident criticality safety challenges

• The Advanced High-Temperature Reactor 
(AHTR)
− Description

• Use of AHTR plant design strategy to 
address fast-spectrum MSR accident 
criticality challenges



Salt-Cooled Reactor Systems



Molten and Liquid Salts are 
High-Temperature Coolants

Liquid Fluoride Salt

• Fluoride salts
− Molten:  fuel dissolved in the salt
− Liquid:  clean salt

• Characteristics
− Melting points between 350 and 

500ºC
− Boiling points >1200ºC
− Physical properties similar to 

water
− Transparent

• Technology originally developed 
for the molten salt reactor in the 
1950s and 1960s

• Only usable in high-temperature 
systems

Molten Salt Reactor Experiment



Four Salt-Cooled Reactor Systems 
are Being Examined

Molten Salt Reactor→
Fuel Dissolved in Salt

←Advanced High-
Temperature Reactor

Graphite Moderated
Solid Fuel

←Liquid-Salt-Cooled 
Fast Reactor

Metal-Clad Solid Fuel

Fusion→
Liquid First Wall



Fast-Spectrum 
Molten Salt Reactors



Molten Salt Reactor
Fuel Dissolved in the Salt Coolant

Traditional Design with Graphite Moderator and 
Thermal/Epithermal Neutron Flux
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New Missions and New Technology 
are Creating a FS-MSR

• Missions
− Sustainable power production
− Actinide burning

• Technology
− Thermal neutron spectrum (Traditional)
− Fast spectrum (New development)

• No Graphite
• Modified salt compositions



• Breeder reactor
− French design

• New salt 
compositions
− LiF:  80%
− (HN)F4:  20%

• Advantages over 
solid-fuel fast 
reactors
− High efficiency
− Negative void and 

temperature 
coefficients

Sustainable FS-MSR



MOlten Salt Actinide Recycler  
Transmuter (MOSART)

• Transmute Pu and minor 
actinides without U-Th 
support
− Russian design

• Salt selected for high-
actinide solubility
− LiF:  15–17 mole %
− BeF:  25–27 mole %
− NaF:  remainder

• Design parameters
− 2400 MW(t)
− Fission product removal 

cycle 300 days
− Power density:  43 W/cm3

− Negative void coefficients



Nuclear Criticality Accident
Safety Challenge

• High fissile content of a fast-spectrum 
reactor implies potential criticality in an 
accident if
− a geometry change
− contact with a neutron moderator

• FS-MSRs have liquid fuels that can flow 
into empty spaces

• Many materials in a reactor are 
moderators (concrete, etc.)



Advanced High-
Temperature Reactors

System Characteristics May Address 
FS-MSR Accident Criticality Challenge



Passively Safe Pool-Type 
Plant Designs
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Fuel and Graphite 
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The Near-Term Option That Combines 
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AHTR Schematic
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Decay Heat Removal System Enables 
Passive Safety and High-Power Levels

(Pool Reactor Auxiliary Cooling System:  PRACS)
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PRACS Heat Exchanger and Valve 
Dumps Decay Heat to the Pool Salt
• Low flow in upward direction 

during normal operations due 
to fluidic diode

• High flow in reverse direction 
after pump shutdown and 
natural-circulation flow startup

• Decay heat removal upon flow 
reversal

Multiple fluidic valve options



2400 MW(t) AHTR with Prismatic Fuel
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Use of AHTR Plant Design to 
Address the Accident Criticality 

Challenge of a FS-MSR
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FS-MSR with AHTR Two-Salt System
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Criticality Safety System 
Characteristics

• Secondary salt contains rare-earth absorbers
− Nearly identical chemistry
− If salts mix, no accident mechanisms for separation of 

fissile materials from rare-earth absorbers
• Secondary salt has a lower melting point to assure 

mixing of any leaking molten salt
• Secondary salt volume is much larger than the 

primary salt volume
• Secondary salt volume is sufficient to flood the silo 

above the core level if there is secondary vessel 
failure



Other Benefits of 
Clean-Salt Pool System

• Improved containment of radioactivity
− Physical containment (secondary vessel)
− Chemical containment:  fission products dissolve in the 

secondary salt and this prevents their release to the 
environment under accident conditions

• Shielding
• Avoid thermal shock to primary system
• High-assurance of no freezing of liquid or molten 

salt
− High heat capacity in secondary-vessel salt
− Limited surface area for heat loss



Conclusions • FS-MSR capabilities
− Sustainable energy 

production
− Actinide Burning

• FS-MSR safety advantages 
compared to solid-fuel fast 
reactors
− Negative void coefficients
− Lower fission product 

inventory (removal of fission 
products)

− Lower system fissile 
inventories

• Secondary salt-filled vessel 
with neutron absorber may 
address FS-MSR accident 
criticality challenges

• Development required
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Accident Criticality Safety for Fast-Spectrum Molten Salt Reactors
Charles W. Forsberg; Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, forsbergcw@ornl.gov

A new method to ensure criticality safety under accident conditions in fast-spectrum (no moderator) molten salt reactors (FS-MSRs) is proposed.  MSRs are liquid-fuel 
reactors [1] that can be used for producing electricity or hydrogen as well as burning actinides and producing fissile fuels (breeding).  Fissile, fertile, and fission products 
are dissolved in a high-temperature atmospheric-pressure molten fluoride salt.  The fuel salt flows through a reactor core, where fission occurs within the flowing salt; 
through an intermediate heat exchanger; and back to the reactor core.  An intermediate heat-transfer loop transports the heat to a turbine hall or to a hydrogen 
production facility.

FAST-SPECTRUM MOLTEN SALT REACTORS. MSRs are being reexamined today because of their unique fuel cycle and safety characteristics.  The fuel-cycle 
capabilities include online refueling, no fuel fabrication (i.e., use of liquid fuel), and easy online blending of different fissile feedstocks.  While the original MSRs were 
thermal spectrum reactors with graphite in the core as a moderator, today interest exists in FS-MSRs in which the core is a wide pipe in a molten salt circuit. Two 
concepts are being evaluated.  In the actinide burning MSR, the plutonium and minor actinides from LWRs are the feed for an MSR that destroys 99.8% of the actinides. 
There is no fertile uranium or thorium that breeds fissile materials.  This feature minimizes the number of actinide-burning reactors that are required for a fleet of LWRs. 
In the breeder MSR uses either the plutonium or U-233 with the fertile materials dissolved in the fluoride salt.

CRITICALITY SAFETY. Two reactivity-based safety issues are associated with fast-spectrum reactors:  reactor control and criticality safety under accident conditions. 
Regarding reactor control, unlike solid-fuel fast-spectrum reactors, FS-MSRs have large negative temperature and void coefficients because liquid fuel is expelled from 
the core if voids are formed or if the temperature increases.  The other criticality safety challenge associated with fast reactors is that accidental criticality can occur if 
the fissile materials are placed near neutron moderators—such as concrete.  The critical masses in thermal-neutron environments are much less than those in fast 
reactors.  For FS-MSRs, the challenge is the possible leakage of liquid fuel should a pipe break occur.  A conceptual approach to solve this criticality safety challenge 
has been identified based on the technology being developed for the Advanced High-Temperature Reactor (AHTR).

The AHTR is a high-temperature reactor that uses coated-particle fuel (the same fuel used in gas-cooled high-temperature reactors) and liquid-fluoride-salt coolants. 
The closed primary reactor system is in a pool of liquid “buffer” salt, such as an inexpensive sodium fluoroborate salt.  The primary salt coolant does not mix with the 
pool buffer salt.  Instead, the salt coolant goes through the reactor core, the intermediate heat exchanger, and the primary pumps before returning to the reactor core. 
The buffer-salt pool is cooled with a direct reactor auxiliary cooling system (DRACS).  During normal operation, the buffer salt is at the same temperature as (or a lower 
temperature than) the coldest primary salt.

In the AHTR, if the intermediate heat exchangers do not remove the reactor heat, hotter primary coolant exits the heat exchangers and the temperature difference 
between the primary coolant in uninsulated pipes and the buffer salt dumps decay heat to the pool.  Decay-heat removal can be enhanced by a secondary loop 
containing a fluidic diode and a heat exchanger that is connected between the top and bottom plenums of the reactor core.  The fluidic diode allows high primary-system 
salt-coolant flow in one direction with low pressure drops but low primary-salt flow in the other direction with high pressure drops.  If the pump stops, hot salt from near 
the top of the reactor flows by natural circulation down the loop and through a heat exchanger, dumps its heat to the pool, and enters the bottom of the reactor core 
plenum.

The use of the same system geometry for an FS-MSR can provide the basis for ensuring accident criticality safety (as well as normal decay heat removal).  The FS-
MSR would be in a closed system in a pool of buffer salt, which would contain the same salt or another salt with rare earth neutron absorbers.  Because plutonium has a 
chemistry similar to that of the rare earths, the concentration of neutron absorbers in the secondary salt can be the same as or higher than that of the plutonium in the 
primary fuel salt.  If a failure occurs in the reactor vessel or piping, the fuel salt and pool salt mix.  However, criticality is avoided by mixing two salts with essentially 
identical chemistries but different nuclear properties.  The similar chemistry ensures that there are no mechanisms to separate the rare earths and plutonium.  For the 
MSR, the buffer tank would likely also include dump tanks under the core to drain the fuel salt to critically-safe, passively cooled tanks during maintenance and under 
some accident conditions.  Significant analysis will be required to validate the strategy and chose the appropriate rare earths.



Salt Coolant Properties can Reduce 
Equipment Size and Costs

(Determine Pipe, Valve, and Heat Exchanger Sizes)
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Power Reactor Cycle Waste-Burning Challenges 
Avoided by MSR
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Actinide Burning:  MSRs Avoid Several 
Solid-Fuel-Reactor Challenges
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• Match modular gas-cooled 
reactor passive safety

• Characteristics
− Low pressure salt coolant
− 2400 to 4000 MW(t)
− Peak coolant temperatures

• Electricity:  ~750°C
• Hydrogen:  up to 950°C

• Economics is the primary 
incentive:  Preliminary 
assessments
− 30% less than LWR
− 50% less than modular high-

temperature reactors
• Status

− Longer-term VHTR
− Work at ORNL, U.C.-Berkeley, 

Areva-NP, and others

AHTR Characteristics and Status

ALWRs will improve with time thus advanced reactor goals 
must exceed expected ALWR technology in 2025

Salt 
Cooled

Gas 
Cooled


