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1. Introduction’

The objective of the Fossil Energy Advanced Research and Technology
Development (AR&TD) Materials program is to conduct research and development on
materials for longer-term fossil energy applications as well as for generic needs of
various fossil fuel technologies. These needs have prompted research aimed toward a
better understanding of material behavior in fossil energy environments and the
development of new materials capable of substantial enhancement of plant operations,
reliability, and efficiency.

The research program of the Materials Response Group at Virginia Tech addresses
the need for reliable and durable ceramic composites to perform in high temperature
applications. Areas of current research are characterization of oxide/oxide hot gas filter
tubes and dense Nextel/SiC tubes. The focus of this report will be on the characterization
of the Nextel/SiC tubes. In Section 2, we discuss the tube responses to axial tensile and
compression loading as well as to torsional loading. Internal pressure test procedures are
detailed and refinements are proposed. In Section 3, the elasticity theory model and -
nonlinear regression analysis currently being developed will be explained and
preliminary results presented.

Finally, we have been working toward the goal of developing models for the strength
and toughness of fibril-reinforced composites. The first step toward this goal, described
in the last report and summarized in Section 3, is to develop models for the bridging
stresses in cases in which the bridging fibers are randomly oriented. This model has been
extended to include the effect of fiber length, and is used to determine the apparent
toughness of a fibril reinforced composite.

" Research sponsored by the U. S. Department of Energy, Fossil Energy Advanced
Research and Technology Development Materials Program, DOE/FE AA 15 10 10 0,
Work Breakdown Structure Element VPI-1



2. Performance of Nextel/SiC Composite Tubes

Much of the previous mechanical testing of composites made using the FCVI
technique has been limited to relatively small planar samples. These test methods include
flexure tests and some limited axial testing3’6. With the larger sample size and different
sample geometry, different tests need to be performed to characterize the mechanical
properties of tubular samples. The approach used in this study will be modeled after that
applied in Carter, et al for characterizing hot gas filter tubes'®.  Axial tension,
compression and torsion are used to characterize the elastic response of the tubes.
Internal pressure and axial tensile strength tests are used to characterize the strength of
the composite.

2.1 Fabrication

The composite tubes were fabricated using the forced-flow, thermal gradient
chemical vapor infiltration technique at developed at Oak Ridge’. The preforms
consisted of ten to twelve Nextel 610 (Nextel 312 for sample CVI-1173) braided sleeves
stretched over a polyethylene mandrel. The green preform was infiltrated with a small
amount of Borden Durite resin to provide some structural support prior to the silicon
carbide infiltration. The preform was compressed by aluminum tube sections and
allowed to cure. The cured preform was trimmed to a 35.5-cm length prior to the SiC
infiltration via the FCVI process. The FCVI process conditions were as follow: 1200°C,
5 slm of hydrogen, and 1 slm of methyltrichlorosilane (MTS). The samples achieved 80
to 90% of theoretical densities in about 36 hours. Once processing was completed the
ends of the samples were removed to leave a 30-cm long sample. The final tube
properties are listed in Table I. It should be noted that in this study, no fugitive carbon
layer was deliberately deposited to improve composite toughness. A small amount may
be present from the decomposition of the resin used to rigidize the preform, though none
was noticed in the initial inspection of the tubes.

Table I. Properties of the Nextel/SiC composite tubes

CVvi1173 Cvi1216 Cvi1219

Process Time(hours) 36 36 36

Density (g/cm®?) 3.00 2.88 3.08

% Theoretical 87 ~80 ~80

Density
Fiber Type Nextel 312 Nextel 610 Nextel 610
Fiber Volume 50 375 32.2
Fraction (%)

Number of layers 10 10 8

A cross section of the CVI-1173 tube can be seen in Figure 2-1. The light gray
layer on the inner surface is a SiC layer deposited during the FCVI process. This layer
was less than 1 mm at the ends of the tube, and approached 4 mm in thickness in some



cross sections taken near the middle of the sample. The uneven distribution of the SiC
increases the difficulty in the calculation of the density. It is estimated to be near 80%
theoretical

Figure 2-1: Cross section of sample 1173

density of the composite. Additionally, the change in dimension creates problems in
accurately calculating the stress in the material. The cross sectional area and polar
moment of inertia used in this study were calculated from the average values of the outer
diameter and tube thickness at each end of the sample.

For Sample CVI 1219, the SiC layer was on the order of 4-mm thick, increasing
the cross-sectional area, thereby decreasing the stress in the material during testing. Due
to this, the strength of the sample exceeded the load capacity of the MTS system (246
kN). The steel inserts were removed by burning off the epoxy layer by placing the
sample in a furnace at 400°C for 1 hour. The power was turned off and the system was
allowed to cool before the sample was removed. The sample was returned to ORNL, and
the SiC layer was machined off the inner surface. The average dimensions for the
samples are in Table II. The changes in the dimensions of CVI 1219 are shown in the
last two columns. The thickness values for the sample after milling exhibits large
variations, which is due to the inner surface not being concentric with the outer.

Table II. Dimensions of the samples

In mm CVvI1173-1 | CVI1173-2 | CVI 1216 CVI 1219 CvI 1219
(as-received) | (after milling)
Outer 59.7+0.2 59.7+0.2 59.3+0.06 59.240.1 59.1+0.2
Diameter
Thickness 6.9+0.7 6.8+0.4 7.6£0.6 7.9+1.8 4.8+0.4
Inner 45.8 46.1 43.9 434 49.7
Diameter
Area 11.48 11.24 13.09 14.99 8.14
(*10* m?




2.2 Axial tests

Axial tension, torsion and compression tests were performed on each of the
samples. All tests were performed on a MTS servo-hydraulic load frame with axial and
torsional capabilities. Teststar II software from MTS handled system control and data
acquisition. To increase the number of samples, CVI 1173 was cut in half. The later
samples, CVI 1216 and 1219, were sectioned differently. From each of the tubes, two 3.5
to 4.0-cm internal pressure test samples were cut from the initial sample, leaving a 23-cm
sample for axial testing. For the axial samples, the ends were initially potted in epoxy
and machined down to acceptable tolerance for the MTS grips. The low stiffness of the
epoxy proved insufficient to support the high compressive force in the grips. Both of the
1173 axial samples suffered grip-induced failures. To provide support, 6.25-cm long
steel inserts were made to closely fit into the tube ends and were bonded in place with
epoxy. Again, the outer surface was built up with epoxy and milled down to the
tolerances required for the MTS grips. Grip related failures have not been observed on
either sample using this configuration.

Strain measurements were made using four strain gage rosettes equally spaced
around the samples as shown in Figure 2-2. The redundant measurements are made to
account for any specimen misalignment, since small misalignments can generate
significant stress/strain variations through the sample®. In the elastic regime (below
matrix cracking), these effects can be removed by averaging the values. A typical axial
stress/strain curve is located in Figure 2-3. The plotted values are the average of the
different strain components from each gage. The recording of the different strain
components (axial, hoop, and shear) is important for the analysis being developed and is
explained in Section 3. Table III contains the measured mechanical properties of the
tubes. Both sets of results are listed for Sample CVI 1219 — AR for as-received and AM
for after-milling. The tensile strength values for the two 1173 samples are not indicative
of the material since both exhibited grip induced failures.

Table III: Mechanical Properties of the Nextel/SiC composite tubes

Tube Axial Torsional Poisson Tensile Strength
ID Stiffness Stiffness Ratio (MPa)
(GPa) (GPa)
1173-1 171.6 91.3 31.1
1173-2 166.9 66.0 68.1
1216 163.8 80.6 0.28 >197.4 Axial +
43.5 Shear
1219 141.5 64.7 >137
AR
1219 148.8 67.3 0.52 200.2
AM




The stiffness values are calculated from the strain data collected from the strain
gages and the stress values calculated using the values for the area and moment of inertia.
It is uncertain why there is a large discrepancy in the torsional stiffness values between
the two 1173 samples. Both samples were cut from the same tube, and the axial stiffness
values are similar, indicating that there are no major differences in the geometry or
material properties.

The stress/strain curves for the tensile strength tests of the CVI 1173 samples are
in Figure 2-4. Both 1173 samples experienced grip induced failure, and exhibited a small
amount of nonlinear behavior, as can be seen in the departure from the CVI 1216 line.
The fracture surface exhibited some fiber pullout, as can be seen in Figure 2-10. CVI
1219 failed in the gage section, and the tensile strength plot is in Figure 2-5. An
extension of the linear behavior of the material is included to illustrate the nonlinear
behavior.

Figure 2-2: Specimen configuration for axial tube testing.
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Figure 2-3: Typical tensile test.
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Figure 2-5. Tensile Strength Plot for CVI 1219.



During the testing of samples 1216 and 1219 AR, the load profile reached the system
limit before failure. The values listed are the largest stress values applied before the
246kN (55 kip) limit or prior to slippage of the sample. In order to test CVI 1216 and
1219, the grip pressure was boosted to 38 MPa, from the normal setting of 20 MPa, to
prevent slipping at the higher loads. For CVI 1216, the load profile was altered so that
torque would be applied when the axial load limit was reached. The load profile for CVI
1216 is in Figure 2-6. The axial force reaches 246 kN and an applied torque of 1422 N-m
before the sample slipped out of the grips of the MTS frame. Later attempts to repeat the
test to a higher level failed due to wear on the epoxy grip surface.
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Figure 2-6. Load Profile for CVI 1216

Figure 2-7 and Figure 2-8 are of the strain response to the different sections of the
loading profile. Figure 2-7 has the pure tension results, while 2-8 contains the result for
the torque ramp with a constant 246 kN axial load.
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Photographs of the failed of samples CVI 1173, 1 and 2, and CVI 1219 are in
Figure 2-9 through Figure 2-12. The first two images show the grip-induced failure of
the CVI 1173-1. The failure originated in the region above the grip area, as can be seen
in Figure 2-9. Figure 2-11 and Figure 2-12 are of CVI 1219. All the samples exhibited
fiber pullout, while CVI 1219 had delamination and pullout (highlighted in Figure 2-11).

Figure 2-9. Grip induced failure of CVI 1173-1
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Figure 2-10: Fractured tensile strength specimen CVI 1173-1

Figure 2-11. Sample CVI 1219 with large amounts of fiber pullout and
delamination
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Figure 2-12. Sample CVI 1219 failure surface with pullout
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2.3 Internal pressure tests

Internal pressure testing has been used for testing composite tubes®®. The procedure used
the compressed rubber plug technique as described in Singh, ef al. A schematic of the
test is in Figure 2-13. By compressing the rubber plug, the Poisson

Composite
Ring

Figure 2-13: Schematic of internal pressure test

expansion of the material will generate pressure on the inner surface. The internal
pressure is calculated by the expression: '
o,—-E.,

2vp

P= @.1)

Where P; is the internal pressure, Op, Ep, €; and v, are the compressive stress, Young’s
modulus, axial strain, and Poisson’s ratio for the plug material. This expression is
derived from an elasticity solution for an isotropic, linear elastic material. Due to the
axisymmetric loading conditions, the radial and hoop stress are equal throughout the
pluglo. With this information, Hooke’s Law can be rearranged into the expression above.
It is important to note that due to the large deformations used for these tests (30 to 50%
on average), true stress and strain values should be used for this procedure. These values
are found from the engineering stress and strain values by:

(2.2)

where & and £ are the true stress and strain and o and ¢ are the engineering stress and
strain'!. Initial attempts used a Dow Silastic T-2 silicon rubber plug. This material
proved to be too soft for use with the SiC samples. At high pressures the plug would fail
prior to failure of the specimen. The material was changed and a urethane rubber was
used to generate pressure within the sample. The material has proved to be nonlinear
elastic in compression, causing the equation above not to accurately predict the pressure.
By changing the Young’s modulus for the plug from a constant to a function of strain, the
equation can describe the behavior of nonlinear elastic materials. To record this
behavior, a plug is compressed between to lubricated platens using the same loading rate
as for the internal pressure tests, and the data is fit using a polynomial expression (usually
5" or 6™ order regression) in a Microsoft Excel spreadsheet. Each test is preformed with
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the same loading rate and at least 10 minutes between tests, to minimize differences due
to the visco-elastic effects of the elastomer compound. A high pressure lubricant is
applied to both the plug and inner surface of the sample to minimize compressive loads
generated by friction. After each test, the plug and sample are inspected for any damage
associated with the test. To date, the tests have not been run to a level sufficient to
damage the SiC composite. New elastomeric compounds are being investigated, and the
procedures are being improved in the hope of increasing the pressure above the strength
of the material.

Typical internal pressure test results are in Figure 2-14 and Figure 2-15. Figure
2-14 has the stress-strain curve of the plug within the sample (Constrained Plug Stress)
and that of the compression of an unconstrained plug (Free Plug Stress).

4000 -

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05

-2000 -

Stress or Pressure (kPa)

< Constrained Plug Stress
——Free Plug Stress
e Pressure

-4000 -

-6000 -

-8000 -
Plug Strain

Figure 2-14. Stress and strain in the plug for an internal pressure test with the
internal pressure generated in the sample.

The two curves overlap until the plug comes into contact with the inner surface of the
sample at a value of —20% strain. From 20 to 30% strain the Constrained Plug stress
differs from the Free Plug by the effects of the pressure generated. Figure 2-15 is a plot
of the strain measured by the stain gages on the composite sample as a function of the
internal pressure. The values below 1 MPa should be overlooked since it believed that
below this value the plug has not made uniform contact with the surface of the sample. If
the plug is not perfectly centered, the first part of test will be the plug making uneven
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contact with the sample and centering due to unbalanced forces and lubricated surfaces.
Also, for the axial measurements, the sample is held in a fixture with a compressive load
to prevent sample movement. After the 1 MPa limit, the strains resume a linear trend
with the application of pressure.

4500 -

—AVG Ax
s AV Hoop
f ——— AVG Shear

Internal Pressure (kPa)

-0.0002 0.0001 0.0002 0.0003 0.0004

Strain

Figure 2-15. Measured strain vs. internal pressure for an internal pressure test
(Sample CVI 1219).

The results of the internal pressure tests are in Table IV. The values are the slopes found
by linear regression for the data, as shown in Figure 2-15 (Pressure/strain). Others in the
literature have calculated the hoop stress in the cylinder due to the internal pressure by
expressions from elasticity theory (Lame’s Cylinder solution)’. This assumes a
homogenous, isotropic material behavior, which is not expected with these materials, but
will be used here to describe the results. It allows for the different thickness of the
samples to be taken into consideration, which are significant between the 1216 and 1219
samples. Work described in the next section is being developed to address the problem
of finding a better method to represent the results to internal pressure tests, since these
materials are neither homogenous nor isotropic.

More work is needed to develop this procedure to a level where it will be able to
differentiate between material properties and testing conditions. The differences in the
Poisson ratio could be due to structural differences in the material or the difference in the
surface finish of the inner surface. The inner surface of CVI 1219 was machined to a
smooth surface, while CVI 1216 is uneven with large protrusions deposited during the

15



infiltration. Even with the lubrication, it would be enough to generate compressive loads
in the sample, increasing the Poisson’s ratio.

Table IV. Slopes of the best-fit data

. Hoop
Pressure/Strain Stress/Strain
: ’
Sample Axial (GPa) | Hoop (Gpa) | Hoop (GPa) | Shear (GPa) Po;;st(i): §
CVI 1216 -89.16 40.57 394.1 95.13 0.46
CVI 1219 -34.18 10.74 276.2 55.13 0.31
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3. Analysis of Data

So far, the characterization of the composite tubes has focused on the global
responses (axial stiffness and strength, torsional stiffness, and internal pressure burst
tests). A better understanding of the material would come from knowing the ply-level
elastic properties, but it is not possible to measure those directly for a composite tube.
Current research is developing methods to determine the ply-level elastic constants (E;,
E,, Ej, etc...) for a homogenous, orthotropic composite laminate. The first part of this
section will review the elasticity solution for these structures subjected to axisymmetric
loading conditions. In the second part, a nonlinear regression analysis will be detailed
with some preliminary results.

3.1 Elasticity or “Forward” Solution

The derivation illustrated is from the work by Rousseau, et al'*>. The following
expressions can be used to calculate the stresses, strains and displacements for a
composite cylinder under axisymmetric loading conditions (axial tension, compression,
torsion, internal pressure and uniform temperature change). By applying the Strain-
Displacement relations to the Displacement equations, the different strain components
can be calculated through the thickness of the tube. The strain values are related to the
stress values by the Constitutive equations.

Displacement Equations — u = axial displacement, v = tangential and w = radial
displacement

u(x)=¢&x
v(x,r)=y°xr
w(r)=Ar* + Ar? +Te%r + Qy°r? + WrAT

i= |2 3.1)
33
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Strain-Displacement Equations

g 2 v v

“ox Y or
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0
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C 0
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At this point the expressions for stress, strain and displacement can be derived in
terms of the transformed material stiffness matrix ('C-‘U. ), 80, yo, A; and A, Since the

elastic properties and geometric considerations are known for a given structure, the (T‘,.j

values can be calculated for each ply. The remaining unknown terms - 80, yo, Ajand A, —
need to be found using the boundary conditions. For a laminated structure composed of
N layers, there will be 2N+2 unknowns — 80, yo, N Ay’s, and N Aj’s. The first boundary
condition is a relation between the applied axial force and the axial stress. For a tube in
axial tension, the applied axial force, F, must be equal to the sum of the integrals of the
axial stress through the thickness. The same applies to a tube with an applied torque, Tj.
The sum of the integrals of the shear stress must equal the applied torque. The
expressions for these boundary conditions are:

/=

N,
F. = 271'21-'~ O'J(Ck) (r)rdr
k=t "%
34
rrk T)(Cz)(r)rzdr

N
T, = 2ﬂk§;fk_l

This gives two equations towards the 2N+2 unknowns. Two more come from the
pressurized cylinder condition. The pressure at the inner and outer surfaces must be
equal and opposite to the applied pressures. These can be equated as:
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1
p=or () (3.5)
—P, =0, (R,)
where p; and p, are in the applied internal and external pressures, R; and R,, are the inner
and outer radii, and the superscript on the stress expression is the layer of the material.
The last two requirements for the tube are that of continuity of traction and displacements
at ply interfaces, or:

W (r) = (1)

3.6)
0, (r)=0,4 ()

This gives the last 2(N-1) equations needed to solve for the unknowns. Simultaneously
solving the above equations will give the 2N+2 unknowns for the displacement, strain
and stress equations.

3.2 Nonlinear Regression Analysis or “Inverse” Solution

Now that an analytic expression exists, it is possible to develop a method using this
model to back calculate the ply level properties. In a thesis by George, a nonlinear
regression method was used to find the best ply level elastic properties to fit a set of
experimental data'>. Figure 3-1 illustrates the steps in the nonlinear regression analysis.
In the first step, the sample geometry (number of plies, orientation, interfacial radii,
etc...), guess values for the elastic properties (E;, E, E3, Gi2, Vi2, V13, V 23, 041, 05 and O
3) and applied loads (Fyx, T, P;, P,, and any combinations of each) are entered into the
elasticity solution. The strain response (&, €g and Yxg) for each load condition is
calculated. At this point, there are two sets of strain values, the experimental data and
those calculated from the guess values. The goal of the program is to minimize the error
function, Y, which is defined as:

r=3%0*=Y % (g,-¢) 3.7)

Where &y, and €, are the measured and calculated strain values, and Y is the sum of
square errors (SSE).

If the system of equations were linear, a minimum in the error function would be
found in one step. Since this is not, a nonlinear regression technique must be used. The
difference is that the nonlinear method is an iterative process, with each successive step
decreasing the SSE. A solution is found by declaring convergence criteria. These can
range from the SSE falling below a defined or acceptable value, or defining a fixed
number of iterations for the system. Usually, more than one of the criteria will be
employed to reduce computation time and determine convergence. Other criteria are
chosen to stop the program if the system is not converging to a solution. This is
dependent upon the quality of the data and guess values. If either is not sufficient, the
system may not converge to a meaningful solution.
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Figure 3-1: Schematic of Inversion Program

At this point, C++ codes have been written for the Forward and Inverse solutions.
In order to test the method, a fictitious composite laminate data set was created, and the
Forward solution was used to generate the strain response. The guess values were altered
and input into the Inverse solution. Table V contains the guess values, solution values
and the correct values for the test run. The maximum number of iterations was set to 25,
with no other criteria used, to obtain a plot of the variation in the SSE with each iteration,
as seen in Figure 3-2. After each iteration, the values are improved and the sum of
squared error decreases until the solution is found (the line plateaus). The different lines
are for the number of significant digits included in the strain values used as the
experimental data set. Truncating the strain values before they were input into the
analysis controlled the number of significant digits, illustrating the effects of error on the
input values. The effect is not significant for exact values (4 or more significant digits),
but does introduce large errors in some of the values in the cases of 2 or 3 significant
digits. This is not unexpected, linear and nonlinear regression are very sensitive to error
in the input values. This sensitivity is not desirable since the accuracy of experimental
measurement can not be expected to be accurate to 4 significant digits.
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Table V. Data set used in the Inversion Program (Input and Output are for 6

SSE

significant digits).
Value Input Value | Output Value | Correct Value
E; 10000 2.15E+07 2.15E+07
E; 1000 1.46E+06 1.46E+06
E; 1500 1.46E+06 1.46E+06
Giz 5000 5.61E+06 5.61E+06
V12 0.1 03 03
Vi3 0.159 0.5896 0.59
Va3 0.1 0.59 0.59
100 -
10
1 T 3
0.1 30 35
0.01 4
0.001 -
0.0001 4 —4— 6 Digits
1E-05 - 5 Digits
—&— 3 Digits
1E-06 =32 Digits

1E-07
1E-08 |
1E-09 |
1E-10 4
1E-11 4
1E-12
1E-13
1E-14
1E-15 4
1E-16 4
1E-17
1E-18 -

Iteration

Figure 3-2: Sum of Square Error values for each iteration

Application of this method to the results reported in this paper is forthcoming. In
order to accurately describe these materials, the model has been improved to include two
new conditions. The first would allow for the model to describe a non-homogenous or
hybrid structure. This would allow for the SiC layer in the samples to be included. The
second condition is a set of degenerate solutions to the problem. After inspecting the
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terms of the equations for the displacements (and the other terms, since they are functions
of the displacements), both I, Q,and ¥ have conditions where the denominator can equal
zero (when C,, =C,; and/or C,, =4C,,). The first condition is not uncommon and is
met with isotropic or transversely isotropic layers (0° plies). Both of these conditions are
being included so that the SiC layer can be included (utilizing both additions — hybrid

structure with an isotropic SiC layer). Once the work is completed, the data will be input
into the analysis, and the calculation of the ply-level properties will be attempted.
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4. Effect of Randomly Distributed Fibers on the Toughness of Fibril-
Reinforced Composite Materials

4.1 Introduction

The critical stress for extension of short (non-steady-state) matrix cracks bridged by
continuous fibers parallel to the applied load and perpendicular to the crack has been
thoroughly analyzed using fracture mechanics principles by Marshall et al.'¥,
McCartney'®, Majumdar et al.'®. In their analysis, authors proceed by equating the
effective stress intensity factor obtained for the matrix crack, i.e., the stress intensity
factor obtained by superposing the contributions of the far field stress and of the crack
bridging fiber tractions with an effective fracture toughness of composite. The
computation involves three key steps:

1. Development of a relation between traction applied by the crack-bridging fibers
and the crack-opening displacement;

2. Use the force displacement relation in an iterative numerical scheme to obtain a self-
consistent crack opening profile and crack-bridging tractions at a given applied stress;

3. Use of the self-consistent fiber tractions to calculate the effective stress intensity factor
and the critical stress based on an appropriate fracture criterion.

In this work, we extend the Marshall et al.!* approach to the analysis of inclined and
randomly distributed fibers within a composite specimen.

4.2  Crack Closure Pressure for an Inclined Fiber

The mechanics of fiber pullout can be conveniently analyzed by applying tractions Tp,
and T equal and opposite to the stresses in the matrix and fibers along AA’ at the end of
the slipped region (as shown in Figure 4-1), and removing the section AA’CC’. If we
neglect the effect of shear stresses above AA’ (i.e., assume that it represents an isostrain
plan) these tractions are related:

T,,,/ T;Z

) 7t
77
v / | / / !
/i /
: / Vi
e/ ¢
2
Figure 4-1: Analysis of fiber pullout for an inclined fiber

T, T

dm 20
E, E,

m

4.1)
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where,

Ty, and Ty are the tractions within the matrix and the fiber respectively;
E,, and E; are the modulus within the matrix and the fiber respectively.

Equations relating the stresses and displacements are obtained by considering the
equilibrium of the matrix and fiber separately and also calculating the extensions & and

8+u of the matrix and fiber Marshall et al.'.

Matrix equilibrium:
T A, cosy =27 Rtcosy

Fiber equilibrium:

T A;cosy =T, A, cosy +27mRT cosy

Matrix elongation:

0 _rmRIT
lcosy A,E,
Fiber elongation:
o u T, #nRIt
+ =L+
lcosy lcosy E, ALE,
where,

¥ =fiber angle

An = area of matrix per fiber

Ay = fiber cross-sectional area A= R
R = fiber radius

I =sliding length

T = shear stress

& =elongation

u = crack opening

From Equations (4.1) and (4.2), we have
T - 2zRIT E;

' A, E,

From Equations (4.3) and (4.6), we have

21t
T="-"[1+
= [1+7]

with

4.2)

(4.3)

4.4

4.5)

4.6)

“4.7)

(4.8)
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_E A _EVY

= = 4.9
If we substitute Equations (4.4) and (4.6) into Equation (4.5) we find:
y_z27:Rlz'cosz//+7tercost//_ﬂRchosy/ (4.10)
l A E, A E, A E,
After some simplification, we can find the sliding length 1:
RE
] S (4.11)
T(1+7)cosy
Finally, by combining Equations (4.7) and (4.11) we obtain the traction T:
/%
4uE, t(1+
T:[ ub ”)} 4.12)
Rcosy

4.3 Extension to Randomly Distributed Fibers

4.3.1 No Possible Fiber Pull-Out

We now seek to extend the solution for the closure traction to the analysis of cracks that
are bridged by randomly oriented fibers. These fibers are assumed to be sufficiently long
that pullout does not occur. For such a case, the probability density function describing
the orientation of fibers in the matrix is defined as (with the normalization condition)

Fw)=] f(w)dy
- 4.13)

If we consider f{y)= constant (so that the distribution is completely random), we find
that:

fw)== @.14)

Following Jain and Wetherhold”, we introduce the auxiliary variable y’, which

represents the signed distance from fibers’ center of gravity to the crack plane. The
required probability density is:

P[E E,] (4.15)
where
E=ye[y,y+dy]
E,=yely.y+dy]
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Figure 4-2: Illustration of the definition of the auxiliary variable y’
Using the Bayes’ theorem for non-independent events E; and E; we can write:

PIE E,E P %E%E-P[Ez] (4.16)

The second probability is well defined by Equation (4.14). For the events E; the only

, | -1 [
values of y’of interest are those which intercept the crack, i.e. y'e [—f cosy ,—ZL cos l//:|.

Under the assumption that the fiber center of gravity is uniformly distributed in y

direction l: f, (y) = % ,ye o, h]} we can say that y” is also uniformly distributed

l
(fy, (y) = %,y' € DY-h,H]J. We may study y’e{O,Efcosy/} and multiply that

probability by 2.

The probability density that a single fiber bridges an arbitrary crack plane y’=IT with

events E; and E; is thus:
dN ;= T\ h @.17)

0 elsewhere
The number of fibers crossing the crack plane with events E; and E, is defined as:

!
(22 2 pLeosy ,
M= (3 e 1 v @19
where,

h = width of the composite plate
Ny = total number of fiber in the sample.
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N, =<1 (4.19)
f
Al
The closure pressure is defined as:
P(y)=T(y)V,cos’y (4.20)

where,

Al
V.= Af }f N,. - Volume fraction of the fibers that bridge the crack plane IT with

C

events E; and E,.

By taking into account Equation (4.18) and Equation (4.19) we can write:
[ j j Y dydy ] 4.21)

Thus, if the crack is large enough that bridging fibers are randomly distributed, the
approximate closure pressure as a function of position is given by

Loy
P y)=Aj02 j02 T(y)cos® wdy’dy (4.22)
where
-G
7 \h
4.23
r(y) <] #40)Ez(1+n) Vi @)
Rcosy
After integration we have
z 5
P(y)=BT'(y)[?(Jeosy ) ay (4.24)

where

4.25)
r(y) <[ B EZ(47) Vi
R
If we evaluate the integrand numerically, we obtain the final result
§4u OE;t(1+ A)Y
P 0.457& f 1% 4.26
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So that for the case in which the length of the fibers is the same as the width of the
composite, the average bridging stress is roughly half that which would be expected if the
fibers were aligned with the loading direction.

4.3.2 Possible Fiber Pull-Out
l
Using the geometric relationship shown in Figure 4-2, y'=(-§—le)cos1//, where

I, represents the embedded length. For the embedded length I, defined as:
l

I, = —2f- Soven oys Z 4.27)

We have the following conditions:

1if 1,3 1 p= p(y)

L < po (4.28)

Taking into account these conditions in Equation (4.21), changing the inner boundary
)

limit of integration to (é -1 Jcosy/and integrating on [/ rather than y’ the expression of

the crack closure pressure with possible pullout is:

04u(y)E, t (1+ A
P 0.457 l—e W
G»)» g—— B ¢

4.29)

where [ is the sliding length defined by Equation (4.11).

Once the crack closure pressure is obtained, it is possible to determine the crack shape
and the stress intensity factor at the crack tip as a function of the global applied load.

4.4 Crack Opening and Stress Intensity Factor

The crack-opening dlsplacement u(Y), at any position is determined by the entire
distribution of surface traction ['%]:

cj /j F _F ;;/)dtds (4.30)
t3 2
where
4(1—v2)c
C= Al 4.31)
nE,

28



v = Poisson’s coefficient

¢ = half crack length

E. = composite module

Y =normalized position coordinate, y/c
0. = far field stress

P = crack closure pressure

By superposing the contribution of the far field and the crack closure pressure, we obtain
the expression of the stress intensity factor as follows [18]:

..12 - P(Y
k= 2F Y 5 POy 432)

PP 0 (1o yry?
It is essential to ensure that the crack-opening displacement and the crack closure
pressure are self-consistent with each other before any computation of the stress intensity

factor. This can be achieved using numerical techniques. In this paper we used the same
numerical procedure as Marshall et al.'*.

4.5 Numerical Procedure

Equation (4.30) is solved numerically using an iterative procedure. The value of the crack
opening is used to compute the corresponding crack closure pressure, which will give the
value of the crack opening for the next iteration. The value of u(Y) was computing at

n
consider that the convergence to self-consistency achieved as follows:
If the value of the crack opening, u,, used at iteration n to compute led to the

Y =sm( - ), where i varies from 1 to n and n is the number of interval in y. We

value, u,, then the value to be tried at the iteration (n+1) was ou, + (l—a)u,',

where the damping coefficient o is set to 0.5 for short cracks and higher for
larger cracks. This process was continued till the difference between the values of
two successive iterations is less than a tolerance fixed by the user.

Figure 4-3 and 4 show examples where the crack opening u and the crack closure
pressure P are compared with those when the fibers are straight.
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Crack Opening for Crack Size 2c=274.4 microns
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Figure 4-3. Crack opening displacement for composites reinforced with aligned
fibers and randomly oriented fibers.

Crack Closure Pressure for Crack Size 2¢ = 274.4 microns
) 120

o N R E PR
% 100 F— 7 P 1
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3 é 60 "-\ Random Fibers
oaQ \
O 40
S
o 20
o I

0

0.0 0.2 0.4 0.6 0.8 1.0
Distance from Center of the Crack, x/c

Figure 4-4. Crack closure pressure for composites reinforced with aligned fibers

and randomly oriented fibers.

The sample dimension and the matrix and fiber properties used in the analysis are

summarized in Table 6 and Table 7.
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Table 6: Dimensions Used in Analysis

Length (cm) | Width (cm) | Thickness (cm)
15 2.5 0.25
Table 7: Summary of Fiber and Composite Properties
Property Fiber Matrix
E ( MPa) 428 222
1% 0.2 0.24
R ( ,um) 72
Volume 0.21 0.79
Fraction
K, (MPa*fm) N/A 2.7

Finally, we examined the effect of fiber length in the case of possible fiber pullout. As
we expected the longer the fiber is the bigger the closure pressure is. These results are
represented in Figure 6 for three different lengths.

& 10
2 9
o g i
) T
8 6 \\ Fiber Length = 5.76e-3 m
o 5 > e Fiber Length = 6.48e-3 m
L 4 - Fiber Length = 7.20e-3 m
3
_8 3
o 2
S
o
O 0

0 0.2 0.4 0.6 0.8 1

Distance from Center of the Crack, x/c

Figure 4-5. Crack closure pressure for composites containing randomly oriented
short fibers as a function of fiber length.

The results of the analysis can also be used to determine the apparent toughness of the
composite as a function of crack size. Such a result is shown in Figure 4-6.
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Figure 4-6. Critical stress intensity factor as a function of crack size.
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