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SYMBOLS AND NOTATION 

J 

c. I 

f 

Fq = qth detector location 

v = neutron speed 
Y,, = detector volume 
Aqi =-gate length during which the qth detector is on (-set) 
td = final time when the qth detector is turned off 
y, = 9th detector efficiency (counts/event) 

& (t) = qth detector impulse response function (set’) 
& = short hand notation for the set of symbols (A.,, tsf) 
A2 = short hand notation for the set (A,, AZ) 
A3 = short hand notation for the set (A,, A,, A3) 
Lo, Lz = forward and adjoint transport operators respectively 
ii = tit normal vector 

. 

( source fission 
Fc = average spontaneous fission rate of the neutron source 

set 
xS ( V) = normalized source fission neutron spectrum 
X(V) = normalized fissile material fissjon, neutron spectrum - _I ,. _ 
CT = total neutron cross section 
&j,&,~F = neutron scattering, capture and fission cross sections 
coqc = neutron capture cross section for the qth detector 

f(v’ 6’ 1 v 6) = scattering probability function (normalized, dimensionless) 
C s (v’ $2’ 1 v Q) = scattering kernel 
Co (F, v, t) = probability for the occurrence of a capture event = CC/ CT 
C, (F, v, t) = probability for the occurrence of a capture event within the qth detector 

volume 
gSi = probability of emission of j-neutrons per source fission event 1 
ci = probability of emission of j-neutrons per fission event in the tie1 
Cj = probability that a neutron interaction with the fuel material generates j-prompt 

neutrons = Ej ZFICT 
dr = space volume element 
dv dC! = speed and angular volume element 
<f J g> = time-phase space inner product 

‘= TdtJdrdvdZZ f@,v,d,t) g(T,v,fi,t) 

(f Jg) = phase:space inner product = Jdy dv din f(T,v,$t) g(?,v,&t) 

. . . 
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I. INTRODUCTION 
a 

The use of stochastic neutron field theory (neutron noise) for the measurement of reactor 

physics parameters goes back to the early work of Serber’, Feynmann2, and OmdofP. 

Since then, a large variety of methods and applications has been developed. In the 

majority of these methods, some form of modified one-point reactor kinetics was used for 

the interpretation of the measurements. In fact, the high level of sophistication of the 

instrumentation used was not matched by the theory. 
, 

In 1965, Bell4 developed a general theory of the stochastic neutron field, and in 1987, 

Munoz-Cobo et al’ enlarged this treatment to include the effect of the detectors in the 

neutron field. In both instances, the complexity of the theoretical results were beyond the 

computing capabilities then available thus, the mismatch between experimental and 

theoretical methods remained in existence because the powerful Monte-Carlo methods 

then at work, were only applicable to static’ neutron fields. This problem was eliminated 

by the development of a time-dependent Monte-Carlo code specially written by 

T. E. Valentine6 for the analysis of stochastic measurements that gave them relevance to 

the results of the general theory. The purpose of this work is to illustrate the derivation of 

observables of the stochastic neutron filed from its general treatment.’ 

We start with some preliminary developments by introducing the L,-operator and its 

adjoint L,‘. 

z 
+- + L~=Loo-FF;Lo-Loo-F F (1.1). 

with 

1 



L oo= ~.~+c,-~dv’d~‘C,(v’R’lv 6) (1.2) 

-m jdv’ d!2 C, (v’) FF=V 4~ (1.3) 

xw F+Tp E,(v) J dv’ di2’ F (L5) 

We also use the operators 

’ jdv’dCY C; os=--g 

The commutation relation between the forward operator and its adjoint 

{-i$+L;} is given below: 

18 
<r’“vat 

1.8 + 
+L,)r >==< r”-Jdt+ Lou-’ ’ 

where, r, and T, are generalized functions that satisfl the governing equations 

1 d i I ;-g+Lo r=Q, 

18 i I ----+LZ r+ =Q; 

(1.8) 

(1.9) 

(1.10) 



3 
and where, Q, , Q,’ , are external driving functions with the proviso that the above 

generalized functions are such that the bilinear concomitant anociated with the 

commutation relation (1.8) does vanish, one obtains the useful relation, 

(r+lQ)=(rlQ') (1.11) 

Section two of this paper provides a summary of the needed results from the work of 

Munoz-Cobo et al. The covariance and tri-covariance functions are derived in sections 

three and four, respectively. Expressions for the two and three detector cross correlation 

1 functions are derived in section five. Because there is an extensive bibliography on the 

t 
two-detector cross power spectral density7P8V9~‘0.1 ‘*I2 and its derived quantity the R-ratio, 

this paper skips its treatment to emphasize in section six the new results, concerning the 

structure of the Fourier transformed three-detectors cross correlation function, that is, the 

bispectrum function of the source-driven neutron field. Section seven describes the 

single mode approximation to the bispectrum function, and section eight gives a summary . 

of the results obtained. 

II. INTRODUCTORY BACKGROUND 

The necessary theoretical background is provided by the work of Munoz-Cobo et al’. 

Here we summarize some of their results. Given, Q,, detectors and the probability, 

* 

3 



PtNJ ((A}) of finding the distribution {N} of detector counts, one defines the source 

probability generating function, G,, as 

(2.1) 

The moments of, &, are found from the relations 

(2.2) 

The source probability generating function is in turn given in terms of the kernel 

probability generating function, GK (2, *a* 2, I zl t) : 

Gs = exp (Es) (2.3) 

with 

c=$ ccsj QWs)‘-11 (2.4) 

Fs=TsGtc (2.5) . 

and where we introduced the operator 

4 



(2.6) 

and the point source 

S,(F)= F, S(r’-r’,) 
P-7) 

The kernel probability generating tinction, G,, obeys the equation 

. 
HoGK({Z),z,t)=- CT Co+q: zq Cq+Os GK+,$,, Cj(FR)’ (2.8) 

&d+fi v 
O-v dt 

. - c 
T 

FR=TRGK 

(2.9) 

(2.10) 

and where the capture detectors are described by the probability, C,, given by 

cq(F, ‘J, tlAq)=(Yqb-) 7, dt, Kq (t-h) Uq(t+pf, Aqc) c,,(v) 
-co (2.11) 

3 

. where the window function, U,, is given in terms of the step fLnction, U,, by 

5 



U4(t,IA,)=Uo(tl-(tqf--hqc))-Uo(tl-tqf) (2.12) 
* 

Note that the limits in equation (2.11) can be justified by considering that because of 
, 

causality, &,, vanishes for t<t,, and that for t>t,, the integrand vanished outside the range 

of the window. The moments of the stochastic neutron field are given in terms of the 

kernel probability generating function by: 

%?I = 
d4GK ( 1 az, G!zq , 

(2.13) 

c 

III. THE COVARIANCE FUNCTION 

For the two detector case (Q, = 2), the covariance function, C,,(A), is given by 

‘C,2(A)=<~,N2>-<N1><N2’ (3.1) 

(3.2) 

6 



(3.3) 

Use of equation (2.6) yields: 

<N,>=<n,‘IS> (3.4) 

* 

+v,(v, -1) 7 dt Jdr&(r’) -03 1, (VIA,) 1, (6 t(h) (3.5) 

. where we defined the neutron source 

s (F, v)= u, x;;) s,(F) neutrons 

(cm’) (set) (stereorodian) (unitspeed) 
(3.6) 

and the source spectral factors 

Is@, tIAq)=T, n,+(L tl A,) (3.7) 

The moments, n I, and n 12, are given by 

. 

7 



(3.8) e 

Use of equations (3.8) and (2.8) yields the following transport equations for the IT,+ and 

n;‘2 moments: 

(3.9) 

(3.10) n 

where 

Eqc=& &c(v)-;dtl K,(t-tNJ,(t,lf41., A& (3.11) 

Q,*= v&71) C,(v) Y, (9) Yz(7,t> 

with 

v, = Y, vp 

(3.12) 

(3.13) 

and where we introduced the spectral factors 

Y,(v’,t)= TR n,‘(Lt) 
(3.14) 

8 



J 

The transport equations (3.9) and (3.10) are associated to the boundary conditions 

nq+ = nit, = 0 (on a convex boundary) for fi - ii > 0 (3.15) 

In view of the structure of the adjoint operator in equations (3.9) and (3.10), the adjoint 

moments, n,+ and nt2, satisfy time-reversed conditions, that is “final” rather than initial 

conditions. Clearly, because the detectors are turned-off at t = t,, the adjoint moments 

must be zero at the end of the measurements. 

. 
We now return to equation (3.1) for the covariance functions, that after inserting 

equations (3.4) and (3.5) becomes 

C,,(A)=<ntIS>+v,(v,-1) $dtldcSl(r’)I, (?t)12(Ft) (3.16) ‘. 

To eliminate the adjoint moment, nT2, we introduce the neutron flux, $ (1, t), satisfying 

the transport equation 

1 d ( 1 vdt+Lo Qi=s 
(3.17) 

t 



The neutron flux is assumed to be zero in the remote past and to satisfy the boundary 

conditions 

@ = 0 (on a convex boundary) for fi - ii < 0 (3.18) 

Use of the commutation relation (1.11) yields 

<nf21S>=<@IQ,,> (3.19; 

Thus, our final result result for the covariance function is: h 

. 

l c,,(A)=<Q,~Q,,>+v,(v,-1) 7 dtIdrS,(r’)I,(T,t)12(7,t) (3.20) 
-a 

IV. THE BICOVARIANCE FUNCTION 

For.the three detector case (Q, = 3), the Bicovaxiance function C,,,(A) is defined as 

Cm=(N,-fl1)(N2 -pz)(N3473) (4.1) 

The calculation of the third moment, Nr N2 N3 , involves operating with 

8 1 (Q 222 823) on the source probability generating function. One obtains: 
* 

10 



N, NZ Ns=Vs Q 
d3 F, 

az,az, aq 1 

d2 F, dF 

67, az, I[ I[ Q &+Q 
3 

d2 F, 

az, a3 1 d2Fs 1 

. 

+vs(vs-1) (W- 2){Q[$$z%]} 

where all derivatives in (4.2) are evaluated at Zl= 22 = 23 = 1. The partial derivatives in 

equation (4.2) are calculated from the relationship (2.8) one obtains: (q = 1,2,3) 

11 



and 

, = T, nit23 

where the adjoint moments are defined by the relations 

(4.4) . 

(4.5) 

Insertion of the above results into (4.2) yields. 

c 

+vs (v-1) {[Q I I 2 <n?lS>+[QI113]<ntlS>+[Q1213]<ntlS>} I ] 

+vs(vs-l)(vs- 2)[QI,I213]+<ntlS><nilS><nS(S>(4.6) 

where we introduced the neutron source, S, equation (3.6), the spectral factors (3.7), and 

the two-detector spectral factors 

(4.7) 

Similarly, one obtains (4 #qt) 

12 



‘Insertion of equations (4.6) and (4.8) into equation (4.1) for the bicovariance function 

yields: 

c,23(A3)=< nt23ls >+vs(vs- 1) Q (112,&+h I~+123 II} 

+vs(vs-l) (vs- 2) QMlI2 131 (4.9) 

The evolution equations for the adjoint moments, n; and n& , were given in section 

three. The newly obtained third order adjoint moment, ~$23, is determined by the 

equation 

nf23=Vp (VP- 1) [Y,,‘y3+Y,3y2+Y23YIl.~F 

+ vp(vp-1)(vP-2)Y,YzY3C~ (4.10) 

f 
where the two-detector spectral factors, yq4’ , were introduced 

(4.11) 

13 



and use was made of equations (4.5) and (4.3). Note that the third order adjoint moments 

satisfy the same boundary and final conditions that the lower rank moments, ni and 

+ yt,, . To eliminate the adjoint moment, & , from equation (4.9), we use equation (3.17) 

for the neutron flux and the commutation relation (1.11) to obtain: 

c 12-j (A3)=vp b, -lb w, w12 Y3+Y13 y2+Y23 y,b 

+ up (up-1) (up -2) <@,I& Yl Y2 y, > 

+v, (V, -1) Q{I,2 b+h Iz+h II> 
c 

+v,(v,-~)(v~-~)QIII~~~ (4.12) 
” 

V. THE TWO AND THREE DETECTORS CROSS CORRELATION 

FUNCTIONS 

In practice, the noise description used in the cross correlation function which is defined in. 

terms of instantaneous count rates, as measured by a time analyzer during a record length 

of tgF seconds. This device opens a sequence of gates (channels) of duration much shorter 

than the total record length. The counts stored in each channel is the count rate, with a 

time resolution fixed by the channel width. 

We then define the two and three detector cross correlation functions as the limits 

14 



aI2 (tIA t,,)=limit CizG4,) 

A i I Ale A,, 
qc-w 

(5.1) 

Q,2 (t,f, t2~, t3f)= limit 
A 1 1 

y2’2’ 
Ic 2c (5.2) 

qc+o 
1 

After carrying out the indicated limits in equations (3.20), (4.9), and (3.7), (3.14), (3.9), 

(3. lo), and (3.12), one obtains 

(5.4) 

a, ,2s= v, (v, - 1) 7 dt @s, @) Jl(6 t) Jz (6 t) 
--a) 

(5.5) 

. 

15 

(5.6) 



a, 123~s = 0, b, -1) (v/-2) <cplC, 0, 0, 0, > 

+vp (up- l)<aqC, (q2 03+q3 o,+o,, O,)> 

Q, 123S= vS (0, - 1) (v, - 2) Tdt Jdr s, (3 J, J2 J, 
-co 

+vs (v, - 1) 7 dt / dr s, (7) (Jn 53 +J,3 J2 + 523 5,) 
-cc * 

where we introduced the delay times 

5 =tF2-tFl; r2 =tF3-fF2 

where 

yq = imi’ qc+o 

I/ 

(5.7) I 

(5.8) 

.- 
(5.9) 

. 

(5.10) - 

(5.11) 

16 



I . 

(5.12) 

l 

piqr = pitA A A 
1 1 qc q’c qc q’c (5.14) 

The new adjoint moments, pz and piqt, satisfy the same boundary and final conditions 

than the old ones and the equations 

{-+g+Li} PG=Dqc 

. 

(5.15) 

17 



where 

Mqq’ = limit 
Aqc ,Aqlc-,o 

= VP (v, - l> I, 0, @q’ 

(5.16) 

(5.17) 

(5.18) + 

The moments, &, driven by the detector location and strength are generalized functions 

having the physical meaning of a detector field-of-view function. These functions peak at 

the detector location and are time-displacement kernels. Because of the definition (5. lo), 

the quantities, Qq, Jq , are velocity and angle averaged detector field-of-view functions. 

The former are averaged over the fission neutron spectrum of the frssile material where 

the J,-quantities are averaged over the source fission spectrum 

In writing the result (5.3) for the two-detector cross correlation function, the subindex .- 

(1,2) indicates that the detector 2 is delayed by a time, rI, with respect to detector 1. 

Clearly, CD12 (+<D21(-0 

18 



The result (5.3) shows that the two-detector cross correlation function has a component 

driven by the inherent fluctuation of the fission process in the fissile material and a 

second component directly depending on the source fluctuations. Correlation 

contributions occur when the field-of-view of the detectors overlap in space and there is a 

delayed overlap in the time domainby, z,, units. 

In regard to the three-detector cross correlation functions, the (1,2, ,3) notation indicates 

that detector 2 is delayed by a time, r,, and detector 3 by a time r2, both with respect to 

the first detector. 

Note that the p+ 44’ ’ adjoint moments, equation (5.16) are driven by the induced fissions in 

the system weighted by the overlapping of the (44’) pair of velocity and angle weighted 

detector field-of-view functions, (GJ, and 0,. . One can portray these generalized 

functions as the field-of-view for these fission chains born at the r’ location that were 

detected with delayed time overlaps later by the (q, q’) detectors. The first term on the 

right hand side of equations (5.7) and (5.8) are the extension to the three detector case of 

the fD12sys and ah terms in the two-detector cross correlation case. Both terms are 

proportional to the third moment of their respective neutron multiplicity distribution 

functions. 

19 



The second term on the right hand side of equation (5.7) is a new one that is given as the 

sum of three terms each one consisting of the product of a @,,# (4 + q’) , factor 

representing the (qq’) field-of-view of the fission chain and a factor aqfP (q” # q, q’) 

representing the field-of-view of the q” - th detector. From equations 5.11, 5.16, and 

5.18, one realizes that this term is proportional to the square of the fission cross section. 

Finally, the second term on the right hand side of equation 5.8 exhibits the same structure 

as the previously discussed term, but it is only linearly dependent on the fission cross 

section. Also not that the three-detector cross correlation function is asymmetric with 

respect to the detector taken as the reference for zero delay. 

VI. THE BISPECTRUM FUNCTION * 

To derive an expression for the bispectrum fhnctioq operate on equation (5.6) with 

(~IT))-~ 7 dz, dz; exp i(wl n+ ~2 ~2 { 1 -Q 

( a= f2f - tlf; rz=t3/-t1f) 

and follow the steps in Appendix A to obtain: 

(‘5.1) 

n 

. 

20 



(P123.sys @I 02 ( * > = VP (up - 1) (up - 2) BITS (01 u2) 

+ up b, - 1) Bzsys b, w2) . (6.2) 

@‘, Gil, 02) =‘q (us - 1) (us -2) B,S bib 02) 

+ us (us - 1) 4, (a d 

where we introduced the bispectrum functions 

&ys=(2~)-~ (~~Ic,0,(w1+02)0;(w)0;(w2)) 
c 

, B2Sys=(2z)-2 (~slc,[~13([~,+~2]-~1)~;(~2)+ 

+ @I3 ( [w, + cL)z]- @2) 0; b) + 

825=(2x)-2 IdyS,(r’)[Jlz((wl+W2)-Wl) J;W 

+ J,, ( [WI + 02]- m) J; (WI) 
* 

+ Ji3 (WI, 012) h (a+ @2) I)] 

1 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

21 ’ 



Insertion of the results (B.5), (B.6), (B. IO) and (B. 11) yields: 

@l23sys = Ml23 (01 W2) (vp (Up - l.Y(~p- 2) blsys (ci)~ W2) 

f (vp (up - 1)2 b2sys (ah ad > 

@,23s = Ml23 (01 02) {Us (Us - ‘> (VS.: 2, hs (@L Q-k’) 

+ VP (VP - 1) us (us - 1) b2s (WI 02) > 

with 

--- 
M123=(2K)-2 Y, Y2 Y3 KI @l +w2) K; (a) K; @2) 

b 1sys= (~sb hR,(al+a2) hR2(@1) hm(m2)) 

+ hR13 ( [W, + 021- a2) hk (@I) 

+h;&ih 02) hRl (Q’l+w2)l) 

22 

(6.8) 

(6.9) 

(6.16) 

(6.11) 

(6.12) 
. 

(6.13) 



b2s=&S~ (f-j [h2( [W1+02]--m,) hi3(co2) Y 

+ hs13 ( [w, + 02]- m)%2 b) 

+ h;23 (mw2) hs; (@I+ W2)1 (6.14) 

‘Note that by going to the frequency domain the convolution integrals transform into 

products that result in the separation of the instrumentation and system responses. 

The various h,-functions defined in Appendix B, are Fourier, transformed detector field- 

of-view functions, whereas the hqqg -functions are driven by the space overlap of the 

(q, q’) detector pair over the distribution of the fissiie material. 

VII. THE SINGLE MODE APPROXIMATION 

In some, instances, specially for compact systems exhibiting .simple geometries, the single 

mode representation (one-point reactor kinetics) is an adequate description of the system ’ 

behavior. Start from the representation of the propagator in terms of the fundamental 
. 

eigenmode, (n=O, see Appendices B and C). 

G (112 #)-Go (0) Qio (1) 0: (2) (7-l) 

Insertion of (7.1) into equation B.2 for the Fourier transformed propagator yields, upon 

use of the biorthogonal relations (C.4) and equation (C.9). 

23 



Go(a)=+ (a + k-o)-’ 
00 

(7.3) 

where to follow standard ways we defined the Rossi-a as 

a=lwoI (7.3) 

Insertion of (7.1) into equations (B.7), (B.8), (B. lo), and (B.11) yields 

c 
hRq (F, d=cq wR (F) &d@) (7.4) 

hs,(%@=C,W, (%(@) (7.5) 

where 

CqR = Capture rate in the qth detecbx ,= i dv dl2 cwc (V) (0, ($ , V6) (7.8) 

24 



g (0) = First order transfer function = (a + i w)-’ (7.9) 

. 

and where we introduced the weights 

ws (r’)=N;#v d&-$ cI$(T,v,fi) (7.11) 

I Define now the reduced bispectrum functions 

and use equations (7.4) up to (7.7.) to obtain 

[er?oI~, W’R) 1 

e with 

l 

1) (VP-2) + 71 us (us-l) (vs-2) JT, (WI w2) 

25 



(dimensionless) (7.14) - 

(“‘@‘) (dimensionless) rli =m&mz,> (7.15) 

T, (Wi 02)=c,R C2R CTR g(a+W g*.@N g*@2) (7.16) 

7-2 (IQ?, w2) = [g(w,)+g(o2)+g(~l+w2)] 2-1 (CL)! @2) 

’ The bispectrum, T,., can be rewritten in the form: 

. 

TI (ml @2)=CIR C2R C3R(po +iv,, /w:) (7.18) 

with D 

p,=a [w12+w*2+a2+cih ml 

whereas the T, - response fknction is given by 

(7.19) 

(7.20) 
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l 

+p,a+vo(WI+W*) 

a2+(W,+W2)2 
> 

Tzr@wz)=C~R c2&Rw;2{“a4;-~2~1 + v”;2;-;202 (7.22) 

* 

+ 
voa-Po(u1+m2) 

a*+(w1+@2)~ 
> 

Note that by starting from a rigorous derivation of the bispectrum function in terms of the 

stochastic theory of the neutron field, the single mode approximation provides weight 

factors, W,, W,, to properly account for the averaging over phase-space implicit in the 
/\ 

one-point reactor kinetics model. The neutron so,urce, S,, is weighted by the source 

neutron spectrum, x, (v) , and the fission density by the fuel neutron spectrum, x (v) . 

The result (7.13) was used to calculate the bispectrum obtained from a Cf-so-urce driven 

noise field in an unreflected 15:cm radius sphere of 93.15% enriched, uranium met-&_,The 

Monte-Carlo code MCNP.DS6 was used tom calculate the Rossi-a by _ . :.. tn*,el, _../“*,_.a Se .“._ - tallying the 

distribution of times between 252Cf fission events and system events. The evolutiqn of the 

time correlated counts was wejj,represented by an exponential dependence on the delay 

time proving the adequacy of the single mode representation. A fit to the.correlated.count 

. 
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rate yielded a Rossi-a = 26.78 (J.H)~‘. Table I displays the moments of the neutron 

multiplicity distribution P(v), for the Califomium source and for the fissile system. 

The resulting bispectrum is shown in Figure 1. As expected the intersection of the 

bispectrum function with the o,=o, o,‘o, o,=o,, planes, exhibit the shape of the transfer 

function of a first order system having a break frequency of a-radians. 

-. 

VIII. SUMMARY AND DISCUSSION 

On the basis of the general stochastic neutron field theory developed by Munoz-Cobo 

et al,5 results on the covariance and bicovariance of the neutron field have been presented. 

These two statistical quantities are obtained from the counts observed in detectors 

operating during a period of time (gate length), A+. A classical example is the so called 

Feynmann Y-function that is defined as the variance to mean ratio of the neutron field 

(see for instance reference 5). Upon taking the limit of the covariance and bicovariance 

function for Aqc + o , one obtains the two and three detector cross correlation functions ,. 

respectively. The mathematical structure of the results so obtained have a transparent 

physical interpretation in terms of the space and delay time overlap between the field-of- 

view of the detectors. For the first time, an expression has been obtained for the 

bispectrum function of the stochastic neutron field and for the appropriate weight 

functions to be used as space-energy-angle correction factors for the one-point kinetics 

approximation. 
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. 
Table 1 

MOMENTS OF THE NEUTRON MULTIPLICITY DiSTRIBUTION 
FOR THE W-SOURCE AND THE SYSTEM 

Cf-252’ Systemb 

u= 3.773 ;= 2.605 

v (v-l) = 12.042 v (v-l) = 5.516 

v (v-l) (v-2) = 31,962 v (+,-I) (v-2) =9.328 
“Calculated from, Spencer Data.13 
bCalculated by tallying fission neutron multiplicity to obtain, 
P(v), for the system driven by the Cf-source. 



Fig. 1. Bispectrum From a Cf-Source Driven Noise Field in an Unreflected Uranium 235Sphere. 
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APPENDIX A 
6 

Start from 
. 

@A (@I 02)=(2,)-2 7 dz, d r2 exp {~(wI ~I+@z ~2) 7 dt (cD31@, (t-tlf)* 

*02 (t-t*/jii3(t-t3/)), 

-ca - 

(A-1) 

express the 0, -functions in terms of their Fourier transforms: 

@,(t-td)=&-dop@q(@,) exp(-io,(t-tg) 
. 

(A.21 

insert now (A.2) into (A. 1) to get 

@A (a, w2) = (2n)-5 VP (VP - 1) (v, - 2) j dq dr2 dt f dq dm dos * 

*(~,Iol(W3)02(04)03(WS))E(wlw2) (A.3 ) 

c 

where 

JWQ d=exp (iq (CL)4+01)+iZ2(W5+W2j-it (ci)3+w4+m5) 
+ itlf (W3+W4 + @)I (A-4) 

Next, use the integral representation of the 8 -function: 

d-(x)=& :dkeih (A.5) 
--Q) 

to get 

<PA (0, ,3*) = c2d” vp b - 1) cvp - 2) j dw, dm4 da, 6 (WI + 04) s (02 + ‘%) 

S(~+~4+Ws)(~5101(~3)~2(~~)~3(~~)) (44.6) 

and perform the indicated integrals to get 
. 

@A(@1 w,)=(2~)-2vp(vp-1)(vp- 2) (c& 10, (0, + 02) 0; (OJ 0; (wz)kA*7) 
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Consider next the term 

CDB (01@2)=(27r)-~ Tdzl dz2 exp {i (WI ~1+~2 ~2)) 7 dt (<Ds(@~ 03 

+ 013 02 +-;23 0,) 

-m 
. 

64.8) 
3 

where now one expresses the @,,* - functions in the form 

Again, use of the integral representation of the S-function yields equatim ;,.6.6) in the text. 

r 

h 
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c APPENDIX B 

. 
The Fourier transformed equations (5.15) and (5.16) are 

p;(w) = Dq, (CL)) (B.1) 

where we used equation (5.18). 

Define now the forward Propagator in the frequency domain 

G(112,o)=S(l-2) 

t so that the generalized functions, ps and p4i can be expressed in a closed form as: 

Y P; (1, @)=(D,c (29 @iG+ (11% W)) 

p& (1, cm q> = up b, - 1) (cf(2) @q t29 @I> @q' c2, @z> 

(B-2) 

(B.3) 

IG’ Wmd) 
(B-4) 

where we used the reciprocity theorem. (G’ (112) = G (211)) 

We now proceed to the calculation of the .@, and Jg in the frequency domain. Fourier 

transformation of the equations (5.10) and (5.12) yields together with (E3.3) the results 

0, (6 @=i7, K&9 h, (6 d (B.5) 

J, (6 d=& K, (0) h, (F, o) (B.6) 

t with 

hRq (F, w)=idv, do, di dsZ ~Lt,c (~,)G+(~vfil~~v,&~) (B.7) 
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hsq (7, w)=ldv, di2, dv di-2 y 
w 

Coqc (VI) G’ (? v !?lli, VI&U)(B.~) 
lr 

w 

The results above are now used for the calculations of the Oq4t and J,,f quantities. We 

have from the Fourier transform of (5.11) together with (B.4) and (B.5) 

@,t (< ml ~2) = up (v, - 1) 7,&l K4 (a> Ic7’ (~2) hRqg’ (7, WI wd (B.9) 
a 

with 

hRqq’ (7 WI wz)=IdvdQdv, dC-2, Idr, [ 4n xo CF(VI) hRq (< ,@I) X 

and 

hR+(< W2)G+(3 Vfill,Wl'32)] (B.lO) 
. 

where the quantity hsqqt is obtained from (B.lO) by replacing x(V) with X,(V). 
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APPENDIX C: REVIEW OF THE o-MODES 
.‘ ,. 

(, 

The o-modes are defined by the transport equation 
b 

where, CD,, are the time eigenvalues (decay constants associated with the time evolution of 

the eigemnodes). We also define the adjoint functions 

’ The pair (ai ; Q,) satisfy the boundary conditions, bellow, on a convex surface 

and the biorthogonality conditions 

1 
(““IyD) n = Non Smt (C-4) 

The normalization constant, N,, is given by 

c 
Non=(*ii 1; Qn) 

(C-3) 

(C-5) 

I 
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E 
The eignvalues, CO,, are related to the eigenreactivity, k,,. To find this relation, form the 

inner product between, cI$, , and equation (C. 1) and use the form of the L, operator to get 

on N,n=(Dn-f’n) (C.6) 

*. 

where the neutron destruction and production terms were defined as 

P,=(ax lFF@fJ tC.8) 

Divide fC.6) through by, D,, to obtain 

l@nl =+lPnl 
n 

cc.91 

where we introduced the nth mode reactivity and neutron generation time, p,,, and &, 

respectively * 
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An = NJ Pn (set> (C.11) 

and where the nth mode multiplication factor is given by 

kn 
Pn 

=- 
Dn 

(C. 12) 

. 

L 

L” 

. 

9 
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