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Abstract

A stochastic approach to solving continuous function global optimization problems
is presented. It builds on the tunneling approach to deterministic optimization pre-
sented by Barhen et al. [1,2] by combining a series of local descents with stochastic
searches. The method uses a rejection-based stochastic procedure to locate new local
minima descent regions and a fixed Lipschitz-like constant to reject unpromising re-
gions in the search space, thereby increasing the efficiency of the tunneling process.
The algorithm is easily implemented in low-dimensional problems and scales easily
to large problems. It is less effective without further heuristics in these latter cases,
however. Several improvements to the basic algorithm which make use of approxi-
mate estimates of the algorithms parameters for implementation in high-dimensional
problems are also discussed. Benchmark results are presented, which show that the
algorithm is competitive with the best previously reported global optimization tech-
niques. A successful application of the approach to a large-scale seismology problem of
substantial computational complexity using a low-dimensional approximation scheme
is also reported.

Keywords and Phrases: Global optimization, tunneling, stochastic, Pijavskij
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1 Introduction

In two recent papers, Barhen et al. [1,2] reported a significant improvement in solving
low-dimensional global optimization benchmark problems. They developed a code
called TRUST, which employs a descent-tunneling methodology characterized by non-
Lipschitzian descent and one-dimensional (1-D) search. The essence of this approach
is to break the solution of an optimization problem down into two distinct phases:
1) local descent and 2) tunneling (using 1-D search). The descent phase makes use
of local derivative information and the wealth of algorithmic experience in finding
local minima in continuous functions. The search phase utilizes a generalization
of the recent concept of tunneling [3] to find a new region in which to begin to
descend again. Instead of searching for zeros of a polynomial as in [3], however, a
one-dimensional search scheme is used to tunnel to the basin of attraction of a new
local minimum. What makes this combined approach novel and efficient is that by
descending into a local minimum before beginning to search for a new descent region,
the method avoids repeated descents to the same local minimum. The final solution
is thus, in effect, a single descent interspersed with 1-D searches to find the descent
basins of new local minima. A key characteristic of this method, using 1-D search to
tunnel to new basins, is an attractive feature because in general the ratio of a basin’s
perimeter to its volume favors a 1-D search over multi-dimension (volume) search for
anything but a hyperspherical basin [4]. Both of these characteristics seem to explain
the improvements Barhen et al. reported in benchmark testing using the TRUST
methodology for a paper in Science [2].

Starting with the Barhen et al. descent-tunneling methodology as the basis for
our research efforts, it is clear that for higher dimensional problems the search phase
of the algorithm needs improvement. In high-dimensional spaces, search is much
more costly in terms of function evaluations than descent. In order to move from
benchmarks to realistic high-dimensional problems, therefore, further improvements
must be made in TRUST’s search methodology. The most limiting characteristic of
search, however, is that local derivative information is of little (or, in principle, no)
use in locating a new basin of attraction different from those already found. We
must, therefore, explore what other information can be used to help in this search
process. Most recent research indicates that branch and bound approaches address
this problem theoretically but are complex and costly to implement in practice (see
for example [5,6]). The bounding process allows certain regions of the search space
to be eliminated from further function evaluations.

It is also widely understood that practical global optimization problem cannot be
solved in general without imposing resolution or probabilistic convergence constraints
on its solution [7]. Without such constraints it is impossible to know how to halt an
algorithm and declare that the lowest-to-date minimum is the global minimum. Only
an exhaustive bounded search is guaranteed to find a global minimum since no local
information can ever be used to characterize the current best answer as definitively
being the global minimum. From a practical standpoint, we found that probabilistic
constraints are easier to implement and have, therefore, concentrated our efforts in
this area. In this approach only a probabilistic guarantee can be given that the best



local minimum found is the global minimum. There is always a chance that another
lower minimum will be found, albeit within a user specified probability constraint.

The comments above lead us to believe that a stochastic approach to tunneling-
search coupled with some limited knowledge of function bounds and Lipschitz-like con-
stants can be made the basis of a powerful yet simple algorithm to improve Barhen’s
approach. To make maximum use of such bounding information, a low (or one) di-
mensional stochastic tunneling approach to covering a high-dimensional space seems
to be necessary. Since we are committed to a stochastic reformulation of Barhen’s
method, we reiterate that only a probabilistic guarantee can be made on deciding
whether a global minimum has been found. A halting algorithm which stochastically
characterizes the solution is thus our aim. We will use a simple PAC (Probabilistically
Approximately Correct) criterion successfully developed to halt machine learning al-
gorithms [8]. Without stochastic characterization the only other alternative would be
to solve the problem within prescribed resolution bounds using a fixed grid and an
associated fixed number of function evaluations.

We propose, therefore, to only make use of global bounding information in a
low-dimensional stochastic algorithm to significantly improve the tunneling phase of
Barhen’s TRUST algorithm. In doing so we utilize the already powerful breakup of
the problem into local descent and tunneling. To accomplish this, we adapt the clas-
sic Pijavskij one-dimensional bounding procedure [9] to higher dimensional problems.
This extension eliminates many of the problems encountered in the past with this
bounding approach and produce a stochastic version of Pijavskij’s method useful ex-
clusively in the search phase. The new approach is called SPT: (S)tochastic (P)ijavskij
(T)unneling, suitable for the tunneling-search phase of Barhen’s algorithm. This
methodology is closely allied with similar extensions of bounding-covering algorithms
published by Shubert [10], Evtushenko [11], and Mladineo {12].

We apply the stochastic improvements developed directly to the combined descent
and tunneling TRUST algorithm. This allows us to revisit the benchmark calcula-
tions Barhen et al. reported in Science [2], to see what improvements can be made in
these already good results. We will also solve a new high-dimensional seismic prob-
lem similar to the one reported in the Science paper to demonstrate the method’s
scalability.

2 Problem Formulation

The generic global optimization problem considered in this paper is defined as follows.
~Let f(x) : D — R be a bounded piecewise-continuous function and x be an n-
dimensional state vector. The function f(x) is referred to as the objective function,
and D its domain. The optimization goal is to find the state vector x* which minimizes
f(x) in D. Without loss of generality, we shall take D to be the hyperparallelopiped
D={z; |67 <z:<B; i=12,...,n} ,where 5 and ;" denote, respectively,
the lower and upper bound of the é-th state variable.

We address this unconstrained global optimization problem by breaking its so-
lution into two phases. The first, is a standard local descent phase in which local



derivative information is used to converge a descent algorithm to a local minimum.
Any efficient descent algorithm can be chosen for this phase of the work. Many finite
difference methods, as well as Jacobian or Hessian based schemes, are available for
algorithmic implementation [13-19]. Once a local minimum has be found, the second
phase will employ a stochastic search to find a new local minimum basin of attraction
to descend into. This procedure is employed to avoid costly repeated descents into
already identified local minima, a characteristic weakness of multiple random start
algorithms [13]. It should be noted that this step represents an algorithmic decision
that might not be optimal for all problem classes. Specifically, this approach performs
less efficiently in problems characterized by the existence of a hierarchy of local min-
ima that has increasing numbers of narrower and narrower minima as the function
values decrease. New minima become more difficult to find because of decreasing
basin sizes in such cases.

To improve the search phase of Barhen’s algorithm we use a new stochastic version
of Pijavskij’s one-dimensional bounding algorithm. The deterministic version of this
algorithm [9] has been widely studied in global optimization work in the past. Its
geometric complexity in higher dimensions and its slow convergence even in one-
dimensional cases have often been cited as the reasons for its limited usefulness in
most practical problems [13]. By developing a stochastic version of this traditional
algorithm and using it only in the search phase of our methodology, we hope to
eliminate these problems entirely. The newly developed SPT (Stochastic Pijavskij
Tunneling) algorithm is easily implemented in one-dimension and scales well to higher
dimensional problems, although its usefulness decreases exponentially in this latter
case.

3 A Stochastic Pijavskij Algorithm

A brief review of Pijavskij’s one-dimensional deterministic algorithm is in order here
so that the improvements afforded by a new stochastic implementation can be un-
derstood more clearly. The principle used by Pijavskij in his original paper [9] and
also employed by Shubert [10], was to utilize the Lipschitz constant to determine
a lower bound for the global minimum of a one-dimensional function. We assume
the function f is continuously differentiable and define the Lipschitz constant as:
L= (f(z) = fW)l/lx = Y|)maz, Y2,y € D,z # y. In practice, it specifies the largest
rate of descent a function can have over a region of interest. If the function is known
for two values of z, then drawing lines with slope L (called L-lines for future reference)
from both of them generates a lower bound f;, for the function in the region between
the two given values of z. Using a zeroth-order estimate of this lower bound (i.e. f?)
and the point at which it occurs 28 ,, Pijavskij’s method prescribes that a guess for
the position of the global minimum z* should be taken at 2* = z0 , , the intersection
of the two L-lines. That is, f(z2;,) should be evaluated to make a new estimate of
the global minimum of the function with the guarantee that f* > f?. This procedure
is illustrated in Figure 1 using two regions in [a, b] generated by the arbitrary point
z; (le. z € [a,z1] and z € [z1, b]).



Figure 1: Pijavskij scheme

The Pijavskij approach is iterative in nature, employing a repetitive sequence of
subinterval bounding steps similar to the one described above. Evaluation of the
function at each new point leaves two new intervals in which the algorithm can be
applied to find lower regional bounds. By prescribing the next evaluation point to be
the z value of the lowest of these two newly generated bounds (or the lowest of all
the others that might exist from previous bounded intervals) an iterative saw-toothed
lower bounding function is developed for the function under investigation. The results
of this continued sequence is also shown in the Figure 1 with steps for generating z,
and z3.

From this description of Pijavskij's scheme it should be clear that because no
descent is performed this approach becomes increasingly inefficient for flatter regions
of the search space (i.e. as the global minimum is approached). Local descent making
use of local derivative information is clearly much more efficient in such regions. In
addition, the extension of the method to higher dimensions makes finding new points
to evaluate much more difficult. Multidimensional surface intersections are needed
in these cases to find the lower bound points which prescribe the next evaluation
point. Several approaches have been used to derive more useful alternatives to this



difficult multidimensional task [10-13] but they are all more complex and inefficient
in the large problems of practical interest. These later solutions are characterized by
using multidimensional rectangular or conical elements. We will refer to these two
approaches as the a P-cone and P-cube approaches in the rest of this paper. Clearly
an approach that combines descent and bounded search will produce a more efficient
scheme than the extensions to Pijavskij’s method published to date.

To address this point, we propose to use the key characteristics of Pijavskij’s
algorithm, the L-lines (and, as needed in higher dimensions, P-cones or P-cubes), in
just the search phase of an optimization algorithm to prescribe the next evaluation
point. In Figure 2 we show a sequence of five randomly selected points (labelled
1-5) which implement this new scheme. Looking this figure we note that if point
z2 ., was the first local minimum already found by a descent algorithm, the regions
from [@intersects Tontersect] A4 [0, bintersect] in Which the L-lines intersect the value

0 . Tepresent regions in which the function could have a value lower than f2

man'
Pijavskij’s deterministic algorithm chooses the lowest intersection point of the L-lines
(f7) as the next point to evaluate the function. Conversely, the interval [z} . ..., 22, ]
represents a region in which f must be at least as large as fy, and is thus a region
which should be excluded from further consideration in finding values of f lower than
f2in, the current lowest minimum value found. This reverse reasoning defines the
concept of exclusion regions and provides the basis for developing a stochastic version
of Pijavskij’s basic scheme for finding new basins of attraction for a descent algorithm
to work in.

To produce a basic stochastic algorithm then, we can use a region-of-possibility
for finding a point lower than the current lowest local minimum to define a sampling
region for selecting a new point for evaluation. Pijavskij’s algorithm essentially takes
the midpoint of the lowest subregion of this region. A stochastic algorithm with
a uniform distribution over the whole subregion would have Pijavskij’s point as its
average value. Sampling over all possible subregions is simpler, however, and such a
procedure should, on average, follow a sequence of Pijavskij-prescribed evaluations.

A complementary algorithm using a rejection technique can also be used to meet
this end. This approach would randomly sample over the whole z-domain and reject
sample points which lie outside the region-of-possibility (i.e. those in the excluded
region) until an acceptable point is found. Both techniques have their advantages
and disadvantages. They both require search and storage operations to determine
intervals of possibility or exclusion and they are the complements of each other in an
algorithmic sense. Because of the difficulties entailed in extending a direct sampling
method to higher dimensions and the natural availability of a halting test based on the
probability of finding a point lower than any one found before, we chose to implement
the rejection technique for the SPT algorithm.

4 The General SPT Algorithm

The general stochastic multi-dimensional SPT algorithm can therefore be described
as follows:
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Figure 2: SPT scheme iterations




e 1. Select a random starting point x = x! and set f* = fL., = f(x}).

e 2. Use a descent algorithm to converge to local minimum evaluating N — 1

lower function values in the process. Set f* = fN. = f(xN)

e 3. Compute Pijavskij P-cone radii r; for all N points evaluated so far as follows:
= (ft— f*)/L,vx* withi € N.

e 4. Select new random points from the region outside of all P-cones intersecting
f*, searching for a value of f less than f*. Halt this procedure if more than
Nmaz points are selected without finding a value of f lower than f*, where
Nz = logd/loge. This constitutes a stochastic rejection technique to get
xNmax pojnts at which to evaluate for values potentially lower than f*.

e 5. Go to [2] if item [4.] is successful in finding an f < f*, otherwise halt and
report f Y= f globalmin-

In general this algorithm attempts to make a stochastic e-cover of the x-domain
with confidence ¢ (see [8]) using the only information on the Lipschitz constant to
exclude certain unnecessary function evaluations. The larger a function value is com-
pared to the lowest value found to date, the larger the exclusion region is for finding
new function evaluation possibilities. The exclusion process is thus aided by large
function values and lower minimum values. At some point before N, is reached it
is possible that the exclusion region will cover the whole x-space and the algorithm
will halt having found the global minimum within the prescribed stochastic confidence
limit ¢ for the chosen e-cover.

Based on the description above, this new procedure can best be described as an
importance sampling technique for stochastically finding a value of f(x) lower than
an existing estimate of f*. The bias of the sampling is toward regions of the phase
space that have lower function values than the current estimate of the global minimum
f*. Used in conjunction with a local descent algorithm, it goes from local minimum
to local minimum to try to find the global minimum within prescribed stochastic
confidence limits.

5 Lower Bound Approximations

A striking feature of the algorithm given in the last section is the fact that the larger
the function values are compared to the current minimum value, the more z-space
is excluded from future function evaluation. Thus, larger function values make the
method more efficient. This feature can be used to great advantage by adding a single
additional piece of information to the algorithm to improve its efficiency even more.
This piece of information is an estimate of the lowest value the function can attain
in the domain of interest fus (i.e. an estimate of the global minimum). Instead of
letting the algorithm develop local minima estimates of the global minimum as it
proceeds, a low estimate can be input right from the start. This added parameter
will immediately increase the efficiency of the algorithm by increasing the exclusion



region of potential function evaluations. This efficiency increase is always present
until a local minimum is found which has a value lower than the estimate.

This estimation process can be made more formal and adaptive by simply using
the Lipschitz constant already being used. L can be used directly to get a lower bound
for this new parameter fys from far = maz(f(zo), f(z1))L and then its value can be
adaptively changed during the course of the algorithm. If too low a value is used
the algorithm will in general halt due to a complete exclusion of the z-domain. At
this point a halving scheme can be used to reduce the estimate to halfway between
the lowest value of f found to date f7, and the current estimate for the global
minimum fp. This new estimate will still be lower than fZ,, and therefore will
improve the algorithms efficiency accordingly. The new estimate, moreover, requires
no new function evaluations and simply changes the values of the current set of P-
cones in time linear with N. No additional function evaluations performed and at
worst it is at least as efficient as a scheme which uses the current local minimum for

an estimate of fys.

6 Pseudo-Lipschitz Approximations

As stated in section 2 the general algorithm requires an estimate of the Lipschitz
constant as the only additional piece of information used to increase search efficiency.
Since analytic computer evaluated functions are our focus, the availability of a good
Lipschitz constant is assumed to exist. A closer examination of the current algorithm
however, reveals that a true Lipschitz constant is not really required for this algorithm.
What is required is a pseudo-Lipschitz constant, defined as the largest slope of any
line drawn from the global minimum tangent to the walls of the basin of attraction of
that global minimum. This constant called L,s guarantees that no function evaluation
will ever cause the global minimum point to be excluded from potential function
evaluation. The tangent point with the maximum slope is the point at which the
global minimum is finally excluded from evaluation by a P-cone drawn from the
tangent point. It should be noted that even a square-well with infinite Lipschitz
constant still has a finite L,; provided only a single global minimum is to be found
out of a potential infinity of possible values. This concept is thus very powerful in
practice if a way can be found to estimate L, rather than L.

The difficulty with this new concept is, however, precisely its estimation. In
principle this cannot be done without knowing a great deal of information about
the size and shape of the global minimum basin, the very thing we presumably are
trying to find. In practice however we can use an adaptive procedure to estimate
this parameter since we are ultimately willing to accept only a probabilistic answer
to the global optimization problem anyway. A possible procedure for estimating this
constant is to use a real Lipschitz constant as the basis for a first cut estimate of L,,.
Using L itself will either cause the algorithm to halt on the exclusion condition or
the Npoe limit. If the latter limit is achieved nothing further can be done. But, if
the algorithm halts on an exclusion limit then a halving (of the Lipschitz constant)
approach can be used to begin estimating L,;. This philosophically means that the



solution has not yet reached the N, limit so acceptable solutions have not been
exhausted even though no more sampling is possible because the exclusion limit has
been reached. Since the real L,; < L, we still have a chance of opening up further
sampling regions by decreasing the estimate of L,s below that of its upper limit of L.
Therefore, if we adopt a halving scheme for estimating L,,, we can continue to sample
until the Np,,, limit is reached and our original problem solution condition is met.
Thus we set L,s = L/2 and then reevaluate all P-cones using the new estimate of
L,s without any further function evaluations. The algorithm can then be reinitialized
with this new smaller value of L,,. The halving continues as each new exclusion limit
is reached until the N,,,, limit is reached and the problem is solved to our prescribed
probabilistic confidence.

It should be noted here that this adaptive algorithm will always halt on the N,
limit being reached. But this does not mean that N,,,, functions have been evaluated.
The real efficiency of the algorithm will depend on the size of the final exclusion region
after halting takes place. In practice orders of magnitude less function evaluations
might be needed to achieve a probabilistic confidence equivalent to a fixed grid of
O(Npaz). For a relatively flat (or even constant) function, N, function evaluations
will probably be approached, but few other algorithms can be conceived of that will
do much better than this on such a problem.

.7 One-Dimensional Approximations

In practice this algorithm suffers from one limiting characteristic: its efficiency com-
pared to pure random search diminishes as the dimension of the z-space increases. It
becomes increasingly difficult to cover higher dimensional spaces with P-cones based
on a single Lipschitz-like constant. In practice the exclusion fraction approaches zero
in high dimensional problems and the algorithm is effectively reduced to a pure ran-
dom search. We expect the method to be useful in low-dimensional problems (as will
be demonstrated in the next benchmark testing section) but practically only random
search is achieved in very large-dimensional problems.

A little further analysis reveals, however, that the maximum efficiency of the
method can be extended to higher dimensional problems by accepting a very useful
approximation to basic SPT approach. This approximation is based on the construc-
tion of a multidimensional Lipschitz constant from the partial derivative information
if available. This construction is illustrated here by assuming that in each individual
z-direction a maximum Lipschitz constant L,,Vz € D can be estimated. The real
Lipschitz constant in d-dimensions is thus: LO(\/ELz). A graphical picture of this
process and the resulting P-cone in two-dimensions is shown in Fig. 3. It is clear that
L is always larger than any of the individual L. s and thus the P-cone is smaller than
that derived from any individual L;. If we take the real shape of the excluded region
based on the true maximum directional derivative in all directions we get a starfish
shaped region which is tangent to the P-cones in d-dimensions and the L-lines in each
individual one-dimensional direction. As larger dimensional problems are considered
L scales up as v/d and the P-cone exclusion region becomes decreasingly smaller.
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Figure 3: Two-dimensional exclusion regions

The starfish effect becomes, in the limit of very high dimensions, almost a collec-
tion of one-dimensional exclusion problems with no measurable exclusion volume in
d-dimensions. This means in practice that the algorithm would be no better than
pure random search, since the P-cones would have almost negligible measure and the
algorithm will halt when the Ny, limit is reached (rather than on any exclusion
region halt).

The above facts cannot be avoided in principle, but if the algorithm is recast into
a search of each individual direction starting from a random point in d-dimensions,
then d very efficient one-dimensional searches can be used to solve the larger prob-
lem with some significant efficiency advantages accruing because of availability of L,
information. Thus, in practice the maximum efficiency of one-dimensional problem
exclusions can be transferred to higher dimensional problems with only minimal ap-
proximations being used. A d-dimensional problem is thereby reduced to a collection
of d uncoupled one-dimensional problems using the most efficient use of the Lipschitz
or pseudo-Lipschitz information.

The one-dimensional implementation of this approach is thus the recommended
one for higher dimensional problems. It effectively produces a random line cover of a
d-dimensional space with an underlying grid of density N¢, points. Of these points,
only a fraction of them are required for function evaluation depending on the 1-D
exclusion regions that develop iteratively as more function evaluations are made. In
this sense it is guaranteed to be at least as efficient as a fixed N2, grid evaluation of
a d-dimensional function. The simplicity and speed of the algorithm should give it a
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competitive advantage over most existing approaches to global optimization in high
dimensional problems. This advantage is demonstrated well in the 314-dimensional
seismic benchmark we present later in this paper.

8 Science Benchmark Results

This section presents results of benchmarks carried out to assess the new SPT algo-
rithm using several standard multidimensional test functions taken from the litera-
ture. A description of each test function can be found in [1,20]. In Tables 1-2, the
performance of SPT is compared to the best competing global optimization methods
including the previous version of TRUST published in Science [2]. Here the term
“best” indicates the best widely reported reproducible results the authors could find
for the particular test function. The criterion for comparison is the number of function
evaluations. All SPT results were converged to a convergence criteria of € = 107°.
In Table 1, the benchmark labels BR (Branin), CA (Camelback), GP (Goldstein-
Price), RA (Rastrigin), SH (Shubert), and H3 (Hartman), refer to the test functions
considered. The following abbreviations are also used: SDE is the stochastic method
of Aluffi-Pentini [21]; EA denotes the evolution algorithms of Yong, Lishan, and Evans
[22], or Schneider [23]; MLSL is the multiple level single linkage method of Kan and
- Timmer [24]; IA is the interval arithmetic technique of Ratschek and Rokne [25]; TUN
is the tunneling method of Levy and Montalvo [3]; and TS refers to the Taboo Search
scheme of Cvijovic and Klinowski [20] and TRUST refers to Barhen’s TRUST code
[2]. The results demonstrate that TRUST is substantially faster than these state-
of-the-art method, albeit needing a number of parameters to be optimized for each
benchmark. The SPT results are comparable to the TRUST numbers and use only a

single adjustable parameter and are averaged over 100 random (vs 2¢ deterministic)
runs.

9 Large-Scale Application

To assess the performance of SPT for a large-scale practical application, the high-
dimensional problem of residual statics corrections for seismic data was chosen. In
many geophysical tasks seismic energy is detected by receivers that are regularly
spaced along a grid that covers the domain being explored. A source is positioned at
some grid location to produce a shot. Time series data, is collected from the detectors
for each shot, then the source is moved to another grid node for the next shot.

A major degradation of seismic signals usually arises from near-surface geologic
irregularities {26-28]. These include uneven soil densities, topography, and significant
lateral variations in the velocity of seismic waves. The most important consequence
of such irregularities is a distorted image of the subsurface structure, due to misalign-
ment of signals caused by unpredictable delays in recorded travel times of seismic
waves in a vertical neighborhood of every source and receiver. To improve the qual-
ity of the seismic analysis, timing adjustments (i.e., “statics corrections”) must be

11



Table 1. Number of function evaluations required by different methods to reach a
global minimum of several Standard Test Functions.

Method BR CA GP RA SH H3
SDE 2700 10822 5439 - 241215 3416
EA 430 - 460 2048 - -
MLSL 206 - 148 - - 197
IA 1354 326 - - 7424 -
TUN - 1469 - - 12160 -
TS 492 - 486 540 727 508
TRUST %) 31 103 59 72 58
SPT 67 26 123 140 150 75

Table 1: Benchmark Results

performed. This problem has generally been formulated in terms of global optimiza-
tion, and, to date, Monte-Carlo techniques [29], (e.g., simulated annealing, genetic
algorithms) have provided the primary tools for seeking a potential solution. Such an
approach is extremely expensive, and a major need has existed for better methods
which would allow the accurate and efficient solution of large-scale problems.

The statics correction optimization problem can be summarized as follows. Acous-
tic signals are shot from N, source locations and received by N, sensors. Each signal
reflects at a midpoint k,k = 1,..., Nt. A trace t corresponds to seismic energy travel-
ing from a source s; to a receiver r; via a midpoint k;. We denote by Dy, the (complex)
Fourier coefficient of frequency f (f =1, .., Ny) for trace ¢, t = 1, ..., N; < N, N;. Ide-
ally, after they have been corrected for normal moveout [27], all traces corresponding
to the same midpoint carry coherent information . If there were no need for statics
corrections, all signals, stacked by their common midpoint, should be in phase and
yield a maximum for the total power

E(S,R) = 33| expl2ni f (S, + Ru)]Dsebiel? - 1
kE f t

In (1), the statics corrections S = (S5,..,Sn,), and R = (R, .., Ry.) are now
considered independent variables. Their optimum values are found by maximizing
the power E. This expression highlights the multimodal nature of E which, even for
relatively low dimensional S and R, has been found to exhibit a very large number
of local minima.

A smaller problem in a 154-dimensional space has already been reported in the
Barhen Science paper. To assess the performance improvements of the SPT algorithm,
we considered a much larger problem involving N, = 100 shots and N, = 216 receivers
yielding a 316-dimensional space. A data set consisting of N; = 4776 synthetic seismic
traces folded over Ny = 423 common midpoint gathers was obtained from CogniSeis
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Corporation [30]. It uses N; = 118 Fourier components for data representation.
This set is somewhat typical of collections obtained during seismic surveys by the
oil industry and is thus representative of the complexity underlying generic residual
statics problems.

To derive a quantitative estimate of SPT’s impact, the next two figures show the
original subsurface map without statics corrections and the same map derived after
solving the statics optimization problem. The SPT results illustrated in Figure 5 show
significant improvement over the uncorrected results shown in Figure 4. These results
also show considerable improvement over an attempt to solve this same problem with
industry standard methods (see discussion in [31]). The optimization run used an
adaptive method for estimating the pseudo-Lipschitz constant which resulted in a
value of L,; = 50. A one-dimensional grid of Npye, = 100,000 was used to converge
each individual one-dimensional ray. The approximate global minimum found by
SPT was fmin = —2442 compared with an industry best result of fi.;, = —2230. The
industry method required close to 40 hours of computer time to converge compared
with less than one hour for SPT on comparable computing hardware. TRUST itself,
was unable to solve the problem in its full dimensional entirety. A stack decomposition
method similar to that used to solve the original Science paper statics 154-dimensional
problem was needed to achieve a result of f,,;, = —2320.
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Figure 4: Unoptimized subsurface seismic map
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Figure 5: Optimized subsurface seismic map

10 Conclusions

From the results presented, one can conclude that a stochastic approach to tun-
neling makes a considerable improvement in Barhen’s TRUST approach to solving
continuous-function global optimization problems. This new approach builds on the
deterministic tunneling-descent methodology presented by Barhen et al. [1,2], as one
of the best benchmark methods to date, but uses a rejection-based stochastic pro-
cedure to locate new local minima descent regions. The method employs a series of
local descents interspersed with stochastic search to find new local minima, using a
rejection-based stochastic procedure to prune the tunneling search space traversed in
searching for new local minima descent regions. It uses a fixed Lipschitz-like constant
to reject unpromising regions in this search space thereby increasing the efficiency of
the tunneling process. The algorithm is most easily implemented in low-dimensional
problems, which allows it to be used efficiently as a heuristic in large scale problems.
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Several offshoots of the basic algorithm should allow for further improvements in
efficiency by allowing approximations to be made to estimating the algorithms pa-
rameters. The benchmark results presented, show that the algorithm is competitive
with the best previously reported global optimization techniques. A successful appli-
cation of the approach (using the one-dimensional approximation search scheme) to
a large-scale seismology problem of substantial computational complexity bears out
the practical applicability of the approach.
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