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ABSTRACT

An alternative approach is presented for the regression of response data on predictor
variables that are not logically or physically separable. The methodology is demonstrated
by its application to a data set of heavy-duty diesel emissions. Because of the covariance
of fuel properties, it is found advantageous to redefine the predictor variables as vectors,
in which the original fuel properties are components, rather than as scalars each involving
only a single fuel property. The fuel property vectors are defined in such a way that they
are mathematically independent and statistically uncorrelated.

Because the available data set does not allow deﬁnitive,séparation of vehicle and fuel
effects, and because test fuels used in several of the studies may be unrealistically

. contrived to break the association of fuel variables, the data set is not considered adequate
for development of a full-fledged emission model. Nevertheless, the data clearly show
that only a few basic patterns of fuel-property variation affect emissions and that the
number of these patterns is considerably less than the number of variables initially
thought to be involved. These basic patterns, referred to as “eigenfuels,” may reflect
blending practice in accordance with their relative weighting in specific circumstances.

The methodology is believed to be widely applicable in a variety of contexts. It promises

an end to the threat of collinearity and the frustration of attempting, often unrealistically,
to separate variables that are inseparable.
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EXECUTIVE SUMMARY

Multiple regression analysis is one of the most widely used methodologies for expressing
‘the dependence of a response variable on several predictor variables. In spite of its
evident success in many applications, the regression approach can face serious difficulties
when the predictor variables are to any appreciable extent covariant. This point was
made quite evident in a recently published review, which found that efforts to evaluate
the separate effects of fuel variables on the emissions from heavy-duty diesel (HDD)
engines were often frustrated by the close association of fuel properties. This report
addresses these concerns by offering a new approach to modeling the effects of fuel
characteristics on emissions.

The work was motivated by the observation that most HDD engine research was
conducted with test fuels that had been “concocted” in the laboratory to vary selected fuel
properties in isolation from each other. This approach can eliminate the confounding
effect caused by naturally covarying fuel properties, but it departs markedly from the real
world, where the reformulation of fuels to reduce emissions will naturally and inevitably
lead to changes in a series of interrelated properties. What impact might this method of
blending test fuels have on their ability to provide an accurate and reliable basis for
assessing the emissions performance of future diesel fuels?

Development of a New Statistical Methodology

The approach presented here is based on the use of Principal Components Analysis
(PCA) to describe fuels in terms of vector quantities called eigenfuels. Each eigenfuel
represents a unique and mathematically independent characteristic of diesel fuel, and the
most important eigenfuels can be related to the refinery and blending processes used in
creating the fuels. When applied as predictors for emissions in regression analysis,
eigenfuels are found to have many advantages, including:

» Simplification of the analysis, because their mathematical independence
eliminates correlations among the variables and the complications introduced
by multi-collinearity.

» Economy of representation, because a small number of such vector variables
may effectively replace a larger number of the original variables.

«  Greater understanding of the patterns of variation that are important to
emissions, and how these patterns relate to fuel blending and refinery
processes.

+ Potentially new insight into the optimal formulation of fuels to reduce
emissions, and improved experiment design for the estimation of fuel effects.

xiii



The natural covariance of fuel properties — a confounding factor for the original fuel
properties — becomes a strength associated with realism and efficiency in the eigenfuel
approach.

Key Findings Regarding Diesel Fuels and Emissions

A database of HDD engine testing was compiled from the literature and used to
demonstrate the methodology, recognizing that the existing data are inadequate to answer
fully the many questions related to the effect of fuels on emissions. Within this
limitation, the study suggests that the eigenfuel approach may lead to a new perspective
on the diesel fuel-emissions relationship:

» Fuel properties are only surrogate variables for underlying causal factors.
Much of the emissions reduction seen in past testing comes from reducing the
proportion of high-aromatic cracked stocks in diesel fuels. Because these
stocks are low in cetane and high in density, researchers have tended to
attribute the emissions reductions to the increase in cetane or reduction in
density associated with their removal, rather than to the compositional change.

* How one varies a fuel property can be the most important factor in
determining the emissions response. A given fuel property can be changed in
several ways, and a unit change in that property can produce markedly
different effects on emissions depending on how that change is introduced.

 Past studies may understate the impact of fuels on emissions. If density is
varied in several ways — one of which has a strong effect on emissions and the
- others not at all — a study will tend to see only the average, diluted effect.

As aresult, there is a very real risk that existing testing does not accurately assess the
relationship between fuels and emissions and that policy makers may thereby
underestimate the potential for fuels reformulation to contribute to emissions control.

Application of Eigenfuéls in Diesel Engine R&D

The eigenfuel approach provides new ways to design test fuels that are far more likely to
be representative of future fuels that will be produced in refineries, compared to fuels
blended in an effort to vary selected properties independently. The eigenfuel approach
can also be used to extract additional insights from the emissions data. Test fuels design
could be implemented in at least two ways:

* Develop test fuels to capture the processing and blending variability likely in
the production of low sulfur fuels, and then procure the test fuels from several,
differently-configured refineries.
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» Use the eigenfuel approach to guide test fuel blending in the labofatory, so that
the resulting test fuels closely replicate the signature characteristics expected
for future low-sulfur diesel fuels.

In either case, the test fuels will express the natural correlations among fuel properties.
While these correlations would be confounding factors in conventional analysis, they can
be exploited in eigenfuel analysis.

Recommendations to Improve the Diesel Emissions Database

An improved database is a prime requirement for the future development of a reliable
diesel emissions model. The following are recommendations for future testing to correct
the limitations of the existing data:

»  More testing of oxygenated fuels will be required before a complete diesel
emissions model can be developed. Few programs to date have evaluated
oxygenated fuels, and the available data are too sparse to support an analysis.

+ It may be important for new testing to report a more detailed hydrocarbon
speciation. Existing information is frequently limited to mono- and poly-
aromatic content, but it could well be important to know which hydrocarbon
species were increased when, for example, aromatics content was reduced.

+ An improved database should represent a substantially larger number of
engines and engine characteristics. The existing database, while representing
280 individual engine tests, is based on only 11 individual engines and cannot
support the assessment of engine-related effects.
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1. INTRODUCTION

Multiple regression analysis is one of the most widely used methodologies for expressing
the dependence of a response variable on several predictor variables. In spite of its
evident success in many applications, the regression approach can face serious difficulties
when the predictor variables are to any appreciable extent covariant. This point is made
quite evident in a recent review by Lee et al. (1998), in which efforts to evaluate the
separate effects of fuel variables on the emissions from heavy-duty diesel (HDD) engines
were often frustrated by the close association of fuel properties.

This report is an attempt to address these concerns by offering what is believed to be an
ameliorative approach to modeling the effects of fuel characteristics on emissions. The
approach is an adaptation of Principal Component Regression (PCR) that has certain
advantages over the more commonly encountered method of stepwise regression, which
was widely used in the development of the Complex Model for Reformulated Gasoline
(U.S.DOE, 1994). A database of HDD engine testing is used to demonstrate the
methodology, recognizing that the existing data is inadequate to answer fully the many
issues related to the effect of fuels on emissions.

1.1 STATISTICAL PERSPECTIVE

The approach demonstrated here is only one of many — including ridge regression, partial
least squares, all possible regressions, and PCR — that have been devised to counter
regression difficulties, as attested to by the extensive literature on these subjects
(Krzanowski et al., 1994; Jackson, 1991; Martens and Naes, 1989). Each has its
advantages and disadvantages, and in each a certain degree of art and arbitrariness must
be recognized. It is the contention of this report that PCR, because of its seeming
difficulty of interpretation and its past criticisms, is used less widely than it might be if
better understood and more appropriately applied.

In the statistical literature are numerous evaluations of PCR as practiced under that label
(Westerholm and Li, 1994; Hawkins, 1973; Boneh and Mendieta, 1994; Mansfield ez al.,
1977; Jolliffe, 1972; 1973). Proponents point to the orthogonality of the regressors as a
primary advantage. Orthogonality eliminates the aliasing of effects that accompanies
non-additivity, and thereby makes statistical inference simple and exact. Moreover, the
vector predictors that are the hallmark of PCR, though revealed by mathematical analysis,
may have real-world interpretations capable of providing insights as to the physical
processes driving the predictive relationship.

However, PCR has been soundly criticized (Hadi and Ling, 1998), and rightfully so,
because as practiced up to this point in time, it selects predictors without any reference to
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the response variable. Accordingly, it is possible for regressors having major influences
on the response variable to be excluded without being given the chance to reveal their
predictive importance.

Starting with some of the basic principles of Principal Component Regression (PCR), this
report goes far beyond what is currently accepted as the prevailing PCR protocol. It is
fitting, therefore, to refer to this extended approach as Principal Component Regression
Plus (PCR+). This distinction is essential to prevent the perceived limitations of PCR
from being identified with the approach taken here. Indeed, PCR+ is what PCR should
have been from its inception. Insistence on selecting predictor variables without regard to
their influence on the response is a restriction that never should have been, and it is hard
to understand how a flaw this obvious could have survived so long. The simple fact that
one can not evaluate predictive capability until there is something to predict should have
been self-evident.

It is important that the limitations of PCR, as currently perceived, do not become a stigma
that prevents the full potential of PCR+ from being realized in present and future
applications. At the outset, PCR+ considers all eigenvectors to be of equal predictive
importance, just as Ordinary Least Squares (OLS) would do. It includes all eigenvectors
in the model and, by virtue of additivity, partitions the model sum of squares (SS) into
separate components indicative of their true relative importance in prediction. The
portion of the model SS that is associated with a given eigenvector can be sub-partitioned
into parts associated with the components of the eigenvector, namely the original X-space
variables. These sub-partitions can then be aggregated to show the relative importance of
each of these original variables in the overall model or any subset model. Therefore, the
awkwardness and sometime ambiguity of search methods, such as stepwise regression,
need no longer be tolerated.

1.2 OVERVIEW OF THE VECTOR APPROACH

It is easily demonstrated that predictor variables can be naturally associated in a way that
defies their separation. For example, it is evident and unarguable that increasing a fuel
component such as olefins implies decreasing one or more other components such as
aromatics or paraffins. Other examples abound in the refining world, such as the
association of distillation characteristics with chemical composition.

While the association of physical and chemical properties of automotive fuels is well
known, the degree of interdependence may be surprising to some. To demonstrate the
interdependence, each of twelve variables describing diesel fuel properties was expressed
as a function of the other property variables, using conventional multi-linear regression
analysis and the database on HDD engine testing developed for this study. In each
regression, one of the property variables plays the role of response variable, while its
companion variables are used as predictors. The result decomposes the variation of each
fuel property into two parts: :



1. The portion explained by (or shared with) the other fuel properties, as
computed from the regression. '

2. The portion independent of the other properties, determined from the residuals
between the observed responses and the computed values.

Figure 1.1 shows the extent to which each of the fuel properties depends on all the others,
where the interdependence of each variable is measured by the R? of its regression
equation. For many properties — including natural cetane, density, viscosity, and four
points on the distillation curve — approximately 90 percent of the variation is shared with
the other variables and only about 10 percent is independent. For others — sulfur content,
mono- and poly-aromatics content, and IBP — one-half to two-thirds of the variation is
shared. Only for cetane improvement is the shared portion relatively small and the
independent portion large — a result not surprising inasmuch as cetane enhancers were

- added to a range of base fuel stocks to create the test fuels.

Figure 1.1. Interdependence of Diesel Fuel Properties
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These natural associations are not to be confused with apparent associations that arise
from inappropriate experiment designs in violation of principles enunciated by R.A.
Fisher in his pioneering book Design of Experiments (Fisher, 1935). Neither is the vector
approach to be confused with applications involving Principal Component Analysis
(PCA) and related factor-analytic methods used to understand the interrelation among
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descriptive variables, as was pioneered by L. L. Thurstone in his book The Vectors of
Mind (Thurstone, 1935).

Rather, for variables naturally associated in a physical system, our approach defines new,
vector-based predictor variables in such a way that the vector variables are orthogonal.
PCA is used to resolve the design matrix into eigenvectors that explain, in the most
compact way, the variation among the original variables (here, fuel properties). Then, the
eigenvectors are used as candidate predictors of the response variable (here, emissions) in
an ordinary least squares (OLS) regression. Because fuels can be specified
unambiguously using the eigenvectors, and the eigenvectors are shown to have physical
interpretations, we adopt the terminology eigenfuel in place of eigenvector and treat fuels
as mathematical blends of eigenfuels, each of which represents a distinct, mathematically
independent characteristic.

Recognizing that any of the eigenfuels may play an important role in prediction, we
incorporate, initially, all of them in the model. No attempt is made to select a subset of
these vectors before performing the regression, as is commonly done in many past
applications of PCR. Then, by means developed in this report, we select the most
appropriate subset of eigenfuels to retain in the final model. Because of orthogonality,
one can partition the model sum of squares (SS) explicitly among vectors and drop from
the model those that are deemed unimportant, either because they fail to reach a specified
level of significance or because they contribute little to the prediction in terms of
magnitude. This approach is similar in many respects to the case studies described by
Jeffers (1967).

The final step consists of “pruning” the retained eigenfuels of those components (the
original fuel variables) that contribute little to prediction. This step is possible because
the ability to partition the model SS among eigenfuels implies the ability to partition that
SS among their components — namely, the original variables. The method by which the
partitioning is realized avoids such commonly used procedures as removing variables one
at a time to determine how their removal reduces the model SS.

Knowing the extent of interdependence among the fuel variables, we should not be
surprised by the difficulty of selecting an “optimal” set of variables for a regression
model. We may believe that natural cetane or density has an important influence on
emissions, but either may be rearly replaced by a combination of other variables.
Stepwise regression, a commonly used technique in model development, searches
through a sequence of differing model formulations to find one that is “optimum.” In
data such as this, there can be many different sets of variables that perform nearly as well
as the one set ultimately chosen.

Figure 1.2 brings this point into focus. There are 4,095 different regressions that can be
formed from twelve fuel properties, and these form the universe among which stepwise
regression searches. It will take all twelve fuel properties to place a model at the very end



of the curve. Forty five different models populate the last 0.02 in R? and these typically
involve 7, 8, or 9 predictor variables.

Figure 1.2. Comparative Performance of Regression Models
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Models based on a small number of eigenfuels perform well in this context. For example,
one eigenfuel explains 83 percent of the fuels-related variance in NO,, three eigenfuels
explain 91 percent, and five explain nearly 97 percent. Eigenfuel models for PM
emissions perform as well. Given the high degree of interdependence in this data, we
prefer to move away from efforts to find the “best” variables and, instead, toward an
approach based on decomposing the interdependence into vectors representing the
independent, underlying influences.

The transition from scalar to vector predictors brings with it a spate of interpretational
and inferential issues. Tests of significance, for example, may need to be viewed in a
different light, and it may be appropriate to put more emphasis on the magnitude of an
effect rather than its probability of occurring by chance. So firmly embedded in our
research culture is the statistical paradigm that most investigators are disinclined to
acknowledge the existence of other criteria for judging the worth of a scientific finding.
Moreover, the 0.05 level of significance is a fixed icon and tends to be routinely applied,
even though the power of the test is strongly dependent on sample size. Further, one
tends to accept, without question, that a variable either is or is not “significant,” ir fofo.

In the present circumstance, however, one may have to accept the fact that the
significance of a fuel variable may depend on its associations, inasmuch as all the
variables appear as components of each of the eigenfuels. This is because rejecting an
eigenfuel implies only partial rejection of the original variables comprising it, because the
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same variables occur in the eigenfuels that are not rejected. In this report we accept the
notion of “partial” significance, believing that a variable can be significant when found in
respectable company and not significant in less respectable company.

We also prefer to evaluate effects on the basis of their magnitude in addition to their
probability of occurring by chance. We refer to these criteria for choice as substantiality
and significance. In the implementation of the substantiality criterion, sample size still
plays arole, of course, but in a way that is the dual of its role in a conventional test of
significance. For a fixed significance level, such as the classic 0.05, the magnitude of the
“least detectable™ effect is variable and depends on sample size.

When a fixed magnitude is used as the threshold for acceptance or rejection of an effect,
it is the statistical significance level that varies, again depending on sample size. We
believe it is essential to balance the two considerations. Even though an effect may be
statistically significant, because of large sample size, there is no reason for it to be
retained if it makes only a minuscule difference in predictions.

Our approach is illustrated in Figure 1.3. The horizontal axis represents significance, the
vertical axis represents substantiality, and the points represent the eigenfuels and where
they lie in the plane of the two criteria. We first reject eigenfuels with t-ratios smaller
than 1.96, as required for 0.05 significance. We then reject predictors that fail to explain
some minimum percentage of the fuels-related SS. In the figure, this threshold is taken as
one percent. For particulate emissions, as shown, five eigenfuels satisfy the combined
criteria for significance and substantiality.

Figure 1.3. Significance versus Substantiality of Effects (PM Emissions Model)
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A major advantage of the substantiality criterion is that its critical value does not change
with sample size, though the associated significance threshold does. Thus, substantiality
serves as a counterbalance to the test of significance, the power of which increases with
sample size and often leads us to retain smaller and smaller, and sometimes negligible,
effects.

The vector approach developed in this report provides a generally applicable method for
identifying an efficient set of vector variables to describe a collection of data. When
applied as predictor variables in regression analysis, the vector variables are found to
have many advantages, including:

+ Economy of representation, because a small number of vector variables may
effectively replace a larger number of the original variables.

«  Simplification of regression analysis, because properly constructed vector
variables (the eigenvectors of the problem) will be mathematically
independent and eliminate the complications introduced by multi-collinearity.

» Potentially greater understanding of the patterns of variation present in the
data and how these are related to the dependent variable under consideration.

1.3 DIESEL EMISSION CONTROL

The background and status of diesel emission research are well documented by the
previously cited literature review by Lee ef al. (1998). Up to this point in time it appears
that engine design factors tend to eclipse fuel effects so far as efforts to reduce diesel
emissions are concerned. Moreover, as pointed out by the authors, a number of prototype
engine technologies are under consideration in order to meet future proposed emission
limits in the United States (for 2004) and in the European Union (for 2000 and 2005).

How fuel properties may influence diesel emissions in the future is particularly
problematical, especially in those instances where engine or fuel properties play an
enabling role for the other. Inseparable effects are not necessarily limited to fuels. Some
may pertain to engine design features, such as exhaust gas recirculation or catalyst
systems, that depend on fuel properties for an enabling effect. Evaluation of such coupled
effects may resist conventional statistical means and present yet another opportunity for
exploitation of the vector-variable approach.

1.4 ORGANIZATION OF REPORT

The report documents research performed in two phases during 1999 and 2000. Portions
were previously published in the technical paper series of the Society of Automotive
Engineers (SAE) (McAdams e al., 2000). Section 2 presents the concepts of the vector



methodology and demonstrates its application to a database of HDD engine emissions.
Section 3 develops a perspective that shows how the vector approach leads to a preferred
identification of the explanatory influences in a regression model. It then presents a
series of extensions and refinements to the basic methodology to address difficulties that
can be expected to arise in practice. Section 4 discusses three areas in which additional
work is needed to improve the understanding of diesels fuels and HDD emissions, while
Section 5 presents conclusions of the work. Nine appendices are included with this report
to amplify on the development of the methodology and document the procedure involved
in implementing the approach.



2. THE VECTOR METHODOLOGY

This section presents the vector methodology and its application to a database of HDD
engine emissions. We begin with a description of the data base and then proceed to a
presentation of the methodology.

2.1 DESCRIPTION OF DATA BASE

A database representing 280 individual emission tests of HDD engines was compiled
from nine publications ( Gonzalez et al., 1993; McCarthy ef al., 1992; Schaberg ef al.,
1997; Sienicki et al., 1990; Spreen et al., 1995; Ullman, 1989; Ullman et al., 1990; 1994;
1995) in the SAE literature where the following criteria were met: '

«  The Environmental Protection Agency (EPA) transient test cycle was used and
either the composite or hot start result was reported. The hot start portion has
a 6/7™ weight in the composite result.

» Atleast NO, and PM emissions were measured, which are the pollutants
examined in this study. Eight of the sources measured all four pollutants (HC,
CO, NO,, and PM), and one source measured all except CO.

+ Emissions testing could be matched to fuels for which the following 12
properties were known: natural cetane, cetane number improvement (resulting
from additives), density, viscosity, sulfur content, mono-aromatic content,
poly-aromatic content, and five points on the distillation curve.

Table 2.1 lists the variables contained in the database; the field names shown are used to
refer to the variables in the tables and figures of this report. Overall, the data represent
eleven different engines tested a total of 280 times on 85 different diesel fuels.

Twenty-seven publications were examined in the process of compiling this data base
(Akasaka et al., 1997; Cunningham et al., 1990; Daniels et al., 1996; EPA HDEWG
Program, 1999; Geiman ef al., 1996; Gonzalez et al., 1993; Lange, 1991; Lange et al.,
1997; Liotta, 1993; Liotta and Montalvo, 1993; Mann et al., 1998; McCarthy et al., 1992;
Nakakita et al., 1998; Nylund et al., 1997; Reynolds, 1993; Rosenthal and Bendinsky,
1993; Schaberg ef al., 1997; Schmidt and Gerpen, 1996; Sienicki et al., 1990; Spreen et
al., 1995; Star, 1997; Tamanouchi et al., 1997; Tanaka et al., 1996; Ullman, 1989;
Ullman et al., 1990; 1994; 1995). Eight publications using the EPA transient test cycle
were excluded because one or more of the fuel properties was not reported, most
commonly the poly-aromatic content. Ten publications were excluded for reasons related
to the emissions data. In one instance, only PM was measured, while European or



Table 2.1. The HDD Emissions Database

Field Name Units Description
Engine ID text text description of engine
Fuel ID text text identifier of fuel
Test number sequential number
Source text SAE paper number
Cycle number 0=EPA Composite

1=EPA Hot Start
Engine number unique engine identifier
NRepl number number of test replications
HC gm/bhp-hr | hydrocarbon emissions
CO gm/bhp-hr | carbon monoxide emissions
NOx gm/bhp-hr | nitrogen oxide emissions
PM gm/bhp-hr | particulate emissions
NatCetane number natural cetane
Cetlmprv number cetane improvement
Density gm/cm?
Viscosity mm?/sec at/near 40 degrees C
Sulfur ppm suifur content
MonoArom percent mono-aromatics content
PolyArom percent poly-aromatics content
IBP Celsius Initial boiling point
T10 Celsius 10 percent evaporation point
T50 Celsius 50 percent evaporation point
T90 Celsius 90 percent evaporation point
FBP Celsius Final boiling point

Japanese test cycles were
used in nine other instances.
Additional information on
the data base may be found
in Appendix A.

The 12 fuel properties
examined here are a super-
set of the fuel properties that
have been considered with
respect to HDD emissions.
They include characteristics
such as aromatics content,
cetane rating, and sulfur
content that a consensus of
investigators believes
relevant to emissions
performance. Additional
properties (IBP, T10 and
others) are included that
could be independent
predictors, could be
correlated with the
consensus variables, or could
prove unrelated to
emissions. This
purposefully casts the net as
wide as possible, leaving the
identification of the proper
subset of predictor variables
to the later analysis.
However, there is no intent
to imply that only these

properties could affect engine emissions. For example, fuel oxygen content is likely to

affect CO emissions, and perhaps other pollutants, but is not among the selected

properties. While some sources tested oxygenated diesel fuels, these were judged to be

too few in number to permit including oxygen content in the list.

The eleven HDD engines represented in the data base constitute a very small sample of

the engine types present in the on-road vehicle fleet. Nevertheless, they include engines

made by the three major manufacturers (Cummins, Detroit Diesel Corporation, and

Navistar) and cover a range in model years and horsepower ratings. The engines are

generally similar in design, although they are built to varying emissions standards. None
are equipped with EGR systems or with catalysts as tested. They can be taken as
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reflective of the HDD engines currently on the road, even if the sample is too limited to
be considered truly representative.

The large majority of the data base represents individual engine tests, but 41 entries from
three sources record the mean values of replicated tests. For this work, we have
duplicated the mean values so that each is represented as many times as the tests were
replicated. This approach, which gives a total of 280 emission tests, maintains an equal
weighting among individual tests and improves the estimation of the total variance.
However, the total variance is understated to an unknown extent because the data omit
the variation of the (unknown) individual test results around the (reported) mean values.

2.2 COMPUTER SOFTWARE

The analysis was conducted using MatLab, a commercially available software package
~ designed for matrix processing (MatLab, 2000). MatLab offers a built-in function svd,
which extracts the eigenvalues and eigenvectors of a matrix using the singular value
decomposition procedure. Other statistical procedures such as computation of correlation
matrices and multivariate regression analysis are available as built-in functions or can be
easily written using matrix notation. The methodology demonstrated here can be
implemented in any computational environment that provides for the calculation of
matrix eigenvalues and eigenvectors. Appendix B contains a listing of the major MatLab
procedures created in implementing the methodology.

2.3 THE VECTOR METHODOLOGY

We first demonstrate how PCA can be used to resolve the matrix of fuels into a
representatlon based on eigenvectors and then demonstrate the use of eigenvectors in

regression analysis. Appendix C develops the statistical theory that underlies the
methodology presented here.

2.3.1 Vector Approach to Representing Fuels

Consider the subset of data describing the fuels used in emissions testing. This test fuels
data set consists of the 12 selected properties measured for the 85 different fuels used in
the engine testing and replicated a varying number of times corresponding to the number
of emissions tests in which each was used. The data set can be viewed as a matrix X of
. dimension 280 rows (engine tests) by 12 columns (fuel propertles) that contains all of the
fuels-related information available as predictors for emissions.

Summary statistics for the 280 x 12 data set consist of a mean vector and variance-
covariance matrix for the 12 variables. The mean vector is a row vector consisting of 12
components presenting, respectively, the means for the 12 fuel properties: natural cetane,
cetane improvement, ... FBP. The 12 x 12 variance-covariance matrix displays the
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variance of the 12 fuel properties along its main diagonal. The off-diagonal elements
represent the covariances of pairs of fuel variables.

Prior to further analysis, each column (fuel variable) is standardized to mean zero,
variance one. All subsequent analysis will be based on these standardized variables, each
of which measures fuel properties in units of standard deviations from the mean. Much
of the thrust of the analysis will be aimed at reducing the variance-covariance matrix to
diagonal form — that is, zeros everywhere except on the main diagonal.

The starting point for this is the correlation matrix, shown in Table 2.2. Correlations
greater than 0.50 in absolute magnitude (an arbitrary threshold) have been highlighted to
emphasize the pairwise interdependencies of the physical properties. For example, and
not surprisingly, the five points on the distillation curve are highly correlated with each
other and with viscosity. Other correlations reflect known relationships encountered in
fuel blending. Decreased natural cetane is correlated with increased density and aromatic
content as would be expected in a fuel blend where the proportion of high-aromatic
cracked stocks, which have low cetane and high density, has been increased.

That fuel properties are correlated, sometimes to a large degree, implies that there are
fewer independent variables than the number of physical properties measured. To
demonstrate this fact, a singular value decomposition analysis was performed to extract
the 12 eigenvalues and eigenvectors from the correlation matrix. The eigenvectors are
defined in the computational procedure in a manner that partitions the total variance into
orthogonal components, where the eigenvalues are the variances associated with the
corresponding eigenvectors. In this context, orthogonality means that the eigenvectors
are linearly independent of each other and, as a result of their definition, the correlation
between any two eigenvectors over the data set is exactly zero.

Table 2.3 presents the twelve eigenvalues and eigenvectors of the test fuels data set. Each
eigenvector is a linear combination of the original 12 fuel properties. For example, the
first eigenvector is described by the coefficients or weights (0.061, 0.034, 0.285, ... 0.365)
applied to the fuel properties (natural cetane, cetane improvement, density, ... FBP). The
largest coefficients have been highlighted to emphasize the most important fuel property
components. '

The variance among fuels, indicated by the eigenvalues, is highly concentrated in the first
few eigenvectors. The first eigenvector accounts for nearly 40 percent of the total
variation among the fuels, the first six together account for more than 90 percent, and the
first nine for essentially all (nearly 99 percent). Thus, while the data set contains 12
distinct variables, its total variance is concentrated in a much smaller number of
orthogonal patterns that are described by the eigenvectors with the largest eigenvalues.

It is often desirable to develop a conceptual interpretation of the eigenvectors to aid the
analyst’s understanding, although this may not be completely possible in complex
systems. Physical systems (of any kind) are normally created from more basic building
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Table 2.2. Correlation Matrix for Fuel Properties

1 2 3 4 5 6 7 8 9 10 11 12
NatCetane 1 1.000
CetImprv 2 -0.233 1.000
Density 3 -0.613 0.105 1.000
Viscosity 4 0.219 0.051 0.460 1.000
Sulfur 5 -0.022 -0.220 0.202 -0.054 1.000
MonoArom 6 -0.633 0.247 0.667 0.121 -0.030 1.000
PolyArom 7 -0.393 -0.040 0.523 -0.084 0.511 0.298 1.000
IBP 8 0.097 -0.058 0.292 0.514 -0.063 0.074 -0.029 1.000
T10 9 0.225 -0.098 0.444 0.800 0.016 0.071 0.006 0.622 1.000
T50 10 0.275 -0.002 0.497 0.889 0.014 0.144 0.097 0.382 0.792 1.000
TS0 11 0.295 0.114 0.307 0.692 -0.038 0.226 0.144 0.237 ©0.523 0.775 1.000
FBP 12 0.211 0.168 0.318 0.607 -0.096 0.224 0.118 0.278 0.445 0.633 0.897 1.000
Table 2.3. Eigenvectors of the Test Fuels Data Set
1 2 3 4 5 6 7 '8 9 10 11 12
NatCetane 0.061 -0.556 0.163 -0.220 0.071 -0.068 0.138 -0.458 0.104 -0.456 0.045 0.391"
CetImprv 0.034 0.143 -0.549 -0.212 0.782 0.061 -0.024 -0.106 0.001 -0.054 -0.048 0.004
Density 0.285 0.449 0.049 0.168 -0.047 0.163 -0.109 0.237 0.343 -0.418 -0.272 0.473
Viscosity 0.432 ~0.120 -0.017 0.142 0.084 0.308 0.004 0.150 -0.156 0.292 0.638 0.371
Sulfur 0.002 0.180 0.636 -0.202 0.393 0.118 0.556 0.175 0.013 0.058 -0.024 -0.100
MonoArom 0.146 0.464 -0.256 0.040 -0.305 -0.028 0.548 -0.500 -0.134 -0.078 0.164 -0.037
PolyArom 0.076 0.418 0.385 -0.272 0.092 =0.289 -0.552 -0.343 -0.171 0.030 0.225 0.049
IBP 0.262 -0.072 0.052. 0.537 0.248 -0.697 0.118 -0.033 0.234 0.128 0.015 -0.024
T10 0.399 -0.113 0.128 0.316 0.109 0.192 -0.093 -0.123 -0.642 -0.186 -0.392 -0.198
T50 0.431 -0.083 0.064 -0.053 -0.028 0.319 -0.149 -0.240 0.555 0.010 0.065 -0.552
T30 0.392 -0.074 -0.075 -0.428 -0.158 -0.134 0.071 -0.037 0.021 0.551 -0.486 0.252
FBP 0.365 -0.048 -0.147 -0.409 -0.141 -0.359 0.069 0.476 -0.157 -0.406 0.205 -0.254
Eigenvalues 4.531 2.591 1.549 1.181 0.681 0.564 0.390 0.230 0.140 0.083 0.036 0.026
Pct Variance 37.75 21.59 12.90 9.83 5.67 4.69 3.24 1.92 1.17 0.68 0.29 0.21
Cumulative Pet 37.75 59.34 72.25 82.09 87.76 92.46 95.70 97.62 98.79 99.48 99.78 100.0
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blocks according to a set of rules that reflect a natural structure. If these building blocks
are fully described by the chosen set of variables, one hopes to find an expression of this
structure in the eigenvectors. In the context of diesel fuels, the underlying structure (and
therefore the eigenvectors) should reflect the properties of the refinery processes and
blending stocks used to create these fuels.

The following discussion interprets the first four eigenvectors in terms of the associations
among fuel properties. Where possible, we have suggested identifications of the eigen-
vectors with known refinery or blending processes. These largest eigenvectors, as
identified by the proportion of the total variance shown in parentheses, are likely to
represent generalized characteristics of fuels and therefore to be most amenable to
variation in reformulating diesel fuels.

Primary viscosity/density characteristic (38 percent). A direct relationship among
viscosity, distillation temperatures, and to a lesser extent density. This characteristic is
associated with the largest eigenvalue, meaning that the test fuels vary most among
themselves with respect to this characteristic. More viscous compounds found in diesel
fuels have higher boiling points, and predictive equations show that viscosity is directly
related to the square root of density (Thomas, 1946). Diesel blend stocks exhibit a
similar relationship among viscosity, distillation temperatures, and density as
demonstrated independently by correlation analysis using the data base of blend stocks in
the Refinery Yield Model (RYM) maintained by Oak Ridge National Laboratory.

Primary aromatics characteristic (22 percent). An increase in aromatics content (both
mono- and poly-aromatic) is associated with higher density and a decrease in natural
cetane. This characteristic reflects a known property of the high-aromatic cracked stocks
that are used in blending diesel fuels. These stocks have higher densities and their
aromatics content is known to delay ignition and thereby decrease cetane rating.

Primary sulfur/quality characteristic (13 percent). This appears to represent sulfur
content and its related impact on the boost from cetane improvers, which declines as the
quality of diesel fuel declines. Information from the Ethyl Corporation (Ethyl
Corporation, 1995) shows that cetane boost is reduced with lower clear cetane, as for .
fuels with higher sulfur and poly-aromatics. This characteristic might be explained by the
presence of high sulfur-content dibenzothiophenes, which can be present in light cycle

oils produced by fluid catalytic cracking.

Primary blend balancing characteristic (10 percent). Fuels with increased temperatures
- at the low end of the curve (IBP and T10) tend to be associated with decreased
temperatures at the upper end (T90 and FBP). This slope characteristic for the distillation
curve complements the height characteristic found in eigenvector 1 and may be related to
meeting blending specifications. For example, flash point might be satisfied by using
heavier blend stocks at the low end of the distillation temperatures, while lighter blend
stocks are used on the high end to meet the pour point requirement.
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When the variance associated with individual eigenvectors falls to relatively small
percentages, regression coefficients for these eigenvectors are subject to wide error
bounds. Moreover, such eigenvectors may tend to reflect factors specific to the blending
of test fuels in individual sources, rather than characteristics found in a range of fuels.
For example, the smallest eigenvectors could represent specific blend stocks used in one
or more sources to vary fuel properties for test purposes or to control one or more fuel
properties to fixed values, once another property had been varied for experimental
purposes. For this reason, we do not attempt to offer physical interpretations for the
smaller eigenvectors. Overall, more work is needed to understand the eigenvector
characteristics of diesel fuels, particularly as those characteristics may differ between
commercially available fuels and test fuels created for use in the laboratory.

Because the eigenvectors form an orthogonal basis, they can be used to re-express the
original matrix in orthogonal terms. This process is closely analogous to Fourier

- transform analysis, in which a time-varying signal is decomposed into individual
frequencies and then re-expressed as a weighted sum over frequencies. In Fourier
analysis, the continuum of harmonic frequencies from % = 0 to « forms an orthogonal
basis from which any time-varying signal can be constructed. In the vector approach
defined here, the basis vectors are developed from the experimental data in a manner
expressly defined to be orthogonal. Data analysts may perceive the eigenvector approach
to be similar to the use of orthogonal polynomials in a regression equation consisting of
successive powers of the predictor variable (Fisher and Yates, 1948). '

An experimental design matrix X, of m rows and n variables can be represented in
eigenvector terms as the linear combination A, i * Vi, Where A, is a matrix of
coefficients for the k eigenvectors and V,, , is a matrix in which the eigenvectors k,
composed of n components each, form the columns. The coefficients A, ., are
calculated from the relationship Ay = Xmxm ¥ Vaxi- In algebraic form, any row m of
the X matrix can be expressed as a linear combination of coefficients a (k) and
eigenvectors v;(k):

X)) = an(D*vi(1) + ...+ 2, (12)*v,(12) (D

where: X_(j) = value of the j* variable (fuel property) for the m™ fuel; a, (k) = coefficient
of eigenvector k in the m™ fuel ; and v;(k) = component weight for the j,, variable in
eigenvector k.

The example in Table 2.4 may help to make these relationships more understandable.
Here, the observed values! have been taken from a selected observation in the X matrix.
Below this, the calculation given by Eq. 1 is shown to exactly reproduce the original

! These are the physical properties in standardized form where mean = 0 and
variance = 1.
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Table 2.4. Eigenfuel Representation for a Selected Fuel

Fuel Property

Observed Values

Calculated Values

k Coefficient
1 0.121
2 0.213
3 0.066
4 0.259
5 -0.632
6 0.229
7 -0.294
8 0.011
9 0.371
10 0.205
11 -0.119
12 0.048

1

-0.305

-0.305

-0.

-0.

535

535

0.

0.

375

375

0.

0.

Eigenvector Components
.061
.556
.163
.220
.071
.068
.138
.458
.104
.456
.045
.391

0.
0.
.549
.212
.782
.061
.024
.106
.001
.054
.048
.004

034
143

.285
.449
.049
.168
.047
.163
.109
.237
.343
.418
.272
.473

025

025

.432
~-0.
.017
.142
.084
.308
.004
.150
.156
.292
.638
.371

120

-0.341

~0.341

0.002
0.180
0.636
-0.202
0.393
0.118
0.556
0.175
0.013
0.058
-0.024
-0.100

0.

0.

042

042

.146
.464
.256
.040
.305
.028
.548
.500
.134
.078
.164
.037

0.

005

.005

.076
.418
.385
.272
.092
.289
.552
.343
.171
.030
.225
.049

-0.

083

.083

.262
.072
.052
.537
.248
.697
.118
.033
.234
.128
.015
.024

-0.

-0.

123

123

.399
.113
.128
.316
.109
.192
.083
.123
. 642
.186
.392
.198

10

0.

0.

331

331

.431
.083
.064
.053
.028
.319
.149
.240
.555
.010
.065
.552

11

0.

154

.154

.392
.074
.075
.428
.158
.134
.071
.037
.021
.551
.486
.252

12

-0.268

-0.268

0.365
~-0.048
-0.147
-0.409
-0.141
~-0.359

0.069

0.476
=-0.157
-0.406

0.205
-0.254
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observation. The values are calculated, for any fuel property j, as the product of the
coefficient a, times the coefficient for the j™ component of eigenvector k, summed over
all eigenvectorsk =1, 2, ..., 12. The eigenvectors k are placed in row form in this table,
while the fuel properties j form the columns.

Thus, we can express any fuel as the vector of coefficients a (k) = (a,, a,, ..., a,)
corresponding to the 12 eigenvectors, instead of describing the fuel by its physical
properties. Because these coefficients and their associated eigenvectors specify a fuel
unambiguously, and the eigenvectors have been shown to have physical interpretations,
we adopt the terminology eigenfuel in place of eigenvector and think of these eigenfuels
as hypothetical components of real-world fuel blends. We then treat fuels as
mathematical blends of eigenfuels, each of which represents a distinct, mathematically
independent characteristic. The coefficients a, (k) become measures of how fuel m is
composed of the eigenfuels k.

Once a data set is translated into this representation, the eigenfuel coefficients are
distributed with mean zero and variance equal to the corresponding eigenvalue. Figure
2.1 shows histograms of the coefficients a (k) for the data set used here. The coefficient
distributions are broad (have large variance) for the first several eigenfuels, consistent
with their large eigenvalues. The distributions narrow as one moves through the series,
until they approach a peak clustered around zero by the end. Thus, the fuels vary most

Figure 2.1. Distribution of Eigenfuel Coefficients
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widely with respect to the characteristics expressed by the first several eigenfuels and
differ only to a very minor extent with respect to those represented by the later eigenfuels.

A fundamental property of eigenfuels is that they form an orthogonal set and their
coefficients are uncorrelated — i.e., the off-diagonal elements of the correlation matrix for
the coefficients A, are zero. That the eigenfuel coefficients are mathematically
independent and uncorrelated will prove very important when they are used as predictor
variables.

2.3.2 Use of Eigenfuels in Regression Analysis

Having reviewed the properties of eigenfuels, we now turn to their use as predictor
variables in regression analysis. The empirical relationship between engine emissions
and fuel properties is usually determined through regressing an emissions variable Y
against one or more fuel property variables X, in a form similar to:

Y=by+b X, +b,X,+...+b X, | )

where the coefficients b; are determined by the regression, and we consider the variables
X; to be scalar quantities. In the vector approach developed here, the regression model
will be of comparable form:

Y=by+b A +b,Ay+...+b A 3)

where the new variables A, are the coefficients of eigenfuel i in the vector representation.
Consistent with other work, the dependent variable Y is taken to be the natural logarithm
of emissions. (See Appendix I for further discussion of the use of variable
transformations in regression analysis.)

When used as predictor variables in regression analysis, eigenfuels have two important
properties resulting from their mathematical independence, as demonstrated in Table 2.5.
Here, NO, emissions have been regressed against each eigenfuel k individually using
equations of the form:

In(NO) =a,+a, A, fork=1,2,...12 4

The regression sum of squares and coefficient values are then tabulated against the results
of a regression in which all 12 eigenfuels are present simultaneously (see the rightmost
column of the table). The regression sum of squares summed across the twelve
individual regressions equals the sum of squares in the regression containing all 12
eigenfuels. Further, the intercept and eigenfuel coefficients for the individual regressions
are identical to those estimated in the regression containing all eigenfuels. Thus, the
regression sums of squares are additive and the coefficient values are invariant with
respect to the selection of eigenfuels for inclusion in the regression. There is, in fact, a
unique partitioning of the variance in the dependent variable into the components
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Table 2.5. NO, Regressions Using Eigenfuels as Explanatory Variables

2 3 4 10 11 12 ALL

Regression Sunm 78051 .0010 0506 1229 0113 0000 1633

of Squares
Cunulative SS 8041] .8051 8557 .1521}11.1633
Intercept 1.537211.537271.53727 1.5372 1. 1. 1.537211.5372 1.5372
Eigenfuel 1 .0043 0043
Eigenfuel 2 0329 = .0329
Eigenfuel 3 .0016 .0016
Eigenfuel 4 .0124 .0124
Eigenfuel 5 .0233
Eigenfuel 6 .0021
Eigenfuel 7 .0117
Eigenfuel 8 . 0002
Eigenfuel 9 .0374
Eigenfuel 10 -.0730 .0730
Eigenfuel 11 0335 0335
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identified with the eigenfuels. It can be shown (see Appendix C) that the contribution of
eigenfuel k to the regression sum of squares and R? statistic is proportional to the product
of the eigenvalue A, and the square of the regression coefficient b,.

This outcome contrasts with the usual result in regression analysis when the predictor
variables are correlated with each other. The multi-collinearity existing in such
circumstances means that parameter estimates change when predictors are added to or
removed from the regression. In addition, combining individual variables to create a
pooled regression does not increase the regression sum of squares and R? statistic to the
extent that might be expected. Working through the “fog” created by multi-collinear
variables is part of the art of regression analysis and is one of the reasons why
independent analysts can reach differing conclusions from the same data. The use of the
linearly independent, vector variables eliminates this fog.

The table suggests insights that will be developed in the next section. Not surprisingly,
there is a difference between the importance of an eigenfuel in describing the variation
among fuels and the strength of its relationship to NO, emissions or another dependent
variable. Eigenfuels 1 through 12 are defined in decreasing order of variance among the
fuels, so that eigenfuel 1 accounts for 38 percent of the fuel variance, followed by
eigenfuel 2 at 22 percent, and eigenfuel 10 at only 0.7 percent. However, the regression
results indicate that eigenfuel 10 has the strongest relationship to NO, emissions, as
measured by its coefficient, followed by eigenfuels 11 and 2. We also see that some of
the eigenfuels (numbers 1, 3, 6, 8, and 12) have very weak relationships to NO, and are
likely candidates to drop from the analysis. However, before attempting to draw
conclusions from such results, we must first consider and control for other factors, such
as engine characteristics, that contribute to the variance in emissions.

2.3.3 Application to Diesel Emissions

In this section we show the application of the vector approach to diesel engine emissions
and obtain a first look at its implications. There are many factors beyond fuel
composition that contribute to the variance in engine emissions, including differences
among engines, test cycles, and the sources from which the data are drawn. The intent is
to extract these fixed effects and then re-compute the regression equation 1nvolv1ng the
eigenfuels. This will be done for both NO, and PM emissions.

Figure 2.2 suggests the sources of variation to be found in the data base of diesel
emissions data. The tested engines are taken to be generally reflective of the population
of HDD engines currently on the road. Nine different publications reported tests for 11
individual engines, representing 11 different engine designs, on 85 different fuels using
one of two different EPA test cycles. Most, but not all, engine tests were replicated at
least once.
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Figure 2.2. Sources of Variance in Diesel Engine Emissions Data

Sources — nine different publications
Engine Lines — 11 different engine lines
Individual Engines — 11 individual engines tested
Fuels — 85 unique fuels
Test Cycles — 2 different EPA cycles (composite and hot start)

Test Replications — test-to-test variation

We can hypothesize a series of terms in the overall emissions model that represent, for
example, the average emissions level E, of the existing fleet, the variation of average
emissions E; for engine line i around E,, and the variation of the average emissions E; for
individual engine j around its engine line average E,. Other terms in the model would

" include an effect S, for differences among the sources and an effect T, for the different

average emissions levels of the two EPA test cycles. This series of terms would be in
addition to the effects of fuels on emissions, which are of primary interest here.

We are unable, however, to estimate an overall emissions model at present because of
size and coverage limitations of the data base that make it impossible to separate the
effects of engine designs, individual engines, test cycles, and sources. Each engine design
is represented by only a single specimen and each individual engine has been tested using
only one of the two test cycles. For purposes of this exploratory study, we have
incorporated a single fixed effect for individual engines in the regression models. This
engine effect represents an undifferentiated, composite effect due to engine designs,
individual engines, sources, and test cycles.

Thus, we use regression equations of the form:

where the dependent variable is the natural logarithm of emissions for engine i tested on
fuel j, Z b; * §; represents a dummy variable formulation for the variation in mean

~ emission levels among individual enginesi=2, ..., 11 and Z b;, * A;, represents the

emission effects of fuel j expressed in terms of the 12 eigenfuel coefficients k.

While the eigenfuels are defined to be mathematically independent of each other,
correlations exist between the eigenfuels and the engine dummy variables. There is no
unique partitioning of the variance between fuel and engine effects, as a result, and fuel
effects should be computed within engines and the separate estimates pooled. Otherwise,
differences between emission levels for the various engines can modify the fuel-effect
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estimates. This separation of fuel and engine effects is achieved by computing the model
sum of squares with both engine and fuel variables included and then with only engine
variables included. The total model sum of squares with fuel and engine variables, less
the model sum of squares when the model is constrained to engine effects only, is the sum
of squares attributed to fuels. This assigns to fuels only the sum of squares reduction that
can be uniquely associated with fuels and is referred to as “fuels adjusted for engine
effects.” ’ ‘

As shown in Table 2.6, the combination of engine effects (representing the composite of
engine designs, individual engines, sources, and test cycles) and the fuel effects explain
91.1 and 98.6 percent of the sum of squares for NO, and PM, respectively. This suggests
that the variability of test-to-test replication (for a given engine and fuel) is relatively
small compared to the differences among engines and fuels within this data base. The
engine effects explain 45.5 percent of the sum of squares for NO, and 95.4 percent for
PM, while the fuel effects represented by the eigenfuel terms explain 45.6 percent and 3.2
percent respectively. The importance of engine effects for PM emissions, while real, is
greatly increased by one, older engine whose PM emissions are much above the others.

Table 2.6. Sum of Squares for Fuels Adjusted for Engine Effects

NO, EMISSIONS
Source of Variation Ss DF MS R?
Regression SS 1.6334 22 0.0742 0911
Engine SS (Unadjusted) 0.8156 10 0.0816 0.455
Fuel SS (Adjusted for Engines) 0.8178 12 0.0818 0.456
Error SS 0.1602 257 0.0006 0.089
Total SS 1.7936 279 0.0064 1.000
PM EMISSIONS
Source of Variation SS DF MS R?
Regression SS 104.2 22 4.736 0.986
Engine SS (Unadjusted) 100.8 10 10.080 0.954
Fuel SS (Adjusted for Engines) 34 12 0.283 0.032
Error SS 1.5 257 0.006 0.014
Total SS 105.7 279 0.379 1.000
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It is well known that engine design factors have important effects on emissions, and it is
all the more to be expected when, as in present circumstances, the vehicles were designed
to varying certifications standards. Further, engine and fuel effects are correlated in this
data set — to a substantial extent for PM — so that we are not able to clearly separate their
contributions at present. We take these preliminary results to suggest that fuels may have
substantial effects on engine emissions, but further work with additional data is clearly
needed to resolve the competing importance of engines and fuels. This report focuses
primarily on the relative contributions made by the eigenfuels to the portion of the total
emissions variation that can be attributed to fuels.

Table 2.7. Summary of Regression Results for NO, and PM

Ln(NO,) Emissions Ln(PM) Emissions
Parameter Estimate I t ratio Estimate i t ratio
Engines
Intercept 1.5229 248.90 -0.7683 40.15
Engine 2 0.0217 3.19 -0.6084 28.62
Engine 3 -0.0308 4.63 -0.5929 28.53
Engine 4 0.0293 3.57 -0.9771 38.03
Engine 5 0.0643 5.84 -0.7530 21.87
Engine 6 0.0339 3.98 ~1.7223 64.68
Engine 7 -0.1082 7.82 -0.9844 22.75
Engine 8 0.0670 6.79 ~-1.4494 47.01
Engine 9 0.0413 4.07 -1.6322 51.49
Engine 10 -0.1323 11.59 -1.6107 45.11
Engine 11 0.0351 3.18 -0.8002 23.17
Fuels
Eigenfuel 1 0.0043 5.30 0.0233 ‘ 9.23
Eigenfuel 2 0.0344 30.78 0.0549 15.72
Eigenfuel 3 0.0051 2.46 0.0595 9.24
Eigenfuel 4 0.0120 7.09 -0.0014 0.26
Eigenfuel 5 -0.0149 7.62 0.0150 245
Eigenfuel 6 0.0027 0.98 0.0013 0.16
Eigenfuel 7 0.0173 5.87 0.0134 1.45
Eigenfuel 8 -0.0031 0.66 0.0050 0.35
Eigenfuel 9 -0.0057 1.22 -0.0430 2.93
Eigenfuel 10 -0.0156 2.59 -0.0575 3.05
Eigenfuel 11 0.0294 2.85 0.0239 0.74
Eigenfuel 12 0.0325 . 262 -0.0318 0.82
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Table 2.7

‘summarizes the NO,

and PM regressions.
Inspection of the
table reveals that all
of the engine effects
are statistically
significant at the
0.05 level (t value
exceeding 1.96).
Among the fuel
effects, all are
significant at the
0.05 level except
eigenfuels 6, 8, and 9
for NO, and
eigenfuels 4, 6, 7, 8,
11, and 12 for PM.
Thus, many fuel
effects might be
retained in the model
if the selection were
based solely on
statistical
significance.
However, as we
argue, the predictive
capability of an
effect should temper
its selection or
rejection in concert
with its significance.



The “predictive capability” statistic, computed by normalizing the quantity A, * b, to a
value of one, identifies the relative contribution of each eigenfuel to the predictive power
contributed by all fuels-related information. Using this statistic, Figure 2.3 shows that
only one eigenfuel (number 2) for NO, and three eigenfuels (numbers 1, 2, and 3) for PM
account for nearly all of the predictive power that can be ascribed to fuels. This figure
also demonstrates, by comparison to the variance explanation for fuels, why all eigenfuels
should initially be retained in the regression and considered for deletion only after the
relationship to the response variable has been determined. Overall, these results mean
that, regardless of the statistical significance of other coefficients, the regression models
could be reduced to include at most a few eigenfuel terms (in addition to the engine
effects) without a significant reduction in the ability to capture the impact of fuels.

Figure 2.3. Percentage Contributions to Variance Explanation for Fuels and Emissions
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Let us now briefly examine the substantive meaning of the regression results. For NO,,
only eigenfuel number 2 has substantial predictive power. This eigenfuel was previously
described as representing a primary aromatics characteristic, in which an increase in
aromatics content (both mono-aromatics and poly-aromatics) was associated with
increased density and decreased natural cetane. From a refinery perspective, this was
identified as representing high-aromatic cracked stocks.

Exponentiating the individual terms of the regression equation, the results indicate that
NO, emissions are decreased by a factor of exp(0.0344) - 1 = 3.5 percent for each unit
reduction in this fuel characteristic. Because the variance associated with the second
eigenfuel is 2.591, a unit reduction corresponds to 1.000/sqrt(2.591) = 0.62 standard
deviations. Therefore, a one standard deviation reduction corresponds to reducing NO,
emissions by 3.5/0.62 = 5.6 percent. A reduction by one standard deviation corresponds
to approximately one-third of the total change that is possible and is used here as a rule-
of-thumb measure of what might be possible to achieve in practice.
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This eigenfuel expresses three individual fuel properties that are widely believed to
influence NO, emissions — aromatics content, natural cetane, and density. However, it
represents a single mode of variation involving simultaneous changes in the three
variables. Thus, it may be more correct to speak of reducing NO, emissions by
decreasing the content of high-aromatic cracked stocks, rather than by varying any of the
three properties independently.

The results are somewhat more complicated for PM, since three of the eigenfuels —
numbers 2, 3, and 1 in order — are found to contribute substantially to the fuels-related
predictive power. The most important, eigenfuel number 2, was identified with the
content of high-aromatic cracked stocks. Using the calculation shown above, a one
standard deviation reduction corresponds to a (exp(0.0549)-1)*sqrt(2.591) = 9.1 percent
reduction in PM. Eigenvector 3, involving a primary association between sulfur content
and cetane boost, corresponds to a 7.6 percent PM reduction for each standard deviation
change. Eigenvector 1, involving a primary viscosity and distillation curve characteristic,
corresponds to a 5.0 percent reduction per standard deviation. The effects are additive,
since the eigenfuels are independent, and would reach a total of 21.7 percent if a one
standard deviation reduction were made in all three. All other eigenfuels make
negligible contributions, whether they are found to be statistically significant or not.

As indicated in the review by Lee, Pedley, and Hobbs, there is only a weak consensus on
how fuel properties affect PM, except that reducing sulfur content is generally accepted to
reduce emissions. Eigenvector 3 appears to express this consensus relationship. The
properties involved in the other eigenfuels (1 and 2) include aromatics content, natural
cetane, viscosity, the distillation curve, and to a lesser extent density. Density and poly-
aromatics content are thought to have a small effect on PM emissions in some engine
groups, while there is no consensus on whether cetane, mono-aromatic content, viscosity,
or distillation curve parameters are important. We can not resolve these points of
potential difference based on the current data base and analysis. However, the results
presented here suggest there is more than one way in which PM emissions can be

_ reduced.

Note also that several of the smaller eigenfuels (numbers 11 and 12 for NO, and 9 and 10
‘for PM) are indicated to have strong relationships to emissions. It is a natural statistical
consequence that eigenvectors associated with small eigenvalues have regression
coefficients that are subject to very wide error bounds. However, these “statistically
challenged” eigenfuels could point toward unexploited modes of reducing NO, and PM

- emissions, even though the current state of the analysis and the size and scope of the
engine emissions data base are inadequate to draw conclusions on their meaning or
potential importance. These findings could also result from correlations to factors that
have been inadequately controlled in the regressions. If the emissions relationships are
real, it might still prove impractical, if not impossible, to blend fuels that vary
significantly in these characteristics because of considerations of cost, safety, driveability,
or other reasons.
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2.4 MODEL INTERPRETATION AND SIMPLIFICATION

Investigators accustomed to scalar predictor variables may perceive vector variables to be
needlessly complex and may find it difficult to interpret the response variable in terms of
eigenvectors. In the psychological and social sciences, this objection may be particularly
apropos because of the lack of underlying theory as a logical assist. In the physical
sciences, however, interdependent variables may often be readily recognized. Certainly,
in the present instance, blending experience was a valuable interpretational aid.

Nevertheless, a model for predicting emissions in terms of fuel characteristics can not be
considered complete until all means of simplification have been explored. Therefore,
simplification procedures have been an important concern from the beginning. Though

- well aware of rotation procedures (varimax, quartimax and equimax), our experience with
these procedures failed to provide any significant insights in the context of this problem.
Instead, with regard to emissions response, which is our main concern, we elected to
pursue a direction aimed at better understanding the relation between eigenvectors and
their fuel-property components.

A very useful outcome is a scheme for re-expressing the SS partitioning among eigen-
vectors as a partitioning among the underlying fuel variables. The conversion is made
possible, of course, by virtue of the fact that each eigenvector can be expressed as a linear
combination of the original variables. As shown in Appendix D, the SS attributed to each
eigenvector can be segregated into the contributions made by each of the original
variables comprising the eigenvector, and these individual contributions can be summed
over the eigenvectors to yield the SS attributable to each variable. Since it corresponds
directly to the eigenvector partitioning, the derived partitioning among variables is in a
sense unique. Certainly it has a claim to distinction from the multiple partitionings that
can arise in stepwise regression or when all possible subset models are considered.

The SS partitionings for NO, and PM are shown in Table 2.8, both by eigenvectors and
by the original fuel variables. The difference in partitioning for the two pollutants is
evident and again emphasizes the futility of attempting to select variables independently
of the role they play as predictors. We show in the following a means for simplifying the
emission models through a combination of statistical tests of significance and evaluation
of the magnitude of effects.

Eigenfuels can be rejected, as is usually done in OLS, by dropping those that fail to meet
a specific level of significance. At the 0.05 level, those eigenfuels tagged * in the table
would be removed. However, it is to be noted that several other eigenfuels, tagged ** in
the table, each contribute less than 1 percent to the model SS. On the assumption that
elimination of these eigenfuels would have little influence on the predictive capability of
the model, they can be considered for removal, because it is irrelevant whether they are
statistically significant or not.
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Table 2.8. Statistical Significance and SS Partitioning

log( NOx ) Emissions log( PM ) Emissions

Eigenvectors t ratio Model SS t ratio Model SS

1 5.30 2.24 9.23 14.8

2 30.78 82.49 15.72 47.1

3 2.46 1.07 9.24 33.1

4 7.09 4.56 0.26* 0.0**

5 7.62 4.08 - 245 0.9%*

6 0.98* 0.11** 0.16* 0.0**

7 5.87 3.15 1.45 0.4**

8 0.66* 0.06** 0.35* 0.0**

9 1.22* 0.12*%* 2.93 1.6

10 2.59 0.54** 3.05 1.7

11 2.85 0.84** 0.74* 0.1%*

12 2.62 0.73%* 0.82 0.2%*
NatCetane 19.28 4.98
CetImprv 1.55 1.55
Density ' 26.55 17.72
Viscosity 0.24** 0.59**
Sulfur 3.60 31.87
MonoArom 38.14 6.61
PolyArom 8.02 27.94
1BP 0.06** 0.32
T10 L 0.01%+ 6.13
T50 0.66** : 0.74%*
T90 1.72 0.25%*
FBP 0.18** 1.30

The disposition of eigenfuels on the basis of statistical significance is, of course,
dependent on the significance level adopted. Similarly, the cutpoint for practical
significance is arbitrary. It is here that art and judgement, tempered by experience, enter
just as it does in any other scheme for selecting variables. It is not the intent of this report
to resolve these issues, but rather to illustrate a methodology for their resolution. We
suggest, therefore, a possible scenario for model simplification:

* Reject those eigenvectors that have a t-ratio smaller than 1.96, corresponding
to 0.05 significance for large samples.

» Renormalize the percent SS and transform the eigenvector contributions into
~  the contributions to SS by individual variables.
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* Prune those components that contribute less that 1 percent to the model SS;
we call this criterion a “substantiality threshold.”

In this way we have retained predictive components that are both statistically and
practically significant, given the criteria used for choice. It removes one objection
sometimes raised in connection with PCR, namely that the model retains all variables and
therefore effects no simplification. Further refinement can be had by recomputing the
eigenvectors in the reduced-variable space. The simplified internal structure resulting
from the pruning of some variables makes interpretation of the eigenvectors easier.

In addition, the scenario has isolated those fuel variables that play important roles in
prediction. The model can be restated, if desired, in terms of the fuel property variables,
rather than eigenfuels, in which case the relative contributions can be appraised with the
knowledge that the partitioned SS originate in the’clean” eigenvector environment as
opposed to the multi-collinear environment of stepwise or all-subset regression.

Let us now apply the simplification criteria to the data set and follow the pruning process
through to its completion in a reduced-variable space. Dropping those eigenvectors
tagged * or ** in the prior table, we have the following surviving eigenvectors that are
statistically significant at the 0.05 level and contribute at least 1.0 percent to the model
SS:

» For NO,, the six eigenvectors numbered 1, 2, 3, 4, 5, and 7
» For PM, the five eigenvectors numbered 1, 2, 3, 9, and 10.

The 6 eigenvectors remaining in the NO, model account for 97.6 percent of the total SS
that can be attributed to fuels, while reducing the dimensionality of the analysis space by
half —i.e., from 12 to 6 independent regressors. The 5 eigenvectors remaining for PM
account for 98.3 percent of the SS and reduce the dimensionality by more than one-half.

Let us now see what the simplified NO, and PM models imply for the SS partitioning by
the original variables. We will apply the criterion that variables contributing less than 1.0
percent of the total SS, tagged ** in Table 2.9, can be dropped from further consideration.
Seven variables would be dropped for NO,, including viscosity and all five points on the
distillation curve. Five variables would be dropped for PM, including viscosity and four
of the points on the distillation curve. One could retain separate variable slates for NO,
and PM in model development, but for the purposes of demonstrating the approach we
will retain the seven variables common to both, specifically: natural cetane, cetane
improvement, density, sulfur content, mono- and poly-aromatics content, and T10. These
seven account for 98.7 percent of the SS in the 6-eigenfuel NO, model and 98.0 percent
of the SS for the 5-eigenfuel PM model.

Note that the pruning criteria must be.chosen with consideration for their cumulative
effect. The criteria illustrated here retained variables accounting for 97.6 of the total
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fuels-related SS in the simplified NO, model and 98.7 percent of this amount in the
reduced variable slate. Accounting for the SS “lost” in reducing the models to six and
five eigenfuels for NO, and PM, respectively, the reduced variable slate retains 96.3
percent of the total fuels-related SS for NO, and a corresponding 97.0 percent for PM.
Thus, we see that the dimensionality of the problem, in terms of individual fuel

properties, can be reduced from 12 to 7 with only minor loss of information related to the
fuels effect.

Table 2.9. SS Partitioning Based on Simplified NO, and PM Models

NOx Model SS PM Model SS

All Vectors 6 Vectors All Vectors 5 Vectors
NatCetane 19.28 27.22 4.98 4.84
Cetlmprv 1.55 1.70 1.55 3.96
Density 26.55 23.74 17.72 21.25
Viscosity 0.24 0.10** 0.59 0.33%*
Sulfur 3.60 4.33 31.87 23.54
MonoArom 38.14 34.96 6.61 6.56
PolyArom 8.02 6.71 27.94 31.33
IBP 0.06 0.42%* 0.32 0.13%*
T10 0.01 0.00** 6.13 6.54
TS50 0.66 0.13** 0.74 0.58%*
T90 1.72 0.41%* 0.25 0.03%*
FBP 0.18 0.27** 1.30 0.91%*

Even greater simplification could be achieved by raising the substantiality threshold to
prune eigenvectors and fuel property variables that contribute between 1 and 2 percent to
the total, at the expense of reducing the proportion of the fuels information that is retained
in the analysis. There are as many ways to select the simplification and pruning criteria
as there are ways to view what is important to a problem. In many contexts the priority
will be to retain almost all of the explanatory power while achieving some benefit from
the simplification. Highly simplified models may be more important in other instances
and will argue for retaining a smaller portion of the total.

Having eliminated fuel property variables that are superfluous to the problem, let us now
re-compute the eigenvectors. Table 2.10 summarizes the results of the principal
components analysis for the reduced variable space; the largest components in each
eigenfuel have been highlighted for companson to the previous Table 2.3. Important
points of comparison are:
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» The first revised eigenfuel corresponds to original eigenvector 2, identified
with high-aromatic cracked stocks. This eigenfuel has natural cetane, density,
and aromatics content as its most important components.

» The second revised eigenfuel corresponds to original eigenfuel 3, identified
with a fuel quality feature, with cetane improvement, sulfur content, and poly-
aromatics content as its most important components.

* The third revised eigenfuel is one not seen before. It loads predominantly on
T10 and accounts for 17.6 percent of the fuels variance. With elimination of
the other temperature points, this appears to be a representation of the overall
distillation curve in a highly simplified way.

* The fourth revised eigenfuel corresponds (with a sign inversion) to original
eigenfuel 5, which was not interpreted in refinery terms.

» The fifth revised eigenfuel corresponds to original eigenfuel 7, which also was
not given an interpretation.

» The sixth and seventh revised eigenfuels do not correspond to any of the
original eigenfuels.

Table 2.10. Revised Eigenvectors of the Test Fuels Data Set

1 2 3 4 5 6 7
NatCetane 0.484 -0261 0248 -0280  0.050  0.598 0.444
Cetlmprv -0.134 0538 -0018 -0.831 0005 -0.036  -0.003
Density -0.547 -0.079 0298  0.038 -0.037 -0.242 0.737
Sulfur -0.171  -0.608 -0307 -0.348  0.596 -0.159  -0.072
MonoArom -0.488 0255 0098 0218 0451  0.642  -0.152
PolyArom 0415 -0365 -0274 -0.183 -0.659 0363  -0.141
T10 -0.095 -0261 0819 -0.165 -0.053  -0.109  -0.459
Eigenvalues 2698 1538 1233 0731 0394  0.309 0.097
Pct Variance 38545 21973  17.608 10449  5.625  4.410 1.390
Cumulative Pct 38.545 60518 78126  88.575 94200 98.610  100.000

The eigenfuels that were found to be important features of diesel fuels in the original 12-
variable space are retained in some form in the revised eigenvector slate. However, the
first original eigenfuel has disappeared from the revised set. It was interpreted as

30



representing a generalized fuel weight feature with density, viscosity, and the overall
height of the distillation curve as its major features. Of these variables, only density and
T10 have been retained, and there is no way to observe the variation of density in
company with viscosity and the entire distillation curve in the revised data set. This
variation remains in the data, but it will be distributed among the revised eigenvectors.

Revised regression models of the form given in Eq. 5, but including the seven revised
‘eigenfuels with engine effects, were estimated for NO, and PM emissions. Table 2.11
summarizes the results for statistical significance and SS partitioning for the fuels-related
effects in the models. As before, we find that one eigenfuel (the first revised eigenfuel
representing high-aromatic cracked stocks) is the dominant explanatory factor for NO,
emissions and the largest of several for PM. o

Table 2.11. Statistical Significance and SS Partitioning for the
Revised NO, and PM Models in Seven-Variable Space

log( NO, ) Emissions log( PM ) Emissions
Revised Model SS Model SS
Eigenvector t ratio (percent) t ratio (percent)
1 30.94 87.95 19.36 61.64
2 2.25 0.78** 11.46 36.31
3 3.18 0.99** 0.63* 0.07**
4 9.34 7.17 2.73 1.10
5 5.28 3.09 1.89* 0.71%*
6 0.31%* 0.01** 0.48* 0.04**
7 0.14* 0.00%* 0.94* 0.14%*
NatCetane 27.94 4.97
Cetlmprv 2.00 1.70
Density 24.33 19.33
Sulfur 6.66 36.10
MonoArom 31.13 5.55
PolyArom 7.90 26.51
T10 0.04** 5.84

For NO,, the one dominant eigenvector accounts for 88.0 percent of the fuels related SS,
while its counterpart in the original slate of 12 accounted for 82.5 percent. Reducing this
fuel feature by one standard deviation would reduce NO, emissions by 5.6 percent. The
12-eigenvector analysis (see Section 2.3.3) estimates the same one standard deviation
reduction of the corresponding eigenvector also to reduce NO, by 5.6 percent. The fourth
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revised eigenvector accounts for an additional 7.2 percent of the fuels-related SS and
would reduce NO, by an additional 1.6 percent.

For PM, we have two revised eigenfuels (numbers 1 and 2) that account for almost all of
the fuels effect, compared to three (eigenfuels 3, 2, and 1) in the original analysis. These
two correspond to the properties described in the original analysis by eigenfuels 2 and 3.
As noted, the original first eigenfuel (fuel weight) has disappeared from the revised set,
and its impact on PM emissions is distributed to other revised eigenfuels. '
Reducing revised eigenfuel 1 by one standard deviation is estimated to reduce PM

- emissions by 10.4 percent, while reducing revised eigenfuel 2 by one standard deviation
gives a PM reduction of 8.0 percent. Our original analysis obtained estimates of 9.1
percent and 7.6 percent reductions for the corresponding eigenfuels.

Thus, we have two-eigenfuel models for both NO, and PM that capture about 95 percent
of the fuels-related SS for emissions. A 7.2 percent reduction in NO, could be achieved
if revised eigenfuels 1 and 4 were each reduced by one standard deviation, and an 18.4
percent reduction in PM could be achieved if revised eigenfuels 1 and 2 were each
similarly reduced. Overall, the regression analysis and the SS partitioning for both
eigenfuels and fuel properties tell the same story seen in the original analysis:

* NO, is influenced primarily by natural cetane, density, mono- and poly-
aromatics content.

* PM is influence primarily by density, sulfur contént, and poly-aromatics.
Predictions made by the simplified model are, for all practical purposes, the same as in

the original analysis. It seems that 7 individual fuel properties suffice, and that NO, and
PM emissions can each be modeled with relationships involving 2 eigenfuels.
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3. PERSPECTIVE AND EXTENSIONS

The development of the vector emissions model is, thus far, admittedly simplistic and
does not cover many of the difficulties that can be expected to arise in practice. We are
‘well aware that the data base used in this demonstration has many shortcomings. Itisa
pooling of separate studies, each of which was performed with a specific objective in
mind. Vehicle sampling was inadequate and did not allow estimation of effects
attributable to specific engine characteristics. We urge caution in interpreting results and
stress again that the major purpose is to demonstrate methodology, rather than to draw
conclusions regarding the fuel/emissions relationship.

In the following sections, we first develop a perspective on the meaning and
interpretation of sums of squares to emphasize how the orthogonalization achieved in the
vector approach leads to a unique and preferred identification of the explanatory
influences in a regression model. We then discuss implications of this perspective for
how the vector approach should be applied in future work. Finally, we address a series of
methodological extensions that may be needed to meet the challenges of real-world data.
The discussion within this section summarizes key points and findings and, in many
instances, leaves the more-detailed development and explanation to the referenced
appendices.

3.1 PERSPECTIVE ON SUMS OF SQUARES
- 3.1.1 The Many Faces of Sums of Squares

Consider the general case to which the problem of HDD engine emissions belongs — i.e.,
a regression model involving N predictor variables and the problem of selecting the ideal
subset of these variables to include in the regression equation. Each of the N variables
can be included or excluded independently of all the others. Consequently, there are 2N
possible subsets, each being a possible choice of predictor variables to include in the
model. The number of included variables can range from zero (the empty subset) to N
(the universal subset).

If the design matrix is not columnwise orthogonal, it is not possible to compute directly
the fraction of the model sum of squares (SS) attributable to a given predictor.
Customarily, this fraction is estimated by computing the model SS with all N predictors
and then with all predictors except the one for which the SS is to be estimated. Then, as
seems reasonable, the difference between the two sums of squares is taken as the
contribution attributed to the excluded variable. This estimates the SS contribution ar the
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margin, given the other variables present, but does not determine an absolute or non-
conditional SS contribution.

This procedure can be broadly generalized into an “all possible regressions” approach.
For any one of the predictor variables, exactly one-half of all the 2V subsets contain that
variable, while the other half do not. Therefore, it is possible to compute 2! estimates of
the SS attributable to any given predictor. For 12 such variables, there are 2%! = 2048
possible estimates of the SS that conceivably might be attributed to a given predictor
variable. It is little wonder, then, that different researchers often come to different
conclusions. On the other hand, if the design matrix is columnwise orthogonal, all of
those 2™! estimates are identical. It would seem that no further argument should be
necessary to justify orthogonalization as the method of choice for estimating the relative
impact of predictor variables on response.

3111 A ThreeFVariabIe Example

With modern computers it is quite feasible to compute all possible regression estimates
for every one of the N predictor variables. To enumerate all such estimates is hardly
practical except for small N, but the estimates for large N can be summarized statistically
and expressed as tables or histograms. A small, albeit trivial, example containing only
three variables will provide further insight into the many faces of sums of squares in an
environment of correlated variables.

Table 3.1. Demonstration Data Set
The demonstration data set is shown
in Table 3.1. Let us use the

convention that, if a variable is X, X, X, v

included in a submodel, its inclusion

is denoted by 1. If the variable is 7 4 3 11.0

excluded, its exclusion is denoted by

0. Thus [1 1 1] means that all three 4 1 8 3.2

variables are included in the model, 6 3 5 51

while [0 1 1] denotes that variable x,

is excluded, while variables x, and x, 8 6 1 19.1

are included. The possible subsets of

the model are displayed in Figure 3.1 8 > 7 9.5

as a partially ordered system called a 7 2 9 5.6

lattice.

5 3 3 5.8

If the figure is viewed as a cube, 9 5 2 11.7

corners of the cube represent SS ’

estimates for the eight subset 7 4 5 8.0
_ regressions. Edges of the cube along

the three principal directions 8 2 2 14.2
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Figure 3.1. Lattice Representation of SS for Three Variables
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correspond to the SS estimates developed from the differences between paired
regressions, in each case defined to include and exclude only one of the three variables.
For example, the difference between the model SS computed for the corner [1 1 1] and
for [0 1 1] provides an estimate of the SS for variable x,. Similarly one can compute
estimates for X, and x;. There are four such estimates for each variable and twelve
different SS estimates in this system.

Table 3.2 summarizes the model sums of squares and R? for these three variables as
estimated by difference using the ANOVA result for each of the possible regression
equations. Just how widely the estimates vary can be appreciated by the bar graph of

. Figure 3.2. How can this variability be explained, and how can the various estimates be
mapped, if possible, into a single, unique estimate for each of the three variables?

A reasonable answer to this question is provided by considering the estimates as elements
of a partially-ordered system. Beginning with the vertex at the top of the lattice, the point
[1 1 1] signifies that all three variables are included in the model. Any one of those
variables can be dropped out, as indicated by the three downward branches emanating
from the top vertex. These first three estimates represent the effects of x,, x,, and x; when
all three variables are included in the model.

35



Table 3.2. Estimation of Sums of Squares by All Possible Regressions

Inclusion Set Exclusion Set SS R?

Variable X,

0 0 1 0 0 0 81.0814 0.3839

0 1 1 0 1 0 42.1636 0.1996

1 0 1 1 0 0 63.2768 0.2996

1 1 1 1 1 0 53.1949 0.2519
Variable X,

0 1 0 0 0 0 93.6380 0.4433

0 1 1 0 0 1 54.7182 0.2591

1 1 0 1 0 0 11.1022 0.0526

1 1 1 1 0 1 1.0203 0.0048
Variable X,

1 0 0 0 0 0 115.9143 10.5488

1 | 0 1 0 0 1 98.1097 0.4645

1 1 0 0 | 0 33.3804 0.1580

1 1 1 0 1 1 444118 0.2103

At the next level of the lattice, SS estimates can be computed for the three variables, but
in these cases representing the contributions each variable makes when only it and one
other variable are included in the model — i.e., given that one of the other variables had
already been eliminated from the model by some means. Finally, at the lowest level of
the lattice, the difference approach estimates the SS contributions for each variable when
that variable is the only variable in the model.

The conclusion to be drawn here is that, unless all variables are mutually orthogonal, the
apparent impact of any one of the predictors is determined to a considerable degree by the
environment in which it is situated. Observe, too, that these various estimates correspond
to steps in a stepwise regression approach, because any intermediate model in stepwise
regression corresponds to one of the 2¥ submodels among “all possible regressions.”
Also, it should be evident that there is a (structured) multiplicity of paths by which any
stepwise model can be reached.
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Figure 3.2. SS for Subset Models in Three-Variable System
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3.1.1.2 Relation’ship to the Vector Approach

It is our contention that, in an N-dimensional regression analysis, any of the 2V estimates
is a legitimate choice for the effect of a selected variable and that the method of dropping
the variable from the full model should not be taken as the only way to estimate its SS
contribution. In fact, the only unique estimate is obtained by orthogonalization, as
achieved in the vector approach.

In the vector approach, one shifts from P-Space, in which regression coefficients are
computed for the correlated fuel property variables, to E-Space, in which regression
coefficients are computed for uncorrelated eigenvectors. Since each of these eigenvectors
has the original variables as components, one can combine the independent E-Space
estimates into an aggregated P-Space estimate. This estimate represents the SS
contribution of the original variables resulting from the very special orthogonal
environment that isolates the independent components of the SS. The SS partitioning
developed in the vector approach is distinct — i.e., it is not any one of the difference-based
estimates — and is to be preferred over all others because of the orthogonal environment in
‘which it originates.

The interpretation of this particular partitioning of the SS can be better appreciated by
considering the contributions of the P-Space variables in two stages. If p,, p,, and p;
denote, respectively, the percentage contributions of eigenvectors 1, 2, and 3 to the model
SS, then one can break down each eigenvector’s individual contribution into the
contributions made by its components X,, X,, and x;. These percentage contributions can
be denoted, respectively, as p,;» P12» P13> Pai> Paz> Prs» Psp» Piz» and ps;. This micro-
partitioning of the model SS is shown in Table 3.3.
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Table 3.3. Partitioning of Model SS Among Variables and Eigenvectors

Eigenvector 1 | Eigenvector 2 Eigenvector 3 Sum
Variable 1 35.7617 0.8980 3.1525 39.8122
Variable 2 40.8741 0.0573 3.7231 44.6545
Variable 3 10.1287 5.1132 0.2915 15.5334
Sum 86.7646 6.0684 7.1670 100.0000

As would be expected, the original variables exert their influence primarily by way of
eigenvector 1, because that eigenvector as a whole accounts for 86.8 percent of the model
SS. However, it is to be noted that the components of that eigenvector account,
respectively, for 35.8, 40.9, and 10.1 percent of its contribution. When the minor
contributions from the other two eigenvectors are added in, the contributions of variables
1,2, and 3 are, respectively, 39.8, 44.7, and 15.5 percent.

It is to be noted that when variables are removed to make subset models, the percentage
contributions to the model SS changes, just as it did when models were formed from the
original variables, but in a much simpler way. Furthermore, if model simplification is
performed by first removing nonsignificant and/or nonsubstantial eigenvectors, the
variable removal process approaches a fully-ordered, rather than a partially-ordered,
system.

The major aspects of the simplification are fairly obvious. Whereas in P-space regression
there are 2™ ways to compute the sum of squares contribution for each variable, there is
only 2° =1 way in E-space. Thus, we reduce the “entropy” or uncertainty by a factor of
2™ Tt is hard to visualize the branching system for 12 variables, which would have
thousands of vertices and branches. We need not do so when the system is examined in
E-Space. In short, the eigenvector-based partitioning of the sums of squares makes

possible a step-by-step simplification process while avoiding the pitfalls of stepwise
algorithms.

3.1.2 Model Sums of Squares as Induced Distributions

It is evident that what one computes as contributions to the model sum of squares is
determined, in large degree, by how the predictor space is sampled. Indeed, there is no
such thing as a SS partitioning without reference to a sampling scheme. Consider the
case of a predictive equation where we can consider the coefficients to be fixed,
immutable, and not subject to chance, as might be derived from an applicable theory.
How much each coefficient contributes to the model SS depends on how each of the
arguments of the equation are sampled to produce a set of data.
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As computed by the ANOVA table in a typical regression program, all sums of squares
~ are based on sampling the design matrix or some subset thereof. In fact, the residuals
pertain only to the points actually sampled in the experiment. They can tell us nothing
about differences between actual and computed responses at points not in the design.
Indeed, it is possible to fit an unlimited number of equations to the data in such a way that
they yield exactly the same error sum of squares, and even more, have exactly the same
point by point residuals.

This fact raises an interesting question. What if the regression equation is evaluated at
points not included in the data set? Then, how would the relative importance of the
predictor variables appear? Certainly they would not necessarily duplicate what was
found from ANOVA in the design sample space. For example, it is entirely conceivable
that all predictor variables, except one, are held constant and the one is varied over some
range of its allowable values. The partitioning in this case would assign 100 percent of
the SS to that single variable. Thus, we see clearly that the partitioning assigned by the
regression ANOV A does not necessarily define the SS partitioning to be found from the
application of the regression equation to the real world.

As a mathematical construct, SS partitioning is analogous to defining an induced
distribution as a distribution of a function of a random variable. For example, let f(x) be
N(0,1) and let g(x) = sin(x), 0 <= x <=211. Then, f{ g(x) ) is a distribution induced by a
normal distribution operating on a sine function. There is nothing “random™ about the
sine function, but it can be sampled in accordance with a defined probability distribution
to produce a random outcome. Most importantly, what comes out depends on what is put
in for the sampling distribution — it can be continuous or discrete, infinite or finite, even
just a set of numbers like the set of “treatments” in a design matrix.

Random balance sampling is an example of the induced distribution concept that was
found useful in the development of the Complex Model for Reformulated Gasoline (U.S.
DOE, 1994). In this example, the predictor variables were often correlated, so that it was
difficult to isolate the predictor variables that contributed most or least to the response.
Yet, in the interest of simplification, it was desirable to eliminate from the model any
variable that contributed minimally to prediction capability.

Again, orthogonality seemed