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ABSTRACT 

An alternative approach is presented for the regression of response data on predictor 
variables that are not logically or physically separable. The methodology is demonstrated 
by its application to a data set of heavy-duty diesel emissions. Because of the covariance 
of fuel properties, it is found advantageous to redefine the predictor variables as vectors, 
in which the original fuel properties are components, rather than as scalars each involving 
only a single fuel property. The fuel property vectors are defined in such a way that they 
are mathematically independent and statistically uncorrelated. 

Because the available data set does not allow definitive separation of vehicle and fuel 
effects, and because test fuels used in several of the studies may be unrealistically 
contrived to break the association of fuel variables, the data set is not considered adequate 
for development of a full-fledged emission model. Nevertheless, the data clearly show 
that only a few basic patterns of fuel-property variation affect emissions and that the 
number of these patterns is considerably less than the number of variables initially 
thought to be involved. These basic patterns, referred to as “eigenfuels,” may reflect 
blending practice in accordance with their relative weighting in specific circumstances. 

The methodology is believed to be widely applicable in a variety of contexts. It promises 
an end to the threat of collinearity and the frustration of attempting, often unrealistically, 
to separate variables that are inseparable. 
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EXECUTIVE SUMMARY 

Multiple regression analysis is one of the most widely used methodologies for expressing 
the dependence of a response variable on several predictor variables. In spite of its 
evident success in many applications, the regression approach can face serious difficulties 
when the predictor variables are to any appreciable extent covariant. This point was 
made quite evident in a recently published review, which found that efforts to evaluate 
the separate effects of fuel variables on the emissions from, heavy-duty diesel (HDD) 
engines were often frustrated by the close association of fuel properties. This report 
addresses these concerns by offering a new approach to modeling the effects of fuel 
characteristics on emissions. 

The work was motivated by the observation that most HDD engine research was 
conducted with test fuels that had been “concocted’.’ in the laboratory to vary selected fuel 
properties in isolation from each other. This approach can eliminate the confounding 
effect caused by naturally covarying fuel properties, but it departs markedly from the real 
world, where the reformulation of fuels to reduce emissions will naturally and inevitably 
lead to changes in a series of interrelated properties. What impact might this method of 
blending test fuels have on their ability to provide an accurate and reliable basis for 
assessing the emissions performance of future diesel fuels? 

Development of a New Statistical Methodology 

The approach presented here is based on the use of Principal Components Analysis 
(PCA) to describe fuels in terms of vector quantities called eigenfuels. Each eigenfuel 
represents a unique and mathematically independent characteristic of diesel fuel, and the 
most important eigenfuels can be related to the refinery and blending processes used in 
creating the fuels. When applied as predictors for emissions in regression analysis, 
eigenfuels are found to have many advantages, including: 

l Simplification of the analysis, because their mathematical independence 
eliminates correlations among the variables and the complications introduced 
by multi-collinearity. 

l Economy of representation, because a small number of such vector variables 
may effectively replace a larger number of the original variables. 

l Greater understanding of the patterns of variation that are important to 
emissions, and how these patterns relate to fuel blending and refinery 
processes. 

l Potentially new insight into the optimal formulation of fuels to reduce 
emissions, and improved experiment design for the estimation of fuel effects. 

. . . 
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The natural covariance of fuel properties - a confounding factor for the original fuel 
properties - becomes a strength associated with realism and efficiency in the eigenfuel 
approach. 

Key Findings Regarding Diesel Fuels and Emissions 

A database of HDD engine testing was compiled from the literature and used to 
demonstrate the methodology, recognizing that the existing data are inadequate to answer 
fully the many questions related to the effect of fuels on emissions. Within this 
limitation, the study suggests that the eigenfuel approach may lead to a new perspective 
on the diesel fuel-emissions relationship: 

. Fuel properties are only surrogate variables for underlying causal factors. 
Much of the emissions reduction seen in past testing comes from reducing the 
proportion of high-aromatic cracked stocks in diesel fuels. Because these 
stocks are low in cetane and high in density, researchers have tended to 
attribute the emissions reductions to the increase in cetane or reduction in 
density associated with their removal, rather than to the compositional change. 

How one varies a fuel property can be the most important factor in 
determining the emissions response. A given fuel property can be changed in 
several ways, and a unit change in that property can produce markedly 
different effects on emissions depending on how that change is introduced. 

Past studies may understate the impact offiels on emissions. If density is 
varied in several ways - one of which has a strong effect on emissions and the 
others not at all - a study will tend to see only the average, diluted effect. 

As a result, there is a very real risk that existing testing does not accurately assess the 
relationship between fuels and emissions and that policy makers may thereby 
underestimate the potential for fuels reformulation to contribute to emissions control. 

Application of Eigenfuels in Diesel Engine R&D 

The eigenfuel approach provides new ways to design test fuels that are far more likely to 
be representative of future fuels that will be produced in refineries, compared to fuels 
blended in an effort to vary selected properties independently. The eigenfuel approach 
can also be used to extract additional insights from the emissions data. Test fuels design 
could be implemented in at least two ways: 

l Develop test fuels to capture the processing and blending variability likely in 
the production of low sulfur fuels, and then procure the test fuels from several, 
differently-configured refineries. 

xiv 



l Use the eigenfuel approach to guide test fuel blending in the laboratory, so that 
the resulting test fuels closely replicate the signature characteristics expected 
for future low-sulfur diesel fuels. 

In either case, the test fuels will express the natural correlations among fuel properties. 

f / 

While these correlations would be confounding factors in conventional analysis, they can 
be exploited in eigenfuel analysis. 

Recommendations to Improve the Diesel Emissions Database 

An improved database is a prime requirement for the future development of a reliable 
diesel emissions model. The following are recommendations for future testing to correct 
the limitations of the existing data: 

. 

. 

. 

More testing of oxygenatedfuels will be required before a complete diesel 
emissions model can be developed. Few programs to date have evaluated 
oxygenated fuels, and the available data are too sparse to support an analysis. 

It may be important for new testing to report a more detailed hydrocarbon 
speciation. Existing information is frequently limited to mono- and poly- 
aromatic content, but it could well be important to know which hydrocarbon 
species were increased when, for example, aromatics content was reduced. 

An improved database should represent a substantially larger number of 
engines and engine characteristics. The existing database, while representing 
280 individual engine tests, is based on only 11 individual engines and cannot 
support the assessment of engine-related effects. 
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1. INTRODUCTION 

Multiple regression analysis is one of the most widely used methodologies for expressing 
the dependence of a response variable on several predictor variables. In spite of its 
evident success in many applications, the regression approach can face serious difficulties 
when the predictor variables are to any appreciable extent covariant. This point is made 
quite evident in a recent review by Lee et al. (1998), in which efforts to evaluate the 
separate effects of fuel variables on the emissions from heavy-duty diesel (HDD) engines 
were often frustrated by the close association of fuel properties. 

This report is an attempt to address these concerns by offering what is believed to be an 
ameliorative approach to modeling the effects of fuel characteristics on emissions. The 
approach is an adaptation of Principal Component Regression (PCR) that has certain 
advantages over the more commonly encountered method of stepwise regression, which 
was widely used in the development of the Complex Model for Reformulated Gasoline 
(U.S. DOE, 1994). A database of HDD engine testing is used to demonstrate the 
methodology, recognizing that the existing data is inadequate to answer fully the many 
issues related to the effect of fuels on emissions. 

1 .I STATISTICAL PERSPECTIVE 

The approach demonstrated here is only one of many - including ridge regression, partial 
least squares, all possible regressions, and PCR - that have been devised to counter 
regression difficulties, as attested to by the extensive literature on these subjects 
(Krzanowski et al., 1994; Jackson, 1991; Martens and Naes, 1989). Each has its 
advantages and disadvantages, and in each a certain degree of art and arbitrariness must 
be recognized. It is the contention of this report that PCR, because of its seeming 
difficulty of interpretation and its past criticisms, is used less widely than it might be if 
better understood and more appropriately applied. 

In the statistical literature are numerous evaluations of PCR as practiced under that label 
(Westerholm and Li, 1994; Hawkins, 1973; Boneh and Mendieta, 1994; Mansfield et al., 
1977; Jolliffe, 1972; 1973). Proponents point to the orthogonality of the regressors as a 
primary advantage. Orthogonality eliminates the aliasing of effects that accompanies 
non-additivity, and thereby makes statistical inference simple and exact. Moreover, the 
vector predictors that are the hallmark of PCR, though revealed by mathematical analysis, 
may have real-world interpretations capable of providing insights as to the physical 
processes driving the predictive relationship. 

However, PCR has been soundly criticized (Hadi and Ling, 1998), and rightfully so, 
because as practiced up to this point in time, it selects predictors without any reference to 

1 



the response variable. Accordingly, it is possible for regressors having major influences 
on the response variable to be excluded without being given the chance to reveal their 
predictive importance. 

Starting with some of the basic principles of Principal Component Regression (PCR), this 
report goes far beyond what is currently accepted as the prevailing PCR protocol. It is 
fitting, therefore, to refer to this extended approach as Principal Component Regression 
Plus (PCR+). This distinction is essential to prevent the perceived limitations of PCR 
from being identified with the approach taken here. Indeed, PCR+ is what PCR should 
have been from its inception. Insistence on selecting predictor variables without regard to 
their influence on the response is a restriction that never should have been, and it is hard 
to understand how a flaw this obvious could have survived so long. The simple fact that 
one can not evaluate predictive capability until there is something to predict should have 
been self-evident. 

It is important that the limitations of PCR, as currently perceived, do not become a stigma 
that prevents the full potential of PCR+ from being realized in present and future 
applications. At the outset, PCR+ considers all eigenvectors to be of equal predictive 
importance, just as Ordinary Least Squares (OLS) would do. It includes all eigenvectors 
in the model and, by virtue of additivity, partitions the model sum of squares (SS) into 
separate components indicative of their true relative importance in prediction. The 
portion of the model SS that is associated with a given eigenvector can be sub-partitioned 
into parts associated vjith the components of the eigenvector, namely the original X-space 
variables. These sub-partitions can then be aggregated to show the relative importance of 
each of these original variables in the overall model or any subset model. Therefore, the 
awkwardness and sometime ambiguity of search methods, such as stepwise regression, 
need no longer be tolerated. 

1.2 OVERVIEW OF THE VECTOR APPROACH 

It is easily demonstrated that predictor variables can be naturally associated in a way that 
defies their separation. For example, it is evident and unarguable that increasing a fuel 
component such as olefins implies decreasing one or more other components such as 
aromatics or paraffins. Other examples abound in the refining world, such as the 
association of distillation characteristics with chemical composition. 

While the association of physical and chemical properties of automotive fuels is well 
known, the degree of interdependence may be surprising to some. To demonstrate the 
interdependence, each of twelve variables describing diesel fuel properties was expressed 
as a function of the other property variables, using conventional multi-linear regression 
analysis and the database on HDD engine testing developed for this study. In each 
regression, one of the property variables plays the role of response variable, while its 
companion variables are used as predictors. The result decomposes the variation of each 
fuel property into two parts: 
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1. The portion explained by (or shared with) the other fuel properties, as 
computed from the regression. 

2. The portion independent of the other properties, determined from the residuals 
between the observed responses and the computed values. 

Figure 1.1 shows the extent to which each of the fuel properties depends on all the others, 
where the interdependence of each variable is measured by the R2 of its regression 
equation. For many properties - including natural cetane, density, viscosity, and four 
points on the distillation curve - approximately 90 percent of the variation is shared with 
the other variables and only about 10 percent is independent. For others - sulfur content, 
mono- and poly-aromatics content, and IBP - one-half to two-thirds of the variation is 
shared. Only for cetane improvement is the shared portion relatively small and the 
independent portion large - a result not surprising inasmuch as cetane enhancers were 
added to a range of base fuel stocks to create the test fuels. 

100% 

Figure 1 .I. Interdependence of Diesel Fuel Properties 
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These natural associations are not to be confused with apparent associations that arise 
from inappropriate experiment designs in violation of principles enunciated by R.A. 
Fisher in his pioneering book Design of Experiments (Fisher, 1935). Neither is the vector 
approach to be confused with applications involving Principal Component Analysis 
(PCA) and related factor-analytic methods used to understand the interrelation among 
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descriptive variables, as was pioneered by L. L. Thurstone in his book The Vectors of 
Mind (Thurstone, 193 5). 

Rather, for variables naturally associated in a physical system, our approach defines new, 
vector-based predictor variables in such a way that the vector variables are orthogonal. 
PCA is used to resolve the design matrix into eigenvectors that explain, in the most 
compact way, the variation among the original variables (here, fuel properties). Then, the 
eigenvectors are used as candidate predictors of the response variable (here, emissions) in 
an ordinary least squares (OLS) regression. Because fuels can be specified 
unambiguously using the eigenvectors, and the eigenvectors are shown to have physical 
interpretations, we adopt the terminology eigenfuel in place of eigenvector and treat fuels 
as mathematical blends of eigenfuels, each of which represents a distinct, mathematically 
independent characteristic. 

Recognizing that any of the eigenfuels may play an important role in prediction, we 
incorporate, initially, all of them in the model. No attempt is made to select a subset of 
these vectors before performing the regression, as is commonly done in many past 
applications of PCR. Then, by means developed in this report, we select the most 
appropriate subset of eigenfuels to retain in the final model. Because of orthogonality, 
one can partition the model sum of squares (SS) explicitly among vectors and drop from 
the model those that are deemed unimportant, either because they fail to reach a specified 
level of significance or because they contribute little to the prediction in terms of 
magnitude. This approach is similar in many respects to the case studies described by 
Jeffers (1967). 

The final step consists of “pruning” the retained eigenfuels of those components (the 
original fuel variables) that contribute little to prediction. This step is possible because 
the ability to partition the model SS among eigenfuels implies the ability to partition that 
SS among their components - namely, the original variables. The method by which the 
partitioning is realized avoids such commonly used procedures as removing variables one 
at a time to determine how their removal reduces the model SS. 

Knowing the extent of interdependence among the fuel variables, we should not be 
surprised by the difficulty of selecting an “optimal” set of variables for a regression 
model. We may believe that natural cetane or density has an important influence on 
emissions, but either may be nearly replaced by a combination of other variables. 
Stepwise regression, a commonly used technique in model development, searches 
through a sequence of differing model formulations to find one that is “optimum.” In 
data such as this, there can be many different sets of variables that perform nearly as well 
as the one set ultimately chosen. 

Figure 1.2 brings this point into focus. There are 4,095 different regressions that can be 
formed from twelve fuel properties, and these form the universe among which stepwise 
regression searches. It will take all twelve fuel properties to place a model at the very end 
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of the curve. Forty five different models populate the last 0.02 in R2 and these typically 
involve 7, 8, or 9 predictor variables. 

Figure 1.2. Comparative Performance of Regression Models 
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Models based on a small number of eigenlkels perform well in this context. For example, 
one eigenfuel explains 83 percent of the fuels-related variance in NO,, three eigenfuels 
explain 91 percent, and five explain nearly 97 percent. Eigenfuel models for PM 
emissions perform as well. Given the high degree of interdependence in this data, we 
prefer to move away from efforts to find the “best” variables and, instead, toward an 
approach based on decomposing the interdependence into vectors representing the 
independent, underlying influences. 

The transition from scalar to vector predictors brings with it a spate of interpretational 
and inferential issues. Tests of significance, for example, may need to be viewed in a 
different light, and it may be appropriate to put more emphasis on the magnitude of an 
effect rather than its probability of occurring by chance. So firmly embedded in our 
research culture is the statistical paradigm that most investigators are disinclined to 
acknowledge the existence of other criteria for judging the worth of a scientific finding. 
Moreover, the 0.05 level of significance is a fixed icon and tends to be routinely applied, 
even though the power of the test is strongly dependent on sample size. Further, one 
tends to accept, without question, that a variable either is or is not “significant,” in toto. 

In the present circumstance, however, one may have to accept the fact that the 
significance of a fuel variable may depend on its associations, inasmuch as aZZ the 
variables appear as components of each of the eigenfuels. This is because rejecting an 
eigenfuel implies only partial rejection of the original variables comprising it, because the 
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same variables occur in the eigenfuels that are not rejected. In this report we accept the 
notion of “partial” significance, believing that a variable can be signzjkant when found in 
respectable company and not significant in less respectable company. 

We also prefer to evaluate effects on the basis of their magnitude in addition to their 
probability of occurring by chance. We refer to these criteria for choice as substantiality 
and significance. In the implementation of the substantiality criterion, sample size still 
plays a role, of course, but in a way that is the dual of its role in a conventional test of 
significance. For a fixed significance level, such as the classic 0.05, the magnitude of the 
“least detectable” effect is variable and depends on sample size. 

When a fixed magnitude is used as the threshold for acceptance or rejection of an effect, 
it is the statistical significance level that varies, again depending on sample size. We 
believe it is essential to balance the two considerations. Even though an effect may be 
statistically significant, because of large sample size, there is no reason for it to be 
retained if it makes only a minuscule difference in predictions. 

Our approach is illustrated in Figure 1.3. The horizontal axis represents significance, the 
vertical axis represents substantiality, and the points represent the eigenfuels and where 
they lie in the plane of the two criteria. We first reject eigenfitels with t-ratios smaller 
than 1.96, as required for 0.05 significance. We then reject predictors that fail to explain 
some minimum percentage of the fuels-related SS. In the figure, this threshold is taken as 
one percent. For particulate emissions, as shown, five eigenfuels satisfy the combined 
criteria for significance and substantiality. 

Figure 1.3. Significance versus Substantiality of Effects (PM Emissions Model) 
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A major advantage of the substantiality criterion is that its critical value does not change 
with’sample size, though the associated significance threshold does. Thus, substantiality 
serves as a counterbalance to the test of significance, the power of which increases with 
sample size and often leads us to retain smaller and smaller, and sometimes negligible, 
effects. 

The vector approach developed in this report provides a generally applicable method for 
identifying an efficient set of vector variables to describe a collection of data. When 
applied as predictor variables in regression analysis, the vector variables are found to 
have many advantages, including: 

l Economy of representation, because a small number of vector variables may 
effectively replace a larger number of the original variables. 

l Simplification of regression analysis, because properly constructed vector 
variables (the eigenvectors of the problem) will be mathematically 
independent and eliminate the complications introduced by multi-collinearity. 

l Potentially greater understanding of the patterns of variation present in the 
data and how these are related to the dependent variable under consideration. 

1.3 DIESEL EMISSION CONTROL 

The background and status of diesel emission research are well documented by the 
previously cited literature review by Lee et al. (1998). Up to this point in time it appears 
that engine design factors tend to eclipse fuel effects so far as efforts to reduce diesel 
emissions are concerned. Moreover, as pointed out by the authors, a number of prototype 
engine technologies are under consideration in order to meet future proposed emission 
limits in the United States (for 2004) and in the European Union (for 2000 and 2005). 

How fuel properties may influence diesel emissions in the future is particularly 
problematical, especially in those instances where engine or fuel properties play an 
enabling role for the other. Inseparable effects are not necessarily limited to fuels. Some 
may pertain to engine design features, such as exhaust gas recirculation or catalyst 
systems, that depend on fuel properties for an enabling effect. Evaluation of such coupled 
effects may resist conventional statistical means and present yet another opportunity for 
exploitation of the vector-variable approach. 

1.4 ORGANIZATION OF REPORT 

The report documents research performed in two phases during 1999 and 2000. Portions 
were previously published in the technical paper series of the Society of Automotive 
Engineers (SAE) (McAdams et al, 2000). Section 2 presents the concepts of the vector 
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methodology and demonstrates its application to a database of HDD engine emissions. 
Section 3 develops a perspective that shows how the vector approach leads to a preferred 
identification of the explanatory influences in a regression model. It then presents a 
series of extensions and refinements to the basic methodology to address difficulties that 
can be expected to arise in practice. Section 4 discusses three areas in which additional 
work is needed to improve the understanding of diesels fuels and HDD emissions, while 
Section 5 presents conclusions of the work. Nine appendices are included with this report 
to amplify on the development of the methodology and document the procedure involved 
in implementing the approach. 



2. THE VECTOR METHODOLOGY 

, * 

This section presents the vector methodology and its application to a database of HDD 
engine emissions. We begin with a description of the data base and then proceed to a 
presentation of the methodology. 

2.1 DESCRIPTION OF DATA BASE 

A database representing 280 individual emission tests of HDD engines was compiled 
from nine publications ( Gonzalez et al., 1993; McCarthy et al., 1992; Schaberg et al., 
1997; Sienicki et aZ., 1990; Spreen et al., 1995; Ullman, 1989; Ullman et al., 1990; 1994; 
1995) in the SAE literature where the following criteria were met: 

l The Environmental Protection Agency (EPA) transient test cycle was used and 
either the composite or hot start result was reported. The hot start portion has 
a 6/7ti weight in the composite result. 

l At least NO, and PM emissions were measured, which are the pollutants 
examined in this study. Eight of the sources measured all four pollutants (HC, 
CO, NO,, and PM), and one source measured all except CO. 

l Emissions testing could be matched to fuels for which the following 12 
properties were known: natural cetane, cetane number improvement (resulting 
from additives), density, viscosity, sulfur content, mono-aromatic content, 
poly-aromatic content, and five points on the distillation curve. 

Table 2.1 lists the variables contained in the database; the field names shown are used to 
refer to the variables in the tables and figures of this report. Overall, the data represent 
eleven different engines tested a total of 280 times on 85 different diesel fuels. 

Twenty-seven publications were examined in the process of compiling this data base 
(Akasaka et al., 1997; Cunningham et al., 1990; Daniels et al., 1996; EPA HDEWG 
Program, 1999; Geiman et al., 1996; Gonzalez et al., 1993; Lange, 1991; Lange et al., 
1997; Liotta, 1993; Liotta and Montalvo, 1993; Mann et aZ., 1998; McCarthy et al., 1992; 
Nakakita et al., 1998; Nylund et al., 1997; Reynolds, 1993; Rosenthal and Bendinslq, 
1993; Schaberg et aZ., 1997; Schmidt and Gerpen, 1996; Sienicki et al., 1990; Spreen et 
al., 1995; Star, 1997; Tamanouchi et al., 1997; Tanaka et al., 1996; Ullman, 1989; 
Ullman et aZ., 1990; 1994; 1995). Eight publications using the EPA transient test cycle 
were excluded because one or-more-cf the” fuel properties was not reported, most 
commonly the poly-aromatic content. Ten publications were excluded for reasons related 
to the emissions data. In one instance, only PM was measured, while European or 
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Table 2.1. The HDD Emissions Database Japanese test cycles were 
used in nine other instances. 
Additional information on 
the data base may be found 
in Appendix A. 

The 12 fuel properties 
examined here are a super- 
set of the fuel properties that 
have been considered with 
respect to HDD emissions. 
They include characteristics 
such as aromatics content, 
cetane rating, and sulfur 
content that a consensus of 
investigators believes 
relevant to emissions 
performance. Additional 
properties (IBP, TlO and 
others) are included that 
could be independent 
predictors, could be 
correlated with the 
consensus variables, or could 
prove unrelated to 
emissions. This 
purposefully casts the net as 
wide as possible, leaving the 
identification of the proper 
subset of predictor variables 
to the later analysis. 
However, there is no intent 
to imply that only these 

properties could affect engine emissions. For example, fuel oxygen content is likely to 
affect CO emissions, and perhaps other pollutants, but is not among the selected 
properties. While some sources tested oxygenated diesel fuels, these were judged to be 
too few in number to permit including oxygen content in the list. 

The eleven HDD engines represented in the data base constitute a very small sample of 
the engine types present in the on-road vehicle fleet. Nevertheless, they include engines 
made by the three major manufacturers (Cummins, Detroit Diesel Corporation, and 
Navistar) and cover a range in model years and horsepower ratings. The engines are 
generally similar in design, although they are built to varying emissions standards. None 
are equipped with EGR systems or with catalysts as tested. They can be taken as 
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reflective of the HDD engines currently on the road, even if the sample is too limited to 
be considered truly representative. 

The large majority of the data base represents individual engine tests, but 41 entries from 
three sources record the meanva&es of replicated tests. For this work, we have . .,...I, 
duplicated the mean values so that each is represented as many times as the tests were 
replicated. This approach, which gives a total of 280 emission tests, maintains an equal 
weighting among individual tests and improves the estimation of the total variance. 
However, the total variance is understated to an unknown extent because the data omit 
the variation of the (unknown) individual test results around the (reported) mean values. 

2.2 COMPUTER SOFTWARE 

The analysis was conducted using MatLab, a commercially available software package 
designed for matrix processing (MatLab, 2000). MatLab offers a built-in function svd, 
which extracts the eigenvalues and eigenvectors of a matrix using the singular value 
decomposition procedure. Other statistical procedures such as computation of correlation 
matrices and multivariate regression analysis are available as built-in functions or can be 
easily written using matrix notation. The methodology demonstrated here can be 
implemented in any computational environment that provides for the calculation of 
matrix eigenvalues and eigenvectors. Appendix B contains a listing of the major MatLab 
procedures created in implementing the methodology. 

2.3 THE VECTOR METHODOLOGY 

We first demonstrate how PCA can be used to resolve the matrix of fuels into a 
representation based on eigenvectors and then demonstrate the use of eigenvectors in 
regression analysis. Appendix C develops the statistical theory that underlies the 
methodology presented here. 

2.3.1 Vector Approach to Representing Fuels 

Consider the subset of data describing the fuels used in emissions testing. This test fuels 
data set consists of the 12 selected properties measured for the 85 different fuels used in 
the engine testing and replicated a varying number of times corresponding to the number 
of emissions tests in which each was used. The data set can be, viewed as ,a matrix X,pf ._,_ .I., ,/jl ..~ 
dimension 280 rows (engine tests) by 12 columns (fuel properties) that contains all of the 
fuels-related information available as predictors for emissions. 

Summary statistics for the 280 x 12 data set consist of a mean vector and variance- 
covariance matrix for the 12 variabres. The mean vector is a.row vector consisting of 12 
components presenting, respectively, the means for the 12 fuel properties: natural cetane, 
cetane improvement, . . . FBP. The 12 x 12 variance-covariance matrix displays the 
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variance of the 12 fuel properties along its main diagonal. The off-diagonal elements 
represent the covariances of pairs of fuel variables. 

Prior to further analysis, each column (fuel variable) is standardized to mean zero, 
variance one. All subsequent analysis will be based on these standardized variables, each 
of which measures fuel properties in units of standard deviations from the mean. Much 
of the thrust of the analysis will be aimed at reducing the variance-covariance matrix to 
diagonal form - that is, zeros everywhere except on the main diagonal. 

The starting point for this is the correlation matrix, shown in Table 2.2. Correlations 
greater than 0.50 in absolute magnitude (an arbitrary threshold) have been highlighted to 
emphasize the pairwise interdependencies of the physical properties. For example, and 
not surprisingly, the five points on the distillation curve are highly correlated with each 
other and with viscosity. Other correlations reflect known relationships encountered in 
fuel blending. Decreased natural cetane is correlated with increased density and aromatic 
content as would be expected in a fuel blend where the proportion of high-aromatic 
cracked stocks, which have low cetane and high density, has been increased. 

That fuel properties are correlated, sometimes to a large degree, implies that there are 
fewer independent variables than the number of physical properties measured. To 
demonstrate this fact, a singular value decomposition analysis was performed to extract 
the 12 eigenvalues and eigenvectors from the correlation matrix. The eigenvectors are 
defined in the computational procedure in a manner that partitions the total variance into 
orthogonal components, where the eigenvalues are the variances associated with the 
corresponding eigenvectors. In this context, orthogonality means that the eigenvectors 
are linearly independent of each other and, as a result of their definition, the correlation 
between any two eigenvectors over the data set is exactly zero. 

Table 2.3 presents the twelve eigenvalues and eigenvectors of the test fuels data set. Each 
eigenvector is a linear combination of the original 12 fuel properties. For example, the 
first eigenvector is described by the coefficients or weights (0.061, 0.034, 0.285, . . . 0.365) 
applied to the fuel properties (natural cetane, cetane improvement, density, . . . FBP). The 
largest coefficients have been highlighted to emphasize the most important fuel property 
components. 

The variance among fuels, indicated by the eigenvalues, is highly concentrated in the first 
few eigenvectors. The first eigenvector accounts for nearly 40 percent of the total 
variation among the fuels, the first six together account for more than 90 percent, and the 
first nine for essentially all (nearly 99 percent). Thus, while the data set contains 12 
distinct variables, its total variance is concentrated in a much smaller number of 
orthogonal patterns that are described by the eigenvectors with the largest eigenvalues. 

It is often desirable to develop a conceptual interpretation of the eigenvectors to aid the 
analyst’s understanding, although this may not be completely possible in complex 
systems. Physical systems (of any kind) are normally created from more basic building 
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Table 2.2. Correlation Matrix for Fuel Properties 

1 2 3 4 5 6 7 8 9 10 11 12 

NatCetane 1 1.000 
CetImprv 2 -0.233 1.000 
Density 3 -0.613 0.105 
Viscosity 4 0.219 0.051 
Sulfur 5 -0.022 -0.220 
MonoArom 6 -0.633 0.247 
PolyArom 7 -0.393 -0.040 
IBP 8 0.097 -0.058 
TlO 9 0.225 -0.098 
T50 10 0.275 -0.002 
T90 11 0.295 0.114 
FBP 12 0.211 0.168 

1.000 
0.460 
0.202 
0 667 L 
0 523 L 
0.292 
0.444 
0.497 
0.307 
0.318 

1.000 
-0.054 1.000 

0.121 -0.030 1.000 
-0.084 0 511 

t 0 514 -G 
0.298 1.000 
0.074 -0.029 1.000 

0 0 900 
A 

0.016 0.014 0.071 0.144 0.006 0,097 0.622 1.000 0.382 0.792 

L 0 692 -0.038 0.226 0.144 0.237 0.523 
- 0 607 -0.096 0.224 0.118 0.278 0.445 

1.000 
A 0 775 1.000 
L 0 633 L 0 897 1.000 

Table 2.3. Eigenvectbrs of the Test Fuels Data Set 

1 2 3 4 5 6 7 8 9 10 11 12 

NatCetane 0.061 -0.556 0.163 -0.220 0.071 -0.068 0.138 -0.458 0,104 -0.456 0.045 0.391. 
CetImprv 0.034 0.143 -0.549 -0.212 0.782 0.061 -0.024 -0.106 0.001 -0.054 -0.048 0.004 
Density 0 285 0 449 -L 0.049 0.168 -0.047 0.163 -0.109 0.237 0 343 
Viscosity L 0 432 -0.120 -0.017 0.142 0.084 0 308 

0 393 0.118 
0.004 0.150 -G 

-0.418 -0.272 0 473 
0.292 0 638 0 

Sulfur 0.002 0.180 0 636 
--?%i 

-0.202 
-s -0.028 

0 556 
b.548 

0.175 0.013 0.058 -s --G 
MonoArom 0.146 0 464 0.040 -0.500 -0.134 -0.078 0.164 -0.037 
PolyArom 0.076 6ii 0 385 -0.272 0.092 -0.289 -0.552 -0.343 -0.171 0.030 0.225 0.049 
IBP L 0 262 -?i?i? 0.052. 0 537 0.248 -0.697 0.118 -0.033 0.234 0.128 0.015 -0.024 
T10 L 0 399 -0.113 0.128 0.316 0.109 0.192 -0.093 -0.123 -0.642 -0.186 -0.392 -0.198 
T50 0 431 L -0.083 0.064 -0.053 -0.028 0 319 
T90 0 392 L -0.074 -0.075 -0.428 -0.158 -0.134 

-0.149 -0.240 0 555 
0.021 

0.010 0.065 -0.552 
0.071 -0.037 0 551 -0.486 0.252 

EBP - 0 365 -0.048 -0.147 -0.409 -0.141 -0.359 0.069 0.476 -0.157 -i?-iti? 0.205 -0.254 

Eigenvalues 4.531 2.591 1.549 1.181 0.681 0.564 0.390 0.230 0.140 0.083 0.036 0.026 

Pet Variance 37.75 21.59 12.90 9.83 5.67 4.69 3.24 1.92 1.17 0.68 0.29 0.21 
Cumulative Pet 37.75 59.34 72.25 82.09 87.761392.46 95.70 97.62 98.79 99.48 99.78 100.0 



blocks according to a set of rules that reflect a natural structure. If these building blocks 
are fully described by the chosen set of variables, one hopes to find an expression of this 
structure in the eigenvectors. In the context of diesel fuels, the underlying structure (and 
therefore the eigenvectors) should reflect the properties of the refinery processes and 
blending stocks used to create these fuels. 

The following discussion interprets the first four eigenvectors in terms of the associations 
among fuel properties. Where possible, we have suggested identifications of the eigen- 
vectors with known refinery or blending processes. These largest eigenvectors, as 
identified by the proportion of the total variance shown in parentheses, are likely to 
represent generalized characteristics of fuels and therefore to be most amenable to 
variation in reformulating diesel fuels. 

Prima y viscosity/density characteristic (38 percent). A direct relationship among 
viscosity, distillation temperatures, and to a lesser extent density. This characteristic is 
associated with the largest eigenvalue, meaning that the test fuels vary most among 
themselves with respect to this characteristic. More viscous compounds found in diesel 
fuels have higher boiling points, and predictive equations show that viscosity is directly 
related to the square root of density (Thomas, 1946). Diesel blend stocks exhibit a 
similar relationship among viscosity, distillation temperatures, and density as 
demonstrated independently by correlation analysis using the data base of blend stocks in 
the Refinery Yield Model (RYM) maintained by Oak Ridge National Laboratory. 

Primary aromatics characteristic (22percent). An increase in aromatics content (both 
mono- and poly-aromatic) is associated with higher density and a decrease in natural 
cetane. This characteristic reflects a known property of the high-aromatic cracked stocks 
that are used in blending diesel fuels. These stocks have higher densities and their 
aromatics content is known to delay ignition and thereby decrease cetane rating. 

Prima y sulfur/quality characteristic (13 percent). This appears to represent sulfur 
content and its related impact on the boost from cetane improvers, which declines as the 
quality of diesel fuel declines. Information from the Ethyl Corporation (Ethyl 
Corporation, 1995) shows that cetane boost is reduced with lower clear cetane, as for 
fuels with higher sulfur and poly-aromatics. This characteristic might be explained by the L 
presence of high sulfur-content dibenzothiophenes, which can be present in light cycle 
oils produced by fluid catalytic cracking. 

Prima y blend balancing characteristic (10 percent). Fuels with increased temperatures 
at the low end of the curve (IBP and TlO) tend to be associated with decreased 
temperatures at the upper end (T90 and FBP). This slope characteristic for the distillation 
curve complements the height characteristic found in eigenvector 1 and may be related to 
meeting blending specifications. For example, flash point might be satisfied by using 
heavier blend stocks at the low end of the distillation temperatures, while lighter blend 
stocks are used on the high end to meet the pour point requirement. 
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When the variance associated with individual eigenvectors falls to relatively small 
percentages, regression coefficients for these eigenvectors are subject to wide error 
bounds. Moreover, such eigenvectors may tend to reflect factors specific to the blending 
of test fuels in individual sources, rather than characteristics found in a range of fuels. 
For example, the smallest eigenvectors could represent specific blend stocks used in one 
or more sources to vary fuel properties for test purposes or to control one or more fuel 
properties to fixed values, once another property had been varied for experimental 
purposes. For this reason, we do not attempt to offer physical interpretations for the 
smaller eigenvectors. Overall, more work is needed to understand the eigenvector 
characteristics of diesel fuels, particularly as those characteristics may differ between 
commercially available fuels and test fuels created for use in the laboratory. 

.i 

Because the eigenvectors form an orthogonal basis, they can be used to re-express the 
original matrix in orthogonal terms. This process is closely analogous to Fourier 
transform analysis, in which a time-varying signal is decomposed into individual 
frequencies and then re-expressed as a weighted sum over frequencies. In Fourier 
analysis, the continuum of harmonic frequencies from a = 0 to 00 forms an orthogonal 
basis from which any time-varying signal can be constructed. In the vector approach 
defined here, the basis vectors are developed from the experimental data in a manner 
expressly defined to be orthogonal. Data analysts may perceive the eigenvector approach 
to be similar to the use of orthogonal polynomials in a regression equation consisting of 
successive powers of the predictor variable (Fisher and Yates, 1948). 

‘. 

i( 
An experimental design matrix X,, x “I of m rows and n variables can be represented in 
eigenvector terms as the linear combination A,, x k) * VTCn x ,,,, where A,, x k) is a matrix of 
coefficients for the k eigenvectors and V,, x k) is a matrix in which the eigenvectors k, 
composed of n components each, form the columns. The coefficients A,, x k) are 
calculated from the relationship hmxk) = X,,.., * V,,.,. In algebraic form, any row m of 
the X matrix can be expressed as a linear combination of coefficients h(k) and 

eigenvectors vj(k): 

I = ~(l)*Vj(l) + ... + ~(12)*Vj(12) (1) 

where: XJj) = value of the j* variable (fuel property) for the mth fuel; G(k) = coefficient 
of eigenvector k in the m* fuel ; and vj(k) = component weight for the jth variable in 
eigenvector k. 

The example in Table 2.4 may help to make these relationships more understandable.. 
Here, the observed values’ have been taken from a selected observation in the X matrix. 
Below this, the calculation given by Eq. 1 is shown to exactly reproduce the original 

’ These are the physical properties in standardized form where mean = 0 and 
variance = 1. 
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Table 2.4. Eigenfuel Representation for a Selected Fuel 

Fuel Property 1 2 3 4 5 6 7 a 9 10 11 12 

Observed Values -0.305 -0.535 0.375 0.025 -0.341 0.042 0.005 -0.083 -0.123 0.331 0.154 -0.268 
. 

Calculated Values -0.305 -0.535 0.375 0.025 -0.341 0.042 0.005 -0.083 -0.123 0.331 0.154 -0.268 

k Coefficient Eigenvector Componen?xz 

1 0.121 0.061 0.034 0.285 0.432 0.002 0.146 0.076 0.262 0.399 0.431 0.392 0.365 

2 0.213 -0.556 0.143 0.449 -0.120 0.180 0.464 0.418 -0.072 -0.113 -0.083 -0.074 -0.048 

3 0.066 0.163 -0.549 0.049 -0.017 0.636 -0.256 0.385 0.052 0.128 0.064 -0.075 -0.147 

4 0.259 -0.220 -0.212 0.168 0.142 -0.202 0.040 -0.272 0.537 0.316 -0.053 -0.428 -0.409 

5 -0.632 0.071 0.782 -0.047 0.084 0.393 -0.305 0.092 0.248 0.109 -0.028 -0.158 -0.141 

6 0.229 -0.068 0.061 0.163 0.308 0.118 -0.028 -0.289 -0.697 0.192 0.319 -0.134 -0.359 

7 -0.294 0.138 -0.024 -0.109 0.004 0.556 0.548 -0.552 0.118 -0.093 -0.149 0.071 0.069 

8 0.011 -0.458 -0.106 0.237 0.150 0.175 -0.500 -0.343 -0.033 -0.123 -0.240 -0.037 0.476 

9 0.371 0.104 0.001 0.343 -0.156 0.013 -0.134 -0.171 0.234 -0.642 0.555 0.021 -0.157 

10 0.205 -0.456 -0.054 -0.418 0.292 0.058 -0.078 0.030 0.128 -0.186 0.010 0.551 -0.406 

11 -0.119 0.045 -0.048 -0.272 0.638 -0.024 0.164 0.225 0.015 -0.392 0.065 -0.486 0.205 

12 0.048 0.391 0.004 0.473 0.371 -0.100 -0.037 0.049 -0.024 -0.198 -0.552 0.252 -0.254 
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observation. The values are calculated, for any fuel property j, as the product of the 
coefficient ak times the coeffcient for the j” component of eigenvector k, summed over 
all eigenvectors k = 1,2, . . . , 12. The eigenvectors k are placed in row form in this table, 
while the fuel properties j form the columns. 

Thus, we can express any fuel as the vector of coefficients a,,,(k) = (a,, %, . . . . a,& 
corresponding to the 12 eigenvectors, instead of describing the fuel by its physical 
properties. Because these coefficients and their associated eigenvectors specify a fuel 
unambiguously, and the eigenvectors have been shown to have physical interpretations, 
we adopt the terminology eigenfuel in place of eigenvector and think of these eigenfuels 
as hypothetical components of real-world fuel blends. We then treat fuels as 
mathematical blends of eigenfuels, each of which represents a distinct, mathematically 
independent characteristic. The coefficients aJk) become measures of how fuel m is 
composed of the eigenfi..tels k. 

Once a data set is translated into this representation, the eigenfuel coefficients are 
distributed with mean zero and variance equal to the corresponding eigenvalue. Figure 
2.1 shows histograms of the coefficients G(k) for the data set used here. The coefficient 
distributions are broad (have large variance) for the first several eigenfuels, consistent 
with their large eigenvalues. The distributions narrow as one moves through the series, 
until they approach a peak clustered around zero by the end. Thus, the fuels vary most 

Figure 2.1. Distribution of Eigenfuel Coefficients 
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widely with respect to the characteristics expressed by the first several eigenfuels and 
differ only to a very minor extent with respect to those represented by the later eigenfuels. 

A fundamental property of eigenfuels is that they form an orthogonal set and their 
coefficients are uncorrelated - i.e., the off-diagonal elements of the correlation matrix for 
the coefficients A (m x kj are zero. That the eigenfuel coefficients are mathematically 
independent and uncorrelated will prove very important when they are used as predictor 
variables. 

2.3.2 Use of Eigenfuels in Regression Analysis 

Having reviewed the properties of eigenfuels, we now turn to their use as predictor 
variables in regression analysis. The empirical relationship between engine emissions 
and fuel properties is usually determined through regressing an emissions variable Y 
against one or more fuel property variables Xi in a form similar to: 

Y=b,+b,X,+bZX;,+...+b,X, (2) 

where the coefficients bi are determined by the regression, and we consider the variables 
Xi to be scalar quantities. In the vector approach developed here, the regression model 
will be of comparable form: 

Y=b,+b,A,+b,A,+...+b,A,, (3) 

where the new variables Ai are the coefficients of eigenfuel i in the vector representation. 
Consistent with other work, the dependent variable Y is taken to be the natural logarithm 
of emissions. (See Appendix I for further discussion of the use of variable 
transformations in regression analysis.) 

When used as predictor variables in regression analysis, eigenfuels have two important 
properties resulting from their mathematical independence, as demonstrated in Table 2.5. 
Here, NO, emissions have been regressed against each eigenfuel k individually using 
equations of the form: 

ln(N0.J = a, + a, Ak for k = 1,2, . . . 12 (4) 

The regression sum of squares and coefficient values are then tabulated against the results 
of a regression in which all 12 eigenfuels are present simultaneously (see the rightmost 
column of the table). The regression sum of squares summed across the twelve 
individual regressions equals the sum of squares in the regression containing all 12 
eigenfuels. Further, the intercept and eigenfuel coefficients for the individual regressions 
are identical to those estimated in the regression containing all eigenfuels. Thus, the 
regression sums of squares are additive and the coefficient values are invariant with 
respect to the selection of eigenfuels for inclusion in the regression. There is, in fact, a 
unique partitioning of the variance in the dependent variable into the components 
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Table 2.5. NO, Regressions Using Eigenfuels as Explanatory Variables 

Eigenfuels included in Regression 

1 2 3 4 5 6 7 8 9 10 11 12 ALL 

Regression Sum .0236 .7805 .OOlO .0506 .1034 .0007 .0148 .oooo .0547 .1229 .0113 .oooo 1.1633 
of Squares 

Cumulative SS .0236 .8041 .8051 .8557 .9591 .9597 .9745 . 9745 1.0292 1.1521 1.1633 1.1633 

Intercept 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 1.5372 

Eigenfuel 1 .0043 .0043 

Eigenfuel 2 .0329 ; .0329 

Eigenfuel 3 .0016 .0016 

Eigenfuel 4 .0124 .0124 

Eigenfuel 5 -.0233 -.0233 

Eigenfuel 6 .0021 .0021 

Eigenfuel 7 .0117 .0117 

Eigenfuel 8 .0002 .0002 

Eigenfuel 9 -.0374 -.0374 

Eigenfuel 10 -.0730 -.0730 

Eigenfuel 11 -.0335 -.0335 

Eigenfuel 12 .0012 .0012 
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identified with the eigenfuels. It can be shown (see Appendix C) that the contribution of 
eigenfuel k to the regression sum of squares and R* statistic is proportional to the product 
of the eigenvalue A, and the square of the regression coefficient b,. 

This outcome contrasts with the usual result in regression analysis when the predictor 
variables are correlated with each other. The multi-collinearity existing in such 
circumstances means that parameter estimates change when predictors are added to or 
removed from the regression. In addition, combining individual variables to create a 
pooled regression does not increase the regression sum of squares and R2 statistic to the 
extent that might be expected. Working through the “fog” created by multi-collinear 
variables is part of the art of regression analysis and is one of the reasons why 
independent analysts can reach differing conclusions from the same data. The use of the 
linearly independent, vector variables eliminates this fog. 

The table suggests insights that will be developed in the next section. Not surprisingly, 
there is a difference between the importance of an eigenfuel in describing the variation 
among fuels and the strength of its relationship to NO, emissions or another dependent 
variable. Eigenfuels 1 through 12 are defined in decreasing order of variance among the 
fuels, so that eigenfuel 1 accounts for 38 percent of the fuel variance, followed by 
eigenfuel2 at 22 percent, and eigenfuel 10 at only 0.7 percent. However, the regression 
results indicate that eigenfuel 10 has the strongest relationship to NO, emissions, as 
measured by its coefficient, followed by eigenfuels 11 and 2. We also see that some of 
the eigenfuels (numbers 1,3,6,8, and 12) have very weak relationships to NO, and are 
likely candidates to drop from the analysis. However, before attempting to draw 
conclusions from such results, we must first consider and control for other factors, such 
as engine characteristics, that contribute to the variance in emissions. 

2.3.3 Application to Diesel Emissions 

In this section we show the application of the vector approach to diesel engine emissions 
and obtain a first look at its implications. There are many factors beyond fuel 
composition that contribute to the variance in engine emissions, including differences 
among engines, test cycles, and the sources from which the data are drawn. The intent is 
to extract these fixed effects and then re-compute the regression equation involving the 
eigenfuels. This will be done for both NO, and PM emissions. 

Figure 2.2 suggests the sources of variation to be found in the data base of diesel 
emissions data. The tested engines are taken to be generally reflective of the population 
of HDD engines currently on the road. Nine different publications reported tests for 11 
individual engines, representing 11 different engine designs, on 85 different fuels using 
one of two different EPA test cycles. Most, but not all, engine tests were replicated at 
least once. 
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Figure 2.2. Sources of Variance in Diesel Engine Emissions Data 

Sources - nine different publications 

Engine Lines - 11 different engine lines 

Individual Engines - 11 individual engines tested 

. 
Fuels - 85 unique fuels 

Test Cycles - 2 different EPA cycles (composite and hot start) 

Test Replications -test-to-test variation 

We can hypothesize a series of terms in the overall emissions model that represent, for 
example, the average emissions level E, of the existing fleet, the variation of average 
emissions Ei for engine line i around E,, and the variation of the average emissions E, for 
individual engine j around its engine line average Ei. Other terms in the model would 
include an effect S, for differences among the sources and an effect T, for the different 
average emissions levels of the two EPA test cycles. This series of terms would be in 
addition to the effects of fuels on emissions, which are of primary interest here. 

We are unable, however, to estimate an overall emissions model at present because of 
size and coverage limitations of the data base that make it impossible to separate the 
effects of engine designs, individual engines, test cycles, and sources. Each engine design 
is represented by only a single specimen and each individual engine has been tested using 
only one of the two test cycles. For purposes of this exploratory study, we have 
incorporated a single fixed effect for individual engines in the regression models. This 
engine effect represents an undifferentiated, composite effect due to engine designs, 
individual engines, sources, and test cycles. 

Thus, we use regression equations of the form: 

In(E$ = b, + 1 bi * bi + 1 bj,k * Aj,k (5) 

where the dependent variable is the natural logarithm of emissions for engine i tested on 
fuel j, t bi * bi represents a dummy variable formulation for the variation in mean 
emission levels among individual engines i = 2, . . . . 11 and 2 bj k * Aj k represents the 
emission effects of fuel j expressed in terms of the 12 eigenfuei coefbcients k. 

While the eigenfuels are defined to be mathematically independent of each other, 
correlations exist between the eigenfuels and the engine dummy variables. There is no 
unique partitioning of the variance between fuel and engine effects, as a result, and fuel 
effects should be computed within engines and the separate estimates pooled. Otherwise, 
differences between emission levels for the various engines can modify the fuel-effect 
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estimates. This separation of fuel and engine effects is achieved by computing the model 
sum of squares with both engine and fuel variables included and then with only engine 
variables included. The total model sum of squares with fuel and engine variables, less 
the model sum of squares when the model is constrained to engine effects only, is the sum 
of squares attributed to fuels. This assigns to fuels only the sum of squares reduction that 
can be uniquely associated with fuels and is referred to as “fuels adjusted for engine 
effects.” 

As shown in Table 2.6, the combination of engine effects (representing the composite of 
engine designs, individual engines, sources, and test cycles) and the fuel effects explain 
91.1 and 98.6 percent of the sum of squares for NO, and PM, respectively. This suggests 
that the variability of test-to-test replication (for a given engine and fuel) is relatively 
small compared to the differences among engines and fuels within this data base. The 
engine effects explain 45.5 percent of the sum of squares for NO, and 95.4 percent for 
PM, while the fuel effects represented by the eigenfuel terms explain 45.6 percent and 3.2 
percent respectively. The importance of engine effects for PM emissions, while real, is 
greatly increased by one, older engine whose PM emissions are much above the others. 

Table 2.6. Sum of Squares for Fuels Adjusted for Engine Effects 

Source of Variation 

Regression SS 

Engine SS (Unadjusted) 

Fuel SS (Adjusted for Engines) 

Error SS 

Total SS 

104.2 22 4.736 0.986 

100.8 10 10.080 0.954 

3.4 12 0.283 0.032 

1.5 257 0.006 0.014 

105.7 279 0.379 1 .ooo 
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It is well known that engine design factors have important effects on emissions, and it is 
all the more to be expected when, as in present circumstances, the vehicles were designed 
to varying certifications standards. Further, engine and fuel effects are correlated in this 
data set - to a substantial extent for PM - so that we are not able to clearly separate their 
contributions at present. We take these preliminary results to suggest that fuels may have 
substantial effects on engine emissions, but further work with additional data is clearly 
needed to resolve the competing importance of engines and fuels. This report focuses 
primarily on the relative contributions made by the eigenfuels to the portion of the total 
emissions variation that can be attributed to fuels. 

Table 2.7. Summary of Regression Results for NO, and PM 

Parameter 
Engines 

Ln(PM) Ln(N03 Emissions 
Estimate t ratio ! Estimate / t ratio 

/ 6 0.0339 3.98 -1.7223 64.68 , Engine 1 1 / / 

Fuels 
I 

Eigenfuel 1 0.0043 1 5.30 1 0.0233 j 9.23 / 

/ Eigenfuel 10 -0.0156 2.59 1 -0.0575 3.05 

Eigenfuel 11 0.0294 2.85 0.0239 0.74 

Eigenfuel 12 0.0325 2.62 -0.0318 0.82 

Table 2.7 
summarizes the NO, 
and PM regressions. 
Inspection of the 
table reveals that all 
of the engine effects 
are statistically 
significant at the 
0.05 level (t value 
exceeding 1.96). 
Among the fuel 
effects, all are 
significant at the 
0.05 level except 
eigenfuels 6, 8, and 9 
for NO, and 
eigenfuels 4, 6, 7, 8, 
11,and 12forPM. 
Thus, many fuel 
effects might be 
retained in the model 
if the selection were 
based solely on 
statistical 
significance. 
However, as we 
argue, the predictive 
capability of an 
effect should temper 
its selection or 
rejection in concert 
with its significance. 
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The “predictive capability” statistic, computed by normalizing the quantity Ak * b, to a 
value of one, identifies the relative contribution of each eigenfuel to the predictive power 
contributed by all fuels-related information. Using this statistic, Figure 2.3 shows that 
only one eigenfuel (number 2) for NO, and three eigenfuels (numbers 1,2., and 3) for PM 
account for nearly all of the predictive power that can be ascribed to fuels. This figure 
also demonstrates, by comparison to the variance explanation for fuels, why all eigenfuels 
should initially be retained in the regression and considered for deletion only after the 
relationship to the response variable has been determined. Overall, these results mean 
that, regardless of the statistical significance of other coefficients, the regression models 
could be reduced to include at most a few eigenfuel terms (in addition to the engine 
effects) without a significant reduction in the ability to capture the impact of fuels. 

Figure 2.3. Percentage Contributions to Variance Explanation for Fuels and Emissions 

80 . . 80. . 80. 

60 - 60. - 60. 

40 . . 40. . 40. 

. 20. 

’ 0 1 2 3 4 5 6 7 8 9101112 4 5 6 7 8 9101112 

Eigenfuels Eigenfuels Eigenfuels 

Let us now briefly examine the substantive meaning of the regression results. For NO,, 
only eigenfuel number 2 has substantial predictive power. This eigenfuel was previously 
described as representing a primary aromatics characteristic, in which an increase in 
aromatics content (both mono-aromatics and poly-aromatics) was associated with 
increased density and decreased natural cetane. From a refinery perspective, this was 
identified as representing high-aromatic cracked stocks. 

Exponentiating the individual terms of the regression equation, the results indicate that 
NO, emissions are decreased by a factor of exp(O.0344) - 1 = 3.5 percent for each unit 
reduction in this fuel characteristic. Because the variance associated with the second 
eigenfuel is 2.591, a unit reduction corresponds to 1 .OOO/sqrt(2.591) = 0.62 standard 
deviations. Therefore, a one standard deviation reduction corresponds to reducing NO, 
emissions by 3.5/0.62 = 5.6 percent. A reduction by one standard deviation corresponds 
to approximately one-third of the total change that is possible and is used here as a rule- 
of-thumb measure of what might be possible to achieve in practice. 
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This eigenfuel expresses three individual fuel properties that are widely believed to 
influence NO, emissions - aromatics content, natural cetane, and density. However, it 
represents a single mode of variation involving simultaneous changes in the three 
variables. Thus, it may be more correct to speak of reducing NO, emissions by 
decreasing the content of high-aromatic cracked stocks, rather than by varying any of the 
three’properties independently. 

The results are somewhat more complicated for PM, since three of the eigenfuels - 
numbers 2,3, and 1 in order - are found to contribute substantially to the fuels-related 
predictive power. The most important, eigenfuel number 2, was identified with the 
content of high-aromatic cracked stocks. Using the calculation shown above, a one 
standard deviation reduction corresponds to a (exp(O.O549)-l)*sqrt(2.591) = 9.1 percent 
reduction in PM. Eigenvector 3, involving a primary association between sulfur content 
and cetane boost, corresponds to a 7.6 percent PM reduction for each standard deviation 
change. Eigenvector 1, involving a primary viscosity and distillation curve characteristic, 
corresponds to a 5.0 percent reduction per standard deviation. The effects are additive, 
since the eigenfuels are independent, and would reach a total of 2 1.7 percent if a one 
standard deviation reduction were made in all three. All other eigenfuels make 
negligible contributions, whether they are found to be statistically significant or not. 

As indicated in the review by Lee, Pedley, and Hobbs, there is only a weak consensus on 
how fuel properties affect PM, except that reducing sulfur content is generally accepted to 
reduce emissions. Eigenvector 3 appears to express this consensus relationship. The 
properties involved in the other eigenfuels (1 and 2) include aromatics content, natural 
cetane, viscosity, the distillation curve, and to a lesser extent density. Density and poly- 
aromatics content are thought to have a small effect on PM emissions in some engine 
groups, while there is no consensus on whether cetane, mono-aromatic content, viscosity, 
or distillation curve parameters are important. We can not resolve these points of 
potential difference based on the current data base and analysis. However, the results 
presented here suggest there is more than one way in which PM emissions can be 
,reduced., 

Note also that several of the smaller eigenfuels (numbers 11 and 12 for NO, and 9 and 10 
for PM) are indicated to have strong relationships to emissions. It is a natural statistical 
consequence that eigenvectors associated with small eigenvalues have regression 
coefficients that are subject to very wide error bounds. However, these “statistically 
challenged” eigenfuels could point toward unexploited modes of reducing NO, and PM 
emissions, even though the current state of the analysis and the size and scope of the 
engine emissions data base are inadequate to draw conclusions on their meaning or 
potential importance. These findings could also result from correlations to factors that 
have been inadequately controlled in the regressions. If the emissions relationships are 
real, it might still prove impractical, if not impossible, to blend fuels that vary 
significantly in these characteristics because of considerations of cost, safety, driveability, 
or other reasons. 
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2.4 MODEL INTERPRETATION AND SIMPLIFICATION 

Investigators accustomed to scalar predictor variables may perceive vector variables to be 
needlessly complex and may find it difficult to interpret the response variable in terms of 
eigenvectors. In the psychological and social sciences, this objection may be particularly 
apropos because of the lack of underlying theory as a logical assist. In the physical 
sciences, however, interdependent variables may often be readily recognized. Certainly, 
in the present instance, blending experience was a valuable interpretational aid. 

Nevertheless, a model for predicting emissions in terms of fuel characteristics can not be 
considered complete until all means of simplification have been explored. Therefore, 
simplification procedures have been an important concern from the beginning. Though 
well aware of rotation procedures (varimax, quartimax and equimax), our experience with 
these procedures failed to provide any significant insights in the context of this problem. 
Instead, with regard to emissions response, which is our main concern, we elected to 
pursue a direction aimed at better understanding the relation between eigenvectors and 
their fuel-property components. 

A very useful outcome is a scheme for re-expressing the SS partitioning among eigen- 
vectors as a partitioning among the underlying fuel variables. The conversion is made 
possible, of course, by virtue of the fact that each eigenvector can be expressed as a linear 
combination of the original variables. As shown in Appendix D, the SS attributed to each 
eigenvector can be segregated into the contributions made by each of the original 
variables comprising the eigenvector, and these individual contributions can be summed 
over the eigenvectors to yield the SS attributable to each variable. Since it corresponds 
directly to the eigenvector partitioning, the derived partitioning among variables is in a 
sense unique. Certainly it has a claim to distinction from the multiple partitionings that 
can arise in stepwise regression or when all possible subset models are considered. 

The SS partitionings for NO, and PM are shown in Table 2.8, both by eigenvectors and 
by the original fuel variables. The difference in partitioning for the two pollutants is 
evident and again emphasizes the futility of attempting to select variables independently 
of the role they play as predictors. We show in the following a means for simplifying the 
emission models through a combination of statistical tests of significance and evaluation 
of the magnitude of effects. 

Eigenfuels can be rejected, as is usually done in OLS, by dropping those that fail to meet 
a specific level of significance. At the 0.05 level, those eigenfuels tagged * in the table 
would be removed. However, it is to be noted that several other eigenfuels, tagged ** in 
the table, each contribute less than 1 percent to the model SS. On the assumption that 
elimination of these eigenfuels would have little influence on the predictive capability of 
the model, they can be considered for removal, because it is irrelevant whether they are 
statistically significant or not. 
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Table 2.8. Statistical Significance and SS Partitioning 

The disposition of eigenfuels on the basis of statistical significance is, of course, 
dependent on the significance level adopted. Similarly, the cutpoint for practical 
significance is arbitrary. It is here that art and judgement, tempered by experience, enter 
just as it does in any other scheme for selecting variables. It is not the intent of this report 
to resolve these issues, but rather to illustrate a methodology for their resolution. We 
suggest, therefore, a possible scenario for model. simplification: 

l Reject those eigenvectors that have a t-ratio smaller than 1.96, corresponding 
to 0.05 significance for large samples. 

l Renormalize the percent SS and transform the eigenvector contributions into 
the contributions to SS by individual variables. 
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l Prune those components that contribute less that 1 percent to the model SS; 
we call this criterion a “substantiality threshold.” 

In this way we have retained predictive components that are both statistically and 
practically significant, given the criteria used for choice. It removes one objection 
sometimes raised in connection with PCR, namely that the model retains all variables and 
therefore effects no simplification. Further refinement can be had by recomputing the 
eigenvectors in the reduced-variable space. The simplified internal structure resulting 
from the pruning of some variables makes interpretation of the eigenvectors easier. 

In addition, the scenario has isolated those fuel variables that play important roles in 
prediction. The model can be restated, if desired, in terms of the fuel property variables, 
rather than eigenfuels, in which case the relative contributions can be appraised with the 
knowledge that the partitioned SS originate in the”clean” eigenvector environment as 
opposed to the multi-collinear environment of stepwise or all-subset regression. 

Let us now apply the simplification criteria to the data set and follow the pruning process 
through to its completion in a reduced-variable space. Dropping those eigenvectors 
tagged * or ** in the prior table, we have the following surviving eigenvectors that are 
statistically significant at the 0.05 level and contribute at least 1 .O percent to the model 
ss: 

l For NO,, the six eigenvectors numbered 1,2,3,4,5, and 7 

l For PM, the five eigenvectors numbered 1,2,3,9, and 10. 

The 6 eigenvectors remaining in the NO, model account for 97.6 percent of the total SS 
that can be attributed to fuels, while reducing the dimensional&y of the analysis space by 
half - i.e., from 12 to 6 independent regressors. The 5 eigenvectors remaining for PM 
account for 98.3 percent of the SS and reduce the dimensionality by more than one-half. 

Let us now see what the simplified NO, and PM models imply for the SS partitioning by 
the original variables. We will apply the criterion that variables contributing less than 1.0 
percent of the total SS, tagged ** in Table 2.9, can be dropped from further consideration. 
Seven variables would be dropped for NO,, including viscosity and all five points on the 
distillation curve. Five variables would be dropped for PM, including viscosity and four 
of the points on the distillation curve. One could retain separate variable slates for NO, 
and PM in model development, but for the purposes of demonstrating the approach we 
will retain the seven variables common to both, specifically: natural cetane, cetane 
improvement, density, sulfur content, mono- and poly-aromatics content, and TlO. These 
seven account for 98.7 percent of the SS in the 6-eigenfuel NO, model and 98.0 percent 
of the SS for the 5-eigenfuel PM model. 

Note that the pruning criteria must bechosen with consideration for their cumulative 
effect. The criteria illustrated here retained variables accounting for 97.6 of the total 
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fuels-related SS in the simplified NO, model and 98.7 percent of this amount in the 
reduced variable slate. Accounting for the SS “lost” in reducing the models to six and 
five eigenfuels for NO, and PM, respectively, the reduced variable slate retains 96.3 
percent of the total fuels-related SS for NO, and a corresponding 97.0 percent for PM. 
Thus, we see that the dimensionality of the problem, in terms of individual fuel 
properties, can be reduced from 12 to 7 with only minor loss of information related to the 
fuels effect. 

Table 2.9. SS Partitioning Based on Simplified NO, and PM Models 

I I NOx Model SS I PM Model SS -7 

Even greater simplification could be achieved by raising the substantiality threshold to 
prune eigenvectors and fuel property variables that contribute between 1 and 2 percent to 
the total, at the expense of reducing the proportion of the fuels information that is retained 
in the analysis. There are as many ways to select the simplification and pruning criteria 
as there are ways to view what is important to a problem. In many contexts the priority 
will be to retain almost all of the explanatory power while achieving some benefit from 
the simplification. Highly simplified models may be more important in other instances 
and will argue for retaining a smaller portion of the total. 

Having eliminated fuel property variables that are superfluous to the problem, let us now 
re-compute the eigenvectors. Table 2.10 summarizes the results of the principal 
components analysis for the reduced variable space; the largest components in each 
eigenfuel have been highlighted for comparison to the previous Table 2.3. Important 
points of comparison are: 
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l The first revised eigenfuel corresponds to original eigenvector 2, identified 
with high-aromatic cracked stocks. This eigenfirel has natural cetane, density, 
and aromatics content as its most important components. 

l The second revised eigenfuel corresponds to original eigenfuel3, identified 
with a fuel quality feature, with cetane improvement, sulfur content, and poly- 
aromatics content as its most important components. 

l The third revised eigenfuel is one not seen before. It loads predominantly on 
T10 and accounts for 17.6 percent of the fuels variance. With elimination of 
the other temperature points, this appears to be a representation of the overall 
distillation curve in a highly simplified way. 

l The fourth revised eigenfuel corresponds (with a sign inversion) to original 
eigenfuel5, which was not interpreted in refinery terms. 

l The fifth revised eigenfuel corresponds. to original eigenfue17, which also was 
not given an interpretation. 

l The sixth and seventh revised eigenfuels do not correspond to any of the 
original eigenfuels. 

Table 2.10. Revised Eigenvectors of the Test Fuels Data Set 

1 2 3 4 5 6 7 

NatCetane 0.484 -0.261 0.248 -0.280 0.050 0.598 0.444 

CetImprv -0.134 0.538 -0.018 -0.831 0.005 -0.036 -0.003 

Density -0.547 -0.079 0.298 0.038 -0.037 -0.242 0.737 

SUlfur -0.171 -0.608 -0.307 -0.348 -0.159 -0.072 0.596 

MonoArom -0.488 0.255 0.098 0.218 0.451 0.642 -0.152 

PolyArom -0.415 -0.365 -0.274 -0.183 -0.659 -0.141 0.363 

TlO -0.095 -0.26 1 0.819 -0.165 -0.053 -0.109 -0 459 L 

Eigenvalues 2.698 1.538 1.233 0.73 1 0.394 0.309 0.097 

Pet Variance 38.545 21.973 17.608 10.449 5.625 4.410 1.390 

Cumulative Pet 38.545 60.518 78.126 88.575 94.200 98.610 100.000 

The eigenfuels that were found to be important features of diesel fuels in the original 12- 
variable space are retained in some form in the revised eigenvector slate. However, the 
first original eigenfuel has disappeared from the revised set. It was interpreted as 

30 



representing a generalized fuel weight feature with density, viscosity, and the overall 
height of the distillation curve as its major features. Of these variables, only density and 
TlO have been retained, and there is no way to observe the variation of density in 
company with viscosity and the entire distillation curve in the revised data set. This 
variation remains in the data, but it will be distributed among the revised eigenvectors. 

Revised regression models of the form given in Eq. 5, but including the seven revised 
eigenfuels with engine effects, were estimated for NO, and PM emissions. Table 2.11 
summarizes the results for statistical significance and SS partitioning for the fuels-related 
effects in the models. As before, we find that one eigenfuel (the first revised eigenfuel 
representing high-aromatic cracked stocks) is the dominant explanatory factor for NO, 
emissions and the largest of several for PM. 

Table 2.11. Statistical Significance and SS Partitioning for the 
Revised NO, and PM Models in Seven-Variable Space 

log( NO, ) Emissions log( PM ) Emissions 

~ MonoArom 
PolyArom 7.90 26.5 1 

. TlO 0.04** 5.84 

For NO,, the one dominant eigenvector accounts for 88.0 percent of the fuels related SS, 
while its counterpart in the original slate of 12 accounted for 82.5 percent. Reducing this 
fuel feature by one standard deviation would reduce NO, emissions by 5.6 percent. The 
12-eigenvector analysis (see Section 2.3.3) estimates the same one standard deviation 
reduction of the corresponding eigenvector also to reduce NO, by 5.6 percent. The fourth 
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revised eigenvector accounts for an additional 7.2 percent of the fuels-related SS and 
would reduce NO, by an additional 1.6 percent. 

For PM, we have two revised eigenfkels (numbers 1 and 2) that account for almost all of 
the fuels effect, compared to three (eigenfuels 3,2, and 1) in the original analysis. These 
two correspond to the properties described in the original analysis by eigenfuels 2 and 3. 
As noted, the original first eigenfirel (fuel weight) has disappeared from the revised set, 
and its impact on PM emissions is distributed to other revised eigenfuels. 
Reducing revised eigenfuel 1 by one standard deviation is estimated to reduce PM 
emissions by 10.4 percent, while reducing revised eigenfuel2 by one standard deviation 
gives a PM reduction of 8.0 percent. Our original analysis obtained estimates of 9.1 
percent and 7.6 percent reductions for the corresponding eigenfuels. 

Thus, we have two-eigenfuel models for both NO, and PM that capture about 95 percent 
of the fuels-related SS for emissions. A 7.2 percent reduction in NO, could be achieved 
if revised eigenfuels 1 and 4 were each reduced by one standard deviation, and an 18.4 
percent reduction in PM could be achieved if revised eigenfuels 1 and 2 were each 
similarly reduced. Overall, the regression analysis and the SS partitioning for both 
eigenfuels and fuel properties tell the same story seen in the original analysis: 

l NO, is influenced primarily by natural cetane, density, mono- and poly- 
aromatics content. 

l PM is influence primarily by density, sulfur content, and poly-aromatics. 

Predictions made by the simplified model are, for all practical purposes, the same as in 
the original analysis. It seems that 7 individual fuel properties suffice, and that NO, and 
PM emissions can each be modeled with relationships involving 2 eigenfuels. 
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3. PERSPECTIVE AND EXTENSIONS 

I 

The development of the vector emissions model is, thus far, admittedly simplistic and 
does not cover many of the difficulties that can be expected to arise in practice. We are 
well aware that the data base used in this demonstration has many shortcomings. It is a 
pooling of separate studies, each of which was performed with a specific objective in 
mind. Vehicle sampling was inadequate and did not allow estimation of effects 
attributable to specific engine characteristics. We urge caution in interpreting results and 
stress again that the major purpose is to demonstrate methodology, rather than to draw 
conclusions regarding the fuel/emissions relationship. 

In the following sections, we first develop a perspective on the meaning and 
interpretation of sums of squares to emphasize how the orthogonalization achieved in the 
vector approach leads to a unique and preferred identification of the explanatory 
influences in a regression model. We then discuss implications of this perspective for 
how the vector approach should be applied in future work. Finally, we address a series of 
methodological extensions that may be needed to meet the challenges of real-world data. 
The discussion within this section summarizes key points and findings and, in many 
instances, leaves the more-detailed development and explanation to the referenced 
appendices. 

: . ‘_, I. _ .._ _“” I 

3.1 PERSPECTIVE ON SUMS OF SQUARES 

3.1.1 The Many Faces of Sums of Squares 

Consider the general case to which the problem of HDD engine emissions belongs - i.e., 
a regression model involving N predictor variables and the problem of selecting the ideal 
subset of these variables to include in the regression equation. Each of the N variables 
can be included or excluded independently of all the others. Consequently, there are 2N 
possible subsets, each being a possible choice of predictor variables to include in the 
model. The number of included variables can range from zero (the empty subset) to N 
(the universal subset). 

If the design matrix is not columnwise orthogonal, it is not possible to compute directly 
the fraction of the model sum of squares (SS) attributable to a given predictor. 
Customarily, this fraction is estimated by computing the model SS with all N predictors 
and then with all predictors except the one for which the SS is to be estimated. Then, as 
seems reasonable, the difference between the two sums of squares is taken as the 
contribution attributed to the excluded variable. This estimates the SS contribution at the 

33 



margin, given the other variables present, but does not determine an absolute or non- 
conditional SS contribution. 

This procedure can be broadly generalized into an “all possible regressions” approach. 
For any one of the predictor variables, exactly one-half of all the 2N subsets contain that 
variable, while the other half do not. Therefore, it is possible to compute 2”’ estimates of 
the SS attributable to any given predictor. For 12 such variables, there are 2”’ = 2048 
possible estimates of the SS that conceivably might be attributed to a given predictor 
variable. It is little wonder, then, that different researchers often come to different 
conclusions. On the other hand, if the design matrix is columnwise orthogonal, all of 
those 2”’ estimates are identical. It would seem that no further argument should be 
necessary to justifl orthogonalization as the method of choice for estimating the relative 
impact of predictor variables on response. 

3.1 .I .I A Three-Variable Example 

With modern computers it is quite feasible to compute all possible regression estimates 
for every one of the N predictor variables. To enumerate all such estimates is hardly 
practical except for small N, but the estimates for large N can be summarized statistically 
and expressed as tables or histograms. A small, albeit trivial, example containing only 
three variables will provide further insight into the many faces of sums of squares in an 
environment of correlated variables. 

The demonstration data set is shown 
in Table 3.1. Let us use the 
convention that, if a variable is 
included in a submodel, its inclusion 
is denoted by 1. If the variable is 
excluded, its exclusion is denoted by 
0. Thus [l 1 l] means that all three 
variables are included in the model, 
while [0 1 l] denotes that variable x’ 
is excluded, while variables x2 and x3 
are included. The possible subsets of 
the model are displayed in Figure 3.1 
as a partially ordered system called a 
lattice. 

If the figure is viewed as a cube, 
corners of the cube represent SS 
estimates for the eight subset 
regressions. Edges of the cube along 
the three principal directions 

Table 3.1. Demonstration Data Set 

1 7 1 4 1 3 1 11.0 I 

4 1 8 3.2 

6 3 5 5.1 

8 6 1 19.1 

8 5 7 9.5 

7 2 9 5.6 

5 3 3 5.8 

9 5 8 11.7 

7 4 5 8.0 

8 2 2 14.2 
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Figure 3.1. Lattice Representation of SS for Three Variables 
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correspond to the SS estimates developed from the differences between paired 
regressions, in each case defined to include and exclude only one of the three variables. 
For example, the difference between the model SS computed for the corner [l 1 l] and 
for [0 1 l] provides an estimate of the SS for variable x1. Similarly one can compute 
estimates for x, and x,. There are four such estimates for each variable and twelve 
different SS estimates in this system. 

Table 3.2 summarizes the model sums of squares and R* for these three variables as 
estimated by difference using the ANOVA result for each of the possible regression 
equations. Just how widely the estimates vary can be appreciated by the bar graph of 
Figure 3.2. How can this variability be explained, and how can the various estimates be 
mapped, if possible, into a single, unique estimate for each of the three variables? 

A reasonable answer to this question is provided by considering the estimates as elements 
of a partially-ordered system. Beginning with the vertex at the top of the lattice, the point 
[l 1 l] signifies that all three variables are included in the model. Any one of those 
variables can be dropped out, as indicated by the three downward branches emanating 
from the top vertex. These first three estimates represent the effects of x1, x2, and xg when 
all three variables are included in the model. 
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Table 3.2. Estimation of Sums of Squares by All Possible Regressions 

Inclusion Set Exclusion Set ss R2 

Variable X, 

d I 81.0814 
1 

0 1 1 0 1 0 42.1636 

1 0 1 1 0 0 63.2768 

1 1 1 1 1 0 53.1949 

0.3839 

0.1996 

0.2996 

0.2519 

Variable X, 

At the next level of the lattice, SS estimates can be computed for the three variables, but 
in these cases representing the contributions each variable makes when only it and one 
other variable are included in the model - i.e., given that one of the other variables had 
already been eliminated from the model by some means. Finally, at the lowest level of 
the lattice, the difference approach estimates the SS contributions for each variable when 
that variable is the only variable in the model. 

1 1 1 1 0 1 1.0203 0.0048 

Variable X, 

1 0 0 0 0 0 115.9143 0.5488 

1’0 1 0 0 1 98.1097 0.4645 

1 1 0 0 1 0 33.3804 0.1580 

1 1 1 0 1 1 44.4118 0.2103 

The conclusion to be drawn here is that, unless all variables are mutually orthogonal, the 
apparent impact of any one of the predictors is deterrnined to a considerable degree by the 
environment in which it is situated. Observe, too, that these various estimates correspond 
to steps in a stepwise regression approach, because any intermediate model in stepwise 
regression corresponds to one of the 2N submodels among “ah possible regressions.” 
Also, it should be evident that there is a (structured) multiplicity of paths by which any 
stepwise model can be reached. 
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Figure 3.2. SS for Subset Models in Three-Variable System 

I 120 -, 

Variable 1 Variable 2 Variable 3 

3.1 .I .2 Relationship to the Vector Approach 

It is our contention that, in an N-dimensional regression analysis, any of the 2N-i estimates 
is a legitimate choice for the effect of a selected variable and that the method of dropping 
the variable from the full model should not be taken as the only way to estimate its SS 
contribution. In fact, the only unique estimate is obtained by orthogonalization, as 
achieved in the vector approach. 

In the vector approach, one shifts from P-Space, in which regression coefficients are 
computed for the correlated fuel property variables, to E-Space, in which regression 
coefficients are computed for uncorrelated eigenvectors. Since each of these eigenvectors 
has the original variables as components, one can combine the independent E-Space 
estimates into an aggregated P-Space estimate. This estimate represents the SS 
contribution of the original variables resulting from the very speciaE orthogonal 
environment that isolates the independent components of the SS. The SS partitioning 
developed in the vector approach is distinct - i.e., it is not any one of the difference-based 
estimates - and is to be preferred over all others because of the orthogonal environment in 
which it originates. 

The interpretation of this particular partitioning of the SS can be better appreciated by 
considering the contributions of the P-Space variables in two stages. If pl, p2, and ps 
denote, respectively, the percentage contributions of eigenvectors 1,2, and 3 to the model 
SS, then one can break down each eigenvector’s individual contribution into the 
contributions made by its components x,, x,, and x,. These percentage contributions can 
be denoted, respectively, as pII, P12, p13, p21, p22, p23, p31, p32, and p33. This micro- 
partitioning of the model SS is shown in Table 3.3. 
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Table 3.3. Partitioning of Model SS Among Variables and Eigenvectors 

As would be expected, the original variables exert their influence primarily by way of 
eigenvector 1, because that eigenvector as a whole accounts for 86.8 percent of the model 
SS. However, it is to be noted that the components of that eigenvector account, 
respectively, for 35.8,40.9, and 10.1 percent of its contribution. When the minor 
contributions from the other two eigenvectors are added in, the contributions of variables 
1,2, and 3 are, respectively, 39.8,44.7, and 15.5 percent. 

It is to be noted that when variables are removed to make subset models, the percentage 
contributions to the model SS changes, just as it did when models were formed from the 
original variables, but in a much simpler way. Furthermore, if model simplification is 
performed by first removing nonsignificant and/or nonsubstantial eigenvectors, the 
variable removal process approaches a fully-ordered, rather than a partially-ordered, 
system. 

The major aspects of the simplification are fairly obvious. Whereas in P-space regression 
there are 2N-’ ways to compute the sum of squares contribution for each variable, there is 
only 2’ = 1 way in E-space. Thus, we reduce the “entropy” or uncertainty by a factor of 
2”‘. It is hard to visualize the branching system for 12 variables, which would have 
thousands of vertices and branches. We need not do so when the system is examined in 
E-Space. In short, the eigenvector-based partitioning of the sums of squares makes 
possible a step-by-step simplification process while avoiding the pitfalls of stepwise 
algorithms. 

3.1.2 Model Sums of Squares as Induced Distributions 

It is evident that what one computes as contributions to the model sum of squares is 
determined, in large degree, by how the predictor space is sampled. Indeed, there is no 
such thing as a SS partitioning without reference to a sampling scheme. Consider the 
case of a predictive equation where we can consider the coefficients to be fixed, 
immutable, and not subject to chance, as might be derived from an applicable theory. 
How much each coefficient contributes to the model SS depends on how each of the 
arguments of the equation are sampled to produce a set of data. 
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Again, orthogonality seemed essential to making appropriate choices as to what terms to 
include in the regression equation and what terms to exclude. Random sampling from a 
multivariate rectangular distribution was found to provide a means for making these 
choices in the Complex Model. It was postulated that, in applications of the model, 
values of the predictor variables between certain limits were equally likely to be used in 
the formulation of fuel blends. Random samples from a multivariate uniform distribution 
can be shown to be uncorrelated, so that the relative contributions to the model SS from 
predictor variables are essentially additive, and their relative importance can be readily 
assessed. 
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As computed by the ANOVA table in a typical regression program, all sums of squares 
are based on sampling the design matFix or some subset thereof. In fact, the residuals 
pertain only to the points actually sampled in the experiment. They can tell us nothing 
about differences between actual and computed responses at points not in the design. 
Indeed, it is possible to fit an unlimited number of equations to the data in such a way that 
they yield exactly the same error sum of squares, and even more, have exactly the same 
point by point residuals. 

This fact raises an interesting question. What if the regression equation is evaluated at 
points not included in the data set? Then, how would the relative importance of the 
predictor variables appear? Certainly they would not necessarily duplicate what was 
found from ANOVA in the design sample space. For example, it is entirely conceivable 
that all predictor variables, except one, are held constant and the one is varied over some 
range of its allowable values. The partitioning in this case would assign 100 percent of 
the SS to that single variable. Thus, we see clearly that the partitioning assigned by the 
regression ANOVA does not necessarily define the SS partitioning to be found from the 
application of the regression equation to the real world. 

As a mathematical construct, SS partitioning is analogous to defining an induced 
distribution as a distribution of a function of a random variable. For example, let f(x) be 
N(O,l) and let g(x) = sin(x), 0 <= x <= 2rr. Then, f( g(x) ) is a distribution induced by a 
normal distribution operating on a sine function. There is nothing “random” about the 
sine function, but it can be sampled in accordance with a defined probability distribution 
to produce a random outcome. Most importantly, what comes out depends on what is put 
in for the sampling distribution - it can be continuous or discrete, infinite or finite, even 
just a set of numbers like the set of “treatments” in a design matrix. 

Random balance sampling is an example of the induced distribution concept that was 
found useful in the development of the Complex Model for Reformulated Gasoline (‘U.S. 
DOE, 1994). In this example, the predictor variables were often correlated, so thatit was 
difficult to isolate. the predictor variables that contributed most or least to the response. 
Yet, in the interest of simplification, it was desirable to eliminate from the model any 
variable that contributed minimally to prediction capability. 
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More generally, it is our belief that attention should be directed not only to the data set, 
but also to the probable set of “treatments” likely to be used in real-world applications of 
the model. This will have influence on the preferred approach to statistical inference and 
on the range of variation in fuel properties that is to be considered in the development of 
an emissions model. 

3.2 IMPLICATIONS FOR THE METHODOLOGY 

3.2.1 Hypothesis Testing: t versus F 

The foregoing discussion argues that the PCR method of partitioning the model SS 
among the eigenvectors and, by extension, among the variables that are components of 
the eigenvectors, yields a result that is preferred as an indication of the explanatory power 
of the individual regressors. This partitioning is unique and differs from the result of the 
other methods used to attribute SS to variables in a non-orthogonal environment. As a 
result, we must reconsider the methods used for hypothesis testing in the eigenvector 
approach because the SS estimates at issue play an integral role in the commonly used 
tests. 

In conventional regression analysis, tests of significance are typically of two types: 

l t-test for the significance of individual regression coefficients 

l F-test for the significance of the model as a whole. 

The t-tests involve the ratio of a selected coefficient to its standard error. The F-test 
involves the ratio of the model mean square to the error mean square. However, it should 
be realized that the F-test is applicable to the ratio of any two random variables 
distributed as Chi-square and can be used to test the significance of a term in a regression 
model if, as is true when the regressors are orthogonal to each other, one can compute a 
corresponding mean square for that term. 

Appendix E develops the use of the F-test for this purpose and demonstrates it on a 
simplified version of the emissions model developed in this report. As shown there, the t- 
test and F-test yield identical results in the orthogonal case. The observed value of F is 
exactly equal to the square of the t-ratio for F-tests involving only a single degree of 
freedom in the numerator (corresponding to the one degree of freedom associated with 
each of the eigenvector regressors). The t- and F-tests lead, however, to discordant 
results in the non-orthogonal case. 

When a response variable is regressed against the original, correlated P-Space variables, it 
is possible for a variable to fail the t-test of significance, even though, on the basis of SS 
partitioning in E-Space, that variable accounts for a substantial part of the model SS and 
can easily pass the F-test. The E-Space partitioning is accomplished by first partitioning 
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the SS among the eigenvectors and then translating that partitioning into the equivalent 
partitioning among the property variables. 

. 

The apparent discrepancy between the two statistical tests arises from aliasing effects that 
pervade the P-Space variables but do not affect the eigenvectors. For many of the 
original predictor variables, it is possible to express as much as 90 percent of its 
variability in terms of other P-Space variables. Thus, a t-test of that variable in P-Space 
is not really a test of that variable per se, but is rather a test of a conglomerate of 
confounded effects parading under the variable name. 

In addition to being distorted, the results of that test are applicable only in the company of 
whatever variables are included in the model. The indicated significance of the subject 
variable may change markedly if one or more of the other predictor variables is deleted 
from the model. Although not usually acknowledged, this flaw in the t-test stems directly 
from the non-additivity of components of the model SS. Means for circumventing this 
deficiency of the t-test are considered in Appendix E. 

T We recommend the following approach to hypothesis testing: 

l The conventional t-test can be used to test the significance of regression 
coefficients for eigenvectors, since t- and F-tests are identical in the 
orthogonal case. 

l The F-test should be used in significance tests involving the original variables, 
as will be encountered at the stage of the simplification process where 
decisions are made to include or exclude variables from the analysis. 

It may also be necessary to use the t-test as a default procedure when the eigenvector 
terms are mixed with other effects to which they are not orthogonal, an example being 
fuel and engine effects. One can test both the eigenvectors and engine effects by means 
of a t-test as a default procedure, but it should be understood that confounding of fuel and 
engine effects may result if the correlations among them are large. Shortcomings of this 
procedure, and a possible alternative, are presented in Appendix E. 

3.2.2 Statistical Inference 

The 0.05 level of significance for testing a null hypothesis goes essentially unchallenged 
in a world where risk, and the consequences of risk, are anything but constant. This icon 
is comforting because it assures us that we will erroneously reject the null hypothesis (a 
Type I error) only one time in twenty, and that seems like very good odds. On the other 
hand, if the effect being rejected actually is real, and not an artifact of sampling, we will 
be wrong 19 times out of 20 (a Type II error), and that seems like very poor odds. There 
is a continuum of tradeoffs that can be made in arriving at an optimum policy for 
managing Type I versus Type II risks, although such methods for risk management are 
all-too-seldom considered in the actual practice of data analysis. 
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But what impact does this have on our ability to predict real-world changes in response? 
Much depends on sample size. If a regression is based on several hundred observations 
and if the error standard deviation is sufficiently small, it may be possible to declare an 
effect statistically significant even though its magnitude, so far as accuracy of prediction 
is concerned, may be negligibly small. On the other hand, if sample size is small, we may 
erroneously accept the null hypothesis unless the effect being tested is, in fact, fairly 
large. The bottom line is that, as sample size varies from one investigation to another, so 
will the magnitude of what we can declare to be statistically significant under a fixed 
probability of Type I error. 

For large sample sizes, the outcome of retaining, as statistically significant, effects that 
have little effect on the response was seen clearly in early stages of the Complex Model 
for WG, and the potential for this outcome can also be seen in the smaller, but 
statistically significant, eigenfuel effects found in Table 2.7. The simplification 
procedures demonstrated in Section 2 introduced a substantiality test to limit unnecessary 
complexity by requiring that an effect must explain at least a minimum portion of the 
variation in the dependent variable to be retained in the model. 

What one computes as contributions to the model sum of squares is determined, in large 
degree, by how the predictor space is sampled in the data at hand. If we have reason to 
believe the existing data appropriately samples the variation in fuel properties that will be 
encountered in applying the regression model to real-world problems, then we risk little 
in simplifying the model using substantiality tests based on the sample data. On the other 
hand, if the sampling distribution induced in our data is dissimilar to that of the real 
world, effects excluded because they contribute little to the model sum of square could 
represent heretofore unrecognized and unexploited means of reducing emissions. 

Experience tells us that it is often difficult to be confident of the representativeness of 
one’s data. In regard to diesel fuels and emissions, the existing data set covers the range 
of variation in fuel properties that many researchers consider likely to be encountered in 
reformulating diesel fuels. Yet, it is unlikely that the data set considers all methods that 
could be used to reformulate diesel fuel, and it may effectively weight (in terms of 
numbers) the various reformulation methods differently than actual future practice in 
refinery operations will show. Thus, it is difficult to judge whether the sampling 
distribution induced in the data set is representative of future diesel fuels. 

An alternative approach to tests of both significance and substantiality is to fix at the 
outset of a study the magnitude of the effect (i.e., regression coefficient) that one would 
be willing to ignore. As sample size varies from problem to problem, the Type I error 
probability associated with this magnitude would vary. If the effect is negligible in terms 
of its impact on the predicted response, the associated level of uncertainty would be 
irrelevant. If the effect is large enough to be important, but its associated level of 
uncertainty is unacceptably high, additional testing to reduce the uncertainty would be a 
more appropriate response than merely excluding the effect from the model. Thus, we 
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would prefer to establish at the outset of an investigation the smallest effect that is 
meaningful to our purpose and drop any that are found to be smaller than this threshold. 

3.3 METHODOLOGICAL EXTENSIONS 

3.3.1 Comparing Independent Studies 

The scientific method requires that one evaluate research questions based on the 
preponderance of the evidence in repeated, independent studies. One study is inadequate, 
independent studies frequently disagree and, therefore, one must search for a consensus. 
When using conventional regression analysis, we can apply well known procedures to 
determine whether the differences between two studies are statistically significant - 
typically by testing whether the difference in regression coefficients for, say, the impact 
of sulfur on PM emissions, is sufficiently large that it is unlikely to arise solely by chance. 

How does one make similar comparisons when using the eigenfuel methodology 
developed here? After all, two researchers using independent data sets will estimate 
eigenfuel slates that differ from each other to at least some extent. Since these are the 
independent variables, can one even formulate a proper comparison between the 
regression coefficient estimated for eigenvector 1 in the first data set and a different 
eigenvector 1 in the second data set? As will be shown comparisons can properly and 
readily be made by transforming the results to a common basis, and then applying 
appropriate tests of statistical significance. 

The need to transform to a common basis may appear to be a limitation or complication 
of the eigenfuel methodology. In conventional regression analysis, the independent 
variables are fixed, and we can compare, for example, a sulfur effect in one study with a 
sulfur effect in another. Yet, we should remember that a variable used in a regression 
model will incorporate the influence of other variables, not included in the model, with 
which it is correlated. The extent of the correlations will differ in another data set and 
study, as will the variables included in the regression models. A variable such as sulfur 
content will actually stand for a unique set of influences in each independent data set and 
study, and the comparison between two studies will be confounded by these differences. 
Thus, the comparison problem is merely more apparent in the eigenfuel methodology and 
less often acknowledged in conventional regression analysis. 

We have several choices in seeking a common basis for comparison. First, researchers 
could conduct the comparison in P-space by transforming their regression coefficients 
and sums-of-squares partitioning into comparable results for the fuel properties. This 
comparison could always be made if researchers were to adopt the convention of 
publishing the P-space transformations of their results. It would be an easy and familiar 
basis for comparison, but it would also lose any information in the studies that was linked 
to the eigenvectors, but not to their individual components. 
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To retain this information, one could transform the results of study A into the eigenvector 
space of study B (or vice versa), or one could transform both studies into the eigenvector 
space of a third, reference study. We prefer and will adopt the latter approach and use the 
eigenvectors of the full data set as a reference space for this purpose. However, the 
reference space could as well be the eigenvectors of some other study. 

Appendix F demonstrates the methods for comparing studies by dividing the existing data 
base into two subsets corresponding to hypothetical studies A and B. The subsets were 
defined in a systematic manner in an effort to maximize their differences and then 
subjected to the following process: 

l Emissions studies were conducted independently for each subset using the 
vector methodology developed in this report. The eigenvector structures for 
subsets A and B were found to have similarities, but also to show obvious 
differences. For purposes of the demonstration, all eigenfuel effects were 
retained in the emission models, although researchers would be more likely to 
compare simplified models. 

l As the first step in the comparison, the eigenvector slates for the subsets are 
transformed to the vector basis of the reference space (here, representing the 
full data set), where they are seen to share much in common, particularly for 
the eigenfuel characteristics with the largest eigenvalues. 

l The coefficients for NO, and PM regression equations developed from each 
subset are then transformed to the equivalent regression coefficients and 
standard errors applicable to the reference vectors. The transformed 
coefficients, and standard errors, are identical to those obtained by using the 
reference eigenvectors directly in a regression conducted for the subset. 
When, as true here, the regression model mixes orthogonal eigenvector terms 
with dummy variables for engine effects, the regression coefficients are still 
exact, but the standard errors approximate only those that would be obtained 
directly. They are thought to be adequate for purposes of comparison. 

l Finally, the vector-based emission regressions for each subset are transformed 
to P-Space where the predicted impact of the original variables can be 
compared directly. 

Although this report is not primarily intended to assess the fuels/emissions relationship, 
some of the results of the subset comparison are instructive: 

l Both subsets agree that reference vector number 2, representing high-aromatic 
cracked stocks in diesel fuel blends, is the dominant effect on both NO, and 
PM emissions, accounting for approximately 80 percent of the fuels-related 
SS for NO, and 45 percent for PM. 
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. The subsets disagree on the magnitude of the NO, effect for reference vector 
2, with subset B estimating an effect approximately twice as large. Where 
comparisons are meaningful, subset B estimates a larger impact of fuels on 
NO, emissions overall. 

. In both subsets, a second reference vector plays a major role in PM emissions, 
although they disagree on its identity. Reference vector 3 is next in 
importance in subset A, while vector 1 is next in subset B. 

Thus, the results of the studies have much in common when.sompared on the common 
basis formed by the reference eigenvectors, and the most important differences between 
the subsets are clearly displayed. 

As seen in some detail in Appendix F, the similarities are fewer and the differences both 
greater and more confusing when the studies are compared on the basis of the original 
variables. On this basis we find, for example, that mono-aromatics content, followed by 
poly-aromatics content and T90, appear to have the largest effects on NO, emissions in 
subset A, while it is density, followed by natural cetane and T90, in subset B. And where 
the same variables are found important, the subsets often differ on the algebraic sign 
(directional impact) of the effects. There is also substantial discord be$ween the subsets., 
regarding the effect of fuel properties on PM emissions. 

We are encouraged to find a general, though not complete, degree of accord for the 
subsets when viewed in E-space, while we are not surprised to discover substantially 
more discord and confusion for the comparisons made in P-space. A recurring theme in 
the literature review by Lee, Pedley, and Hobbs (Lee et al., 1998) and in recent 
conference presentations (CEUSAE, 2000) is that the existing studies frequently 
disagree, a consensus is hard to find, and the reasons for the many differences are not 
readily apparent. 

As we have argued throughout this report, studies conducted in a non-orthogonal 
environment are subject to confounding influences - specifically, that the apparent 
significance and importance of a variable will depend on its correlations to other 
variables, both those present in the model and those excluded, and that the meaning of ‘a 
variable can change from one data set to another as these correlations, change. We believe 
that these confounding influences are responsible, at least in part, for the degree of 
confusion existing on this topic and that the vector methodology offers a means to clear 
some of this fog. 

3.3.2 Robustness of the Eigenvector Basis 

Once an orthogonal basis of eigenfuels has been developed, how “robust” is that basis 
when applied to a different set of data? The. question isnot appreciably different from 
that faced by a conventional regression model when it is applied in a context different 
from that in which it was developed. If eigenvectors are found to differ greatly from one 
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data set to another, they may have local use, but will be limited in their global 
applicability. On the other hand, if eigenvectors prove to display recurring, common 
features across data sets, we may be more confident that they are robust in describing 
fuels. The preceding comparison of the data subsets begins to touch on this issue. 

Validation sampling, in which the data set is divided into two or more parts and results 
compared, is an acknowledged approach to this problem (Wold, 1978). We consider 
bootstrap sampling (Efron and Tibshirani, 1998), in which samples are drawn with 
replacement from the data set, to be an extension of the validation idea, and one that does 
not suffer from reduction in sample size. To some, however, validation sampling in 
either form may not seem like a test at all, because all samples are drawn from the same 
source. More appropriate would be a procedure in which samples are drawn from 
different but similar sources with a view to finding the common aspects of response. This 
approach sometimes goes under the name “system identification” and has been explored 
by one of the authors in an earlier and different context (McAdams, 1972), although its 
requirements for multiple sources may limit its applicability to the diesel emissions 
problem at this point in time. 

Bootstrap sampling was explored in this study as a technique that could shed light on the 
local versus global applicability of the eigenvector slate developed from the data set. 
Bootstrap sampling has been described as an empirical approach to developing 
confidence intervals or other measures of accuracy for statistical estimates when 
applicable theory is either missing or difficult to apply. It treats a sample data set as a 
pseudo-population from which new samples can be drawn and then analyzed. Assuming 
the sample data set is representative of a larger population of interest, each simulated 
sample that is drawn from it (with replacement) is a possible outcome of sampling 
directly from the larger population. We may learn much about the empirical distribution 
and variability of statistical measures, even when we are unable to ascribe a theoretical 
treatment, by analyzing each sample and compiling the results across the samples. 

As just one example, we realize that the coefficient values for the component variables 
forming the eigenvectors will vary from one sample to another, even if all of the samples 
share a common eigenstructure. Where the coefficients are sufficiently small in a 
particular vector, we should not be surprised to find that the algebraic signs vary from 
plus to minus in different samples. How does one form the confidence intervals for these 
coefficients, so that one can identify terms in a vector that can not reliably be 
distinguished from zero ? The bootstrap sampling procedure provides a method of 
directly simulating this variation leading to the determination of confidence intervals for 
the eigenvector coefficients. 

Appendix G explores the bootstrap technique as a method for understanding the behavior 
of diesel fuel eigenvectors, including the determination of mean and median values and 
confidence intervals for the eigenvector coefficients. The important questions considered 
in the appendix are whether the eigenvectors tend to repeat themselves from one sample 
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to the next and, if so, whether they tend to be found in the same eigenvalue-determined 
order in each sample. The result of the bootstrap experiment shows a substantial degree 
of stability in vector composition and order across the samples and supports the belief 
that the reference eigenvectors represent generally applicable and repeatable features of 
diesel fuels. 

3.3.3 Representation of Non-linear Effects 

Work done to date has been based on the assumption that all vector predictor variables 
exert a linear effect on the response variable. Experience tells us that the effect of a 
predictor variable may be linear over much of its range but may show curvature for 
extreme values (e.g., saturation effects). In other instances, theory may suggest that the 
effect of the predictor may be non-linear over its entire range. The methodology for a 
vector approach to regression can not be considered complete unless it can accommodate 
such non-linear effects. 

We consider it straightforward to add non-linear effects to the model simply by 
incorporating basis vectors exhibiting the desired non-linear characteristics. Appendix H 
develops our preferred approach in some detail. In brief, the linear terms Xi constituting 
the original variables may be augmented by squared terms xf, interactive terms Xi xj, or 
more generalized non-linear functional forms f(Xi) in forming the X matrix. Moreover, 
there appears to be no difficulty in retaining the orthogonality of all vectors in the model, 
provided that the non-linear terms are introduced to the X matrix before, its 
standardization to mean 0 and standard deviation 1. 

Interpreting the role played by non-linear elements incorporated in each of the basis 
vectors may seem to pose a serious problem to the data analyst. Because of the 
correlation of the non-linear variable with one or more of the linear variables, the non- 
linear term may be significant and substantial in Some eigenvectorsbut not in others, just 
as in a purely linear model. The effect is most likely to be induced by correlation 
between the non-linear function and the argument or arguments of that function. 
However, it is entirely possible for the non-linear component to be associated with 
variables other than its argument, in which case there would be aliasing that remains 
unsuspected without eigenvector decomposition. 

A measure of the degree to which the non-linear variable is associated with the eigen- 
vectors of which it is a component can be had by examining the correlation between the 
non-linear term and each of the eigenvectors. This measure, should help identify the 
eigenvector or eigenvectors by which the non-linear component shows its effect. That, 
combined with physical reasoning, should provide insight into the mechanism(s) giving 
rise to the non-linear effect. 

Interpretation of eigenvectors containing one or more non-linear elements also presents a 
challenge to the data analyst. On the other hand, it forces him or her to recognize that the 
effect of the non-linear element, either by chance or by design, may be associated with 
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other variables in a way not anticipated and not evident without eigenvector resolution. 
Further, it may encourage the analyst to perform a thoughtful examination of variables 
during the model simplification process. 

The considerations presented above apply equally to interaction effects, expressed as a 
weighted product of two variables. Moreover, quadratic and product terms do not 
exhaust the variety of non-linear elements that might be included in a regression model. 
Extremely complex terms are known to have been included in a model (Hewlett, 1963), 
though their raison d’etre may not be apparent. Our view is that a regression model 
should be as simple as possible and that non-linear effects may be better modeled by 
more conventional approaches such as transformation of variables. 

3.3.4 Transformations as an Approach to Non-Linearity 

One of the assumptions of least squares regression is that errors are normally distributed 
and homoscedastic. Since regression deals with estimating the average response to the 
predictor variables, the errors are likely to be approximately normally distributed as a 
consequence of the very powerful Central Limit Theorem. Homoscedasticity, though, is 
another matter. If errors get larger or smaller as we go from lower to higher emissions, 
we are likely to get biased estimations if we assume that the error variance is constant 
over the whole range of emissions. 

Usually, we .make transformations for one or more of several reasons: 

1. To linearize or otherwise simplify the form of the regression equation 

2. To “stabilize” the error variance - that is, to change a heteroscedastic error 
distribution to one that is at least approximately homoscedastic 

3. To produce a result that is more consistent with real-world experience. 

Linearization is a convenient technique for converting a non-linear equation to one of 
linear form, so much so that one is tempted to make that conversion without regard for its 
consequences to points 2 and 3. Similarly, error stabilization may be indulged in quite 
legitimately but could distort the regression curve, surface, or hyper-surface to such an 
extent that point 3 is violated. 

Finally, whether a result is consistent with real-world experience is often a judgement 
call. However, there may be good reason to believe that the effect of an incremental 
change in a predictor on the response is not constant, but is proportional to the value of 
the response at which the increment is applied. Again, a transformation made to 
implement that aspect of experience may not necessarily be consistent with points 1 
and 2. 
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In short, in making a transformation, we often deal with conflicting requirements and are 
lucky if we do not get an effect that we do not want, along with the one that we do. For 
example, if our error distribution really is homoscedastic and we make a log 
transformation for purposes of linearization, we may produce a heteroscedastic 
distribution that works to our disadvantage, so far as goodness of fit is concerned, to yield 
biased predictions. 

Appendix I explores in more detail the issues surrounding transformations as an approach 
to non-linear regression. The linear transformations of mean removal and resealing are 
considered, as are the common non-linear log and log-log transformations. In each case 
the differential effect and error weighting is identified. The appendix also presents 
examples of the consequences for goodness of fit that violation of the distributional 
assumptions underlying regression analysis can entail. 

The emission models developed in this report employ a resealing transformation of the 
independent variables - in which the mean value is removed-from each fuel property I. 2” 
variable and the range of variation is equalized across variables - that produces so-called 
“standardized scores.” A log transformation of the dependent (emissions) variable is 
employed, consistent with widespread practice among researchers, based on the tendency 
for emission test variation to be proportional to mean emission level. In such instances, 
the log transformation has the effect of stabilizing the variance, but it also implies that a 
given change in a fuel property is expected to exert a larger effect on higher emitting 
engines, compared to lower emitting engines. This, also, is consistent with the 
expectations of some researchers (Lee et al., 1998) that the effect of fuels is larger in 
older engines certified to higher emission standards. 

The advantages and limitations of transformations are as relevant to vector-based 
regression as they are to conventional regression analysis. Every effort should be made to 
assure that the assumptions regarding error distribution and model correctness are sound 
before proceeding with the modified PCR approach. Any errors of judgement made at 
this stage will be propagated to E-Space and may vitiate advantages that might be gained 
by the eigenvector approach. 
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4. TOWARD AN lMPR0V.E.D UNDERSTANDING .._1__1 ^.‘.l^“--._.__l^*./__ *^..y~,<..“I”Ix *.,*_ ,_,, ,._~_ 
OF FUELS AND EMISSIONS 

The research conducted in this study has identified at least three areas in which additional 
work is needed to move government and industry toward an improved understanding of 
diesel fuels and the interface with engine emissions. This section identifies these key 
needs. 

4.1 IMPROVED THEORY 

The state of uncertainty attending the existing test results makes clear that additional 
HDD emissions data is needed if analysts are to reach a consensus on the emissions 
benefit of fuel reformulation. Paralleling this prerequisite is the need for an improved 
theoretical understanding of how fuels af%ect emissions. Gains in this area can inform the 
measurement of relevant fuel properties and guide the development and interpretation of 
appropriate regression models. 

As an example, the empirical results of this study strongly suggest that reduction of the 
amount of high-aromatic cracked blend stocks used in diesel fuels is the primary means ., .,.. I” .* , j. 
of reducing NO, emissions. This effect also appears to be the reason for the correlations 
found between emissions and the variables natural cetane and density, since the high- . .I ._ _, _^_ ,. i-b ,‘ ,* ,,(, “.e‘Y-. %” 
aromatic cracked blend stocks are characteristically low in cetane and high in density. 
Recognizing cetane and density as surrogate measures for high-aromatic blend stocks is a 
step forward in our understanding - in particular, it becomes clear that other methods of 
increasing cetane or reducing density may not necessarily reduce emissions in the same 
way. 

That reducing high-aromatic blend stocks reduces NO, emissions allows us to infer that 
the presence of the blend stocks.must modify the combustion process, since NO, is 
formed as a direct byproduct of combustion. It is also likely that these blend stocks are 
just one example of a larger set of compounds whose presence in diesel fuels has similar 
combustion effects. Connecting these empirical points by elements of an applicable 
theory could lead to a clear-cut road map for reducing NO,. 

A recent paper (Matheaus et al., 2000) by members of the EPA Heavy-Duty Engine 
Working Group provides tantalizing indications of the outline of such a theory, at least in 
regard to NO, emissions. This reports on test results from an experimental program to 
investigate the effects of cetane, density, and mono- and poly-aromatics content on 
emissions from a prototype HDD engine developed to meet the 2004 NO, emission 
standard. The paper shows that reductions in density and aromatics content are 
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associated with reduced NO, emissions, while changes in density appear to have no NO, 
effect. The authors note that “ . . . the combustion processes were dominated by diffusion 
burning, especially at the higher load conditions, which contribute very heavily to the 
weighted NO, emissions.” The implication of this finding is that “... the flame 
temperature history during combustion is basically the stoichiometric adiabatic flame 
temperature. The flame temperature is controlled by the local thermodynamic conditions 
in the combustion chamber and the fuel properties of heat of combustion and the 
hydrogen and carbon contents.” 

The importance of this finding was illustrated by a graph of NO, emissions versus the 
single variable of fuel hydrogen content in percent. There is very little scatter of the 
emissions data around the hydrogen-content regression line, compared to substantial 
scatter around every other individual predictor variable. In the discussion period 
following this paper at a recent conference (CECBAE, 2000), the authors’ elaborated that 
the calculated adiabatic flame temperature of a fuel could be a nearly-ideal predictor for 
NO, emissions. However, the publicly available procedures for measuring the fuel 
carbon content (one of the variables in the computation) are insufficiently accurate to 
permit its practical use for this purpose. 

Nevertheless, the theoretical insight and empirical evidence offered in the cited work 
suggest that future testing should examine hydrogen content and/or other surrogate 
measures for adiabatic flame temperature as a predictor for NO,. Similar advances in 
understanding could benefit the analysis of PM emissions. 

4.2 NEW INSIGHT ON FUELS FORMULATION 

The discussion of the previous section painting a perspective on sums of squares showed 
that an experimental data set presents a distribution of sums of s.quares that is, to a large 
extent, induced by the sampling scheme underlying the experimental design. If the 
experimental design were to differ, we would partition the variation among fuels in a 
different manner and, even if the unit relationship to emissions is unchanged, would also 
partition the model (emissions) sums of squares differently. Thus, while we must work 
with the data at hand, we must also be cautious of the potential that our data excludes, to 
a greater or lesser degree, the influences that will be encountered in real-world 
applications of the model. 

The vector regression models developed in Section 2.3 indicated that the smaller eigen- 
vectors (numbers 9 through 12) may be strongly related to emissions even though the 
variance associated with these eigenvectors is so small that they make only a negligible 
contribution to the emissions variance in this data set. These findings could result from 
correlations to factors that have been inadequately controlled in these regressions, but it is 
also possible they point toward unexploited modes of reducing NO, and PM emissions. 
Therefore, an effort was made to identify the fuels that express these eigenvector 
characteristics most strongly. 
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The key results of the examination ~e~srm.rnariz~~in~~igure 4.1. A total of only 14 
different fuels (but accounting for more engine tests) were found to express one or more 
of these characteristics strongly. These 14 fuels, out of the 85 distinct fuels in the data 
set, are found in three test sources. Eight of the fuels were used in tests conducted at 
Southwest Research Institute (SWRI) as part of the Coordinating Research Council 
(CRC) VE test series and one unrelated program. Five fuels were used in testing by 
Sienicki (Sienicki et al., 1990) and one fuel by Gonzalez (Gonzalez et al., 1993). Factors 
found to be common to fuels 1 and 8-l 1 m,ay aid the understanding of eigenfuels 9 and 
10, while factors shared by fuels 2,5-6, and 12-14 may assist with eigenvectors 11 
and 12. 

Figure 4.1. Fuels Expressing Eigenvectors 9 through 12 

r- 

t 

Eigenfuel Number 
9 10 11 12 

Contribution to 
Variance Among Fuels 

Regression Coefficients 
NOx 
PM 

1.17% 0.68% 0.29% 0.21% 

-o&o 
-0.0156 0.0294 0.0325 
-0.0575 ns ns 

Fuels Loading Highly on the Eigenvectors 

Percent of Eigenfuel Variance 56% 72% 54% 67% 

Fuel Description 

m Proaram Fuel identification Coefficient in Eiaenfuei Reoresentation ““. ‘, - / ‘, > _ ._* 

1 941020 SWRIKRC VE-IO Fuel E m-4.001 
2 902171 SWRIKRC VE-1 Fuel Xl -2,74 -3.291 
3 922267 Sienicki Fuels 0. H -1.80 -2.87 -1 .a1 -1.84 
4 892072 SWRVCRC VE-1 Fuel \ I#&85 -1.74 -2.48 -1.86 ,-- -_ 
5 972898 SWRWSSPD Fuel C: CARB Diesel- 
6 892072 SWRlfCRC VE-1 Fuels 0,2 

7 922267 Sienicki Fuel D 
8 932731 Gonzalez Fuel H 
9 892072 CRCVE-1 Fuel 4 -688 

10 941020 CRC+10 Fuel H 
11 902171 CRCVE-1 Fuel X2 #952 
12 902172 Sienicki Fuel 5 
13 902172 Sienicki Fuels 2,24,2B, 2s 
14 902172 Sienicki Fuels 4.48 

11.801 

Increase to reduce 
NOx and PM 

Decrease to reduce 
NOx 

There is not enough information on these fuels to identify the constituents that make them 
unique, nor is that task within the scope of this work. Additional work, is,needed, to ,_ 
understand more clearly the following basic trends observed in .these fuels: _ 
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Fuels low in eigenfuel9 tend to have very low viscosity and low temperatures 
at the beginning of the distillation curve (IBP and Tl 0), while those high in 
eigenfuel9 have correspondingly high viscosities and high initial 
temperatures. Increasing this feature appears to reduce PM emissions in this 
instance, although it is more generally true that “heavier” fuels tend to have 
higher PM emissions. 

Fuels low in eigenfuel 10 tend to have very low viscosity and low 
temperatures across the distillation curve, while fuels high in the eigenfuel 
display the opposite trends. Increasing the feature also appears to reduce NO, 
and PM emissions. 

Fuels low in eigenfuel 11 show a tendency to have low viscosity and low 
distillation temperatures, although SWRIKRC’s Fuel Xl has average 
viscosity and distillation characteristics. Increasing this feature appears to 
increase NO, emissions. 

Fuels low in eigenfuel 12 show, again, a tendency toward lower viscosity and 
distillation temperatures, but SWRI/CRC’s Fuel Xl counters the trend. 
Increasing this feature appears, again, to increase NO, emissions. 

The evidence outlined above offers tantalizing hints that as-yet unrecognized properties 
or components of fuels may have a large impact on emissions. However, we can not rule 
out the possibility that the emission results are artifacts caused by correlations to factors 
that have been inadequately controlled in the regressions or by the wide error bounds 
associated with small eigenvalues. Future work should make an effort to understand 
these results. 

More importantly, perhaps, these eigenfuels again emphasize that emission changes can 
not be ascribed uniquely to variations in selected properties alone. Emissions may be 
increased when varying properties (here, viscosity and distillation temperatures) in one 
way, while similar variations occurring in another manner may have the reverse effect. 
Eigenfuels 9 and 10 may represent blending components that should be emphasized in 
fuels reformulation in order to reduce NO, and PM emissions, while eigenfuels 11 and 12 
may represent ones to be avoided. 

The identification of test fuels associated with small eigenvalues, but apparently 
substantial emissions effects, poses something of a dilemma to the data analyst. In 
particular, it again brings into focus the question of the relative emphasis that should be 
placed on the indicated size of an effect relative to its indicated statistical significance. 

Small eigenvalues are the result of limited variation among the coefficients of the 
associated eigenvectors when the test fuels are resolved into their equivalent eigenfuel 
representation. The standard error of a regression coefficient, computed for the purpose 
of testing the null hypothesis that the estimated effect arises solely by chance, is inversely 
proportional to the variance of the independent variable. 



It is clear, therefore, that under these conditions the chance of finding an effect to be ._.-, ai, .yl‘* ‘_ ,I .._.,- (t.l^l_l_--.h 
statistically significant is considerably reduced. Therefore, one should not be too quick to 
exclude summarily what appears to be a substantial effect simply because it fails to pass a 
test of significance based on an arbitrarily selected significance level. Rather than to 
ignore such effects and risk committing an error of omission, it would be prudent to re- 
sample fuels for supplementary testing in such a way as to increase the range of variation 
of the eigenfuels of interest. 

4.3 MORE AND BETTER ENGINE TEWNG tIA,TA , 

As has been made clear in the course of this work, an improved data base is a prime 
requirement for the future., development of a reliable diesel. emission model. The 
following are our recommendations for future, testing to correct the most important 
limitations of the existing data base: 

l The data base omits at least one fuel property - oxygen content - that is 
likely to affect emissions. Few test programs to date have evaluated 
oxygenated fuels, and more testing of such fuels will be required before a 
complete diesel emissions model can be developed. 

l The data base lacks information on hydrocarbon composition beyond mono- 
and poly-aromatic content, as do most existing testing programs. It may be 
important for new testing to report a more detailed hydrocarbon speciation 
because, when a fuel is changed by the substitution of one constituent for 
another, it is not possible to attribute an ern&iGns change uniquely to the one 
constituent (or the other). While such an effort could open a Pandora’s box if 
carried too far, it could very well be important to know whether it was 
hydrocarbon species 1 or 2 that was substituted when, for example, aromatics 
content was reduced. 

l The data base represents too few engine types and individual engines to be 
taken as representative of the on-road HDD fleet or to permit the assessment 
of engine-related effects. Although the total of 280 emissions tests is 
relatively large, the data are based on only 11 individual engines. An 
improved data base should represent a substantially larger number of engines 
sampled in a representative manner from. the cells, created by the intersections 
of model year, emission certification standard, manufacturer, and engine 
design. It would be desirable that two or more specimens be included for 
each major engine design to permit the estimation of design-specific effects, 
and that all testing use the one test cycle on which certification decisions for 
fuels and engines will be based. 

The properties of test fuels used in future testing should be varied over the widest 
practical range and should include any fuel property indicated to affect emissions in a 
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substantive way. Also, the fuel properties should be varied in accordance with their 
cooperative effects, as indicated in the eigenfuels, rather than as separate variables. Just 
how the test fuels should be blended is an important topic. 

One method to achieve such sampling might be to vary a given fuel property over its 
desired range by blending commercially feasible blend stocks and relying on the natural 
association of fuel properties to produce the desired cooperative effects. As an extension 
of this approach, one might attempt to blend fuels that meet multiple property 
specifications simultaneously. This latter approach has been the one frequently followed 
in past testing where, for example, mono- and poly-aromatics content might be varied 
subject to controlling fuel density and viscosity to predetermined values. 

It is here, though, that blending in terms of eigenfuels shows its major advantage by 
providing an explicit mathematical scheme for producing blends having the desired 
properties. It is necessary only to resolve a desired eigenfuel into a corresponding set of 
available blend stocks. To match an eigenfuel exactlv would require up to 12 blend 
stocks. Note, however, that in eigenfuel2, which accounts for 82 percent of the NO, 
regression SS, only 4 of its components - natural cetane, density, mono-aromatic and 
poly-aromatic content - make major contributions. Therefore, no more than four blend 
stocks should be sufficient to approximate eigenfuel2. Though the mechanics of the 
solution mimic the conventional, it employs a vastly more effective strategy for 
formulating optimum test fuels. 

In varying engine characteristics, the primary requirement is to have a sampling of 
vehicles that covers all of the design factors that might influence emissions. It may turn 
out that some of these design factors have relatively little effect on emissions. Here, 
again, a fixed magnitude of the engine effect should be used as the criterion for including 
or excluding that factor, rather than an arbitrary test of significance. Since the engine 
effects are most likely not orthogonal, it might be appropriate to induce orthogonality by a 
method such as random balance assessment (McAdams, 1995). 

Engine effects and fuel effects may interact. If so, the computation of “fuel effects 
adjusted for engine effects” is inadequate, because the adjustment corrects only for the 
difference in the mean level of emissions among engines, it being assumed that the 
incremental effect of a fuel change is constant for all engine classes. It is quite possible, 
however, that the effect of an incremental change in a fuel property is greater for one 
class of vehicle than another, especially if the fuel change is designed to play an 
“enabling” role for a vehicle design change. Resolving such issues would require more 
extensive testing and a model of greater complexity. 
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5. CONCLUSIONS 

Though demonstrated in the context of emissions, fro~m.HDD.engines, the vector approach 
to regression analysis is believed to be applicable to a wide range of problems. Indeed, it 
should be considered in any circumstance where variables are,inextricably covariant. It 
may be the favored approach whenever the covariance of predictor variables can not 
reasonably be “broken,” but it does not preclude the use of other multivariate 
methodologies or of scalar predictor variables when the predictor variables can be varied 
independently of each other in circumstances such as balanced experimental designs. 

When applied to the fuel/emissions relationship, the findings of this report illustrate the 
range of benefits that the vector approach offers: 

. Simplification of the regression analysis as a result of the desirable 
mathematical properties of vector variables - their independence and absence 
of correlations, and their economy .of representation. 

. 

. 

. 

Greater understanding of the patterns of variation that are important to 
emissions reduction, in this instance, and how these patterns relate to fuel 
blending and refinery processes. 

Potentially new insight into the optimal formulation of fuels to reduce 
emissions. 

Improved experiment design for more efficient estimation of fuel effects. 

Disadvantages of the methodology that may be perceived by some are: 

l The ineffectiveness of selecting predictor variables by means of PCA as noted 
in the cautionary notes by Hadi and Ling (1994). 

l Potential difficulties in interpreting the effects of the predictor vectors on the 
dependent variable. 

We have shown that variable selection can not, and should not, be attempted without 
regard to the response variable. This fact is made clear by the difference between NO, 
and PM response, even though the PCA analysis of the design space is the same for both. 

With regard to interpretation, it may appear that the multi collinearity “fog” disposed of 
by orthogonalization is merely replaced by a different kind of fog arising from the 
difficulties of interpreting eigenvectors. We believe that viewing response in terms of 
eigenvectors is not so much dz&uZt as it is unconventional and that it affords an 
improved basis for understanding the factors that actually drive the response. Finally, we 
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offer a means for alternatively viewing response in terms of the original variables, but 
within the context of an orthogonal, eigenvector solution. 

It is, perhaps, most important that the vector approach to analysis does not require or 
benefit from the attempt to “break” naturally-occurring associations among fuel 
properties in the blending of test fuels. Without the need to artificially separate these 
associations, a wider range of real-world diesel fuels, representing current and future 
refinery configurations and processes, could be used in engine testing, thereby avoiding 
possibly unrealistic or unrepresentative emission results. These benefits imply an 
increased accuracy in assessing emissions benefits and an improved basis for measuring 
cost effectiveness. 
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APPENDIX A: DATABASE DE.yE&@PMENT 
\ 

This appendix describes the development of a database on Heavy Duty Diesel (HDD) 
engine emissions and diesel fuels to support this work. Data from 27 technical 
publications of the Society of Automotive Engineers (SAE) were reviewed in preparing 
the database, in addition to information available through the U.S. EPA. This effort 
included all sources known and available.,at the tirne,me work was performed, although it .-,I*” y,.~\,“,,* ,..* 
was not necessarily a comprehensive literature search. It does not include additional data 
released since that time. 

The first section summarizes the final database developed as a result of this effort. The 
second section describes briefly the engines covered in this database. The”ttird section. 
discusses additional Data sets that may be used in portions of the analysis related 
exclusively to fuel properties. Brief comments on data preparation are given in the 
concluding section. 

A.1 SUMMARY OF THE DATABASE 

The fmal database consists of 1 %e,nn&es, representing 280 individual HDD emissions 
tests and a matching slate of 12 properties for the 85 different diesel fuels on which the 
engines were operated. Test results were selected from nine SAE publications where the 
following criteria were met: 

. Uses the EPA transient test cycle and reports either the composite result or the hot 
start portion. The hot start portion has a 6Mti weight in the composite test. 

. Measures at least NOx and PM. Eight of the sources measured all four pollutants 
(HC, CO, NOx, and PM), and 1 source omitted only CO. 

l Emissions testing could be matched to fuels for which the folloving 13 properties 
were known: natural cetane, cetane number improvement (resulting from 
additives), API gravity, density, viscosity, sulfur content, mono aromatic content, 
poly aromatic content, and five points on the distillation curve (IBP, Tl 0, T50, 
T90, FBP). 

The 13 fuel properties were selected to be a super-set of properties that researchers in the 
field have examined for their effect on, HDD emissions. “” ,.... ia ,./“,,,_ ..,. <A.. As such, they include the / *,n __> ** -*. r?-.*as 
properties which a consensus of researchers believes to be relevant,to emissions 
performance with additional properties that may be highly correlated with other properties 
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Table A.1: Comparison of Fuel Properties to the Revelant Ranges 

Fuel Parameter Relevant Range Range in Database 
(Min - Max) (Min - Median - Max) 

Aromatics (percent) 10-40 2.7 - 26.5 - 47.5 

Mono Aromatics - 0.5 - 18.0 - 31.8 

Poly Aromatics 0 - 6.4 - 26.7 

Cetane Number (total) 35-60 35 - 51 - 74 

Natural Cetane - 35 - 44 - 74 

Sulfur Content (ppm) 5-500 0 - 384 - 3360 

T50 (Celsius) 230-295 211 - 264 - 292 

T90 (Celsius) 275-330 274 - 318 - 337 

Viscosity (mm*/sec) 1.5 - 3.5 1.58 - 2.68 - 3.87 

Density (gm/cm3) - .78 - .84 - .88 

or prove unrelated to emissions. This purposefully casts the net as wide as possible for 
variable selection, leaving to the analysis the identification of the proper set of 
explanatory variables. Table A. 1 demonstrates that these 85 fuels cover the range of fuel 
properties thought’ to be of interest to the analysis of diesel emissions. 

This selection should not be interpreted to mean that only these properties have an effect 
on engine emissions. For example, fuel oxygen content is likely to have an impact on CO 
emissions and perhaps other pollutants, but is not covered in the list of fuel properties. 
While some papers reviewed in this work tested diesel fuels containing oxygen, these 
were judged to be too few in number to permit including oxygen content in our list. 

Eight publications that used the EPA transient test cycle were excluded because one or 
more of the fuel properties were not available. The most common reason was that the 
poly-aromatic content was not reported. Ten SAE publications were excluded for reasons 
related to the emissions data. In one instance, only PM was measured. Non-EPA test 
cycles were used in the nine other instances; most commonly these were European or 
Japanese test cycles. 

Unfortunately, the entire body of data collected by the EPA Heavy Duty Engine Work 
Group (HDEWG) in Phase II testing was excluded from the database because of its test 

’ Personal fax communication from Mr. Barry McNutt dated 8-30-95. 
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cycle. This is an on-going cooperative program between government and industry which 
is creating a substantial database on the HDD emission response to fuel properties. 
However, the engine used in this testing has a prototype EGR system which is not 
compatible with the EPA transient test cycle. The program therefore uses a steady state 
procedure, exclusively covering eight modes based on engine load and speed. NOx 
emissions are not measured because the steady-state values correlate poorly with NOx on 
the EPA cycle. 

Overall, the database represents 11 different engines tested a total of 280 times on 85 
different diesel fuels. The large majority of database entries represent individual engine 
tests, but 41 entries from three sources record the mean values of replicated tests. The 
number of test replications is coded as a field in the database and should be-used as a.- 
weighting factor in statistical analysis. Three papers clearly contributed mean values but 
did not clearly indicate the number of test replications. We have assumed a replication 
factor of three based on the replications recorded in other sources that were ultimately 
excluded from the database. 

A.2 ENGINE COVERAGE 

The eleven HDD engines included in the final database represent a very small sample of 
the engine types present in the on-road vehicle fleet. Nevertheless, they include engines 
made by three major manufacturers (Cumrnins, Detroit Diesel Corporation, and Navistar) 
and cover a range in model years (1987 through 1998) and horsepower ratings. The 
engines are thought to be generally similar in design, although they are built to varying 
emissions standards. None are equipped with EGR systems or with catalysts. They can 
be taken as reflective of the HDD engines currently on the road, even if the sample is too 
limited to be considered truly representative. Basic engine characteristics are 
summarized in Table 2.2. 

This database will be used to develop statistical parameters that describe for the existing 
vehicle fleet the relationship between engine emissions and fuel properties and the 
associated variance. Some studies have concluded that-this relationship varies with the _ So,... 
design emissions level, such that lower-emitting engines demonstrate a smaller sensitivity 
to changes in fuel properties. Whether and how to segregate the engines into groups or 
strata may be a question faced in future analyses. 

Energy and Environmental Analysis, Inc. (EEA) was asked to propose an apriori method 
of stratification based on engineering judgement. Its recommendation was to group 
engines based on the value of the expression NOx + lO*PM, which gives the empirical 
tradeoff between NOx and PM that is faced in engine design. Once individual 
calibrations are accounted using the expression, the resulting value reflects an 
approximate emissions control stringency level. EEA recommended three stratifications: 
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the one model year 1987 engine with a NOx f lO*PM value of 9.7; a second stratum 
ranging from 6.6 to 7.5; and a third stratum ranging from 4.9 to 6.3. 

Table A.2. Summarv of Engine Characteristics w 

SAE Model Engine Engine ID HP NOx + IOPM Stratum 
Source Year Number Value 

892072 87 1 Cummins NTCC 4000 400 9.7 1 

892072 88 2 DDC Series 60 315 7.5 2 

892072 89 3 Navistar 7.3L 185 7.5 2 

902171 91 4 DDC Series 60 (prototype) 330 6.6 2 

902172 91 5 Navistar DTA-466 (prototype) 230 7.1 2 
1 

972898 91 21 DDC Series 60 350 6.3 3 

922267 93 8 Navistar DTA-466 210 5.6 3 

932731 ?? 9 UIhOWIl 153 5.4 3 

941020 94 13 DDC Series 60 (prototype) 320 5.9 3 

950250 94 14 Navistar DTA-466 (prototype) 199 5.5 3 

950251 98 15 DDC Series 60 (prototype) 325 4.9 3 

A.3 ADDITIONAL DATA SETS CHARACTERIZING DIESEL FUELS 

Additional information exists on diesel fuel properties that is available for use in the 
analysis. First, a data set of 110 diesel fuels exists for which the 12 selected fuel 
properties are known. The 85 fuels found in the final database are simply those for which 
qualifying emissions test results were available. 

Two additional and smaller samples of diesel fuels may be used in the study for purposes 
of demonstrating the basic properties of eigenvectors applied to fuel characteristics. One 
data set consists of 30 fuels created for SAE paper 962114 Effects of Fuel Properties on 
Exhaust Emissionsfiom Di Diesel Engines. This paper reports on a test program at the 
Japanese COSMO Research Institute for which a significant effort was made to create test 
fuels whose properties could be varied independently. The fuels can be viewed as one 
extreme of fuel blending that is achievable in a laboratory setting, but is not likely to be 
representative or achievable in the refinery. This source was excluded from the database 
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and from the 11 O-fuel data set because it uses a Japanese test cycle and only 11 of the 12 
selected properties were known. 

A second sample of diesel fuels is the group of 18 fuels blended for the test program 
conducted for the Heavy Duty Engine Work Croup. These fuels were created for an 
experimental design in which density, cetane number, mono-aromatics content, and poly- 
aromatics content were varied independently. These fuels were blended solely from 
blend stocks found in refinery streams, so that they are at least technically realizable in a 
refinery. They provide a contrast to the laboratory fuels fabricated in SAE 962114. 
These fuels are included in the 1 lo-fuels data set, although the emissions results were 
excluded from the final database because the.testing did not use the EPA transient cycle. 

A.4 DATA PREPARATION ISSUES 

A range of problems was encountered in compiling the database, particularly in regard to 
information on fuel properties. Similar problems will be encountered by any researcher 
attempting to enlarge this database. 

The individual sources on fuel properties vary widely in terms of the test methods 
employed, properties reported, and the units used to report data. For this study, we 
attempted to reconcile the sources into a common format, but have made compromises 
that may not be appropriate for later studies. These compromises were thought to be 
appropriate because of the exploratory nature of this work and the limited data available 
to it. 

In reconciling the fuels data, we attempted to retain as much information on fuels as was 
reported in the original sources. The initial fuels data set grew to include more than 30 
different characteristics to accommodate the wide range of values reported. The process 
of reconciliation involved the following tasks: 

. 

. 

. 

Correcting units of measure to a common basis. For example, sulfur content was 
reported as both parts per million (ppm) and as the weight percent, but were 
standardized to the ppm basis used in the database. Another such example is 
conversion of the distillation curve in degrees Fahrenheit to the degrees Celsius 
used in the database. 

Estimating characteristics not reported in the original source. For example, API 
gravity and density are so highly correlated that one was estimated from the other 
when both were not reported, so that we did not lose the data. Only density has 
been used in the analysis due to the high degree of correlation. 

Combining similar measures - e.g., viscosity values at varying temperatures. 
Most sources reported viscosity at two temperatures - ambient temperature and 
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engine operating temperature. Ambient temperature values were compiled in the 
database, although these may represent 30 degrees Celsius, 40 degrees Celsius, or 
100 degrees Fahrenheit. This is one example of the compromises made. 

Selecting among competing measures - e.g., fuel aromatics content stated as 
either volume percent or weight percent. In this instance, the weight percent 
values were the preferred measure. However, volume percent values were 
accepted where no other information on aromatics content was available. This is 
a second example of compromise. 

We imputed a replication factor of 3 for the three sources that clearly reported 
mean values but did not state the number of repeated tests. This assumed value 
was based on the replication factors found in other sources that were ultimately 
excluded from the database. 

Finally, fuel properties were stated in terms that eliminated additive relationships among 
the final variables. If Y = X + A, then X and Y will be correlated even if X and A are 
independent. Fuel cetane ratings were stated as the natural cetane and the cetane number 
improvement, which are independent, rather than natural cetane and total cetane, which 
are correlated. Aromatics content was similarly stated as mono-aromomatic content and 
poly-aromatic content. 

In general, no effort was required to reconcile or standardize the emissions test results. 
All results were stated in gm/bhp-hr when the EPA transient test cycle was used. It is 
conceivable that some publications would express EPA test cycle results in metric units 
and therefore require conversion, but this was not encountered in the sources used. 
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APPENDIX B: MATLAB SQFTWAW,~: ii ,_ 

The following figures display the primary computer programs used with the MatLab 
matrix processing package to conduct the analysis shown in this paper. These consist of a 
main analysis script plus two supporting functions that standardize the data and perform 
the regression analysis, The main processing script performs the following functions: 

. Load the emissions/fuel data base and prepare variables needed for the analysis 

l Standardize the fuel variables to mean,0 and variance 1 using the supporting 
function standardform 

l Form the covariance matrix of the. standardized ~fuels~da$ and extract the >i.~‘r ,... <” “..\,_ j I, .,.A& ia ,^A .; . 
eigenvalues (variable latent) and eigenvectors (variable fuelqc) using the built-in 
function svd 

l Re-express the fuels data in eigenvector terms 

l Set up and perform multiple linear regressions using the supporting function 
reggaer. 

The standardization function standardform converts a matrix x into a standardized.matrix 
y of mean 0 and variance 1. The me,ans values, and s@nda.rd deviations of the,column *~,.~~~j_/~..,l ““~.xw.I:~~u.- rx;il.~.“lr r*l,i~.% . . * 
vectors constituting matrix x are returned as outputs xmean and xstd. An optional 
weighting vector wtvec may be supplied as an input, but this capability was not used in 
this study. 

The regression routine reggaer performs a generalized multivariate regression based on 
minimizing least squares. Its inputs are: the matrix x containing the independent 

_ variables; the column vector y containing the dependent variable; and the variable 
intercept, which indicates’whether an intercept term is to be fitted (value of 1) or 
suppressed (all other values). Outputs of the regression routine are: 

. Matrix tpart, an n x 3 matrix containing the n parameter estimates, the standard 
errors of the estimates, and the t statistic 

l Matrix apart, a 4 x 3 matrix giving the analysis of variance outputs 

l Scalar5 giving the F statistic for the overall model 

l Scalar rr, giving the model R2. 
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Figure B.l: Main Analysis Scrid (Part 1) 
L \ I 

% This m-file sets up a workspace for the emissions test database 
% and conducts a regression of NOx and PM against engine effect and 
% eigen fuel properties. 
% Uses the eigenfuels for the 198 fuel dataset as explanatory 
variables. 
% After replication to account for weighting, data set has 280 
entries. 
% API Gravity dropped from list of variables. 
% load emissions data 
[xdata, varnames, casenames] = tblread('HCNPFuel.csv', 'comma') ; 
% drop API gravity from the variable list 
xdata(:,12)=[1; 
varnames(12,:)=tl; 
% expand data set to account for replication factor 
v=xdata(:,5)==3; 
partl=xdata( v,:) ; 
part2=xdata(-v, :) ; 
xdata=[partl;partl;partl;part21; 
xdata(:,5)=1; 
clear v part1 part2 part3 
% set up variables for emissions and fuels 
[obs,vars]=size(xdata); 
emissions=xdata(:,I:9) ; 
testfuels=xdata(:,lO:vars) ; 
fuelnames=varnames(lO:vars,:); 
[obs,vars]=size(testfuels) 

WC = log(emissions(:,6)); 
CO = log(emissions(:,7)); 
NOx= log(emissions(:,8)); 
PM = log(emissions(:,9)) ; 
NRepl=ones(obs,l); 
weights = diag( sqrt(NRep1) 1; 
% standardize variables to mean 0 and variance 1 
xvariables=testfuels; 
[xvariables,testfuels_mean,testfuels_stdl = 
standardform(testfuels,NRepl); 
% form covariance matrix and perform svd decomposition 
xnormcov=cov(xvariablesl; 
[u,latent,fuelgcl=svd(xnormcov); 
latent=diag(latent) ; 
variance=sum(latent); 
explained=lOO*latent/variance; 
fuelgc 
latent 
variance 
% Re-express x variables as PCA coefficients 
PCA-coeffs = xvariables*fuelgc; 

oldxvar = xvariables; 
xvariables = PCA-coeffs; 
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i; form & print correlation matrix 
corrdata = [ NOx, PM, xvariables 1; 
K corr = corrcoef(corrdata) 

% Set up dummy variables for individual engines 
engines=xdata(:,3); 
engvals=unique(engines) ; 
[engs,nulll=size(engvals); 
enginedummy=zeros(obs,O); 
for i=2:engs 

enginedummy=[enginedummy engines==engvals(i)l ; 
end; 

% Begin regression SeCtiOn 

xmatrix=[enginedummy xvariablesl ; 
[t-NOx, a_NOx, f-NOx, r_tiOxl = reggaer(XmatriX, NOx 
t_NOx 
a NOx 
fINOx 
r_NOx 

.I ; 

xmatrix=[enginedummy xvariablesl ; 
[t-PM, a-PM, f-PM, r-PM1 = reggaer(xmatrix, PM); 
t-PM 
a PM 
f-PM 
r-PM - 

Figure B.2: Standardization Function standardform .._ ,..-s - ,, .__ .^, 1 __” ,, 

L 

function [y,xmean,xstd]=standardform(x,wtvec) 
% standardform: convert matrix x to standard form of mean 0 and varjance 1 
% where r is the number of rows, and 
% c is the number of columns 
[r,cl=size(x) ; 

if (nargin c= 1) 
weights=repmat(l,r,c); 

else 
weights=repmat(wtvec,l,c)*(r/sum(wtvec)); 

end 

xmean=mean(weights.*x); 
xstd=sqrt((sum(weights.*((x-kron(xmean,ones(r,l))).A2)))/(r-~)) ; 
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Figure B.3: Regression Routine reggaer 

% This m-file computes the regression equation - i.e., intercept 
% and slopes, and computes t for testing the significance of the 
% slopes of the regression line against the null hypothesis 
% that each slope = 0. 
% 
% It also provides an analysis of variance, an f-ratio and r square. 
% The ANOVA gives sum of squares, degrees of freedom 
% and mean squares for the mean, regression and residuals. 

function [tpart,apart,f,rr]=reggaer(x,y,intercept) 

[u, v] =size (x) ; 

if (nargin <= 2) 
intercept = 1; 

end 

if (intercept == 1) 
x=[ones(u,l) xl; 

end 

tt=x' *x; 
q=inv(tt); 
b=q*x'*y; 
%b is the vector of regression coefficients: intercept and slope 

z=y-x*b; 
[h,kl=size(b); 

tl=Z'*Z; 
%tl is the residual sum of squares 

t2=u-h; 
%t2 is the residual degrees of freedom 

t3=t1/t2; 
%t3 is the residual mean squares 

z=z/(u-h); 
%z is the error variance for the regression line 

varb=t3*q; 
%varb'is the variance of the regression coefficients. 
stdb=sqrt(diag(varb) ); 
t=abs(b./stdb); 
sl=y' *y; 
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Figure B.3: Regression Routine reggaer (continued) 
< ksl is the total sum of squares 
[q,rl=size(y) ; 

s2=q; 
ks2 is the total number of degrees of freedom 

s3=sl/s2; 
Ss3 is the total mean squares 

ql=sum(y)*sum(y)/q; 
%ql is the sum of squares for the mean 

q2=r; 
%q2 us the degrees of freedom for the mean 

q3=qUq2; 
%q3 is the mean squares for the mean 

wl=b'*x'*y-ql; 
%wl is the regression sum of squares 

w2=h-q2; 
%w2 is the regression degrees of freedom 

w3=wl/w2; 
%w3 is the regression mean squares 

f=w3/t3; 
sumsq=[ql wl tl sll '; 
df=[q2 w2 t2 ~21'; 
meansq=[q3 w3 t3 s3]'; 
b=b'; 
stdb=stdb ' ; 
t=t'\ 
sumsq=sumsqr; 
df=df'; 
meansq=meansq'; 
tpart=Cb' stdb' t'l; 
apart=[sumsq' df' meansq'l; 
f=f; 
rr=wl/(wl+tl); 
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Multivariate regression is based on the General Linear Model as .found.m mqst statistical 
analysis software. In this Appendix, it will be shown how this model is converted to a 
form in which the predictor variables are vector quantities rather than scalars. 

C.l CONVENTIONAL FORMOF THE GJWZRAL LINEAR MODEL _. ,, a. ,s ,. -7” ._._ ,l^Gz..l *“.xcI_l_ .* _A,. .,, .*.i*. .tr.i**xL”~s., <“, _~,. > ” 

We assume a linear model of the form 

y = b, f, (x1, x2, . . . xk) + b, f, (x,, x2, . . . x3 + . . . + b, f, (x,, x2, . . . x,J (1) 

where y is the response variable and there are k predictor variables x1, x2, . . . xk. These 
variables may be inserted into the model as arguments in the n functions f,, f2, . . . f,, where 
n >= k, and the functions can be of arbitrary form. The n-dimensional space in which the 
terms of (1) are embedded is often referred to as the X-space, and the space containing all 
responses may be referred to as the Y-space. 

Typical is the so-called second order model, in which the first and second powers of each 
of the predictor variables are included, as well as allfirst-order interaction terms, as 
represented by the products of all pairs of variables. These functions are s@d,to provide a 
basis for the model - that is, the terms constitute a set of basis functions, linear 
combinations of which are capable of representing any response y in the problem context. 
The coefficients of these basis functions are usually computed by the method of least 
squares. 

Conventionally, the strategy at this point is to test the coefficient of each basis function 
for statistical significance and eliminate any terms that do not reach the assigned 
significance level. Because of correlation that often accompanies the basis functions, it is 
usually necessary to re-compute the regression coefficients, and it is to this end that 
stepwise regression may be invoked. 

Many problems are encountered in applying the conventional approach, and these are 
well documented in the statistical literature. Gne problem often fails to receive adequate 
attention, however, and there is evidence that many analysts, though aware of it, may not 
fully appreciate its implications. 

The truth is that the model, as represented by (l), promises more than it can actually 
deliver. In particular, the equation seems to impZy that the predictor variables, the basis 
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functions and the response variable are continuous and that their domain of definition is 
the real-number continuum. In reality, their domain is much more restricted; indeed, the 
response is known onlry at the finite number of locations in X-space at which samples 
were taken in the collection of the data. Responses imputed at points other than the 
sample points constitute an extension of the domain - that is, they extend what we know 
at a finite number of points to the entire real-number continuum. 

There is no justification for such an extension other than intuition - the same intuition 
that teaches us that it is reasonable to connect data points in an x,y-plot with a continuous 
line or curve. In a more penetrating look at the problem, it must be recognized that there 
are infinitely many possible extensions to a set of data and that goodness-of-fit criteria, 
such as the residual sum of squares or the coefficient of determination (R2) apply only to 
the sample points and may tell us little about the space between these points. Indeed, 
there can be infinitely many extensions that give exactly the same sum of squares and 
even the same residuals on a point-by-point basis. 

Let us confine our attention, then, to just the points in X-space at which we have data. If 
we retain the notation of(l), we must think of the basis functions as being defined at only 
those points. To be exact, the notation of (1) would have to be modified by inclusion of 
appropriate impuZse functions defined as zero everywhere except at the points in X-space 
at which the response is known. That being the case, it is advantageous and more 
appropriate to express the basis functions as basis vectors having a finite number of 
components and to view the set of responses as a response vector having only as many 
components as there are observations in &data. 

C.2 AN ALTERNATIVE, VECTOR-BASED MODEL 

By means of certain theorems of matrix algebra, a procedure will be developed to 
transform the original data vectors into an orthogonal basis that eliminates many of the 
difficulties, such as collinearity, that accompany the conventional linear-model format. It 
will be seen that our approach to this problem follows a quite different strategy. Rather 
than pre-ordaining the form of the response space, it seeks to formulate a set of basis 
functions derived completely~om the data. 

The vectors arise from the data as follows. There are m observations, each consisting of 
an observed response and a vector description of the point in X-space at which the 
observation was made. These give rise to a column vector y (m x 1 matrix) of responses 
and a X-matrix consisting of m rows and n columns, where m is the number of 
observations and n is the number of basis elements. The two are related by the matrix 
equation 
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where b is a column vector having n coefficients, one for each of the basis vectors. The 
elements of b are computed by least squares so as to minimize the sum of squares of the 
residuals. 

There is another set of coefficients or weighting factors, however, that fail to be 
recognized as such when the regression equation is written in the functional form (1). 
The need for these coefficients becomes quite evident when one attempts to express a 
generic term bi g (x,, x2, . . . x,J in its corresponding vector form. It turns out that this 
generic term, when evaluated at one of the observed data points in X-space, is actually the 
muZtipZier, or coefficient, for a basis vector in which all components are zero except the 
one corresponding to the term of (1) under consideration. 

The point of departure for what we have termed vector variables, therefore, is simply a 
generalization of the conventional approach. Let the components of the general basis 
vector be unrestricted rather than requiring that all components except one be zero. Then 
construct the basis vectors in such a way that they are uncorrelated and that their 
associated coefficients are perforce uncorrelated also. 

At this point it should be evident that there are two levels of coefficients. The first level 
deals only with the X-space - that is, the space of predictor variables. The second deals 
with the regression coefficients and needs to take into~ account. both .the predictor and 
response variables. These two aspects of the problem will be discussed in the following 
two sections. 

C.2.1 Reformulating the X-space 

We seek to transform a non-orthogonal set of basis vectors, each containing only one 
non-zero element, into a set of basis functions that are.orthogonal and may exhibit all 
non-zero components. For this purpose, we invoke the Principal Axes Theorem of matrix 
algebra: 

Any real symmetric matrix M is simultaneously similar and congruent to a diagonal 
matrix D. That is, there exists an orthogonal matrix V such that D = V“ M V, the 
condition for similarity and D = V“M V, the condition for congruency 

It is to be recalled, also, that a matrix V is orthogonal if and only if V’ = V’ and that any 
matrix M, when multiplied by its transpose M’ generates a symmetric matrix. 

For purposes of further discussion, and without loss of generality, we assume that the X- 
matrix has been transformed into standard form, each column having zero mean and unit 
standard deviation. The correlation matrix of X can therefore be defined as 

R = (l/N) X’X (3) 
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which is real and symmetric and which therefore satisfies the conditions of the Principal 
Axes Theorem - that is: 

D=V’RV (4) 

This equation is satisfied if V is the matrix of eigenvectors of R and D is a diagonal 
matrix with the eigenvalues (or latent roots) of R displayed along the diagonal. 

It is clear that the vectors of X can be expressed as a linear combination of the vectors of 
v: 

X=AV’ (5) 

where A is a matrix of weighting factors or coefficients. 
A by post-multiplying by V: 

The equation can be solved for 

A=XV (6) 

Just as it was the coefficients of the original basis vectors that constituted the original, 
non-orthogonal X-matrix in regression, so it is the coefficients of the reformulated, 
orthogonal basis vectors that constitute the revised X-matrix. 
shown that this revised matrix is column-wise orthogonal. 

However, it remains to be 

Recall that the correlation matrix R is defined as R = (l/N) X’X and that X = A V’. 
Therefore, by substitution of (5) in (3): 

R = (l/N) (A V’)’ (A V’) = (l/N) V A’A V (7) 

Premultiplying by V’ and postmultiplying by V, we have: 

V’RV=(l/N)V’VA’AV’V=(l/N)A’A 

But, it is known by factorization of R, that: 

(8) 

VDV’=R (9) 
Therefore, by substitution of (9) for R in (8): 

V’VDV’V=(l/N) A’A (10) 

or 

(l/N)A’A=D (11) 
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or 

A’A=ND (12) 

where N is sample size and D is the matrix of eigenvalues of R. 

C.2.2 Reformulating the Y-Space 

In the previous section, our concern was with providing an orthogonal basis for the 
predictor variables, primarily with the purpose of eliminating correlation among the 
predictor variables by substituting orthogonal vectors consisting of weighted 
combinations of the predictor variables. It was also shown, however, that the coefficient 
matrix A derived from that exercise presents a revised regression X-matrix that is 
column-wise orthogonal, a fact that makes for easy computation of the regression 
coefficients and for easy interpretation of the contribution made by each basis vector to 
the prediction of the response. 

Recall equation (2): 

y=Xb 

and for X substitute the matrix A derived above: , 

y=Ab (13) 

The solution for b is given by 

b = (A’A)-’ A’ y (14) 

Since A’A is diagonal, the terms in the regression equation are independent and the sums 
of squares associated with each are additive.,, Removing one or more of the basis vectors i .x ,., “.^ 
from the regression equation does not require re-computation of the other regression 
coefficients. In the case of a non-orthogonal X-matrix, removal of one or more predictors 
would require re-computation of the regression coefficients, and it would be seen that 
sums of squares associated with individual terms are not, additive, I??er,complications 
and uncertainties can cause iteration of the process, often by means of stepwise 
regression, a procedure that does not enjoy uniform acceptance by professional 
statisticians. 

The complications noted above can be avoided only if the matrix of the normal equations, 
generically denoted as the X’X matrix, is diagonal, and that can occur only if the columns 
of X are orthogonal - i.e., display no correlation. Principles of experiment design can be 
invoked to provide a set of treatments exhibiting this property. Whether these treatments 
can be realized, however, is another matter. In many instances they cannot, because the 
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variables may be physically related and impossible to vary independently of each other. 
is to this circumstance that the theory set forth in this Appendix is addressed. 

It 

C.3 PARTITIONING THE SUMS OF SQUARES 

A useful outcome of regression analysis is its ability to partition the sums of squares into 
two parts: that attributable to the model and that attributable to error. In the vector-based 
model, it will be seen that further partitioning can be done to determine the relative 
contributions of the eigenfuel vectors to the model sum of squares. 

Assume m samples, n basis vectors each with k components, and the linear model 

y=Xb+g (15) 

where X is the m x n matrix of least-squares normal equations 
b is the n x 1 vector of regression coefficients 
e is the m x 1 vector of residuals, and 
y is the m x 1 vector of responses. 

The normal equations can be written in matrix notation as 

X’Xb=X’y (16) 

and the least-squares solution for b is 

b = (xX)-’ xly (17) 

Note, however, that JJ is only an estimate and that X b does not reproduce the response 
vector y. Rather, it produces an estimated or calculated vector of responses y,. The 
residuals, therefore, are defined by the error vector 

e=Y -Y, 

and the sum of squares of the residuals is 

(18) 

e’e = tY - Y,)' (r -Y,) = cy - xl?))' (y - a?) 

Expanding (19), we obtain 

e’e = y’y -y’ x_b -_b’ x’y +_b’ X’XJJ 

(19) 

(20) 

Substituting (17) for b in the last term of (20) gives 
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e’e = y’ y - y’ x_b -_b’ x’y +_b’X’X (x’X)-’ xy 

=y’y-y’X_b-_b’X’y+_b’x’y 

=y’y-y’X_b (21) 

Or, since ~‘2 is a scalar, all terms in (21) are scalars, and each is its own transpose, (21) 
can be alternatively written 

e’g=y’y-_b’X’y 

and, since y = X b, (22) becomes 

(22) 

&=y’y-_b’X’X_b (23) 

Therefore (23) can be re-arranged to provide a partitioning of the sums of squares: 

Y’Y = JXX_b + _e’_e (24) 

Total Regression Residual 
ss ss ss 

The total and regression sums of squares can be straightforwardly computed, and the 
residual or error sum of squares can be computed by difference. 

It is clear that if X’X is diagonal, the regression sum of squares is just a weighted sum of 
the squares of the regression coefficients. Further, if X’X is orthonormal, XX is the 
identity matrix, and the model sum of squares is just the sum of the squared regression 
coefficients. 

In the case of the eigenvector model, (l/N) X’X defines the correlation matrix of X, and 
. 1L when X is in standardized form, the weighting factors are just N times the eigenvalues of 

the correlation matrix. 

The major consequences of the column orthogonality of X is that sums of squares for 
individual basis vectors are additive, so that estimates of the contribution of each basis 
vector to the model sum of squares can be computed as the weighted square of the 
coefficient of that vector. 

C.4 ADJUSTED SUMS 0.r SQUARES 

There are instances in which it is necessary to examine subsets of the basis vectors that 
make up the X-matrix for the full regression model. Notable are those instances in which 
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there are effects caused by two distinct categories of predictor variables, such as engine 
effects and fuel effects influencing heavy duty diesel emissions. The partitioning of the 
sums of squares for such effects may not be amenable to the method used to isolate 
individual fuel effects from the aggregate of all fuel effects, because the two sources of 
variance may not be orthogonal to each other. 

Moreover, since their contributions to the sum of squares are not additive, the partitioning 
must be regarded as conditional rather than absolute. It is achieved by computing the 
model sum of squares with both sources of variance included in the model, then removing 
one, then the other, and noting the changes in the model sum of squares. 

For the full model, the solution of the least-squares normal equations is 

b=O(‘X)-‘X’y 

The estimated or calculated responses are given by 

r,=m! 

and the model sum of squares is given by 

Model SS= &X’y 

Suppose, now, that we partition the X-matrix and the b-vector as follows: 

x = lx x*1 b’= II?, !&I 

to obtain yC = X, b, + X2 b2. 

Now, consider a restricted model, in which the second subset of basis vectors, for 
whatever reason, was not included in the model. Then: 

Y, = Xl b, 

and the model sum of squares is computed as 

Model SS = bl’ X,’ y 

which is the sum of squares due to b, unadjusted. Now consider: 

(SS due to b) - (SS due to b, unadjusted) 
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and define the difference as 

(SS due to bz adjusted for b,) 

Then, 

SS due to b 

SS due to bl, unadjusted = b,’ X’ y 

SS due to bz adjusted for b, = @ X’ y - bl’ X’ y 

The sum of squares due to b, adjusted for & can similarly be computed. 

Thus in the context of diesel emissions, one can compute either: 

(1) SS for fuels adjusted for engines, or 

(2) SS for engines adjusted for fuels 

Present interest is in (l), but there are occasions when both adjusted sums of squares 
might be of interest. The mechanism of adjustment is, of course, strongly dependent on 
the degree of correlation between the two sources of variance, in this case engine vectors 
and fuel vectors. For example, fuel-related emissions may be higher for one class of 
engines than for another, and this engine contribution becomes confounded or abased 
with the actual contribution from fuels. 

More light can be shed on this subject by computing the alias or bias matrix, which 
makes it possible to adjust regression coefficients for effects not originally included in 
the model. 

Suppose we have data believed to fit the model 

‘ ,. 
Y,=X*b,+G (25) : 

for which the least-squares best estimate of b, is 

b, = (Xl' XJ' X,'y 

and the best estimate of y, is XL b,. 

Now suppose that upon further study it is indicated that additional predictors X, should 
be added to (25) to give an additional contribution yz. Then 

i 
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Y=Y,+Y2 (26) 

where y is distinguished from y1 by virtue of the contribution of the additional predictors. 

From the assumed model, (26) can be written 

y=X,b,+&b2 (27) 

Since it is not known that (25) is “contaminated” or “aliased” by the predictors X2, the 
solution for b is approached in the same manner as for (25). Thus, 

b = (x,’ X,)-’ X,’ y 

= (x,’ X,)-l X,’ x’ l3, + (x1’ X,)-l x, x2 lJ2 

= b, + A b2 

where A = (X,’ XJ’ X,’ X2 is the alias matrix. 

Suppose now that the vehicle predictors constitute the “forgotten” matrix X2 and X, is the 
matrix of fuel predictors. Then the biased estimates of the fuel effects is 

where $ is the least-squares estimate of the vehicle coefficient vector. Then, 

This equation allows for the direct computation of the fuel coefficients adjusted for 
vehicle effects in terms of the biased coefficients and the vehicle coefficients as operated 
on by the alias matrix. Thus it reveals the mechanism by which the fuel coefficients are 
modified by the vehicle coefficients. 
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APPENDIX D: SIMPLIFKATJON QF VEETQ&-BASE? 
REGRESSION MODELS 

D.1 INTRODUCTION (.” , 

An important element in the eigenfuel methodology is the procedure for simplifying 
vector-based regression models by: 

l Minimizing the number of eigenvectors in the model 

l Minimizing the number of components in those vectors. 
.L. 

Minimizing or “pruning” the number of vectors is straightforward, inasmuch as the sum 
of squares contributions are additive. The criterion for dropping an eigenvector can be its 
failure to reach a specified significance level, the fact that it contributes minimally to the 
model sum of squares (meaning its elimination would have little effect on the predicted 
responses), or a combination of its significance and its substantiality. 

The primary thrust of this appendix is to put forth a scheme for simplifying the internal 
structure of the eigenvectors by removing fuel variables across all eigenvectors. When 
one or more fuel variables are removed in this way, the dimensionality of the problem is 
reduced - for example, from the 12 fuel properties originally chosen to a smaller number 
that remain after pruning. 

When an eigenvector is retained in the model, all fuel variables are retained with the 
weights, or numerical components, that make up that eigenvector. Fuel variables with 
small weights would seem to be likely candidates for removal. As will be shown, 
however, this conjecture does not necessarily follow. Though one might consider 
deleting components of individual eigenvectors, it is actually more logical to remove a 
component (fuel variable) only if its overall effect, as summed across & eigenvectors, is 
negligible. The reasoning behind this contention is as follows. 

A predictive equation for NO,, for example, consists of a set of regression coefficients 
that apply to respective eigenvectors in the model. These coefficients multiply every 
comnonent of their associated eigenvectors. Thus the total contribution of a particular 
fuel variable is a function of,the sumof a set.,ofproducts that represents the overall 
influence of the variable on emissions. It is quite possible, therefore, for a fuel variable to 
appear very influential in a particular eigenvector and yet have only a minor effect on the 
final predicted emissions. For example, a large positive effect of a fuel variable in a 
particular eigenvector could be offset by negative effects coming from one or more other 
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eigenvectors. It is the combined effect of a fuel variable across all eigenvectors that 
determines whether that variable is influential enough to be retained in the model. 

We propose a pruning procedure that combines both probabilistic and magnitude criteria 
as a preferred approach to the simplification of vector-based models. Under this 
procedure, eigenvectors would be tested first and rejected by a conventional t-test of the 
eigenvector regression coefficient. That having been done, the remaining eigenvectors 
would be transformed to compute the percent contributions of the fuel variables, to the 
model sum of squares. Fuel variables that contribute little to the model sum of squares 
would then be eliminated on the basis that their omission will have negligible numerical 
effect on emissions predicted by the model. Iteration of the approach could provide 
additional refinement by re-computing the eigenvectors and eigenvalues of the reduced 
set of variables. 

The approached developed above is preferred to stepwise regression. The eigenvector 
approach is an ordered system, whereas stepwise regression is only partially ordered. 
Moreover, tests of significance are found to be more discriminating when applied to 
eigenvectors than when applied to individual fuel properties. It is this characteristic that 
points to the testing of eigenvectors first and individual fuels last. 

A MatLab program file called simp1ify.m has been written to combine the effects of fuel 
variables across eigenvectors and to compute the percent contribution of each fuel 
variable to the model sum of squares. The software has been applied to NO, regressed on 
the eigenvectors as determined earlier in this report. The simplification program may be 
found in Addendum D-I, and the application of this program in a demonstration of the 
transformations involved is presented in Addendum D-II. Addendum D-III examines the 
performance of stepwise regression, in comparison to the performance of the eigenfuel 
methodology, for selecting an optimal set of variables. 

D.2 THEORY 

It is easily shown (see Appendix C) that the vector of coefficients c, as computed for an 
eigenvector model of emissions, can be readily transformed into a vector of coefficients 
cs applicable to the corresponding model that is expressed in terms of the fuel-variable 
components that make up the eigenvectors. 

Table D. 1 shows the regression coefficient vectors c and cs for log(N0,) emission models 
in which the 12 eigenvectors and the 12 fuel properties, respectively, are used as 
regressors. All 12 eigenvectors are included in the vector model (coefficient vectors), 
and all 12 fuel properties are included in the fuel-variable model (coefficient vector cs). 
The models are computed without removing vehicle effects, so that the regression 
equations are simplified in comparison to those presented in Section 2 of this report. The 
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able D.1. Log(NO,) Regressed on Eigenvectors and Fuel Variables 
-. .%, - 

Eigenvector Coefficients, c 

Constant 1.5372 

Eigenvector 1 -0.0012 

Eigenvector 2 0.0335 

Eigenvector 3 0.0730 

Eigenvector 4 -0.0374 

Eigenvector 5 -0.0002 

Eigenvector 6 -0.0117 

Eigenvector 7 0.002 1 

Eigenvector 8 0.0233 

Eigenvector 9 0.0124 

Eigenvector 10 0.0016 

Eigenvector 11 -0.0329 

Eigenvector 12 0.0043 

, ,... 1 ._ ..-- . , *.“,I^y _..hl.l.l -,a- .,.,.. I,-.- I *,-* . . . . . I e.*,. 

Fuel Variable Coefficients, Q 

Constant 1.5372 

NatCetane 0.0077 

CetImprv -0.0115 

Density 0.0458 

Viscosity -0.0380 

Sulfur -0.0020 

MonoArom 0.0344 

PolyArom -0.0013 

IBP -0.0189 

TlO 0.0493 

T50 -0.0263 

T90 -0.0263 

FBP 0.0265 
.,. 

I 

simplification is made here solely for purposes of presentation. 

The constant term (intercept) is the same in both versions of the model, and the 
relationship between for the fuels-related coefficients is given by the transformation: 

1 

where V is the 12 x 12 matrix of eigenvectors and c and 2 are the eigenfuel and fuel- 
variable coefficients, respectively, constant term excluded. 

Now let us turn our attention to the model sum of squares (SS). When computed from 
the regression model, one simply evaluates the regression equation for each of the 
observations in the data set to obtain the so-called, estimated.~or predicted log emissions. 
These are then subtracted from the corresponding observed log emissions to obtain the 
residuals. The sum of squares of the residuals is what is labeled by that name in 
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conventional regression Analysis of Variance (ANOVA). The difference between the 
Total SS and the Residual SS is then said to be the Model SS. 

For the orthogonal vector-based regression model, let us drop all eigenvector terms 
except one and compute the Model SS, and let us do this for each of the 12 eigenvectors 
in the model. Since the eigenvectors are orthogonal, one can add the 12 separately 
computed sums of squares to obtain the aggregate Model SS for the model incorporating 
u of the eigenvector terms. The regression coefficients in the aggregate model are 
exactly the same as those computed for corresponding individual terms. 

An interesting and very useful observation can now be made, as illustrated in the 
following Table D.2. We regressed log(N0,) on all eigenvectors, then one at a time, to 
demonstrate that the same coefficients are obtained whether they are computed singly or 
collectively. It was seen that the Model SS are additive, as are also the R-squares. The 
right-most column in the table was computed from the conventional ANOVA. 

Note the agreement of the calculation shown in the third column with the conventionally 
determined Model SS. Thus, the Model SS for any single term or any combination of 

Table D.2. Determination of Model SS for Eigenvector Terms 

5 -0.0002 0.2305 0.0000 0.0000 

6 -0.0117 0.3895 0.0148 0.0148 

7 0.0021 0.5636 0.0007 0.0007 

8 0.0233 0.6808 0.1034 0.1034 

9 0.0124 1.1806 0.0506 0.0506 

10 0.0016 1.5490 0.0010 0.0010 

11 -0.0329 2.5908 0.7805 0.7805 

12 0.0043 4.5306 0.0236 0.0236 
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terms can be computed simply by squaring the coefficient, multiplying that square by the 
eigenvalue of the associated eigenvector, and then multiplying by the number of degrees 
of freedom (here 279). 

Now comes the piece de resistance. Consider a regression equation containing only one 
eigenvector as the basis (in addition to a constant term, of course). Let the coefficient for 
that vector be c, this time a scalar. Then, 

ModelSS=c*c*e*n 

where e is the eigenvalue associated with the eigenvector in the regression equation, and 
n is the number of observations. 

It is obvious that if this single-term regression model is re-expressed in terms of the 
It should also original fuel variables, there will be 12 terms (in addition to the constant). 

be clear that the Residual SS, and hence the Model SS, will be the same, whether 
computed from the original or transformed equations. Recall that 

Multiply both sides of the equation by the transpose of V. Then, 

V’ B = v* v * c 

and, since V’ * V = I, the identity matrix, we have 

Further, 

(1) 

or, for each successive variable weight in the vector V, we have 

Model SS = (Ci * Vi)2 

and, by adding these SS for all 12 vector components, one obtains the complete SS for 
that eigenvector. 

It should be clear, then, that the relative “importance” of each component in a given 
vector can be obtained from (1) and that the contribution of each fuel variable can be 
expressed as a fraction or percent of the composite SS for that eigenvector. 
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,The SS weights vary from one eigenvector to another, and when several eigenvectors are 
admitted into the model, (1) must be applied to each eigenvector and their results 
summed across those eigenvectors. Consequently, a variable that showed great 
“importance” in a single-vector model may be relatively unimportant when the model is 
expanded to include additional eigenvectors. Therefore, if the relative weights of 
individual fuel variables are to be the criterion for inclusion or exclusion of a variable in 
the set of eigenvectors comprising the model, that selection must take into account the 
concatenation of effects coming from individual eigenvectors. 

D.3 PERTINENT TRANSFORMATIONS: A TUTORIAL 

To clarify some of the transformations involved in the statistical interpretation of vector- 
based regression, it will be informative to “walk through” a demonstration of procedure. 
First, we consider the transformation from the regression coefficients of eigenvectors to 
the corresponding coefficients of the fuel variables making up those .eigenvectors. The 
transformation can be accomplished by multiplying the matrix of eigenvectors into the 
column vector of eigenvector regression coefficients. 

How the transformation “plays out” from eigenvector regression coefficients to fuel- 
variable regression coefficients can be seen by writing out in extenso the matrix 
multiplication: V * c. For demonstration purposes, it suffices to use only a few terms, 
and we choose to use the three eigenvectors with the largest eigenvalues. 

Eig 1 Eig 2 Eig 3 
0.1633 0.5556 0.0612 

-0.5490 -0.1435 0.0344 
0.0492 -0.4488 0.2849 

-0.0169 0.1196 0.4323 
cl 0.6362 c2 -0.1799 c3 0.0017 

(O-0016)* -0.2564 +(-O-0329)* -0.4640 + (o-0043)* 0.1456 
0.3851 -0.4177 0.0758 
0.0521 0.0725 0.2619 
0.1278 0.1134 0.3988 
0.0641 0.0828 0.4309 

-0.0746 0.0743 0.3921 
-0.1472 0.0482 0.3647 
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The computation leads to the coefficients of the fuel variables, as follows: 

NatCetane -0.0177 
CetImprv 0.0040 
Density 0.0161 
Viscosity -0.0021 
Sulfur 0.0069 
MonoArom 0.0155 
PolyArom 0.0147 
IBP -0.0012 
TlO -0.0018 
T50 -0.0008 
T90 -0.0009 
FBP -0.0002 

The procedure for computing the associated SS for the fuel properties is a bit more 
complicated, because it must incorporate, in addition to squaring the coeffkients, the 
scaling effects of the associated eigenvalues. 

For this purpose it is advantageous to multiply each vector by its coeficient and by the 
square root of its eigenvahe and then to square the resulting vector. 

ml = ( 0.0016) * 1.2446 = 0.0020 
m2= (-0.0324) * 1.6096 = -0.0522 
m3= ( 0.0043) * 2.1285 = 0.0092 

These multipliers - ml, m2, and m3 - are multiplied into their respective eigenvectors: 

Eig 1 Eig 2 Eig 3 
0.1633 0.5556 0.0612 

-0.5490 -0.1435 0.0344 
0.0492 -0.4488 .0.2849 

-0.0169 0.1196 0.4323 
0.6362 -0.1799 0.0017 

ml*-O-2564= ql m2*-O-4640= q2 m3*0.1456= q3 . - 
0.3851 -0.4177 0.0758 
0.0521 0.0725 0.2619 
0.1278 0.1134 0.3988 
0.0641 0.0828 0.4309 

-0.0746 0.0743 0.3921 
-0.1472 0.0482 0.3647 



ql s2 93 
0.0003 -0.0294 0.0006 

-0.0011 0.0076 0.0003 
0.0001 0.0237 0.0026 

-0.0000 -0.0063 0.0040 
0.0012 0.0095 0.0000 

-0.0005 0.0245 0.0013 
0.0007 0.0221 0.0007 
0.0001 -0.0038 0.0024 
0.0002 -0.0060 0.0037 
0.0001 -0.0044 0.0040 

-0.0001 -0.0039 0.0036 
-0.0003 -0.0025 0.0034 

Finally, these vectors must be squared by squaring each of their components and 
multiplied by the number of degrees of freedom (280 - 1 = 279) and then added. The end 
result of this procedure is as follows: 

279*( ql.*ql + q2.*q2 + q3.*q3 ) = 

NatCetane 0.2411 
CetImprv 0.0164 
Density 0.1591 
Viscosity 0.0156 
Sulfur 0.0257 
MonoArom 0.1686 
PolyArom 0.1365 
IBP 0.0057 
TlO 0.0138 
T50 0.0097 
T90 0.0080 
FBP 0.0050 

Total SS 0.8051 

The total sum of squares calculated from the above values checks against the Model SS 
as computed from the regression ANOVA. 

D-4 SUMMARY AND CONCLUSIONS 

In summary, we believe that a solid and unique basis has been obtained for simplifying a 
regression model. It has a hierarchical structure, as follows: 
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1. 

2. 

3. 

Discard eigenvectors if they fail to meet a desired level of significance a if their 
contribution to the model SS is negligible or minimal - say less than few percent. 

For the terms retained, carry through the simplification procedure shown here to 
estimate the sum of squares contributions for each-&l variable, considering for 
the concatenation of & eigenvector terms retained in the model. 

Eliminate those components (fuel variables) that contribute little (say less than a 
few percent) to the final combined vector or whose omission will occasion only 
negligible change in model predictions. 

What threshold to use at either Step 1 or Step 2 is something of a judgement call and may 
seem contentious. However, it should be based on the reality of the prediction equation 
and what its consequences are in the real world. Though a “percentage of SS” basis has 
been suggested above, one could just as well, and perhaps more meaningfully, determine 
how much “error” or, more importantly, how much “loss of information” can be tolerated 
when setting a threshold. 

A major advantage of the procedure over alternatives such as stepwise regression is that 
the process is hierarchical and its outputs are numbers that can be interpreted in an 
ordinal sense. In contrast, stepwise regression can yield unstable results in that it is 
possible to end up with a variety of “best models” with seemingly equivalent performance 

Once a model has been selected by hierarchical means, it should be iterated to confirm the 
choice. Repeating the eigenstructure analysis with the “unimportant” bits removed would 
yield a possible refinement of estimation. For example, there should be no eigenvector 
carrying weights less than the threshold, and likewise for fuel variables within the 
eigenvectors considered collectively. 

Finally, though no formal proof is offered here, it seems evident that the eigenvector 
approach is more discriminating than stepwise regression. In the eigenvector approach, 
the first eigenvector (the one associated with the largest eigenvalue) takes the largest 
“bite” out of the model sum of squares. This bite is also likely to be larger than the 
largest bite possible when emissions are regressed on the fuel variables, because the 
correlation with other variables will “dilute” the effects of any particular fuel variable. 
When arranged in descending order of their eigenvalues, the SS contributions of the 
eigenvalues should have the steepest gradient. 
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Addendum D-I: A Program for Computing SS Contributions 

r function y=simplify(vecref,valref,coeff,s,n) 
% Computes the SS contributions of the components of eigenfuels to 
% the total contribution for any subset of the complete set of 
% eigenfuels. 
% vecref = complete set of eigenvectors, i.e., eigenvector matrix 
% valref = complete set of eigenvalues, in column vector form 
% coeff = regression coefficients, intercept term excluded 
%s= row vector denoting the eigenvectors to be retained in model 
%n= the number of cases 
h,kl = size(coeff); 
[a&l = size(s); 
vet = vecref(:,s); 
val = valref(s); 
coeffs = coeff(s); 
z = zeros(h,l); 
for i=l:b 

c = coeffs(i); 
cstar = c*vec(:,i); 
e = val(i); 
x = cstar*sqrt(e); 
2 = 2+x; 

end 
yl = (n-l)*z.*z; 
P = 1oo*yl/sum(yl); 

Y= c CYli s-(yl) 1 rp; s=(p)1 1; 
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Addendum D-II: Computing Model SS Contributions by Separate Fuel-Variable 
Components in a Vector-based Model 

We begin by regressing log(NOd on the full set of 12 eigenvectors. The X-space inputs 
are the coefficients of the eigenvectors for each of the 280 observations. Regression of 
log(N0,) on all eigenvectors: 

Coeff Std Err t-ratio 
Constant 1.537.2 .o ..oozs+ -529 -,,,*- 4058 .!a a*_ .,.".e,_) ,r. ,.& ^ . ). - .~ 
Eig 1 0.0043 0.0014 3.1639 
Eig 2 -0.0329 0.0018 18.1829 
Eig 3 0.0016 0.0023 0.6663 
Eig 4 0.0124 0.0027 4.6290 
Eig 5 0.0233 0.0035 6.6174 
Eig 6 0.0021 0.0039 0.5303 
Eig 7 -0.0117 0.0047 2.5006 
Eig 8 -0.0002 0.0061 0.0304 
Eig 9 -0.0374 0.0078 4.8132 
Eig 10 0.0730 0.0101 7.2147 
Eig 11 -0.0012 0.0181 0.0689 
Eig 12 0.0335 0.0154 2.1833 

Regression Analysis of Variance 

ss DF MS 
Intercept 661.6004 1.0000 .661.6004 
Model S$ 1.1633 12 ..ooo.g 0.0969 . .._^.,'.., 
Residual SS 0.6303 .267.0000 ,_,,_ . Of.0024 , . . . , 
Total SS 663.3940 280.0000 2.3683 

R-square = 0.6486 

We now will apply the program simp1ifl.m to determine the relative contributions. of the 
fuel variables when &l eigenvectors are retained in the model, 

First, we define s to include all eigenvectors: 

Then invoke simplify-m with vecref and velref coming from the eigenanalysis of alJ data, 
and with coeff being the coefficients obtained in the above regression: 

y=simplify(vecref,valref,coeff,s,280) 
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This returns the result shown below. Note that the total SS is the same as obtained from 
conventional regression analysis. 

ss Percent SS 

NatCetane 0.1614 13.8723 
CetIxnprv 0.0264 2.2661 
Density 0.3396 29.1929 
Viscosity 0.0252 2.1622 
Sulfur 0.0033 0.2870 
MonoArom 0.4058 34.8852 
PolyAroIn 0.0543 4.6667 
IBP 0.0073 0.6310 
TlO 0.0629 5.4108 
T50 0.0256 2.2045 
T90 0.0374 3.2180 
EBP 0.0140 1.2033 

Total 1.1633 100.0000 

Simplification of the regression model is accomplished by “pruning” either entire 
eigenvectors or selected components of those vectors. Pruning consists of removing 
terms considered to be in some sense “inappropriate’ to include in the model. The basis 
for removal can be based on statistical, magnitude or judgemental considerations. 

Vector SS Percent SS 
1 0.0236 2.0284 
2 0.7805 67.0821 
3 0.0010 0.0859 
4 0.0506 4 -3489 
5 0.1034 8.8870 
6 0.0007 0.0602 
7 0.0148 1.2720 
8 0.0000 0.0000 
9 0.0547 4.7013 

10 0.1229 10.5630 
11 0.0000 0.0000 
12 0.0113 0.9712 

Logic seems to indicate that pruning begin with eigenvectors. The percent contributions 
of the 12 eigenvectors, arranged in decreasing order of magnitude, are as follows: 

--------- Sorted -------- 
Vector SS Cum Percent 

2 0.7805 67.08 
10 0.1229 77.65 

5 0.1034 86.53 
9 0.0547 91.23 
4 0.0506 95.58 
1 0.0236 97.61 
7 0.0148 98.88 

12 0.0113 99.85 
3 0.0010 99.94 
6 0.0007 100.00 
8 0.0000 100.00 

11 0.0000 100.00 

98 



The “best 7” eigenvectors, [l 2 4 5 7 9 lo], cover nearly 99 percent (98.88) of the sum 
of squares. This is an arbitrary cut-off, but it ignores only 1 percent of the SS yet 
eliminates 5 eigenvectors. 

Next, we regress log(NOx) on these 7 eigenvectors. Here are the coefficients, their 
standard errors and the associated t-values. Note that the regression coefficients are the 
same as the corresponding coefficients when all eigenvectors are used. Note, also, that 
the t-ratios are reduced only minimally by the elimination of the other five eigenvectors, 
thereby indicating that elimination of the five eigenvectors does little to change either the 
magnitude of the predictions or their statistical significance. 

Coeff Std Err t-ratio 
Intercept 1.5372 0.0029 528.9223 
Eig 1 0.0043 0.0014 3.1611 
Eig 2 -0.0329 0.0018 18.1663 
Eig 3 0.0124 0.0027 4.6248 
Eig 4 0.0233 0.0035 6.6113 
Eig 5 -0.0117 0.0047 2.4983 
Eig 6 -0.0374 0.0078 4.8088 
Eig 7 0.0730 0.0101 7.2081 

I' 

.‘ 

Analysis of Variance 
ss DF MS 

Intercept 661.6004 1.0000 661.6004 
Model SS 1.1504 7.0000 0.1643 
Error SS 0.6433 272.0000 .0.0024 
Total SS 663.3940 280.0000 2.3693 

Note that 100 * 1.1504/l. 1633 = 98.89 percent as was foreseen. We now define the 
selector variable s ‘to include the “7 best” eigenvectors used in the regression above: 

s=[l 2 4 5 7 9 lo] 
I 

Then we invoke simp1ify.m: y=simplify(vecref,valref,coeff,s,280) 
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NatCetane 
CetImprv 
Density 
Viscosity 
Sulfur 
MonoArom 
PolyArom 
IBP 
TlO 
T50 
T90 
FBP 

Total 

ss 
0.1609 
0.0228 
0.2983 
0.0099 
0.0010 
0.4413 
0.0636 
0.0046 
0.0404 
0.0260 
0.0576 
0.0238 

Percent SS 
13.9901 

1.9863 
25.9304 

0.8647 
0.0873 

38.3644 
5.5299 
0.3982 
3.5139 
2.2638 
5.0045 
2.0665 

1.1504 100.0000 

The table gives the relative percent of the sum of squares accounted for by each of the 
fuel variables. The fact that the sum (1.1504) checks against the value of SS obtained by 
direct computation assures that the break-down is correct. 

We are now in a position to “prune” non-contributing variables. These include viscosity, 
sulfur and IBP on the basis of their minimal contribution to the model SS. Because both 
IBP and FBP are believed to be less reliably measured than TlO, T50 and T90, FBP is 
also eliminated. (This consideration is included to illustrate the intervention of 
engineering judgement in eliminating terms.) This results in eight eigenvectors, each 
with eight components. 

An iteration of the eigenanalysis is now in order. The eigenvectors and eigenvalues are 
recomputed for the new set of eight eigenvectors. 

Eiuenvectors 
NatCetane 0.4622 -0.3652 0.4628 0.1238 0.2306 -0.0237 0.5828 -0.1734 
CetImprv 0.0627 -0.1062 0.0349 -0.3969 0.2705 -0.8452 -0.1743 0.0901 
Density 0.2044 0.3241 0.6751 -0.1943 -0.1833 0.1354 -0.2250 0.5070 
Monokrom 0.2304 -0.4936 -0.0848 0.5955 -0.2276 -0.1639 -0.3589 0.3660 
PolyArom 0.0423 -0.2881 -0.1170 -0.2004 0.7218 0.4432 -0.2655 0.2708 
T10 -0.3824 -0.5132 -0.0388 -0.4166 -0.3637 0.0799 0.3617 0.3618 
T50 0.5111 0.3218 -0.5376 -0.0693 -0.0189 -0.0284 0.3767 0.4454 
T90 -0.5275 0.2381 0.1321 0.4650 0.3669 -0.1903 0.3275 0.3915 

0.1272 0.1912 

Log(N0,) is now regressed on 
previous operations. 

Eisenvalues 
0.0502 0.4961 0.7006 1.0805 2.3580 2.9961 

the complete set of eight eigenvectors retained from the 



Coeff Std Err t-ratio ^ __.* 
Intercept 1.5372 0.0031 496.5049 . 
Eig 1 0.0121 0.0081 
Eig 2 -0.0121 0.0034 
Eig 3 0.0466 0.0099 
Eig 4 0.0352 0.0051 
Eig 5 0.0044 0.0041 
Eig 6 0.0148 0.0056 
Eig 7 -0.0411 0.0090 
Eig 8 -0.0062 0.0059 

1.4909 
3.5534 
4.7071 
6.83?6 
1.0513 
2.6572 
4.5428 
1.0596 

,. .,. Analysis of Variance 
ss DF MS 

Intercept 661.6004 1.0000 W~.W.!M. _. 
Model SS 1.0663 8 .,;O,OOO ,0.1333 
Error SS 0.7273 271.OOOb 0.0027' 
Total SS 663.394.0~.,2~0.0000 2 3693 ."s_l.--e *~ -_.. * a *,j^ ", ., .*t .,+:..we-"> _._‘.~,.. __..b._r. . 1 1-.1 .._" _.Y.. I _ 

R-square = 0.5945 

For comparison, we compute the regression equation by regressing log(N0.J directly on 
the eight retained fuel variables. 

Intercept 
NatCetane 
CetImprv 
Density 
MonoArom 
PolyAroxn 

‘: 

4 TlO 
T50 
T90 

Intercept 
Model SS 
Error SS 
Total SS 

Coeff 
1.5372 

-0.0007 
-0.0289 

0.0539 
0.0111 

-0.0208 
0.0160 

-0.0272 
0.0194. 

Std Err t-ratio .~."... . o. oo31 4g6. 50"~9'. .__. 

0.0087 0.0768 
0.007% 4: P754 
0.0138 3.8915 
0.0044 2.5257 
0.0037 5.6034 
0.0030 5.3578 
0.0020 13.4837 
0.0018 10.8286 

Analysis of Variance 
ss DF MS 

661.6004 1.0000 661.6004 
1.0663 8.0000 0.1333 
0.7273 271.0000 0.0027 

663.3940 280.0000 2.36.93 

R-square = 0.5945 

Now, using simplify.m, we compute the percent contribution to the model SS accorded to 
each of the fuel variables: s = [ 1 2 3 4 5 6 ‘7 81. 
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NatCetane 
Cetlmprv 
Density 
MonoArom 
PolyAroIn 
T10 
T50 
T90 
Total 

ss Percent SS Prior Percent 
0.1546 14.4966 13.9901 
0.0267 2.5082 1.9863 
0.3293 30.8809 25.9304 
0.4105 38.5004 38.3644 
0.0685 6.4255 5.5299 
0.0187 1.7561 3.5139 
0.0412 3.8673 2.2638 
0.0167 1.5650 5.0045 
1.0663 100.0000 100.0000 

It is evident that by pruning from the “low end” of both eigenvectors and components of 
eigenvectors, there is a certain sense of stability and directionality in the results. The fuel 
variable contributions as computed by way of the original 12 eigenvectors do not differ 
radically from their contributions as computed from the revised set of eight eigenvectors. 

It is believed that the scheme proposed above is more systematic and less erratic than 
results obtained by way of stepwise regression. It has the advantage of ordering the terms 
in the model from greatest to least contribution, and is subject to less variation than 
results obtained stepwise. By stepwise regression, one can obtain a large number of 
solutions giving essentially the same “performance” as judged by R-square. One can 
argue that the eigenvector approach gives a unique result, once the thresholds for 
acceptance or rejection of terms is established. 

The results of this paper do not necessarily define a precise protocol for simplifying a 
regression model that contains correlated predictor variables, but it outlines an approach 
and methodology for such a protocol. Further study and exercising of the models are 
necessary. The outlined approach, however, is believed to be innovative and to have the 
advantages indicated above. 

Addendum D-III: Some Examples of Stepwise Regression 

Stepwise regression is often used to select the “‘best” set of terms to include in a 
regression equation. Parameters for the procedure include “alpha” - i.e., the significance 
level for entering or removing a term - and a quantity called “tolerance.” Variables can 
also be forced into the equation regardless of what happens in the selection process. 

In SYSTAT, default values are alpha = 0.15 and tolerance = 0.01. The SYSTAT manual 
says that the default alpha value is acceptable for predictors that are “relatively 
independent.” It goes on to say that “... if your predictors are correlated, you should set 
the alphas to 0.05 or less.” 

Tolerance is defined as “... 1 minus the squared multiple correlation between a predictor 
and the remaining predictors in the model.” Any variable with a tolerance less than the 
one specified will not be allowed to enter the equation. This constraint is said to protect 



against “highly multi-collinear models that tend to have unstable regression coefficient 
estimates.” 

Stepwise regression can be exercised either automatically or interactively. In the 
automatic mode, one simply specifies the constraints and lets the program seek what it 
sees as the optimum, without any interference from the analyst. In the interactive mode, 
the analyst can examine results step by step and override automatic choices if he sees fit 
to do so. 

With as many options as are possible in the stepwise procedure, it should be apparent that 
a variety of “best” regression models are possible and that there is no way to order the 
choices in an ascending or descending sequence. To illustrate the stepwise procedure and 
how it might apply to the diesel data, ten options are explored. Five values of alpha - 
0.15,0.10,0.05,0.01, and 0.001 -were used in both forward and backward mode. Only 
one tolerance value - the default value of 0.01 - was used. A summary of the results for 
these trials is given below. 

For comparison, a procedure was developed to compute all possible regressions based on 
1 or more of the 12 regressors. When applied to the data, it is easy to see that by the 
usual method of computation there may be no sharp optimum that represents the “best” 
selection of variables. Indeed, many, sometimes hundreds, of cases can be found that 
have essentially the same R-square yet quite different choices of variables to include in 

Variables Selected and R-Squares Attained 
In Ten Trial Stepwise Regressions 

of log(N0.J on Twelve Diesel Fuel Variables 

< ---- Forward Selection ----> <--- Backward Selection ---> 
Alpha 0.150 0.100 0.050 0.010 0.001 0.150 0.100 0.050 0.010 0.001 

N' 9 9 9 7 3 9 9 9 8 7 

R-square 0.647 0.647 0.647 0.626 0.514 0.647 0.647 0.647 0.640 0.624 

NatCetane 
CetImprv 
Density 
Viscosity 
Sulfur 
McnoArom 
PolyArom 
IBP 
T10 
T50 
T90 
FBP 

X 
X X X X X X X X X X 

X X X X X X X X 

X x. x X X X X X X 

X X X X X X X X X X 

X X X X X X X X X 
X X X X X X X X X 
X X X X X X X 
X X X X X X X X 
X X X X X x’ x X 

* N denotes the number of variables retained. Tolerance = 0.01 for 
all cases. 
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the model. The approach described here provides a unique way to approach the optimum 
by means of a maximum-discrimination protocol. It is readily seen that a variety of 
results can be obtained, and there would be many more if the tolerance were varied. 

Note that, in comparison with the eigenvector approach, natural cetane occurs in only one 
case, and that is when only two other variables, mono-aromatics content and cetane 
improvement are included. pvidently the three variables are sufficiently uncorrelated to 
meet the tolerance criterion.) Also, it appears that in other cases, the multiple correlation 
with natural cetane is high enough to prevent that variable from entering the model. 

One needs to reflect on how the eigenvector approach differs from the stepwise approach. 
The number of variables retained in the eigenvector approach depends on the percentage 
SS or other criterion, and thus would seem to be subject to the same arbitrariness as in 
stepwise regression. However, branching options would seem to be fewer for 
eigenvectors than for stepwise selection. 

Most important, though, is the matter of correlation of predictor variables. Tolerance is 
not an issue in the eigenvector approach, because correlation among variables was 
eliminated at the outset. Moreover, the logic of eigenvectors negates the validity of 
entering or removing variables one at a time, unless they are independent. Rather, 
combinations of predictor variables are entered or removed one at a time, and in such a 
way that the predictors are represented in their proper context. There can be no 
‘“reversals,” such as entering a variable at one stage and removing it at a later stage, 
because contributions to sums of squares are additive. 

Finally, though, it would appear that the stepwise approach could be used quite 
effectively by applying it to the eigenvectors rather than to the predictor variables. 
However, there would be no need to do so, because the elimination of one eigenvector 
would not have any influence on the removal of another. 

In stepwise regression, the various choices are just different ways of aliasing correlated 
variables. With eigenvectors, there are no aliases. I 
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APPENDIX E: TESTS OF STATISTICAL SIGNIFICANCE 

In a conventional regression analysis, tests of significance are customarily of two types: 

l t-tests of individual regression coefficients 
l F-test of the significance of the model as a whole 

The t-tests involve the ratio of a selected coefficient to its standard error. The F-test 
involves the ratio of the model mean square to the error mean square. These two tests are ^“. 
viewed in perspective in the following discussion. 

An important point of departure is to note that the F-test is applicable to the ratio of any 
two random variables distributed as Chi-square, such as mean squares in a regression 
equation. Therefore, the test is applicable to testing the significance of the role played by 
any term in a regression model, providing one can compute a legitimate mean square for 
that term. That is clearly possible in cases in which the predictors are orthogonal to each 
other, as is the case when the regression is computed in the space of eigenvectors (E- 
Space). In the space of fuel property variables (P-Space), however, significance presents 
something of a dilemma. This point is made evident by Tables E. 1 and E.2 below, which 
address, respectively, the E-Space (orthogonal) and P-Space (non-orthogonal) scenarios. 

First, we examine E-Space, as shown in Table E. 1. Since the SS for each of the 
eigenvectors has only one degree of freedom (DF), the mean square (MS) for each 
eigenvector is the same as the its SS. Also, it is a theoretical fact that for F-tests 
involving only a single DF in the numerator, the observed value of F is exactly the same 
as the t-ratio squared. In the table, F is computed as the ratio of the eigenvector mean 
square to the error mean square, computed as 0.0024. 

Eig Reg Coef Std Err t 

12 

Table E.l 

Comparison of F and t Tests for Regression on 
Eigenfuels - No Correction for Vehicles 

0.0043 
-0.0329 

0.0016 
0.0124 
0.0233 
0.0021 

-0.0117 
-0.0002 
-0.0374 

0.0730 
0.0335 

-0.0012 

0.0014 3.16 
0.0018 18.18 
0.0023 0.67 
0.0027 4.63 
0.0035 6.62 
0.0039 0.53 
0.0047 2.50 
0.0061 0.03 
0.0078 4.81 
0.0101 7.21 
0.0154 2.18 

SS/MS Percent F 

0.0236 
0.7805 
0.0010 
0.0506 
0.1034 
0.0007 
0.0148 
0.0000 
0.0547 
0.1229 
0.0113 
0.0000 

ss 
2.0 

67.1 
0.1 
4.3 
8.9 
0.1 
1.3 
0.0 
4.7 

10.6 
1.0 
0.0 

10.0 
330.6 

0.4 
'21.4 
43.8 

0.3 
6.3 
0.0 

23.2 
52.1 

4.8 
0.0 0.0181 0.07 
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10.0 
330.6 

0.4 
21.4 
43.8 

0.3 
6.3 
0.0 

23.2 
52.1 

4.8 
0.0 
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Now consider the non-orthogonal case, in which the response variable log(N0.J is 
regressed directly on the standardized fuel-property variables, as shown in Table E.2 
below. 

Table E.2 

Comparison of F and t Tests for Regression on Fuel 
Properties - No Correction for Differences Among Vehicles 

Property Reg Coef Std Err t SS/MS Percent F 
ss 

NatCetane 0.0077 0.0091 0.85 0.1614 13.9 68.4 
CetImprv -0.0115 0.0033 3.47 0.0264 2.3 11.2 
Density 0.0458 0.0109 4.18 0.3396 29.2 143.9 
Viscosity -0.0380 0.0124 3.06 0.0252 2.2 10.7 
Sulfur -0.0020 0.0040 0.50 0.0033 0.3 1.4 
Mono Arom 0.0344 0.0051 6.69 0.4058 34.9 171.9 
Poly Arom -0.0013 0.0054 0.23 0.0543 4.7 23.0 
IBP -0.0189 0.0040 4.76 0.0073 0.6 3.1 
TlO 0.0493 0.0089 5.51 0.0629 5.4 26.7 
T50 -0.0263 0.0112 2.35 0.0256 2.2 10.9 
T90 -0.0263 0.0105 2.51 0.0374 3.2 15.9 
FBP 0.0285 0.0078 3.37 0.0140 1.2 5.9 

Note: SS attributed to the property variables as computed from 
components of the eigenvector sum of squares. 

First, let it be noted that there are many ways in which a SS can be assigned to a given 
predictor variable. For example, if the response is regressed on Natural Cetane only, the 
SS for that variable should be the same as the model SS computed in the usual manner. 
(Note that this is true in the orthogonal case.) However, it would seem just as reasonable 
to compute the Natural Cetane SS as follows: 

1. Compute the model SS with all predictors included 

2. Compute the model SS with Natural Cetane excluded 

3. Compute the difference in model SS between 1 and 2. 

Certainly this computation is legitimate in the orthogonal case and gives exactly the same 
estimate as in the case when only a single eigenvector is included in the model. 
Even though the difference method is the one usually employed in conventional analysis 
of variance, there would seem to be no reason why a similar computation. should not be 
applied to any submodel with and without the selected predictor variable. (This approach 
gives the same estimate for all submodels in the orthogonal case.) If applied to a non- 
orthogonal model, however, the various approaches can give different estimates of the SS 
for Natural Cetane. Indeed, it is this fact that necessitates, and at the same time 
complicates, the search for the “best” submodel via a stepwise procedure. The 
discrepancies become more severe the more the design matrix departs from orthogonal&y. 
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Yet, in Table E.2 we have assigned what we claim to be a “unique” and allegedly 
“correct” way to compute the SS associated with a non-orthogonal predictor variable. 
How can such a claim be supported? 

For purposes of argument, consider the first predictor variable in the list, Natural Cetane. 
The t-test and F-test for the significance estimate are very different. According to the t- 
test, Natural Cetane is not statistically significant, but, according to the F-test, that 
variable is the third most important predictor and accounts for nearly 14 percent of the 
model sum of squares. 

Now consider all submodels containing Natural Cetane. There are 2048 such cases, and 
an equal number of corresponding cases with Natural Cetane excluded. The submodels 
range from the all-inclusive to the all-exclusive cases: 

Nat Cet Den Vis Sul Mono Poly IBP TlO T50 T90 FBP 
Cet Imp Worn Worn 

All-inclusive Case 

With Cet 1 1 1 1 1 1 11111 1 
W/O Cet 0 1 111 1 11111 1 

All-exclusive Case 

With Cet 1 0 0 0 0 0 0 0 0 0 0 0 
W/O Cet 0 0 0 0 0 0 0 0 0 0 0 0 

Normally, the SS attributed to Natural Cetane would be computed as the difference 
between the model SS for A (with) and B (without) in the all-inclusive case. It would 
seem just as reasonable to compute the model SS with only Natural Cetane included in 
the model. In the orthogonal case, both approaches would yield the same number. 
However, quite different results are obtained in the present non-orthogonal case. 

It is important to note that the case with only Natural Cetane as a variable is one of the 
4095 submodels possible (excluding the null case in which no variables are in the model). 
Therefore, one can consider the contribution to the SS when only Natural Cetane is 
present as the difference between the all-exclusive case with and without Natural Cetane. 

This argument generalizes to comparison of the “with” and “without” scenarios for aZZ 
submodels containing a particular vhriable, any one of which could be encountered as a 
“way point” in a stepwise search. The difference between R2 with and without Natural 
Cetane as a predictor range from zero to 0.4393. The maximum value is attained when 
the variables for inclusion and exclusion cases are as follows: 
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Nat Cet Den Vis Sul Mono Poly IBP T10 T50 T90 EBP 
Cet Imp Arom Arom 

With Cet 1 1 0 0 0 0 0 1 1 0 0 1 

W/O Cet 0 1 0 0 0 0 0 1 1 0 0 1 

The R2 for the case including Natural Cetane is 0.4489, while the R2 for the case 
excluding it is 0.0096. Thus, the differential R2 associated with Natural Cetane for this 
case in 0.4393. Note that the resulting R2 is about two-thirds of the maximum R2 
achievable by any of the possible scenarios and is a far departure from the nonsignificant 
result indicated by t = 0.85 in Table E.2. 

The distribution of all possible R2 values for Natural Cetane is shown in Figure E. 1 and is 
identical, except for scale differences, to the distribution of all possible sums of squares. 
The histograms were constructed by finding the half of the 4096 subsets that contain 
Natural Cetane and comparing that with the half that does not contain the variable. The 
difference between corresponding “with” and “without” scenarios was computed for each 
pair, and it is these quantities that make up the histograms. 

Figure E.1. Natural Cetane Contributions to R2 

L 

0.02 0.07 0.11 0.15 0.20 0.24 0.29 0.33 0.37 0.42 

R-Square V&e 

Summary statistics, based on Total SS = 1.7936, also were computed as follows: 

ss R2 
0.7879 0.4393 

Min 0.0000 0.0000 
Mean 0.1652 0.0921 
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It may be more than coincidence that these mean values compare favorably with the 
values of 0.1614 and 0.0900 obtained by eigenvector analysis. However, we need to look 
further for a more rational support for the claim that, of all the ways to partition the model 
SS, the partitioning that derives from eigenvector analysis is the “Gold Standard,” or the 
preferred partitioning. 

First, we need to ask what the various partitionings mean? Certainly, each scenario 
implies a different interpretation from all others. In the case of the partitionings arising 
from all possible subsets of the predictor variables, the implications of the various 
scenarios are fairly evident, as is shown below. How these relate to our so-called “Gold 
Standard” partitioning, however, needs to be examined in more detail. 

Suppose that aZZ predictors are included in the model and that a single one of them - say, 
Natural Cetane - is dropped. The difference between the model sum of squares for the 
inclusion and exclusion cases connotes the contribution made by Natural Cetane if it is 
our intent to keep aZZ the predictors in the model. If the one variable is dropped out, that 
deletion may have little effect on the quality of prediction, especially if the predictors are 
highly correlated, because each predictor is doing partof the work for all the others, via a 
process known as aliasing (see Appendix C, Theory). 

Now suppose that we choose to include only half of the predictor variables in the model, 
one of which is Natural Cetane. When that variable is dropped out, whatever contribution 
it is seen to make is the contribution it would make only if the six selected variables are 
the ones that wouldprevail in theJinaZ model. Aliasing will be very different from that 
associated with the 12-variable case, if for no other reason than that there are fewer 
variables to “share the load.” In the most degenerative case, only Natural Cetane is 
included in the model, and the only contribution to the model SS is that made by Natural 
Cetane. 

In short, the contribution that any particular predictor variable makes to the model SS is 
determined by the model environment - that is, the number of variables included in the 
model and the extent to which those variables are correlated. Only in the orthogonal case 
are the contributions invariant with respect to the number of variables retained in the 
model. 

How the various choices for inclusion of a predictor variable affect the computed model 
SS can be made more explicit by what may seem to be an artifice - namely, regressing 
one of the predictor variables on all the others. In subsequent discussion, we shall refer to 
the outcomes of such regressions as interdependency (ID) equations. 

In ID regression, one of the predictor variables, rather than emissions, plays the role of 
response variable and is regressed on all the other predictor variables in the set. The 
outcome of the ID regression is fully analogous to the outcome when it is NO, or PM that 
is being modeled. There is a set of regression coefficients, a model SS, an error SS and 
an R2 statistic, just as in any other regression analysis. Further, one can compute analogs 
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of the “calculated response” and the “residuals” representing the difference between the 
calculated and observed response. 

For each of the 12 candidate predictors, therefore, there exist three associated “response” 
vectors: 

1. The original predictor variable, as reported in the data base 

2. The calculated response, as computed from the ID regression equation 

3. The residual variable, computed as the difference between (1) and (2). 

Vector (2) represents that part of the selected predictor variable that can be “explained 
by” the other predictors in the set. Vector (3) represents that part of the selected predictor 
variable “not explained by” other predictors. 

We now wish to regress emissions - e.g., log(N0,) - on one of the modified predictor 
variables defined above. It would seem reasonable to start with the residual, or “not 
explained by” vector, inasmuch as that vector should be uncontaminated by the other 
predictor variables. Moreover, if that is the only variable included in the model, the 
model SS provides an estimate of the SS that might be attributed to that predictor. 

When Natural Cetane is regressed on all the other P-variables, the resulting R2 is 0.8974. 
This number indicates that nearly 90 percent of the variance among levels of Natural 
Cetane is “explained” by the other predictor variables - e.g., cetane improvement, 
density, aromatics, etc. Similar results are found for each of the other predictor variables 
when they are regressed on all predictors other than the one playing the role of the 
“response” variable. The corresponding R2 values are as follows: 

Table E.3 

Extent to Which a Selected Predictor Variable Can Be 
Explained by Other Variables in the Predictor Set 

Natural Cetane 0.8974 
Cetane Improvement 0.2286 
Density 0.9293 
Viscosity 0.9451 
Sulfur 0.4821 
Mono Aromatics 0.6802 
Poly Aromatics 0.7062 
IBP 0.4665 
TlO 0.8944 
T50 0.9320 
T90 0.9230 
FBP 0.8626 

It would seem that when log emissions are regressed on, say, Natural Cetane, it should be 
regressed on only that part of Natural Cetane that is not explained by other predictor 
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variables. That part, of course, is represented by the residuals left when Natural Cetane is 
regressed on the other predictor variables. Let us concentrate our attention, then, on these 
residuals and think of them as “laundered” values, cleansed of all fragments of the other 
variables in the predictor set. 

The following results are obtained when log(N0,) is regressed on that residual variable 
only: 

Reg Coefficient t Model F t2 R2 
Value Std Err Ratio ss Ratio 

0.0077 0.0150 0.52 0.0017 0.2655 0.2655 0.0010 

It is interesting to compare these results with those obtained when log(NO> is regressed 
on all the unmodzj?ed predictor variables, as shown in Table E.4. It is seen that exactly 
the same regression coefficient is obtained for Natural Cetane but that the composite- 
based estimate has a lower coefficient standard error and, consequently, a higher t-ratio. 

Table E.4 

Comparison of Two Ways to Regress log(N0,) on Fuel Variables 

Composite Regression on One-variable-at-a-time 
Original, Unmodified Predictors Regression on ID Residuals 

Reg Coefficient t Reg Coefficient t 
Value Std Err Ratio Value Std Err Ratio 

0.0077 0.0091 0.85 0.0077 0.0150 0.52 
-0.0115 0.0033 3.47 -0.0115 0.0054 2.12 

0.0458 0.0109 4.18 0.0458 0.0179 2.56 
-0.0380 0.0124 3.06 -0.3800 0.0204 1.86 
-0.0020 0.0040 0.50 -0.0020 0.0067 0.30 

0.0344 0.0051 6.69 0.0344 0.0082 4.17 
-0.0013 0.0054 0.23 -0.0013 0.0089 0.14 
-0.0189 0.0040 4.76 -0.0189 0.0065 2.92 

0.0493 0.0089 5.51 0.0493 0.0145 3.40 
-0.0263 0.0112 2.35 -0.0263 0.0184 1.43 
-0.0263 0.0105 2.51 -0.0263 0.0173 1.52 

0.0265 0.0078 3.37 -0.0265 0.0129 2.06 

The difference in indicated statistical significance comes as no surprise when it is recalled 
that many of the “laundered” predictor variables account for only about 10 percent of the 
information contained in the predictor set (see Table E.3). Despite the evident 
degradation in statistical precision, however, the one-variable-at-a-time regression on ID 
residuals offers an advantage not available via the composite regression on the 
unmodified predictor variables. 

111 



In a nonorthogonal regression framework, it is not possible to obtain SS estimates for 
individual predictor variables except by the inclusion/exclusion routine, and this approach 
provides only conditional partitions dependent on what variables are included in the 
model. Consequently, it is not possible to obtain a unique, unconditional partitioning of 
the model SS to serve as the basis for ranking individual fuel variables according to their 
relative importance in prediction. 

The single-variable partitioning based on ID residuals seems to make such ranking 
possible and to offer exactly the interpretation desired. Consequently, we have plotted in 
Figure E.2 the relative SS as computed from the regression on the ID residuals. For 
comparison, we have plotted the so-called “Gold Standard” SS as Figure E.3. There is 
little similarity. 

With closer examination comes further complication. Just as Natural Cetane is expressed 
in terms of Cetane Improvement and the other predictor variables, Natural Cetane 
excepted, so is Cetane Improvement expressed in terms of Natural Cetane and the other 
predictor variables, Cetane Improvement excepted. Clearly, there is a redundancy here 
that continues to hamper the testing of truly meaningful hypotheses. 

What about the other part of the ID decomposition, the part that is explainable in terms of 
the other predictor variables in the set? This part, of course, stems from the “calculated” 
responses as computed from the ID equation. Accordingly, one can regress log(N0,) 
singly on each of the ID “calculated” vectors just as was done for the ID residuals. The 
results are shown in Figure E.4. When compared with the “Gold Standard” SS, the 
similarity is unquestionable and brings us to our denouement. 

We conclude that the similarity of the two plots in Figures E.3 and E.4 is no mere 
coincidence, but is the result of two related approaches to dealing with the correlation of 
predictor variables in a non-orthogonal environment. Figure E.4 plots the consequences 
of regression log(N0,) on a set of “surrogate variables” designed, via ID regression, to 
take into account the interrelationship among predictor variables. Figure E.3 uses a 
similar ploy, but one that is more direct, more exact, and more elegant. It, too, yields a 
set of surrogate variables called eigenvectors that expresses relationships among the P- 
Space variables just as the “calculated” responses from the ID equations do. 

The two sets of surrogate variables are just two alternative bases for spanning the space of 
the predictor variables, and both can be displayed in vector form. The components of the 
eigenvectors are the P-variable loadings, whereas the components of the ID-derived 
vectors are just the ID equation coefficients with zero filling the slot for the P-variable 
playing the role of the response variable. One might think of the ID set as a “first 
approximation” to the eigenvector set; the two are similar, but only the eigenvector set is 
exact. 
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Figure E.2. SS Obtained from “Not Explained” ID Regressions 
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Figure E.3. SS Obtained from Eigenvector Analysis 
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Figure E.4. SS Obtained from the “Explained” ID Regressions 
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Further support for the superiority of the Gold Standard over other proposed bases 
becomes evident when one compares termwise regression with regression on all terms 
simultaneously. Only in the E-Space of eigenvectors do the two approaches yield 
identical results. 

On the other hand, we have seen elsewhere in this report that an emission model 
expressed in terms of the design-space eigenvectors has an exact equivalent in terms of 
the original, fuel-property variables. Similarly, the model can be expressed in terms of 
either the “calculated” or “residual” response from ID regression. Indeed, the regression 
ANOVA table shown below is applicable whether the response variable is regressed on 
the original predictor variables, the ID “calculated” variables, the ID residuals, or the 
Gold Standard eigenvectors. 

Source ss DF MS 

Intercept 661.6004 1 661.6004 
Model 1.1633 12 0.0969 
Error 0.6303 267 0.0024 
Total 663.3940 280 

Likewise, it can be shown that the predictions from all four versions of the model are 
point-by-point identical. All that is involved is a transformation of basis. All is well so 
long as the model is considered in tub. Only the eigenvector basis, however, provides 
for termwise fitting consistent with the overall model. 

Two points are made clear by the above analysis. One is that there is a mechanism for 
isolating a SS for each predictor and testing that SS for statistical significance by means 
of an F-test. However, the corresponding SS derived from eigenvector analysis differs 
markedly from the SS derived from regressing emissions on ID equation residuals. 
Secondly, the analysis reinforces the perception that conventional regression analysis can 
lead to erroneous interpretation when applied in a nonorthogonal environment. 

Lack of orthogonality and the associated non-additivity of sums of squares has far 
reaching consequences, some of which may not be overt to the data analyst. For example, 
it is well known that non-additivity is the stimulus for computing certain “sums of 
squares adjusted for . ..” (see Appendix C, Theory). That is why it is customary to 
compute SS by the inclusion/exclusion procedure discussed above. However, analysts 
seem to have no problem in judging significance of a predictor by its t-ratio, and they 
place no restrictions similar to additivity on the t-ratio statistics. 

In the application of the t-test, the conventional approach is simply to compute t as the 
ratio of the computed regression coefficient to its standard error. However, the standard 
error is computed by multiplying the residual mean square by the appropriate diagonal 
element of inverse moment matrix (X’X)‘. Unless that matrix is diagonal, the off- 
diagonal terms, when multiplied by the residual mean square, provide estimates of the 
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covariance of pairs of predictor variables. The existence of these finite covariances * 
. . clearly affects how the t-statistics are computed. 

In short, the t-test is subject to the same non-additivity considerations as the F-test, but 
that fact is well disguised. On the contrary, the sums of squares derived from E-Space 
analysis are additive, because they are derived from an orthogonal decomposition of the 
sums of squares associated with uncorrelated eigenvectors. In the case of E-Space 
analysis, therefore, it is appropriate to test the significance of eigenvectors by either the t- 
test or the F-test. For the surnmed components of these eigenvectors, however, it is 
appropriate to pool the SS contributions made by a fuel variable to each of the 
eigenvectors and use that sum in a F-test. The numerator has one degree of freedom, 
while the denominator is the number of error degrees of freedom. 

In conclusion, the eigenvector derivation of P-variable sums of squares is unique, and we 
believe that it is the best choice for arranging predictor variables in order of their 
importance to prediction. We recommend that statistical tests of significance be based on 
F-ratios involving those sums of squares. Further, we propose that the search for the 
optimum submodel be based on the outcome of these tests rather than on the more usual 
t-tests, which are subject to changing aliasing systems as one proceeds stepwise from one 
submodel to another. 
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APPENDIX F: COMPARING THE RESULTS OF 
INDEPENDENT STUDIES 

F.l INTRODUCTION 
The scientific method requires that one evaluate research questions based on the 
preponderance of the evidence in repeated, independent studies. One study is inadequate, 
independent studies frequently disagree and, therefore, one must search for a consensus. 
When using conventional regression analysis, we can apply well known procedures to 
determine whether the differences between two studies are statistically significant - 
typically by testing whether the difference in regression coefficients for, say, the impact 
of sulfur on PM emissions, is sufficiently large that it is unlikely to arise solely by chance. 

How does one make similar comparisons when using the eigenfuel methodology 
developed here? After all, two researchers using independent Data sets will estimate 
eigenfuel slates that differ from each other to at least some extent. Since these are the 
independent variables, can one even formulate a proper comparison between the 
regression coefficient estimated for eigenvector 1 in the first data set and a different 
eigenvector 1 in the second data set? As will be shown below, comparisons can properly 
and readily be made by transforming the results to a common basis, and then applying the 
customary tests of statistical significance. 

The need to transform to a common basis may appear to be a limitation or complication 
of the eigenfuel methodology. In conventional regression analysis, the independent 
variables are fixed, and we can compare, for example, a sulfur effect in one study to a 
sulfur effect in another. Yet, we should remember that variables perceived as being the 
primary predictors in a regression model will typically be correlated and that the resulting 
regression coefficients will reflect that correlation. The extent of the correlations will 
differ in another data set and study, as will the variables included in the regression 
models. 

Thus, a variable such as sulfur content will actually stand for a unique set of influences in 
each independent data set and study, and the comparison between two studies will be 
confounded by these differences. This problem is merely more apparent in the eigenfuel 
methodology and less often acknowledged in conventional regression analysis. 

F.2 METHODS FOR COMPARISON 

To demonstrate the methods for comparing eigenfuel studies, we have divided the full 
data set into two subsets of similar size. If done by random selection, it would be no 
surprise to find that the subsets are similar, on average, in terms of the fuels and engines 
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tested and the sources from which they are drawn. We have, therefore, attempted to 
maximize the differences and strengthen the comparison through a systematic method of 
subsetting. Subset A (158 tests in total) was defined to include all data from four sources 
that report work by Southwest Research Institute (SWRI) for the Coordinating Research 
Council (CRC) engine test series, including: 

l CRC VE-1 (SAE 892072) 
l CRC VE-1 Phase II (SAE 902171) 
l CRC VE-10 (SAE 941020 and SAE 950250) 

Some fuels were used in more than one phase of the CRC testing and, where new fuels 
were formulated for the later testing, it is likely that similar blend stocks or procedures 
were used in their creation. Thus, we expect the fuels in subset A to be more uniform 
than we might find in a diverse collection of independent sources. 

Subset B (122 tests) was formed from the 5 sources that comprise the remainder of the 
data set. One source used in this subset reports testing performed at SWRI and, therefore, 
may not be completely independent of subset A. Nevertheless, subset B testing includes 
4 apparently independent testing programs and represents a more diverse, and less 
systematic, collection of engine/fuels testing. 

We will treat subsets A and B as independent Data sets used in two studies A and B. 
Each study is assumed to standardize its data independently, to conduct a principal 
components analysis to determine the eigenvectors of its data set, and to use the 12 
eigenvectors, along with controls for individual engines, in a regression analysis similar 
to that shown for the full data set in Section 2.3.3. 

In the real world, the researchers would probably apply methods of simplification to 
reduce the number of eigenvectors and individual fuel property variables retained in the 
final emissions models. For purposes of this demonstration, however, we will retain all 
eigenvectors and fuel properties in the comparison. Our primary objective is to show the 
process for making the comparisons and not to interpret or resolve any differences that 
are found. 

F.2.1 The Independent Studies 

The tables found at the close of this appendix summarize the basic results of studies A 
and B, including: 

l Subset eigenvectors (F.A.l and F.B. 1) 
l NOx regression results (F.A.2 and F.B.2) 
l PM regression results (F.A.3 and F.B.3) 

The studies report similar results in many respects: 
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l A relatively few eigenvectors account for most of the variance in the fuels - 7 
account for 98 percent in subset A, while 8 account for the same amount in subset 

l One eigenvector (number 2 in each subset) is most important in explaining NOx 
emissions, and three are enough to account for 90 percent of the total emissions 
effect that is related to the fuels. However, the three most important eigenvectors 
differ between the subsets - numbers 2, 1, and 3 in subset A, and numbers 2, 1, 
and 6 in subset B. 

l In subset A, three eigenvectors (numbers 3,2, and 4) are important in explaining 
the fuels-related effect on PM. In subset B, one eigenvector (number 1) is 
dominant, while vectors 2,3, and 9 also contribute. 

The two studies also generally identify a similar set of fuel properties as being important 
to emissions as summarized in Table F. 1. The set includes cetane rating, density, sulfur 
content, mono- and poly-aromatics content and, in some instances, one or more points on 
the distillation curve. 

Table F.l: Important Fuel Properties to Emissions Explanation 

Subset A Subset B 

NOx PM NOx PM 

Natural Cetane Yes Yes Yes No 
I I I I 

IC etane Yes 
Improvement 

Viscosity 

Density 

No No 

Yes Yes 

No 

Yes 

Yes 

Yes 
/ 

Sulfur Content 

Mono-Arom 

Poly-Arom 

Distillation Curve 

No 

Yes 

Yes 

T90 

Yes 

Yes 

Yes 

TlO 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

FBP 
TlO 
T50 
T90 
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At the same time, there are easily apparent differences. The eigenvectors often have 
dissimilar internal structures and, where structures are similar, the component weights are 
different. Further, there are differences in which eigenvectors and fuel properties are 
found to be important to emissions. 

F.2.2 Comparing the Studies 

We have several choices in seeking a common basis for comparison. First, researchers 
could transform their results into emissions coefficients and sum-of-squares partitioning 
by fuel property and conduct the comparison in “P-space”. This comparison could 
always be made if researchers were to adopt the convention of publishing the P-space 
transformations of their results. It will, however, lose information linked to the 
eigenvectors, and not their individual components. 

To retain this information, one could chose to transform the results of study A into the 
eigenvector space of study B (or vice versa), or one could transform both studies into the 
eigenvector space of a third, reference study. We will adopt the latter approach and use 
the eigenvectors of the full data set as a reference space for the purposes of this 
demonstration. However, the reference space could as well be another, completely 
independent study. 

F.2.2.1 Comparing the Eigenvectors 

As a first step, let us express the eigenvectors of each subset in terms of the reference 
eigenvectors from the full data set. First, we define the following matrices: 

fuelqc-ref = reference eigenvectors 

fuel_pcA = eigenvectors from subset A 

fuelqcB = eigenvectors from subset B 

where eigenvectors form the columns and the fuel properties form the rows. The 
transpose of any such matrix places the eigenvectors in the form of a row-oriented fuels 
data set. This can then be expressed in terms of an eigenvector basis by applying the 
matrix operation (fuel matrix) * (eigenvector matrix). Hence, subset A eigenfuels are 
expressed in terms of the reference eigenvectors by the operation 

fuelgcA’ * fuelgc-ref, 

and subset B eigenfuels are similarly expressed in reference terms by: 

fuelqcB’ * fuelqc-ref. 
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Having done so, each subset eigenvector is represented as a weighted sum of the 
reference eigenvectors. The coefficients of this representation contain the information 
needed to map the results of each study into the reference space, where they can be 
compared on a common basis. The squares of the weighting coefficients are convenient 
measures of the relationship between subset and reference eigenvectors because they state 
the proportion of the variation in the subset vector that maps into each of the reference 
vectors. Thus, Table F.2 summarizes the squared coefficients for subset A vectors, while 
Table F.3 summarizes the same for subset B. The largest squared coefficients have been 
highlighted. 

Perfect correspondence between the subset and reference eigenvectors would result in a 
diagonal, unit matrix, and we see, in general, that the diagonal elements for the two 
subsets do not depart greatly from it. It is also true that the subset A eigenfuels tend to 
map into 2 or 3 different reference vectors in most cases. Subset B eigenfkels map more 
frequently into a single, corresponding reference vector, although B4 and B5 map into a 
mixture of 3 reference vectors and B7, Bl 1, and B12 into two. This is consistent with the 
notion that fuels in subset A share an experimental design selected for the SWRIKEC 
testing, which was possibly dissimilar fi-om the existing database of fuels overall, while 
fuels in subset B are more diverse and reflective of fuels in general. 

F.2.2.2 Transforming to the Reference Space 

Let us now transform the results of study A into equivalent results in the reference 
eigenvector space. The transformation matrix is defined as follows: 

PCA_transform=fuelqc’ *fuelpc-ref; 
PCA_transform=PCA_transform’ 

Then, the NOx regression coefficients and standard errors are transformed as follows: 

coeffs=NOx_coeffs(7:18,1) 
-0.0089 

0.0211 
-0.0120 

0.0021 
-0.0060 
-0.0108 
-0.0015 
-0.0214 

0.0279 
0.0245 
0.0199 

-0.0131 
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Table F.2. Subset A Eigenvectors in Terms of Reference Vectors (squared coefficients) 
I 

1 2 3 4 5 -6 7 8 9 10 11 12 

0.805 0 157 
0.187 0.721 
0.001 0.007 
0.000 0.071 
0.002 0.021 
0.004 0.005 
0.000 0.013 
0.000 0.002 
0.000 0.000 
0.001 0.003 
0.000 0.001 
0.000 0.000 

0.014 0.003 0.001 0.012 0.000 0.005 
0.059 0.003 0.002 0.009 .0.005 0.005 
0 347 L 0.616 0.001 0.001 0.000 0.000 
0.561 0.335 0.006 0.001 0.012 0.000 
0.006 0.000 0 748 L 0.156 0.021 0.034 
0.002 0.000 0 207 L 0.409 0 292 L 0.036 
0.009 0.015 0.031 0.214 0 550 L 0.067 
0.000 0.023 0.002 0.116 0.052 0.070 
0.000 0.003 0.001 0.061 0.002 0.754 
0.000 0.000 0.000 0.014 0.061 0.018 
0.001 0.001 0.000 0.007 0.001 0.008 
0.002 0.000 0.000 0.000 0.004 0.002 

0.003 0.000 0.000 0.000 
0.006 0.003 0.000 0.001 
0.020 0.000 0.004 0.003 
0.005 0.001 0.008 0.000 
0.012 0.000 0.000 0.000 
0.008 0.000 0.036 0.002 
0.039 0.001 0.061 0.000 
0.631 0.007 0.086 0.012 
0 158 L 0.006 0.000 0.013 
0.040 0.014 0.645 0 204 L 
0.038 0 680 0.077 L 0 I.86 L 
0.040 0 288 0.084 A 0.579 

Ref EV 1 
Ref EV 2 
Ref EV 3 
Ref EV 4 
Ref EV 5 
Ref EV 6 
Ref EV 7 
Ref EV 8 
Ref EV 9 
Ref EV 10 
Ref EV 11 
Ref EV 12 

Table F.3. Subset B Eigenvectors in Terms of Reference Vectors (squared coefficients) 

1 2 3 4 5 6 7 8 9 10 11 12 

Ref EV 1 0 921 0.041 - 0.016 0.008 0.003 0.010 0.000 0.001 
Ref EV 2 0.048 0.752 0.050 0.088 0.000 0.038 0.007 0.002 
Ref EV 3 0.011 0.052 0 845 L 0.000 0.017 0.043 0.019 0.005 
Ref EV 4 0.000 0.052 0.008 0.286 0 554 - 0.093 0.000 0.002 
Ref EV 5 0.010 0.005 0.058 0.113 0.010 0 665 L 0.125 0.002 
Ref EV 6 0.001 0.020 0.007 0.323 0.177 0.019 0 408 L 0.015 
Ref EV 7 0.006 0.059 0.000 0.146 0 224 L 0.112 0.412 0.020 
Ref EV 8 0.001 0.013 0.007 0.020 0.006 0.005 0.000 0 921 L 
Ref EV 9 0.000 0.001 0.001 0.002 0.000 0.008 0.004 0.027 
Ref EV 10 0.000 0.004 0.001 0.015 0.000 0.001 0.009 0.004 
Ref EV 11 0.000 0.001 0.001 0.001 0.002 0.001 0.015 0.000 

0.000 0.000 
0.009 0.001 
0.000 0.000 
0.001 0.002 
0.000 0.010 
0.021 0.003 
0.000 0.000 

0.005 0.019 
0.033 0 884 
0.845 0.036 
0.044 0.033 

0.000 0.000 
0.000 0.004 
0.001 0.007 
0.001 0.000 
0.000 0.000 
0.006 0.001 
0.020 0.000 
0.002 0.001 
0.000 0.041 
0.083 0.001 
0.497 0.405 
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new-stderrs=sqrt( (PCA-transform ,. 

0.0011 
0.0015 
0.0026 
0.0023 
0.0025 
0.0040 
0.0050 
0.0075 
0.0064 
0.0130 
0.0128 
0.0150 

new-coeffs=PCA-transformtcoeffs 
0.0000 
0.0235 
0.0059 
0.0058 

-0.0097 
0.0018 

-0.0036 
-0.0232 
-0.0095 
-0.0178 

0.0385 
0.0078 

stderrs=NOx_coeffs(7:18,2) 

0.0008 
0.0009 
0.0016 
0.0023 
0.0019 
0.0027 
0.0040 
0.0060 
0.0073 
0.0118 
0.0126 
0.0172 

"2) * (stderrs."2) ) 

The same procedures would be used to transform PM coefficients and standard errors. 

When all regressors are independent, as in a regression model containing only eigenvector 
variables, the transformed coeffkients and standard errors will be identical to those that 
would be estimated in a regression using the reference-space eigenvectors. (See 
Appendix D, section D.3). In the emission models considered here, the eigenvector 
variables are combined with dummy variables representing individual engine effects. 
This slate of regressors is not completely independent because of non-zero correlations 
that exist between dummy variables and the eigenvectors. The coefficients still transform 
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properly in this circumstance, but the transformed standard errors are only approximate. 
It is thought that the approximate standard errors are acceptable for purposes of 
comparing studies. 

F.2.2.3 Comparing the Study Results 

The procedures shown above have been applied to the NOx and PM regressions from 
each subset to transform the results to the common basis of the reference eigenvectors. 
The subset regressions are compared directly in the reference space, and are then 
transformed to the P-Space of the individual fuel properties for further, but brief, 
comparison. Highlights are discussed below. 
Several comparisons may be appropriate to make when studies are placed on a common 
basis in the reference space. We may be interested to know which of the effects are 
statistically significant, whether the effects are of similar size, and how much they 
contribute to the fuels-related SS. The first two questions taken together relate to whether 
the studies concur on the identity and magnitude of the causal factors and are the ones on 
which we will focus. 

The third question, related to the SS partitioning, adds information on the relative 
importance of the variables in each study, but is a less direct means of comparing the 
studies. The SS contributions of any explanatory variable will depend on the estimated 
magnitude of the effect and the variation of the variable in the data set. Two studies may 
agree on the magnitude of an effect, but one study may show a much smaller contribution 
to the SS because that variable was varied much less in its database. We will consider, 
but not emphasize, this comparison. 

Comparing the magnitude of effects estimated in the two studies can be treated by testing 
whether the observed differences in magnitude are statistically significant. This is the 
Behrens-Fisher problem of testing the hypothesis that two means are equal in the 
circumstance where the population variances (equal to the square of the standard errors) 
are unknown and may be unequal. Several treatments have been proposed for this 
problem, although its solution remains controversial. For purposes of this paper, the test 
will be made using the Smith-Satterthwaite procedure’, which is labeled the “SmSw” test 
in the tables. This procedure is said to “perform well when variances are unequal, but it 
yields results that are virtually equivalent to those obtained with the pooled t-test when 
variances are equal.” Thus, it can be applied without first testing whether the variances 
can be pooled. 

’ Introduction to Probability and Statistics: Principals and Applications for 
Engineering and the Computer Sciences, Milton and Arnold, Irwin McGraw Hill, 
1995. pp. 351-353. 
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Table F.4 presents the NO, regression coefficients transformed to the space of the 
reference eigenvectors. (This tabulation, like its companions, omits the dummy variable 
effects estimated for the individual engines.) The t-ratio and the percentage contribution 
to the SS are also given. The center column identifies whether the difference in 
coefficient values between the Data sets is statistically significant at the 0.05 level. We 
see the following major points of comparison in the table: 

l Both subsets agree that reference vector number 2, which was previously 
identified as representing high-aromatic cracked stocked in diesel fuel blends, is 
the dominant effect on NOx emissions. It is highly significant and accounts for 
approximately 80 percent of the fuels-related SS in both subsets. The subsets 
concur that reducing the proportion of reference vector 2 in a diesel me1 blend, 
will reduce NO, emissions. 

l The subsets disagree, however, on the magnitude of the effect for reference vector 
2. Subset B estimates a magnitude that is twice as large as in Subset A, and the 
difference is found to be significant at better than the 0.05 level (SmSw test ratio 
of 7.0). This difference could be related to the model year of the vehicles 
involved, since some investigators believe the effect of fuels on emissions is 
lessened in vehicles certified to tighter standards. We have not attempted to 
identify the cause for this difference. 

.’ 

Table F.4. NO, Regression Coefficients (excluding engine effects) 

Subset A Regression Subset B Regression 

Reference Coefficient t-ratio SS Part 
SmSw 

test Coefficient t-ratio ss Part 
Eigenvector percent percent 

1 0.0000 0.04 0.00 Dif 0.0074 4.97 3.56 
2 0.0235 15.97 78.98 Dif 0.0472 15.54 82.38 
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l The subsets agree that vectors 4,5,8, and 11 .make meaningful contributions to 
explaining the 20 percent of the SS remaining after reference vector 2 is 
accounted for. They differ, however, in the order of importance in partitioning the 
SS on the directional impact on emissions for vectors 8 and 11. Subset A would 
add vector 3 to the list of contributors, while subset B would add vector 1, Where 
the comparisons are meaningful, it is generally true that subset B estimates a 
larger impact on NOx emissions. 

Thus, the two subsets concur on the overriding importance of reducing eigenvector 2 as a 
means of reducing NOx emissions, although they disagree on the magnitude of the effect, 
and they also disagree to some extent on the smaller influences. 

We see much less apparent agreement when the results for NOx emissions are stated in 
terms of the individual fuel properties, as shown in Table F.5. Here, we will examine 
differences in the size of coefficients and the SS partitioning, but we will not attempt to 
apply the Smith-Satterthwaite test to the differences in the coefficients. 

Table F.5. NOx Regression Coefficients for Fuel Properties 

Subset A Regression Subset B Regression 
SmSw . 

Fuel Coefficient t-ratio SS Part test Coefficient t-ratio ss Part 
Property percent percent 

NatCetane 0.0079 1.07 11.27 n/a -0.0288 -2.66 31.53 

CetImprv -0.0069 -3.02 1.34 n/a -0.0186 -5.04 2.07 

Density 0.0048 0.57 0.0583 4.23 36.08 

Viscosity 0.0179 1.36 0.12 n/a -0.0221 -1.61 0.30 

Sulfur -0.0057 -1.54 0.63 n/a 0.0034 1.09 1.02 

MonoArom 0.0309 8.36 33.75 n/a 0.0175 2.55 23.65 

PolyArom 0.0292 4.76 29.18 n/a -0.0078 -1.54 5.14 

IBP -0.0057 -1.41 0.56 n/a -0.0038 -0.80 0.04 

TlO -0.0049 -0.59 0.00 n/a 0.0025 0.18 0.01 

T50 -0.0022 -0.21 0.13 n/a -0.0091 -0.69 0.00 

T90 -0.0294 -2.92 6.38 n/a 0.0239 1.90 0.06 

FBP -0.0003 -0.04 2.28 n/a -0.0128 -1.27 0.10 
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Subset A shows mono- and poly-aromatics content and T90 to have the largest effects, 
based on the size of the regression coefficient, with mono-aromatics content most 
important when viewed in terms of the SS partitioning. Subset B agrees on the 
magnitude of the effect for mono-aromatics content, but disagrees on the algebraic sign 
and magnitude of the other two effects. 

Conversely, subset B shows density to have the largest effect, followed by natural cetane 
and T90, with density and natural cetane being most important in terms of SS. Subset A 
disagrees on the magnitude of the density coefficient, given the standard errors, and both 
the algebraic signs and magnitudes of the other two effects. 

Table F.6 presents the PM regression coefficients transformed to the reference 
eigenvector space. In subset A, reference eigenvectors 2 and 3 are highly significant and 
account for 88 percent of the fuels-relate SS. Reference vectors 1,9, and 10 also 
contribute, although vector 10 fails the significance test. All other reference vectors both 
fail the test of significance and make negligible contributions to the SS. 

r 

t 

Table F.6. PM Regression Coefficients (excluding engine effects) 

Subset A Regression Subset B Regression 
SmSw 

Reference Coefficient t-ratio ss Part test Coefficient t-ratio SS Part 
Eigenvector percent percent 

1 0.0142 2.86 4.20 Dif 0.0294 10.31 31.80 

2 0.0616 9.36 45.15 - 0.0467 8.05 46.06 

3 0.0778 6.67 43.06 Dif 0.0227 3.48 6.50 

4 0.0014 0.14 0.01 - -0.0200 -3.14 3.84 

5 0.013 1 1.19 0.54 - -0.0053 -0.76 0.15 

6 -0.0015 -0.08 0.01 - -0.0177 -2.09 1.44 

7 -0.0046 -0.21 0.04 - 0.0172 1.94 0.94 

8 -0.0267 -0.80 0.76 - 0.0083 0.64 0.13 

9 -0.0640 -2.25 2.64 - -0.0285 -1.00 0.93 

10 0.0928 1.60 3.27 Dif -0.1038 -4.37 7.24 

11 0.0421 0.74 0.29 - 0.0533 1.47 0.83 

12 0.0195 0.29 0.05 - 0.025 1 0.69 0.13 



In subset B, reference vector 2 is, again, most important, but is accompanied by vector 1 
(not 3) in making the largest SS contribution. Reference vectors 10,3,4, and 6 also 
contribute, while the remaining vectors fail on significance and SS contributions. The 
major points of comparison for PM are: 

l Reference vector number 2 is the most important contributor to emissions. In 
addition, the subsets agree on the magnitude of the effect on PM emissions, with 
the difference between the coefficients found not to be significant at the 0.05 
level. 

l Vectors 1 and 3 are also important, as was found in the analysis of the fkll data 
set, but the subsets disagree on the relative importance. The magnitude of the 
effect for reference vector 1 differs (weakly) between the subsets (t-ratio of 2.65), 
while the difference for vector 3 is both larger and more strongly significant (t- 
ratio of 4.12). 

. Both subsets suggest that reference vector 10 may have an impact on PM 
emissions, but disagree on relatively small effects among vectors 4, 5, and 9. 

Transformed to P-space (see Table F.7), subset A indicates that sulfur content has the 
largest effect on PM emissions, measured by the SS explanation, followed by poly- 
aromatics content, natural cetane, density, cetane improvement, and mono-aromatics 
content. Subset B indicates that density and poly-aromatics content have the largest 
effects, again measured by SS explanation, followed by mono-aromatics content, sulfur 
content and FBP. Hence, there is substantial discord among the two subsets when viewed 
in terms of the effects attributed to fuel properties. The subsets also disagree on the 
algebraic sign of the emissions effect for 5 of the 12 fuel properties, although they agree 
on the magnitude of the individual effects for all but one fuel property (FBP) within the 
bound determined by the standard errors,. 

The finding of conflicting results when emissions effects are compared in P-space has 
been one of the recurring themes in the study of fuel effects on emissions. The two 
hypothetical studies created by subsetting the database tend to show more agreement on 
the fuel factors affecting emissions when they are described as eigenfuels, rather than 
individual fuel properties. This is thought to reflect, as seen elsewhere in this report, the 
reality that fuel properties tend to act in concert through the components present in the 
diesel fuel blends. Fuels formed of similar components in two samples may yield similar 
test results when viewed in eigenfuel terms. Yet, to the extent that the components are 
combined in different ways and proportions in the samples, the individual properties will 
be varied by different amounts, and the correlations among properties may lead to 
apparently different impacts on emissions. 
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Table F.7. PM Regression Coefficients for Fuel Properties 
I I I 
I Subset A Regression ) I Subset B Regression 

SmSw 
Fuel Coefficient t-ratio SS Part test Coefficient t-ratio ss Part 

Property percent percent 

NatCetane -0.0478 -1.45 9.11 n/a 0.0400 1.93 1.54 

CetImprv -0.0276 -2.70 4.19 n/a -0.0039 -0.56 0.02 

Density -0.0339 -0.90 5.51 n/a 0.0555 2.11 24.69 

Viscosity 0.0655 1.12 1.21 n/a 0.0168 0.64 1.09 

Sulfur 0.0596 3.62 29.55 n/a 0.0237 3.94 11.08, 

MonoArom 0.0252 1.52 4.01 n/a 0.0464 3.55 17.77 

Poly Arom 0.0938 3.43 41.20 n/a 0.0432 4.45 22.44 

IBP 0.0057 0.32 0.29 nla -0.0121 -1.34 0.12 

TlO 0.0173 0.47 2.46 n/a 0.008 1 0.31 2.15 

T50 -0.0304 -0.65 0.00 n/a -0.0261 -1.04 0.68 

T90 0.0276 0.61 0.19 n/a -0.0582 -2.42 0.61 

FBP -0.0481 -1.45 2.28 da 0.0767 3.98 17.79 
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Table F.A.1: Subset A Eigenvectors 

NatCetane 0.283 -0.385 0.197 -0.238 0.012 -0.273 0.048 -0.053 0.618 -0.298 0.353 -0.034 
CetImprv -0.079 0.142 0.386 0.333 0.753 -0.337 0.105 0.123 -0.064 -0.055 0.012 0.006 
Density 0.049 0.500 -0.321 0.087 0.044 0.254 0.131 0.334 0.059 -0.444 0.489 -0.039 
Viscosity 0.467 0.013 -0.118 0.061 0.204 0.129 -0.159 -0.118 -0.050 0.363 0.169 -0.709 
Sulfur -0.074 0.031 -0.237 -0.700 0.293 -0.271 -0.399 0.260 -0.223 0.049 0.065 0.069 
MonoArom -0.064 0.464 0.078 0.256 -0.321 -0.444 -0.566 -0.135 0.224 0.097 0.102 0.010 
PolyArom -0.104 0.462 -0.198 -0.326 0.093 -0.183 0.492 -0.292 0.362 0.156 -0.292 -0.139 
IBP 0.207 -0.214 -0.477 0.293 -0.167 -0.543 0.24.3 0.423 -0.060 0.057 -0.169 -0.041 
TlO 0.409 0.005 -0.347 0.099 0.204 -0.090 -0.082 -0.615 -0.230 -0.288 -0.026 0.362 
T50 0.452 0.143 0.011 0.031 0.153 0.285 -0.118 0.309 0.368 0.379 -0.191 0.495 
T90 0.387 0.206 0.321 -0.152 -0.149 -0.003 -0.092 0.180 -0.123 -0.496 -0.549 -0.237 
FBP 0.329 0.207 0.378 -0.197 -0.278 -0.206 0.367 -0.004 -0.412 0.258 0.374 0.192 

Eigenvalues 4.187 3.009 1.676 1.519 0.785 0.410 0.176 0.096 0.078 0.039 0~017 0.009 

Pet Variance 34.893 25.075 13.964 12.656 6.542 3.416 1.466 0.797 0.646 0.326 0.144 0.074 
Cumulative Pet 34.893 59.968 73.932 86.589 93.130 96.546 98.012 98.809 99.455 99.782 99.926100.000 

1 2 3 4 5 6 7 8 9 10 11 12 
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Table F.A.2: Subset A NOx Regression Table F.A.3: Subset A PM Regression 

Ln(NOx) Emissions Ln(PM) Emissions 

R2 = 0.8728 R2 = 0.9783 

Coeff Std Err t-ratio 
-------- Intercept ------- 

1.5397 0.0047 326.0628 
----- Engine Effects m---e 

0.0213 0.0055 3.8729 
-0.0311 0.0054 5.7813 

0.0189 0.0077 2.4617 
0.0483 0.0097 4.9769 
0.0215 0.0099 2.1747 
---- Eigenfuel Effects --- 

-0.0089 0.0008 10.5253 
0.0211 0.0009 22.7107 

-0.0120 0.0016 7.5935 
0.0021 0.0023 0.8835 

-0.0060 0.0019 3.1693 
-0.0108 0.0027 4.0438 
-0.0015 0.0040 0.3890 
-0.0214 0.0060 3.5905 

0.0279 0.0073 3.8041 
0.0245 0.0118 2.0725 
0.0199 0.0126 1.5768 

-0.0131 0.0172 0.7606 

Fuels SS 
(percent) 

15.5 
62.9 
11.3 

0.3 
1.3 
2.2 
0.0 
2.1 
2.8 
1.1 
0.3 
0.7 

Coeff Std Err t-ratio 
-------- Intercept --I---_ 

-0.7376 0.0211 34.9909 
----- Engine Effects ----- 

-0.6060 0.0245 24.7369 
-0.5933 0.0240 24.7358 
-0.9743 0.0342 28.5010 
-1.4283 0.0433 32.9788 
-1.6054 0.0442 36.3219 

---- Eigenfuel Effects --- 
-0.0088 0.0038 2.3487 

0.0456 0.0041 10.9961 
-0.0660 0.0071 9.3598 
-0.0549 0.0104 5.2863 

0.0158 0.0085 1.8674 
-0.0258 0.0119 2.1751 
-0.0286 0.0177 1.6123 
-0.0477 0.0266 1.7957 
-0.0059 0.0327 0.1811 

0.0324 0.0527 0.6138 
-0.0724 0.0563 1.2854 
-0.0771 0.0767 1.0057 

Fuels SS 
(Percent) 

1.7 
32.1 
37.5 
23.5 

1.0 
1.4 
0.7 
1.1 
0.1 
0.2 
0.5 
0.3 

C 
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Table F.B.l: Subset B Eigenvectors 

NatCetane 
CetImprv 
Density 
Viscosity 
Sulfur 
MonoArom 
PolyArom 
IBP 
TlO 
T50 
TYO 
FBP 

Eigenvalues 

1 2 3 4 5 6 7 8 9 10 11 12 

0.056 -0.645 0.017 -0.034 0.172 -0.115 0.079 -0.457 0.276 -0.100 0.427 -0.232 
-0.079 0.235 0.685 0.402 0.172 -0.403 -0.261 -0.183 0.066 -0.094 -0.023 -0.009 
-0.347 0.324 -0.036 -0.148 -0.116 0.142 -0.249 0.107 0.434 0.181 0.194 -0.621 
-0.385 -0.054 0.131 -0.255 -0.037 -0.009 -0.269 0.122 -0.564 -0.023 0.579 0.154 
-0.197 0.168 -0.499 -0.011 0.607 -0.549 0.051 0.105 -0.015 0.011 0.014 -0.014 
-0.212 0.496 0.014 -0.120 0.102 0.260 0.461 -0.572 0.017 -0.132 0.158 0.185 
-0.169 0.002 -0.450 0.730 -0.166 0.211 -0.295 -0.175 -0.039 -0.131 0.136 0.092 
-0.292 -0.061 -0.048 0.112 -0.625 -0.526 0.418 -0.030 -0.004 0.231 0.017 0.001 
-0.379 -0.132 -0.051 -0.267 -0.169 -0.091 -0.163 -0.043 0.114 -0.739 -0.375 0.026 
-0.370 -0.213 -0.004 -0.164 0.098 0.080 -0.316 -0.332 0.113 0.557 -0.362 0.333 
-0.348 -0.225 0.141 0.231 0.237 0.238 0.317 0.024 -0.441 0.647 -0.318 -0.493 
-0.349 -0.172 0.189 0.196 0.186 0.208 0.296 0.499 0.436 -0.040 0.166 0.374 

5.621 2.111 1.173 0.966 0.734 0.519 0.365 0.277 0.109 0.081 0.026 0.019 

Pet Variance 46.845 17.592 9.771 8.048 6.113 4.325 3.041 2.309 0.907 0.674 0.219 0.157 
Cumulative Pet 46.845 64.437 74.208 82.256 88.369 92.694 95.735 98.044 98.951 99.624 99.843100.000 
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Table F.B.2: Subset B NOx Regression Table F.B.3: Subset B PM Regression 

Ln(NOx) Emissions Ln(PM) Emissions 

R2 = 0.9544 

Coeff Std Err t-ratio 
-------- Intercept -e----- 

1.5471 0.0100 154.3597 
----- Engine Effects B---e 

0.0006 0.0127 0.0508 
-0.1617 0.0187 8.6526 
-0.1594 0.0179 8.9175 

0.0099 0.0160 0.6193 Fuels SS 
---- Eigenfuel Effects --- (Percent) 

-0.0153 0.0013 12.0045 21.9 
0.0422 0.0024 17.4835 62.8 

-0.0151 0.0030 5.1215 4.5 
-0.0139 0.0033 4.2184 3.1 
-0.0046 0.0032 1.4407 0.3 

0.0244 0.0031 7.7331 5.1 
0.0092 0.0042 2.1999 0.5 
0.0091 0.0066 1.3838 0.4 
0.0123 0.0115 1.0653 0.3 
0.0083 0.0152 0.5464 0.1 

-0.0190 0.0201 0.9479 0.2 
-0.0498 0.0190 2.6192 0.8 

R2 = 0.9918 

Coeff Std Err t-ratio 
-------- Intercept ------- 

-1.5968 0.0192 83.3754 
----- Engine Effects ---em 

-0.9304 0.0243 38.3114 
-0.1644 0.0357 4.6044 
-0.8385 0.0341 24.5574 
-0.0282 0.0305 0.9229 Fuels SS 

---- Eigenfuel Effects - (Percent) 
-0.0413 0.0024 16.9997 73.8 

0.0226 0.0046 4.9006 8.3 
-0.0259 0.0056 4.5970 6.1 

0;0126 0.0063 1.9955 1.2 
0.0152 0.0061 2.5009 1.3 
0.0186 0.0060 3.0899 1.4 
0.0018 0.0080 0.2234 0.0 
0.0045 0.0126 0.3585 0.0 
0.0813 0.0220 3.6917 5.5 

-0.0347 0.0290 1.1949 0.7 
0.0887 0.0384 2.3110 1.6 
0.0200 0.0364 0.5489 0.1 
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APPENDIX G: BOOTSTRAP SAMPLING 

This appendix summarizes the use of bootstrap sampling to understand the behavior of 
diesel fuel eigenvectors. It covers these topics: 

l The generation of bootstrap samples to simulate the variability of fuel 
eigenvectors 

l The determination of variability for the eigenvalues 
l Whether eigenvectors of substantially similar composition reoccur across the 

samples 
l The variation of the coeffkients that make up the eigenvectors. 

G.1 Generation of Bootstrap Samples 

A program for the bootstrap analysis is attached as an addendum (Exhibit G.l) to the 
appendix. The eigenfuel analysis is done by sampling from the original (unstandardized) 
testfuels data set, and the results are saved in arrays with the “-ref’ suffix. Nboot=l 000 
samples are taken directly from testfuels, each sample is standardized to mean=0 and 
variance=1 , and the eigenfuels analysis is done on the correlation matrix. 

The eigenvalue and eigenvector results from the samples are stored in the 3-dimensional 
matrices Eigval-samp, Eigvec-samp, Explain-samp. The rightmost subscript indexes a 
third dimension representing the samples, so that, for example, Eigvec-samp( : , : , n) is 
the plane representing the n* sample. The eigenvectors form the columns of this plane, 
while their coefficients go down the rows. 

G.2 SUMMARY STATISTICS ON THE BOOTSTRAP SAMPLES 

The first step in analysis is to generate basic descriptive statistics on the variation of the 
eigenvalues. The lower and upper limits of the 95 percent confidence interval are 
determined by reading sampled eigenvalues at the 25* and 975* entries (in sort order), 
respectively: 

Eigenvalue 1 Descriptive Statistics 
Minimum = 3.9474 
Maximum = 5.169 
Not a Number= 0 

Mean = 4.5755 
Median = 4.5779 
Std Dev = 0.1904 
Coeff of Var= 0.041614 
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95 percent CL Lower= 4.2257 
95 percent CL Upper= 4.9494 
Eigenvalue 2 Descriptive Statistics 
Minimum = 2.196 
Maximum = 3.0288 
Not a Number= 0 

Mean = 2.5927 
Median = 2.5948 
Std Dev = 0.12173 
Coeff of Var= 0.04695 

95 percent CL Lower= 2.3430 
95 percent CL Upper= 2.8224 

Eigenvalue 3 Descriptive Statistics 
Minimum = 1.3406 
Maximum = 1.7258 
Not a Number= 0 

Mean = 1.5434 
Median = 1.5424 
Std Dev = 0.05633 
Coeff of Var= 0.036496 

95 percent CL Lower= 1.4318 
95 percent CL Upper= 1.6567 

Eigenvalue 4 Descriptive Statistics 
Minimum = 0.86965 
Maximum = 1.5141 
Not a Number= 0 

Mean = 1.1766 
Median = 1.1786 
Std Dev = 0.11881 
Coeff of Var= 0.10098 

95 percent CL Lower= 0.94929 
95 percent CL Upper= 1.40170 

Eigenvalue 5 Descriptive Statistics 
Minimum = 0.58684 
Maximum = 0.81755 
Not a Number= 0 

Mean = 0.68577 
Median = 0.68541 
Std Dev = 0.036026 
Coeff of Var= 0.052533 

95 percent CL Lower= 0.61639 
95 percent CL Upper= 0.75805 
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Eigenvalue 6 Descriptive Statistics 
Minimum = 0.40955 
Maximum = 0.70387 
Not a Number= 0 

Mean = 0.55319 
Median = 0.55284 
Std Dev = 0.046298 
Coeff of Var= 0.083693 

95 percent CL Lower= 0.46038 
95 percent CL Upper= 0.63950 

Eigenvalue 7 Descriptive Statistics 
Minimum = 0.23415 
Maximum = 0.49958 
Not a Number= 0 

Mean = 0.37349 
Median = 0.37401 
Std Dev = 0.046582 
Coeff of Var= 0.12472 

95 percent CL Lower= 0.28450 
95 percent CL Upper= 0.46108 

Eigenvalue 8 Descriptive Statistics 
Minimum = 0.1588 
Maximum = 0.29914 
Not a Number= 0 

Mean = 0.22374 
Median = 0.2226 
Std Dev = 0.022264 
Coeff of Var= 0.099504 

95 percent CL Lower= 0.18312 
95 percent CL Upper= 0.26969 

Eigenvalue 9 Descriptive Statistics 
Minimum = 0.087113 
Maximum = 0.18513 
Not a Number= 0 

Mean = 0.13669 
Median = 0.13694 
Std Dev = 0.017244 
Coeff of Var= 0.12615 

95 percent CL Lower= 0.10262 
95 percent CL Upper= 0.16917 

Eigenvalue 10 Descriptive Statistics 
Minimum = 0.050989 
Maximum = 0.12456 
Not a Number= 0 



- 

Mean = 0.07988 
Median = 0.079549 
Std Dev = 0.0097042 
Coeff of Var= 0.12148 

II 

95 percent CL Lower= 0.062413 
95 percent CL Upper= 0.100410 

Eigenvalue 11 Descriptive Statistics 
Minimum = 0.023847 
Maximum = 0.051324 
Not a Number= 0 

Mean = 0.034859 
Median = 0.034749 
Std Dev = 0.0037768 
Coeff of Var= 0.10835 

95 percent CL Lower= 0.028110 
95 percent CL Upper= 0.042678 

Eigenvalue 12 Descriptive Statistics 
Minimum = 0.01452 
Maximum = 0.041439 
Not a Number= .O 

Mean = 0.024167 
Median = 0.02416 
Std Dev = 0.0036131 
Coeff of Var= 0.1495 

95 percent CL Lower= 0.017025 
95 percent CL Upper= 0.031887 

Figure G. 1 shows how the reliability of the eigenvalues - defined in terms of the 
coefficient of variation (COV) - generally deteriorates as one goes to the smaller 
eigenvalues. The most reliable are eigenvalues 1,2 3, and 5 with COVs in the range of 
0.04 to 0.05. Eigenvalue 6 is intermediate (COV = 0.084), while the remaining 
eigenvalues 4 and 7- 12 are at COV = 0.10 or larger. 

These results are intuitively satisfying, because we tend to believe that the eigenvectors 
associated with the largest eigenvalues are most likely to represent general properties of 
diesel fuels and thereby be present in nearly all samples of those fuels. However, the 
chart does not itself indicate how to segregate eigenvalues (and associated eigenvectors) 
that are “reliable” from those that are less so. 
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Figure G.l. Variability of Sample Eigenvalues 

Deterioration of Eigenvalue Reliability 
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G.3 ROBUSTNESS OF THE EIGENVECTORS 

A greater interest lies in whether the eigenvectors tend to repeat themselves from one 
sample to the next. If so, we gain confidence that they represent recurring features of 
diesel fuels. A related question, assuming they do repeat, is whether they tend to be 
found in the same eigenvalue-determined order in each sample, or are subject to 
switching order between samples. If the ordering is relatively stable, then we gain 
confidence that the relative importance of the eigenvectors is also a recurring feature. We 
may also directly compare the variability from sample to sample without being concerned 
that eigenvector N is “apples” in one sample, but “oranges” in another. 

A second program (Exhibit G.2) expresses the eigenvectors from each sample 
(Eigvec-samp) in terms of the reference eigenvectors (Eigvec-ref). The coefficients are 
stored in RefCoeff-samp, where the array RefCoeff-samp( v , n , k ) is the nth coefficient 
of vector v generated in sample k. Two output arrays are set up in this program. For each 
eigenvector, the reference vector coefficients are squared, the largest squared weight is 



II 

stored in array maxweights, and the reference vector associated with that weight is stored 
in array pointers: 

l pointers( k , v ) gives the reference vector number (1: 12) for eigenvector v in 
sample k 

. maxweights( k, v ) gives the squared weight associated with the reference 
vector. 

The term “max vector” is used to refer to the reference vector that gains the largest 
squared weight. The first question is how purely the sampled vectors load on the “max 
vector”. This is answered in the box plot of the maximum squared-weights for the 
sample eigenvectors shown in Figure G.2. The mean values are above 0.90 for all sample 
eigenvectors except for vector 6, for which the mean falls slightly below 0.90. It is a bit 
of a surprise to find that the mean value declines, and the distribution of the maximum 
squared-weight broadens, in the middle of the eigenvector range. It will be seen that this 
middle territory is associated with the most “order switching”. Overall, these results 
indicate that the eigenvectors tend to repeat themselves in each sample with a high degree 
of consistency. 
Table G.l shows how little order switching exists across the samples. Most of what 
exists occurs in the middle range of the sample eigenvectors, where vectors 5 and 6 
switch their order 3.3 percent of the time. These two vectors also have relatively smaller 

Figure 6.2. Maximum Squared Loadings for Sampled Eigenvectors 
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mean values for the maximum squared-weights, although note that the mean value is also 
relatively smaller (and the distribution also broadens) for sample eigenvector 7, which has 
very little switching. 

With one exception the switching happens in pairs - vectors 3 and 4 switch, as do vectors 
5 and 6,7 and 8,9 and 10, and 11 and 12. The relative prevalence of the fuel features 
represented by the eigenvectors is apparently quite stable from one sample to another, 
with the exception of a few samples in which a pair of vectors swap order. 

An interesting insight is shown in the 33rd sample, which is the first to show switching 
between vectors 5 and 6. The box to the right shows the coefficients for sample vectors 5 
and 6. Note that the switching occurs on a small margin - in sample vector 5, reference 
vector 6 beats out reference vector 5 by a small amount, and the reverse is true for sample 
vector 6. Note also that the highlighted 
signs are opposite (one plus, one minus) for. 
sample vector 5, but are concurrent (both Figure 6.3. What Order Switching 

plus) for sample vector 6. It seems that this Looks Like 

sample cannot resolve the features I 
Sample Eigenvector 

represented by reference vectors 5 and 6, but 5 6 

gives us a sum (5,6) feature and a difference 1 0.0155 0.0033 

(5,6) feature instead. This looks much like a 
2 0.0841 0.0273 
3 -0.0461 -0.0609 

rotation of the axes at an angle close to 45 
degrees. I 4 5 0.0487 6.6162 0.0518 0.7520 

I 6 -0.7728 0.6254 

It should also be noted that there are a fairly I 7 8 -0.0223 0.0862 0.1808 0.0239 
large number of “blurred” cases, primarily 
in the middle range of eigenvectors, where 
the vectors do not load purely on their 
corresponding reference vector, but the 
same-vector loading is not reduced so much 
that we have a case of order switching. For example, vector 6 in such a case might have a 
0.80 loading on reference vector 6 and a 0.60 loading on reference vector 5. The box plot 
chart in Figure G.2 shows this to happen most often in vectors 5,6, and 7. This suggests 
that simple order switching - where the vectors are essentially unchanged and just swap 
order - is very uncommon. 

We interpret the foregoing results to mean that the eigenvectors are actually quite 
repeatable from one sample to another and, with only a few exceptions, appear in 
essentially the same order. This is as true for the eigenvectors with the smallest 
eigenvalues as for those with the largest. The few exceptions aside, this tends to indicate 
that the eigenvectors represent recurring features of this group of diesel fuels. 
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G.4. CONFIDENCE INTERVALS FOR THE COEFFICIENT VALUES 

A goal for the bootstrapping method was to develop the empirical range of values for the 
coefficients that make up the eigenvectors and use this to define the confidence intervals. 

Table G.l Order Switching in 1000 Repeated Samples 

Sample Reference Eigenvector 
Eigen- I I I I I I 
vector 1 2 3 4 ( 5 6 / 7 8 9 / 10 I 11 / 12 / 

4 14 986 

5 967 33 

6 33 966 1 

7 1 993 6 

8 5 995 

9 998 2 

10 2 998 

11 995 5 

12 5 995 

The “order switching” issue was raised because, if switching happened often enough, it 
would tend to inflate the confidence intervals. Based on the results presented above, it 
seems that order switching occurs so infrequently that we can ignore it in what follows. 

What cannot be ignored, however, is that the eigenvectors appear with an arbitrary 
algebraic sign. To remove this trivial source of difference, the eigenvectors were 
standardized so that the same-vector coefficient is positive in the reference vector 
expansion. That is, if vector 6, say, has a negative loading on reference vector 6, all 
component coefficients in vector 6 are multiplied by -1. Having done this, the 1000 
bootstrap samples were analyzed to generate the following statistics for each component 
coeffkient: mean, median, standard deviation, the coefficient of variation, and the lower 
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2.5 percent and upper 97.5 percent cutpoints forming the 95 percent confidence intervals. 
These results are all tabulated as addendums to this appendix. 

The mean and median coefficient values are very similar to the coeffkients of the 
reference vectors. The mean and median values are also very similar to each other, 
implying that component coefficients are distributed in a fairly symmetric way. 
Empirical confidence intervals can also be developed using these statistics, as follows: a 
component coefficient is set to zero if its 95 percent confidence interval contains the 
value zero. Thus, a non-zero coefficient is retained when it can be said with at least 95 
percent confidence that it differs from zero. 

The result of this is shown on the following page. The highlighted components are those 
previous highlighted in Table 2.3 using the judgmental rule of “the three largest plus near 
ties.” This process can be used in simplifying the internal structure, but it still leaves a 
number of relatively small components. It would probably be desirable in many. 
circumstances to further reduce the number of component coeffkients. This goal will be 
pursued by developing criteria that exclude components (the original fuel property 
variables) from all vectors, when the variables are shown to have negligible impact on 
emissions. 

143 



Table G.2. Mean Eigenvectors Simplified based on 95 Percent Confidence Interval 
I I 

1 2 3 4 5 6 7 8 9 10 11 12 

NatCetane 
CetImprv 
Density 
Viscosity 
Sulfur 
MonoArom 
PolyArom 
IBP 
TlO 
T50 
T90 
FBP 

0.000 -0.550 0.000 -0.221 0.000 0.000 0.000 -0.446 0.000 -0.447 0.000 0.375 
0.000 0.142 -0.541 0.000 0 724 

0.000 

0.000 0.000 0.000 0.000 -0.054 -0.048 0.000 

L 0 281 -??ii? 0 443 0.000 0.160 
0.151 -0.114 0.226 0 340 

-G 
-0.414 -0.262 0 457 

b 0 430 0.000 0.133 0.000 0.000 0 280 0.000 0.151 
0.285 0 612 

0.000 
0 

0.000 0.175 0 605 
-a 

0.000 0 366 
-G 

0 521 
0 

0.186 0.000 0.000 -G 
0.143 0 461 0.000 0.000 -0.472 -0.131 0.000 0.158 0,000 
0.000 0 

0.000 
0 366 
0.000 

-0.277 0.000 -0 272 
-0.626 

-0.512 -0.350 -0.173 0.000 0.215 0.000 
L 0 260 0,297 0 515 0.000 0.000 0.000 0.230 0.126 0.000 0.000 
L 0 396 -0.111 0.134 0.000 0.173 0.000 0.000 -0.622 -0.184 -0.387 -0.201 
L 0 428 0.000 0.000 0.000 0.000 0.000 0 291 0.000 -0.233 0 543 0.000 0.000 -0.528 
- 0 390 0.000 0.000 -0.410 -0.148 0.000 0.000 

0.000 
0.536 -0.470 0.244 

L 0 362 0.000 -0.159 -0.388 0.000 -0.325 0.000 A 0 455 -0.156 -0.396 0.199 -0.250 
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. . . . 

MEAN VALUES 

1 2 3 4 5 6 7 8 9 10 11 12 

NatCetane 0.062 -0.550 0.147 -0.221 0.061 -0.060 0.141 -0.446 0.099 -0.447 0.042 0.375 
CetImprv 0.033 0.142 -0.541 -0.195 0.724 0.055 -0.019 -0.103 0.003 -0.054 -0.048 0.004 
Density 0.281 0.443 0.055 0.160 -0.044 0.151 -0.114 0.226 0.340 -0.414 -0.262 0.457 
Viscosity 0.430 -0.117 -0.014 0.133 0.078 0.280 -0.003 0.151 -0.165 0.285 0.612 0.365 
Sulfur 0.002 0.175 0.605 -0.218 0.366 0.117 0.521 0.186 0.013 0.054 -0.022 -0.097 
MonoArom 0.143 0.461 -0.246 0.055 -0.288 -0.027 0.534 -0.472 -0.131 -0.075 0.158 -0.038 
PolyArom 0.075 0.411 0.366 -0.277 0.088 -0.272 -0.512 -0.350 -0.173 0.032 0.215 0.049 
IBP 0.260 -0.071 0.065 0.515 0.242 -0.626 0.118 -0.032 0.230 0.126 0.016 -0.022 
T10 0.396 -0.111 0.134 0.297 0.102 0.173 -0.088 -0.120 -0.622 -0.184 -0.387 -0.201 
T50 0.428 -0.081 0.058 -0.057 -0.029 0.291 -0.141 -0.233 0.543 0.017 0.073 -0.528 
T90 0.390 -0.070 -0.089 -0.410 -0.148 -0.124 0.075 -0.031 0.024 0.536 -0.470 0.244 
FBP 0.362 -0.045 -0.159 -0.388 -0.132 -0.325 0.057 0.455 -0.156 -0.396 0.199 -0.250 

NatCetane 0.064 -0.551 0.152 -0.220 0.060 -0.064 0.138 -0.450 0.102 -0.450 0.039 0.377 
CetImprv 0.036 0.142 -0.546 -0.213 0.749 0.054 -0.017 -0.104 0.003 -0.055 -0.048 0.003 
Density 0.287 0.444 0.053 0.161 -0.041 0.155 -0.113 0.229 0.337 -0.414 -0.270 0.459 
Viscosity 0.430 -0.117 -0.017 0.137 0.087 0.288 -0.001 0.149 -0.162 0.285 0.621 0.385 
Sulfur 0.003 0.182 0.621 -0.213 0.378 0.109 0.532 0.173 0.013 0.054 -0.021 -0.098 
MonoArom 0.146 0.463 -0.248 0.051 -0.291 -0.026 0.531 -0.497 -0.134 -0.075 0.159 -0.037 
PolyArom 0.078 0.414 0.375 -0.273 0.084 -0.279 -0.520 -0.342 -0.174 0.032 0.217 0.053 
IBP 0.261 -0.072 0.059 0.524 0.251 -0.660 0.120 -0.034 0,230 0.126 0.016 -0.022 
TlO 0.397 -0.113 0.125 0.304 0.108 0.179 -0.093 -0.117 -0.629 -0.185 -0.388 -0.205 
T50 0.428 -0.083 0.059 -0.057 -0.029 0.298 -0.146 -0.239 0.544 0.020 0.079 -0.535 
T90 0.390 -0.071 -0.081 -0.417 -0.152 -0.129 0.072 -0.031 0.015 0.542 -0.483 0.235 
FBP 0.362 -0.048 -0.154 -0.395 -0.139 -0.329 0.071 0.460 -0.158 -0.398 0.208 -0.247 

MEDIANVALUES 

1 2 3 4 5 6 7 8 9 10 11 12 
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NatCetane 0.054 0.023 0.062 0.051 0.049 0.065 0.078 0.052 0.077 0.045 0.099 0.042 
CetImprv 0.038 0.052 0.052 0.144 0.095 0.241 0.064 0.053 0.033 0.023 0.016 0.015 
Density 0.040 0.040 0.044 0.039 0.053 0.050 0.052 0.056 0.073 0.068 0.110 0.061 
Viscosity 0.011 0.039 0.048 0.032 0.094 0.050 0.079 0.038 0.055 0.057 0.087 0.149 
Sulfur 0.055 0.077 0.076 0.126 0.094 0.186 0.066 0.091 0.034 0.025 0.026 0.017 
MonoArom 0.042 0.031 0.057 0.068 0.072 0.144 0.080 0.111 0.059 0.047 0.023 0.034 
PolyArom 0.052 0.041 0.085 0.077 0.106 0.127 0.092 0.095 0.048 0.041 0.025 0.049 
IBP 0.018 0.047 0.130 0.081 0.220 0.129 0.148 0.061 0.060 0.044 0.018 0.014 
TlO 0.011 0.040 0.076 0.049 0.069 0.068 0.075 0.074 0.039 0.088 0.050 0.095 
T50 '- 0.011 0.041 0.034 0.033 0.102 0.061 0.092 0.066 0.038 0.106 0.137 0.045 
T90 0.009 0.039 0.080 0.041 0.061 0.066 0.051 0.052 0.079 0.053 0.084 0.126 
FBP 0.010 0.043 0.077 0.054 0.120 0.085 0.145 0.054 0.075 0.046 0.076 0.065 

NatCetane 0.868 -0.042 0.423 -0.231 0.800 -1.070 0.554 -0.117 0.777 -0.100 2.341 0.113 
CetImprv 1.138 0.364 -0.095 -0.736 0.131 4.411 -3.325 -0.517 9.999 -0.417 -0.331 4.066 
Density 0.143 0.090 0.790 0.244 -1.221 0.333 -0.460 0.248 0.214 -0.164 -0.421 0.133 
Viscosity 0.025 -0.332 -3.539 0.242 1.194 0.178-24.800 0.251 -0.335 0.200 0.142 0.407 
Sulfur 24.723 0.437 0.125 -0.579 0.255 1.596 0.127 0.489 2.671 0.470 -1.187 -0.170 
MonoArom 0.291 0.067 -0.232 1.250 -0.252 -5.324 0.150 -0.236 -0.448 -0.622 0.145 -0.911 
PolyArom 0.698 0.100 0.233 -0.277 1.207 -0.467 -0.179 -0.272 -0.278. 1.272 0.118 1.014 
IBP 0.071 -0.666 2.007 0.158 0.909 -0.206 1.252 -1.873 0.263 0.347 1.115 -0.615 
T10 0.027 -0.361 0.569 0.164 0.671 0.393 -0.851 -0.619 -0.063 -0.480 -0.128 -0.471 
T50 0.025 -0.507 0.581 -0.583 -3.525 0.210 -0.649 -0.281 0.070 6.383 1.873 -0.085 
T90 0.022 -0.557 -0.904 -0.101 -0.414 -0.533 0.675 -1.648 3.309 0.100 -0.179 0.516 
FBP 0.026 -0.950 -0.483 -0.140 -0.912 -0.263 2.519 0.118 -0.479 -0.117 0.379 -0.261 

STANDARD DEVIATION 

1 2 3 4 5 6 7 8 9 10 11 12 

COEFFICIENT OF VARIATION 

1 2 3 4 5 6 7 8 9 10 11 12 

146 



1 .2 3 4 5 6 7 8 

LOWER 0.025 PERCENTILE 

9 10 11 12 

NatCetane -0.039 -0.594 -0.006 -0.319 -0.039 -0.179 -0.014 -0.549 -0.064 -0,525 -0.147 0.286 
CetImprv -0.042 0.038 -0.623 -0.427 0.465 -0.447 -0.146 -0.202 -0.062 -0.095 -0.081 -0.023 
Density 0.183 0.360 -0.023 0.084 -0.152 0.042 -0.222 0.110 0.192 -0.542 -0.456 0.335 
Viscosity 0.409 -0.187 -0.099 0.056 -0.115 0.155 -0.160 0.079 -0.276 0.165 0.432 0.010 
Sulfur -0.114 0.003 0.393 -0.507 0.153 -0.215 0.344 0.045 -0.056 -0.002 -0.073 -0.129 
MonoArom 0.058 0.398 -0.347 -0.073 -0.416 -0.298 0.384 -0.624 -0.234 -0.163 0.110 -0.104 
PolyArom -0.033 0.316 0.165 -0.436 -0.118 -0.498 -0.661 -0.583 -0.264 -0.043 0.157 -0.068 
IBP 0.219 -0.162 -0.169 0.307 -0.243 -0.767 -0.165 -0.152 0.106 0.039 -0.018 -0.050 
TlO 0.373 -0.188 0.011 0.180 -0.040 0.025 -0.221 -0.267 -0.678 -0.354 -0.484 -0.390 
T50 0.407 -0.154 -0.010 -0.122 -0.236 0.151 -0.310 -0.349 0.467 -0.195 -0.204 -0.593 
T90 0.372 -0.142 -0.279 -0.464 -0.264 -0.243 -0.027 -0.130 -0.106 0.419 -0.600 0.013 
FBP 0.342 -0.127 -0.340 -0.474 -0.346 -0.465 -0.271 0.336 -0.307 -0.482 0.028 -0.382 

UPPER 0.975 PERCENTILE 

1 2 '3 4 5 6 7 8 9 10 11 12 

NatCetane 0.170 -0.504 0.246 -0.121 0.156 0.076 0.295 -0.326 0.242 -0.348 0.242 0.448 
CetImprv 0.103 0.239 -0.444 0.136 0.810 0.520 0.110 0.007 0.067 -0.012 -0.018 0.033 
Density 0.343 0.520 0.150 0.233 0.056 0.237 -0.018 0.332 0.479 -0.287 -0.034 0.570 
Viscosity 0.451 -0.032 0.099 0,189 0.255 0.349 0.138 0.225 -0.061 0.394 0.746 0.600 
Sulfur 0.105 0.314 0.689 0.012 0.497 0.500 0.619 0.411 0.078 0.101 0.031 -0.063 
MonoArom 0.217 0.516 -0.124 0.201 -0.143 0.253 0.692 -0.169 -0.010 0.021 0.202 0.028 
PolyArom 0.168 0.479 0.496 -0.147 0.312 -0.009 -0.302 -0.195 -0.078 0.120 0.257 0.129 
IBP 0.292 0.021 0.351 0.638 0.636 -0.298 0.410 0.089 0.347 0.211 0.052 0.004 
TlO 0.416 -0.029 0.310 0.363 0.221 0.287 0.076 0.012 -0.530 -0.002 -0.295 -0.009 
T50 0.448 0.009 0.120 0.006 0.175 0.388 0.054 -0.100 0.615 0.227 0.347 -0.416 
T90 0.406 0.007 0.036 -0.318 -0.011 0.033 0.174 0.070 0.200 0.621 -0.270 0.488 
FBP 0.379 0.043 -0.035 -0.264 0.124 -0.124 0.309 0.536 -0.005 -0.298 0.315 -0.132 
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Exhibit G.l. Program to Generate Bootstrap Samples 

% This m-file conducts a bootstrap simulation of the fuel eigenvectors 
% load emissions and fuel data, setting up workspace 
filename=' c:\matlab\studies\bootstrap\HCNPE'uel.csvl; 
[HC,CO,NOx,PM,testfuels,fuelnames,xdata,~epl,weights] = 

loader(filename,'commma'); 
% standardize variables to mean 0 and variance 1 
[xvariables, testfuels mean, testfuels-std] = 
standardform(testfuels~NRep1); 
% conduct the principal components analysis 
[fuel-pc,latent,variance,explained,PCA-coeffs]= 
PCAfunction(xvariables,l,fuelnames); 

X ref = xvariables; 
E&ec-ref = fuel-pc; 
Eigval-ref = latent; 
Explain-ref = explained; 
PCACoeff ref = PCA coeffs; 
m00t = loo0 - 

[ohs, varsl = size(xvariables); 
NSize = obs 

Seed = 0 
rand('seed',Seed) 
for bootsample = l:NBoot 

for i = 1:NSize 
z(i) = 1 + fix(NSize*rand(l,l)); 

end 
% select sample, re-standardize to (O,l), and do PCA analysis 
xvariables = testfuels(z,:) ; 
[xvariables, xvarisbles mean, 

xvariables-std]=standardfoG(xvariables,NBepl); 

[fuel_pc,latent,vari~ce,explained,PCA_les,O, 
fuelnames); 

if (bootsample==l) 
Eigvec-samp = fuelgc; 
Eigval-samp = latent'; 
Explain-samp = explained; 

else 
Eigvec-samp = cat(3, Eigvec-ssmp, fuel-pc); 
Eigval-samp = [Eigval-samp ; latent']; 
Explain-samp = cat(3, Explain-samp, explained); 

end 
end 

% Generate basic summary statistics 
bootsummary 
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Exhibit G.2. MatLab Proaram to Examine Reaeatabilitv and O~dor Swit&ina c -- ----- --I ---- ----- 

% This script expresses the simulated eigenvectors in terms of the 
% original (reference) eigenvectors. 

clear 
load pcabootstrap Eigvec-samp Eigvec-ref 
whos 

[rows,cols,reps]=size(Eigvec-samp); 

lastsample=reps; 
for bootsample = 1:lastsample 

Coeffs = Eigvec-samp(:,:,bootsample) '*Eigvec ref; - 

if (bootsample==l) 
RefCoeff-samp = Coeffs; 

else 
RefCoeff-samp = cat(3,RefCoeff_samp,Coeffs); 

end 

coefficients = RefCoeff samp(:,:,bootsample) '; 
coeffsquared = coeffi&nts."2; 
a=max(coeffsquared); 
b=kron(ones(rows,l),a); 
c=repmat([l:12],cols,1)'; 
d=c(coeffsquared=b) ; 

e=diag(coefficients) ; 
s=e. /abs (e) ; 

if (bootsample==l) 
pointers = d'; 
maxweights = a; 
signs = s'; 

else 
pointers = [pointers; d']; 
maxweights = [maxweights; a]; 
signs = [signs; s']; 

end 

end 
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APPENDIX H: INCORPORATING NON-LINEAR TERMS 
IN A VECTOR MODEL 

Nonlinear basis elements, such as higher powers of a variable or a product of two variables 
(interaction) can be incorporated in an eigenvector regression in much the same way as linear 
terms are introduced. However, there are some nuances to be observed and understood and 
some interpretational aspects that need to be examined. This Appendix aims to cover these 
points and to illustrate them computationally, albeit with hypothetical data. 

As a preliminary, it will be insightful to examine some of the relations that obtain between 
predictor and response variables and how these relations affect the partitioning of the 
response sum of squares. 

H.1 PARTITIONING VARIANCE IN X AND Y SPACE 

One of the misunderstandings that has hampered the application of Principal Component 
Regression (PCR) has been the misconception that the variance partitioning of the design 
matrix can be used to select the eigenvectors to use in the regression model. The difficulties 
that can be encountered as a consequence of this assumption have been pointed out in the 
statistical literature, but there seems to be no explicit pronouncement on how the response 
variable alters the relative importance of the design matrix components. That relationship 
will be clearly explicated in this section, even to the point of how to formulate a response 
vector to yield a specified partitioning of the model sum of squares for any given design 
matrix. 

For our illustration, we take as our “given design matrix” the following data from Cooley and 
Lohnes’. The term “treatment” denotes combinations of values of the three variables x,, x2, 
and x3. 

Treatment x1 x2 xg Treatment x1 x2 x3 
1 7 4 3 6 7 2 9 
2 418 7 5 3 3 
3 6 3 5 8 9 5 8 
4 861 9 7 4 5 
5 8 5 7 10 8 2 2 

’ Cooley, W.W., P.R. Lohnes, Multivariate Data Analysis, John Wiley & Sons, Inc., 
New York, 1971, p. 110. 
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First, we transform these predictor vectors to standardized form, with zero mean and unit 
variance. Then we compute the eigenvectors and eigenvalues of the correlation matrix for 
these vectors. The percent of the variance among treatments attributable to each of these 
vectors can be computed directly from the eigenvalues and is found to be: 

Percent Design Matrix SS 

Eigenvector 1 58.96 
Eigenvector 2 30.90 
Eigenvector 3 10.14 

However, this partitioning has no obvious relation to the response vector; indeed, a response 
vector has not yet been introduced. Inasmuch as any set of 10 numbers could be used as the 
response vector, it is evident that there is nothing necessarily special or insightful about the 
design-matrix partitioning so far as the response is concerned. 

We present, now, three candidate response vectors, together with the partitioning of their 
model sums of squares. 

Treatment 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

lC21 
-3.0537 
-0.4500 

2.5911 
-0.4495 
-1.8453 
-0.0128 
-0.3660 

0.0709 
2.4032 

Y2 
1.6759 

-3.7783 
-0.4726 

2.7682 
-2.1237 
-2.1597 

0.2881 
-1.8930 
-0.3068 

6.0020 

O&5 
-2.6654 
-0.4213 

1.8204 
-0.9846 
-1.2595 
-0.1421 
-0.7023 
-0.1414 

3.5147 

Percent of Response SS 

Eigenvector 1 58.9591 21.5326 33.3333 
Eigenvector 2 30.9025 45.1438 33.3333 
Eigenvector 3 10.1383 33.3236 33.3333 

It is evident that the first response vector has a model SS partitioning that exactly duplicates 
the partitioning of the design matrix. In the second, however, the eigenvector that contributes 
most to the partitioning of the X-matrix is the one that contributes least to the partitioning of 
the response SS. Finally, the third Y-vector yields a model SS for which all three 
eigenvectors make equal contributions to the response SS. 

The regression coefficients for each of these three cases are displayed below. No error 
contribution was added to the response vectors as formulated, so the coefficients represent an 
exact fit to the response data. 
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Regression Coefficients for: 
Yl Y2 Y3 

Eigenvector 1 1.0000 1.0000 0.7519 
Eigenvector 2 1.0000 2.0000 1.0386 
Eigenvector 3 1.0000 3.0000 1.8133 

No smoke and mirrors is involved in defining response vectors to achieve a pre-determined 
partitioning of the sum of squares. The response SS attributable to each eigenvector can be 
computed as 

I c2 * g * (n-l) 

where c is the vector of regression coefficients, e is the vector of eigenvalues for the 
correlation matrix and n is the number of observations. Multiplication here is to be 
understood as the scalar multiplication of corresponding elements of the two vectors, not 
matrix multiplication. 

It is clear, then, that if c = [l 1 l]‘, the sum of squares partitioning will be proportional to the 
eigenvalues and, accordingly, to the percent breakdown of the X-matrix variance. In the 
second case, the coefficients [ 1 2 31’ weight the eigenvalues respectively by 1,4 and 9. That 
leads to the second partitioning as tabulated above. In the third case, one simply asks what 
numbers are needed to multiply into the eigenvalue matrix so as to produce equal partitioning 
of the response SS. One then simply extracts the square roots of those numbers, and the 
resulting values are the required regression coefficients. 

This preliminary presentation has two purposes. First, it destroys once and for all the myth 
that PCR can lead to erroneous selection of eigenvectors. It is not PCR that should be 
implicated, but the past practice of pre-selecting eigenvectors based on the design matrix SS 
partitioning. When all vectors are initially retained and related to the response variable, then 
simplification can subsequently be done without risk of unforseen error, Second, it provides 
a procedure for constructing artificial data to illustrate specific effects, including those that 
are both linear and nonlinear and will be used in the discussion that follows. 

H.2 NONLINEAR BASIS ELEMENTS 

Two problems face a data analyst when he or she inserts a nonlinear basis vector in a 
regression model: 

25. How to incorporate the nonlinear element into the eigenvector environment. 

26. How to normalize the nonlinear term 

The following sections consider these problems as they pertain to quadratic and interaction 
terms in the regression equation. 

153 



H.2.1 Adding a Square’Term to the Basis 

To annex a quadratic vector to the design matrix, it is necessary only to construct a vector, 
the elements of which are the squares of the original variable. Below we annex such a vector 
to the original X-matrix. Note that the elements of column 4 are simply the squares of the 
elements of column 3. 

Treatment Xl X2 

1 4 "3' 
x3 

2 

7 9 
2 4 1 8 64 
3 6 3 5 25 
4 8 6 1 1 
5 8 5 7 49 
6 7 2 9 81 
7 5 3 3 9 
8 9 5 8 64 
9 7 4 5 25 

10 8 2 2 4 

If OLS regression were to be performed in the usual way, no further processing of the above 
matrix would be necessary. In keeping with the notion of “a level playing field” for all 
variables, one would first “normalize” the design (X) matrix to zero mean and unit standard 
deviation. 

In the process of annexing quadratic or other nonlinear terms to the regression equation, one 
can perform this normalization in two distinct ways. These two approaches are discussed 
below under the headings “Postnorm” and “Prenorm.” 

H.2.1 .I Postnorm 

As used here, the termpostnorm refers to normalizing the X-matrix after computing the 
nonlinear vector from one or more of the “raw” data variables. To illustrate, the above matrix 
is treated just as if it consisted of four rather than three variables, the fourth being the column 
of squared elements of x,. This four-variable set of treatments is listed below in standard 
(normalized) form (zero mean, unit variance). 

Treatment Xl x2 

1 0.0656 0.3162 
2 -1.9030 -1.5811 
3 -0.5906 -0.3162 
4 0.7218 1.5811 
5 0.7218 0.9487 
6 0.0656 -0.9487 
7 -1.2468 -0.3162 
8 1.3781 0.9487 
9 0.0656 0.3162 

10 0.7218 -0.9487 

x3 

-0.7482 -0.8279 
1.0332 1.0615 

-0.0356 -0.2782 
-1.4608 -1.1027 

0.6769 0.5462 
1.3895 1.6454 

-0.7482 -0.8279 
1.0332 1.0615 

-0.0356 -0.2782 
-1.1045 -0.9996 

x3 
2 
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Upon computing the correlation matrix we note that the fourth column vector is highly 
correlated with the third. 

Correlation Matrix 

Xl x2 x3 x32 

Xl 1.0000 0.6687 -0.1013 -0.0498 
x2 0.6687 1.0000 -0.2879 -0.2788 
x3 -0.1013 -0.2879 1.0000 0.9803 
x3 2 -0.0498 -0.2788 0.9803 1.0000 

We then compute the eigenvectors and eigenvalues of this matrix. 

Eigenvectors 

Xl 0.3137 -0.6664 0.6735 -0.0619 
x2 0.4434 -0.5267 -0.7242 0.0373 
x3 -0.5982 -0.3592 -0.1412 -0.7022 
x3 2 -0.5891 -0.3866 -0.0430 0.7083 

Eigenvalues 

2.2319 1.4450 0.3054 0.0176 

Note that the design space still has essentially only three dimensions; apparently the 
annexation of the square term has made little addition to the variation among treatments. 
This phenomenon is the result of the fact that, in the range of the values of the variable, the 
two curves are closely related. 

Next, we convert the above matrix to the “vectorized” version shown below. The method 
used to perform the conversion is that given by Equation 6-m Apjkndix D. 

Treatment Vector 1 Vector 2 Vector 3 Vector 4 

1 1.0961 0.3785 -0.0435 -0.0532 
2 -2.5416 1.3195 -0.3283 0.0850 
3 -0.1403 0.6805 -0.1518 -0.1473 
4 2.4511 -0.3629 -0.4052 0.2592 
5- -0.0796 -1.4350 -0.3200 -0.0978 
6 -2.2007 -0.6792 0.4642 0.1501 
7 0.4040 1.5862 -0.4694 0.0044 
8 -0.3905 -2.1995 0.0495 -0.0237 
9 0.3460 -0.0899 -0.1678 -0.1643 

10 1.0554 0.8018 1.3723 -0.0125 

We are now ready to do regression if only we had a response vector corresponding to the 
above X-matrix. 

As indicated above, we are at liberty, for demonstration purposes, to construct an arbitrary 
response vector. Accordingly, we hope to choose responses in such a way that the quadratic 
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term contributes materially to the response sum of squares. In the real world, however, 
quadratic curvature may play only a minor or negligible role in prediction. 

A multitude of response vectors can be generated simply as linear combinations of the 
columns of the above matrix. Five such response vectors are listed below, together with the 
weighting factors applied to the normalized X-matrix vectors. 

Formulation of Five Hmothetical Response Vectors 

Case: A B C D E 

Weights Applied to Basis Vectors 

1.0000 0.2000 0.5000 0.5000 1.0000 
1.0000 0.5000 0.5000 0.5000 1.3156 
1.0000 1.0000 1.0000 1.0000 1.4406 
1.0000 5.0000 5.0000 4.0000 1.4958 

Treatment 
Hypothetical Response Vectors 

1 1.3779 0.0990 0.4279 0.4810 1.4518 
2 -1.4653 0.2481 -0.5144 -0.5993 -1.1514 
3 0.2412 -0.5761 -0.6181 -0.4708 0.3161 
4 1.9422 1.1994 1.9348 1.6756 1.7776 
5 -1.9325 -1.5425 -1.5664 -1.4686 -2.5749 
6 -2.2656 0.4352 -0.2250 -0.3752 -2.2010 
7 1.5252 0.4267 0.5478 0.5434 1.8212 
8 -2.5642 -1.2468 -1.3639 -1.3402 -3.2483 
9 -0.0760 -0.9651 -0.8613 -0.6970 -0.2598 

10 3.2171 1.9220 2.2387 2.2511 4.0686 

Since no random or error component has been added to these fictional responses, regression 
analysis simply returns, as the regression coefficients, the weighting factors used in 
generating the responses. Because of the orthogonality of the transformed design matrix, the 
contribution that each basis eigenvector makes to the Model SS is readily computed. Also, 
by virtue of simplification procedures illustrated elsewhere in this report, contributions to the 
SS attributable to each originalproperty variable can also be computed. These contributions, 
denoted E-Space and P-Space respectively, are tabulated below. 

SS Partitioning in E-Space 

Case A Case B Case C Case D Case E 
Vector 1 55.7983 7.4587 33.4991 37.0284 1.2841 
Vector 2 36.1248 30.1804 21.6878 23.9728 46.2609 
Vector 3 7.6359 25.5176 18.3372 20.2691 11.7249 
Vector 4 0.4410 36.8434 26.4759 18.7298 0.7300 
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SS Partitioning in P-Space 

Case A Case B Case C Case D Case E 
Xl 0.0250 0.0495 1.6334 1.9900 0.0694 
x2 3.3491 26.1599 7.8168 8.8793 10.1218 
x3 56.0131 73.6689 87.4869 82.3380 54.3237 
x32 40.6128 0.1217 3.0628 6.7927 35.4851 

Interesting, but no surprise, is the fact that the contributions for Case A agree exactly with the 
percent contributions to the treatment variance as computed from the eigenvalues of the 
correlation matrix. In this instance, the last eigenvector contributes little to the predictive 
capability of the model. Cases B, C, D and E, however, illustrate how different response 
vectors can alter the contributions made by the basis vectors, in spite of their relative 
importance in explaining the variability among treatments. 

Several observations can be made with regard to the P-Space contributions and particularly 
the contribution of the nonlinear term. One sees that x1 contributes little to the response SS 
in all five cases but that the contribution of the quadratic term ranges from little more than 
0.1 percent to more than 40 percent. Note that, in Case B, the quadratic component of x3* 
makes a negligible contribution, even though the linear component of x3 accounts for nearly 
75 percent of the response SS. In cases A and E, however, the quadratic contributions are 
nearly comparable to the linear contributions. 

Interpretation of the roles played by the four vectors and by their components need to be 
guided by physical knowledge of the system under study. In this demonstration exercise, no 
such knowledge is available, the purpose of the demonstration being primarily to illustrate 
formulation and computation procedures. 

H.2.1.2 Prenorm 

Let us now consider an alternative approach, in which the original X-matrix is normalized 
before computing the square term. To generate the quadratic term, one squares each 
transformed value in the third column to produce a fourth column, as shown below. 

Normalized X-Matrix 

Treatment 
1 0.256 
2 -1.9030 
3 -0.5906 
4 0.7218 
5 0.7218 
6 0.0656 
7 -1.2468 
8 1.3781 
9 0.0656 

10 0.7218 

Mean 0 
Std Dev 1 

0.2162 -0.;:82 
-1.5811 1.0332 
-0.3162 -0.0356 

1.5811 -1.4608 
0.9487 0.6769 

-0.9487 1.3895 
-0.3162 -0.7482 

0.9487 1.0332 
0.3162 -0.0356 

-0.9487 -1.1045 

0 
1 

0 
1 
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0.5298 
1.0676 
0.0013 
2.1339 
0.4583 
1.9307 
0.5598 
1.0676 
0.0013 
1.2199 

0.9000 
0.7292 



II 

Note, however, that the fourth column is now not normalized. Consequently, 
renormalization is required because the eigenvector procedures, operating on the correlation 
matrix, is based on zero mean and unit variance. If these eigenvectors are applied to the 
matrix in which the fourth column is not in standard measure, the resulting X-matrix is not 
orthogonal. 

The renormalized X-matrix is shown below, together with its mean and standard deviation 
vectors. 

Re-normalized X-Matrix 

Treatment 
1 0%56 
2 -1.9030 
3 -0.5906 
4 0.7218 
5 0.7218 
6 0.0656 
7 -1.2468 
8 1.3781 
9 0.0656 

10 0.7218 

0.2'162 -0?482 
-1.5811 1.0332 
-0.3162 -0.0356 

1.5811 -1.4608 
0.9487 0.6769 

-0.9487 1.3895 
-0.3162 -0.7482 

0.9487 1.0332 
0.3162 -0.0356 

-0.9487 -1.1045 

Mean 0 0 0 
Std Dev 1 1 1 

.e 

2 

-0:665 
0.2298 

-1.2325 
1.6921 

-0.6058 
1.4136 

-0.4665 
0.2298 

-1.2325 
0.4387 

0 
1 

The correlation matrix is shown below. 

Correlation Matrix 

Vector 
l%OO 

x2 

Xl 0.6687 -0~~013 

2 

0>523 
x2 0.6687 1.0000 -0.2879 0.0220 
x3 -0.1013 -0.2879 1.0000 -0.0157 
x3 2 0.2523 0.0220 -0.0157 1.0000 

Note that correlation between x3 and its square has disappeared, but there is another question 
to be considered. The correlation matrix shown above is no different than would have been 
obtained even if re-normalization had not been done, because the correlation computation 
automatically normalizes the input matrix to zero means and unit standard deviation. 
Consequently, the same eigenvectors and eigenvectors are obtained, as shown below. 

Eigenvectors 

Xl 0.6488 0.1964 0.2921 -0.6747 
x2 0.6537 -0.2005 0.2587 0.6823 
x3 -0.3175 0.5486 0.7522 0.1801 
x3 2 0.2257 0.7876 -0.5310 0.2165 

Eigenvalues 

1.8111 1.0464 0.8727 0.2698 
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It is seen that now the fourth eigenvector contributes materially to the variation among 
treatments and that the dimensionality of the X-space is less degenerate than it was before the 
standardizing transformation. In this case, the transformed values in the third column are 
symmetrically distributed about zero, so that there is essentially no relation to the squared 
values. 

However, if an attempt is made to “eigenize” the X-variables without renormalizing, the 
resulting X-matrix is found to be not orthogonal. But, upon renormalizing, the following X- 
matrix, representing the renormalized X-variables resolved into multipliers for the 
eigenvectors, is obtained. 

Treatment Vector 1 Vector 2 Vector 3 Vector 4 
1 0.3815 -0.8284 -0.2141 -0.0642 
2 -2.5444 0.6910 -0.3099 0.4409 
3 -0.8568 -1.0428 0.3733 -0.0905 
4 2.3476 0.3560 -1.3773 0.6950 
5 0.7368 -0.1541 1.2872 0.1511 
6 -0.6996 2.0787 0.0683 -0.1353 
7 -0.8834 -0.9594 -0.7611 0.3897 
8 1.2381 0.8283 1.3032 -0.0466 
9 -0.0176 -1.0407 0.7286 -0.1017 

10 0.2979 0.0715 -1.0983 -1.2383 

Re-normalized Matrix 

As demonstrated below, that matrix is orthogonal, and the diagonal elements of the revised 
x’* x matrix are consistent with the eigenvalues computed from the correlation matrix: 

9 * El.81 11 1.0464 0.9727 0.26981 = [16.2997 9.4174 7.8543 2.42851 

There appears to be a definite advantage in normalizing variables before squaring them. For 
example, we see that the correlation between the third and fourth columns is essentially 
eliminated. 

However, appearances can deceive; upon further examination it is seen that the procedure 
brings with it some complications associated with the linear transformations employed and 
the fact that a doubZe normalizing transformation is required. Clearly, this requirement adds 
further complication to decoding the data into the original, physical variables and to 
interpreting the regression results in terms of those variables. 

The subtleties noted above are not to be ignored. More on this matter will be presented in the 
section H.4 Discussion. 

H.2.2 Adding a Product (Interaction) Term 

Now consider an interaction term, introduced as the product of corresponding elements of 
column 2 and column 3. 



- . . . II 

Treatment Xl x2 x3 x2x3 

1 7 4 3 12 
2 4 1 8 8 
3 6 3 5 15 
4 8 6 1 6 
5 8 5 7 35 
6 7 2 9 18 
7 5 3 3 9 
8 9 5 8 40 
9 7 4 5 20 

10 8 2 2 4 

First we compute the correlation matrix and note that columns two and three are positively 
correlated with column four, as might be expected. 

Correlation Matrix 

1.0000 0.6687 -0.1013 0.5088 
0.6687 1.0000 -0.2879 0.4545 

-0.1013 -0.2879 1.0000 0.6239 
0.5088 0.4545 0.6239 1.0000 

Upon computing the eigenvectors and eigenvalues of this matrix, we see that the fourth 
eigenvector contributes little to the variation among treatments. 

Eigenvectors 

0.5894 -0.2245 0.7643 -0.1340 
0.5591 -0.3712 -0.6133 -0.4165 
0.1221 0.7938 0.0347 -0.5948 
0.5701 0.4262 -0.1962 0.6744 

Eigenvalues 

2.1054 1.4982 0.3283 0.0681 

Now suppose, however, that we first transform the three original variables to standard form 
and then compute, as the fourth column of the X-matrix, the products of corresponding 
elements in columns two and three. 

1 0.:56 O.x3;62 -0?482 
2 -1.9030 -1.5811 1.0332 
3 -0.5906 -0.3162 -0.0356 
4 0.7218 1.5811 -1.4608 
5 0.7218 0.9487 0.6769 
6 0.0656 -0.9487 1.3895 
7 -1.2468 -0.3162 -0.7482 
8 1.3781 0.9487 1.0332 
9 0.0656 0.3162 -0.0356 

10 0.7218 -0.9487 -1.1045 

x2x3 

-0.2366 
-1.6337 

0.0113 
-2.3097 

0.6422 
-1.3182 

0.2366 
0.9802 

-0.0113 
1.0478 
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The correlation matrix, shown below, shows that the correlations of zZ and x, with their 
product is essentially eliminated. 

Correlation Matrix 

1.0000 0.6687 -0.1013 0.3523 
0.6687 1.0000 -0.2879 0.0557 

-0.1013 -0.2879 1.0000 0.0141 
0.3523 0.0557 0.0141 1.0000 

Similarly, upon computing the eigenvectors and eigenvalues of this matrix, one sees that the 
added column now contributes appreciably to the variation among treatments. 

Eigenvectors 

0.6544 0.1909 0.2441 -0.6898 
0.6295 -0.2399 0.3456 0.6532 

-0.2853 0.6531 0.6848 0.1524 
0.3068 0.6925 -0.5933 0.2726 

Eigenvalues 

1.8526 1.0911 0.8063 0.2499 

As in the case of the quadratic term, these changes are the result of the symmetry of the 
transformed values of columns 2 and 3. 

It appears, therefore, that it would be advantageous to transform variables to standard 
measure before introducing a square term. As in the case of a quadratic basis element, 
however, the double normalizing transformation complicates interpretation. 

Such double transformations are not required if normalization is delayed until after the 
product vector has been computed. Though other functional forms may require adaptations 
peculiar to the form of the function, for the most part, the general procedure described for 
quadratic and product terms can be expected to apply. 

H.3 INTERPRETATION 

Interpreting the role played by a nonlinear element that is incorporated in each of the basis 
vectors may seem to pose a serious problem to the data analyst. It is the intent of this section 
of this document to dispel some of the trepidation associated with this problem. 

Because of the correlation of the nonlinear variable with one or more of the Einear variables, 
the nonlinear term may be significant and substantial in some eigenvectors but not in others, 
just as in a purely linear model. The effect is most likely to be induced by correlation 
between the nonlinear function and the argument or arguments of that function. However, it 
is entirely possible for the nonlinear vector to be associated with variables other than its 
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argument, in which case there would be aliasing that remains unsuspected without 
eigenvector decomposition. 

A measure of the degree to which the nonlinear variable is associated with the eigenvectors 
of which it is a component can be had by examining the correlation between the nonlinear 
term and each of the eigenvectors. This measure should help identify the eigenvector or 
eigenvectors by which the nonlinear component shows its effect. That, combined with 
physical reasoning, should provide insight into the mechanism(s) giving rise to the nonlinear 
effect. 

H.4 DISCUSSION 

The apparent dichotomy of pre- and post-normalization can be explained in terms of how 
nonlinear functions are affected by linear transformation. Two facets of the analysis require 
further explanation: (1) linear transformations in a nonlinear world, and (2) the non- 
specificity of sum-of-squares partitionings. 

Let x be a variable to be standardized, let f(x) be some function of x, and let T(x) be a linear 
transformation of x. For standardization (zero mean, unit variance) of the variable x, the 
transformation T takes the following form: 

T(x) = (x - m)/s = ax + b 

where a = l/s, b = -m/s, m being the sample mean of x and s being the sample standard 
deviation. 

A basic question to be considered is this: under what conditions does T( f(x) ) = f( T(x) )? 
This question is the root of such observations as: (1) why the mean square of a set of integers 
is not the same as the square of their mean; or (2) why one cannot average a set of vulgar 
fractions by separately averaging their numerators and denominators. 

Suppose that f(x) is a linear function of x, of the form: 

f(x)=cx+d 

Then, 
.f( T(x) ) = c (ax +b) + d = (ac) x + (bc + d) 

which is still of the form Ax + B, where A and B are constants. 

Further, 
T( f(x) ) = a (cx + d) + b = (ac) x + (ad + b) 
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which, again, is of the linear form Cx + D. 

Suppose, now, that f(x) is a nonlinear function, specifically f(x) = x2. Then, 

f( T(x) ) = (ax +b)2 = a2 x2 + 2 abx + b* 

whereas, 

T( f(x) ) = ax* + b 

It is this difference between the two sequences that is the root of the two approaches to 
incorporating a nonlinear basis element in a regression model. In fact, the “standardize first, 
then square” approach suffers a “double wharnmy.” After the variable has been standardized, 
it has to be restandardized in order to comply with the mean zero, unit standard deviation 
measure expected in the correlation matrix. Though both of these standardizing 
transformations can be retraced to the original variables, their results are not particularly 
transparent. 

If standardization is performed after squaring, however, one obtains a straightforward result 
and one that is consistent with the treatment of the linear terms in the model: 

f(x) = x2 

and 

T( f(x2) ) = ax2 + b 

Interpretation of eigenvectors containing one or more nonlinear elements presents a challenge 
to the data analyst. On the other hand, it forces him or her to recognize that the effect of the 
nonlinear element, either by chance or by design, may be associated with other variables in a 
way not anticipated and not evident without eigenvector resolution. Further, it may 
encourage the analyst to perform a thoughtful examination of variables during the model- 
simplification process. 

The considerations presented above apply equally to interaction effects, expressed as a 
weightedproduct of two variables. Moreover, quadratic and product terms do not exhaust 
the variety of nonlinear elements that might be included in a regression model. Extremely 
complex terms are known to have been included in a model’, though their raison d’etre may 
not be apparent. Our view is that a regression model should be as simple as possible and that 

’ Hewlett, R.F. Computer Methods in Evaluation, Development, and Operations in 
an Ore Deposit. American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc. 
Dallas, TX, February 1963. Preprint No. 63 15 1. 
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nonlinear effects may be better modeled by more conventional approaches such as 
transformation of variables. 

It could well be that the most valuable contribution PCR can make is as a variable-screening 
procedure in a manner not unlike existing “screening designs,” in which the primary purpose 
of the model is to identify predictor variables but not necessarily how they interact in their 
effects on response. 

Clearly, more experience is needed in the application of nonlinear elements in regression 
analysis. In addition, one needs to consider carefully the prospect and consequences of 
nonlinear transformations, such as logarithmic, to either or both the predictor and response 
variables. This approach to nonlinearity is covered in Appendix I. 
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APPENDIX I: TRANSFORMATION AS AN APPROACH 
TO NON-LINEAR REGRESSIONS 

One of the assumptions of least squares regression is that errors are normally distributed and 
homoscedastic. Since regression deals with estimating the average response to the predictor 
variables, the errors are likely to be approximately normally distributed as a consequence of 
the very powerful Central Limit Theorem. Homoscedasticity, though, is another matter. If 
errors get larger or smaller as we go from lower to higher emissions, we are likely to get 
biased estimations if we assume that the error variance is constant over the whole range of 
emissions. 

Usually, we make transformations for one or more of several reasons: 

1. To linearize or otherwise simplify the form of the regression equation. 

2. To “stabilize” the error variance - that is, to change a heteroscedastic error 
distribution to one that is at least approximately homoscedastic. 

3. To produce a result that is more consistent with real-world experience. 

Linearization is a convenient technique for converting a non-linear equation to one of linear 
form, so much so that one is tempted to make that conversion without regard to its 
consequences with regard to (2) and (3). Similarly, error stabilization may be indulged in 
quite legitimately but could distort the regression curve, surface or hypersurface to such an 
extent that (3) is violated. 

Finally, whether a result is “consistent with real-world experience” is often a judgment call. 
However, there may be good reason to believe that the effect of an incremental change in a 
predictor on the response is not constant but is proportional to the value of the response at 
which the increment is applied. Again, a transformation made to implement that nugget of 
experience may not necessarily be consistent with (1) and (2). 

In short, in making a transformation, we often deal with conflicting requirements and are 
lucky if we do not get an effect that we do not want along with one that we do. For example, 
if our error distribution really is homoscedastic and we make a log transformation for 
purposes of - say - linearization, we will produce a heteroscedastic distribution that works to 
our disadvantage, so far as goodness of fit is concerned, and that may yield biased 
predictions. 

These concerns are in addition to concerns with regard to the scaling or re-parameterization 
of data by such means as removing the mean or normalizing to units of standard deviation 
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about the mean. Table I. 1 below summarizes properties of transformation often applied to 
data, particularly in the area of emission and fuel-economy data. 

Table 1.1. Typical Transformations and Associated Metameters 

Transformation Equation Form Differential Effect Error Weighting 

1. Identity y=a+bx dy=bdx s2 = k 

2. Mean removal y=a+b(x-m) dy=bdx s2=k 

3. Resealing 1 y=a+b(x-m)/s dy = (b/s) dx s2 = k 

4. Resealing 2 y=a+b(x-m)/r dy = (b/k) dx s2 = k 

5. Logy y = a ebx / dyfy = b dx s2=k/m2 

6. Log x, log y y=axb 

a, b, r, k = Arbitrary constants 
s = Sample standard deviation 

dyly = b dx/x s2=k/m2 

m = Sample mean 

Transformations (1) and (2) are typically used in Ordinary Least Squares (OLS) regression, 
either with or without logarithmic transformation of the dependent variable. Removing the 
mean makes the x-variables symmetric about zero and may help to minimize computational 
difficulties. Transformation (2) was generally used in developing the Complex Model for 
Reformulated Gasoline. 

Transformation (3) reduces data to so-called “standard scores” as used in psychological 
testing and has the advantage, in all applications, of placing all predictor variables on a level 
phyingfield in that all data in the design matrix span essentially the same range. Otherwise, 
there might be a large diversity of scale among the predictor variables, and this diversity 
could lead to misinterpretation. On the other hand, unless the original range of each predictor 
is representative of the viable range of that variable in the real world, a predictor that was 
varied only over a fraction of its real range could seem to have an exaggerated effect. That 
exaggeration comes about simply because its short range was reduced to the same scale as 
that of other predictors that were varied over a much larger range relative to what is 
realistically feasible. 

Transformation (4) offers a way out of this difficulty by using, rather than the standard 
deviation of the sample, some number r more representative of the range of variation at the 
disposal of the experimenter. This is the type of scaling used in applying random balance 
methodology to assess the relative importance of predictor variables as measured by 
partitioning the sum of squares induced by random sampling over the design space. 
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Transformation (5) is probably the one most frequently used in regressions of emissions and 
fuel economy on fuel or vehicle predictors. It is widely believed that a unit increment in a 
predictor - say, one point in cetane number - has a larger effect when emissions are high than 
when small. As shown in Table I. 1, logarithmic transformation of response accomplishes 
that end. It also is an easy dodge of negative emission predictions. Perhaps most important 
of all, though, it linearizes the equation so that all the theory of the General Linear Model is 
applicable. 

It will be insightful to examine the mathematics involved in transformations (5) and (6). 
Consider an equation of the form 

Y = ea+bx 

which transforms to 

logy=a+bx 

Then, 

dyklx = b ea+bx or dy/y = b dx. 

Thus, it is implied that an incremental change in the predictor variable produces a constant 
percent change in the response. 

Now consider an equation of the form 

y=axb 

Logarithmic transformation gives 

logy=loga+blogx 

Then, 

dy/dx=abxb“ or dy/y = b dx/x. 

In other words, a percent change in the predictor variable produces a percent change in 
response. 

Next, let us consider how transformations (5) and (6) are related to error variance 
homogeneity-heterogeneity. A good approximation to the effect of a transformation on the 
variance of a random variable Y is provided by the equation: 
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where g is the transforming function and g’ is its derivative. For example, if we define g(y) 
as 

then 

g(y) = 1% Y 

ii?(Y) = -l/Y 

and 

Var[log(Y)]=km2/m2=k 

Thus, the logarithmic transformation, in addition to linearizing the regression model, also 
“stabilizes” the variance and satisfies the least-squares assumption of homoscedasticity. 

Suppose, however, that the response variance really is homoscedastic. In that case, the 
logarithmic transformation actually produces heteroscedasticity - in fact, the response error 
variance is inversely proportional to the square of the mean. Because the least-squares 
algorithm attempts to minimize the sum of all squared deviations from the regression line, it 
“tries harder” when the mean response is low than when the mean response is high. The 
result is that the lower end of the curve is weighted more heavily than the higher end. A 
possible result is that estimation may be biased relative to a regression equation for which 
errors are equally weighted over the range of the response variable. 

A demonstration of this possibility is afforded by the following textbook example, in which 
both the predictor and response variables are log-transformed. The data set, obviously 
contrived for demonstration, is shown as Table 1.2. 

Table 1.2. Demonstration Data Base 

~~ 

1 2.5 

The results of regressing log(y) on log(x) are summarized below in Table 1.3. In antilog 
space the regression equation takes the form 
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y = 2.224 x2,o96 

Intercept 

k(x) 

Table 1.3. Regression of log(y) on log(x) 

Regression of log(y) on log(x) 

Regression Coefficient 
Coefficient Std. Error 

0.7984 0.2151 

2.0952 0.2264 

Analysis of Variance: R2 = 0.9772 

t 
Ratio 

3.7115 

9.2527 

ss Df MS 

Model 4.7597 1 4.7597 

Error 0.1112 2 0.0556 

Total 4.8709 

Figure I. 1 is a scatter plot of log(y) versus log(x) with the line representing the fitted equation 
superimposed. The algebraic sum of the residuals in log space is zero, and it is readily seen 
that the log(y) observations are essentially symmetrically disposed about the least squares 
line. 

One can compute the residuals in antilog space by taking the differences between the 
exponentiated logarithms of the observations and the corresponding exponentiated logarithms 
as computed from the regression equation: 

Figure 1.1. Log-Loe Fit to Demonstration Data 

100.0 

1.0 ~ 
1 10 

Predictor Variable log(X) 
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Sum of residuals = 4.88 
Mean residual = 1.26 

Residual SS 
Corrected for mean = 100.30 
Not corrected = 101.54 

Considering that the regression equation displayed R2 = 0.98, the residual sum of squares 
seems unreasonably high. Moreover, the sum of the residuals is not zero, as it should be for a 
well-fitted equation. The nature of the apparent misfit is shown clearly in Figure 1.2. The 
heteroscedastic error distribution induced by the log transformation has placed greater weight 
on the lower end of the curve, resulting in a large residual error at its upper end. 

Figure 1.2. Log-Log Fit to Demonstration Data in Antilog Space 
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Other means exist for minimizing the sum of squares in exponentiated space, but they do not 
permit the nice linearization provided by logarithmic transformation. For example, starting 
with the parameters estimated from the log-log regression, one can explore other candidate 

values of intercept and exponent in the vicinity of these initial estimates. To do so, one 
simply computes, for each candidate set, the sum of the residuals and the sum of the squared 
residuals and seeks that set of parameters that best satisfies the criterion of minimum sum of 
squares, with or without the additional requirement that the algebraic sum of the residuals be 
zero. It is evident, as well, that other “loss functions” can be used, such as minimizing the 
least absolute deviation, as might be preferred in some applications. One can draw on 
existing software for performing such nonlinear regression or can develop simple MatLab 
algorithms for that purpose. 

Two solutions obtained by the above approach are compared below with the initial estimate 
as obtained by least-squares regression of log(y) on log(x): 
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Intercept Exponent Sum of Residuals Residual SS 
2.224 2.096 4.8763 100.3 (*) 
0.7385 3.0343 2.4395 10.0012 
0.8950 2.9042 0.00 11.86 

* From least-squares regression of log(y) on log(x). 

The two “improved” solutions assume that the errors are homoscedastic, whereas the initial 
log-log approach, by its very nature, treats errors as if they change inversely as the magnitude 
of the response. 

The first of the alternative solutions, the result of seeking to minimize the residual SS in 
antilog space, produces a residual SS value of 10.0012 versus 100.3 for the anti-log 
equivalent of the log-log fit, but it exhibits a continued bias as indicated by the non-zero sum 
of residuals. The second of the alternative solutions attempts to find the smallest residual SS 
among the solutions that have a zero sum of residuals. Its residual SS, at 11.86, is only 
slightly larger than that of the first alternative, and its sum of residuals is zero to two decimal 
places. 

The second of these two alternatives, which could be viewed as the best, unbiased fit to the 
demonstration data in antilog space, is shown graphically in antilog and log-log forms in 
Figure I.3 and Figure 1.4, respectively. The curve closely fits the demonstration data in 
antilog space and distributes its residuals evenly between plus and minus. But, optimizing 
the fit for antilog space necessarily implies an apparent misfit in log-log space, such that the 
points lowest on the curve are given lesser weight compared to those higher on the curve. 

Which solution is to be believed? In spite of what may seem to be a poor fit in Figure I. 1, the 
log(y) versus log(x) solution would be more appropriate than the others if the error 
distribution is actually such that the variance is proportional to the square of the mean. 

‘igure 1.3. Antilog of y = 0.8950 x 2*go42 I 
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Figure 1.4. Log-Log of v =‘0.8950 x 2-9042 
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However, if the errors are actually homoscedastic, the log transform version, in spite of its 
convenience, would not be appropriate, and another solution, directly optimized for antilog 
space, would be preferred. 

The advantages and limitations of transformations are as relevant to vector-based regression 
as they are to conventional regression analysis. Every effort should be made to assure that 
the assumptions made with regard to error distribution and model correctness are appropriate 
before proceeding with regression analysis in either its conventional form or the modified 
PCR approach advanced in this report. 

This report does not specifically address the effect of transformations on the modified version 
of PCR. Suffice it to say, however, that the same advantages, limitations, and sometime 
dilemmas apply in PCR as in conventional regression analysis. Inasmuch as transformation 
decisions are made at the P-Space level, any errors of judgment made at that level will be 
propagated to E-Space and will vitiate any advantages that might be gained by the 
eigenvector approach. 
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