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EXECUTIVE SUMMARY

The use of an engineered form of crystalline silicotitanate as a potential sorbent for the removal and

concentration of cesium from the high-level waste at the Savannah River Site was investigated.  Results

conclusively showed this sorbent to be unaffected by gamma-induced radiolytic gas formation during

column loading.  Closely controlled column-loading experiments were performed at the Oak Ridge

National Laboratory’s High Flux Isotope Reactor (HFIR) in a gamma field with a conservative dose rate

expected to exceed that in a full-scale column by a factor of nearly 16.  Operation of column loading under

expected nominal full-scale field conditions in the HFIR pool showed that radiolytic gases were formed at

a  previously calculated  generation  rate  of 0.4  mL per liter of feed solution.  When the resulting cesium-

loading curve in the gamma field was compared with that of a control experiment in the absence of a

gamma field, no discernable difference in the curves (within analytical error) was detected.  Both curves

were in good agreement with the VERSE computer-generated curve.  Results conclusively indicate that

the production of radiolytic gases within a full-scale column is not expected to result in reduced capacity

or associated gas generation problems during operation at the Savannah River Site.
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1.  INTRODUCTION

Through the Salt Processing Project (SPP), the Department of Energy (DOE) has tasked the

Savannah River Site (SRS) with the  treatment and disposition of the high-level waste (HLW) stored on-

site.  The overall SPP encompasses the selection, design, construction, and operation of facilities to treat

the soluble HLW.1  Following treatment, the decontaminated liquid would  go to the site’s Saltstone

Facility, and the sludge would go to a borosilicate-based vitrification facility known as the Defense Waste

Processing Facility (DWPF).1  Radioactive elements such as the actinides, strontium, and cesium will be

removed from the liquids and will become feed to the DWPF vitrifier.

The In-Tank Precipitation (ITP) process using tetraphenylborate (TPB) to precipitate cesium was

studied extensively during the 1980s at SRS and tested in 1995 with radioactive waste.  Problems with the

coproduction of large amounts of the degradation product benzene caused some safety concerns.

Eventually, in August 1996, the Defense Nuclear Facilities Safety Board (DNFSB) advised

(Recommendation 96-1) that operations and testing in the ITP Facility not proceed until  the mechanism(s)

involved in TPB degradation are more fully understood.  As a result of the benzene problem with the ITP

process, other alternatives for removing cesium from HLW were evaluated.

An engineering evaluation of more than 140 potential cesium-removal processes eventually

produced a final list of four candidates.  These choices were the use of a nonelutable silicotitanate sorbent,

a caustic side solvent extraction, a small-tank TPB precipitation, and cement-based grouting with no cesium

removal; further review eliminated the direct grouting option.  The National Academy of Sciences is

independently overseeing the DOE evaluation of the technologies with the  support of the Tanks Focus

Area (TFA).  This study is a part of the comprehensive R&D program plan for the technology evaluation

that the TFA is to prepare and manage.  A DOE decision as to which technology will move forward at SRS

is expected by June 2001.1 

In the currently proposed nonelutable ion-exchange process utilizing crystalline silicotitanate (CST),

soluble alpha contaminants and 90Sr would first be sorbed onto monosodium titanate in an alpha sorption

tank and then washed and filtered, yielding a solution of approximately 5.6 M sodium.  An acceptable

filtrate from this process step would become the feed to an ion-exchange-column train charged with an

engineered form of CST.
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As described in the TFA Project R&D Program plan,1 the ion-exchange train would be made up

of three columns in series, employing downflow feed with a fourth column in standby for use during column

change out.  When the first is fully loaded (~90% capacity), it will be removed from service and the standby

column will be used as the third of the primary columns.  The CST in the first loaded column will be sluiced

with water to a holding tank.  Following a solid–liquid separation step, the CST will be transferred to the

DWPF for incorporation into HLW glass.

The preliminary design specifies 20-ft-tall fixed columns that are 5 ft  in  diameter  with  a 16-ft-high

bed.  Each can load up to 5 MCi of  137Cs.  Consequently, radiolytic gas generation from gamma radiolysis

of water and  nitrate is expected to yield oxygen, hydrogen, and, possibly, lower oxides of nitrogen,

although these oxides were not observed in the work reported here.  It has been estimated that as much

as 35 L/h of gas will be produced within a loaded column from ~5 MCi of 137Cs.1  Walker has shown that

oxygen is the major gas formed from the high-nitrate waste, while in the high-hydroxide waste, hydrogen

is formed in larger amounts than oxygen.  High-nitrate waste solutions have been shown to produce the

largest gas-generation rate; for that reason such solutions were used in this work.2, 3 

In a loaded full-scale column containing up to 5 MCi of 137Cs, a dose rate of approximately 0.8

Mrad/h can be expected.  Decay heat and gases produced within the body of the bed as well as inside the

engineered CST particles may present special  problems, especially on full-scale columns with larger

hydrostatic head-pressure forces that affect gas solubility in an axial direction.  Interparticle accumulated

gas could potentially (1) increase pressure drop, (2) blind the surface of the CST from access to the

solution, or (3) produce channels that prevent some CST from loading cesium.  Additionally, intraparticle

gas formation may produce uneven regional forces that may aid in particle attrition, depending on their

ability to diffuse through the solution.  Gas diffusivity in the saline solution within the CST micropores is

impeded by solution ions, which consequently reduce the vapor pressure of the water solvent.  These gases

may also blind internal exchange sites that otherwise would have been available for cesium exchange with

sodium.  This potential effect of intraparticle gas on mass transfer inside engineered CST is unknown, but

the HFIR test was expected to establish the impact.  Both channeling and exchange site blinding could lead

to early column breakthrough and subsequent use of more CST than planned, culminating in the need for

the production of more very costly glass at the DWPF.
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If not removed, hydrogen and oxygen in the proper ratios can form high-energy explosive mixtures.

Therefore, movement of gases from one column to the next could produce safety concerns as well as affect

the loading of the next column.  Other tests at Oak Ridge National Laboratory (ORNL) using a 16-ft-tall

column (as in past tests) are intended to resolve some of these concerns regarding gas disengagement.4

2.  DESCRIPTION OF THE HFIR FACILITY

The primary mission of the ORNL reactor has been to produce radioactive isotopes, especially

252Cf and other transuranium isotopes for research, industrial, and medical applications.  The extremely high

neutron flux (3 × 1015 cm!2@s!1) in the central flux trap of the High Flux Isotope Reactor (HFIR) also

becomes a source of neutrons for condensed matter investigations and material science studies for up to

200 international experimenters each year.  Most experiments at the HFIR take place with neutrons from

the reactor beam tubes rather than gamma experiments in the pool, as performed in this study.

The HFIR is a beryllium-reflected, flux-trap reactor that is light-water cooled and moderated, and

uses highly enriched 235U as fuel.  The fuel region is composed of two concentric elements.  The inner

element contains 171 fuel plates; the outer element, 369 fuel plates.  The plates are curved in the shape of

an involute, thereby providing a nearly constant coolant channel width.  The plates in the involute are

composed of a U3O8–Al cermet.  The high-purity, aluminum-clad fuel produces high levels of 24Na (15-h

half-life) in the primary coolant during reactor operation and results in very high gamma fields following

shutdown.  Radioelements that can be expected in the pool water are 152Eu, 154Eu, and 60Co.  

The reactor core is 0.71 m (28 in.) long, with a 12.7-cm (5-in.) inner core (hole) that is also known

as the flux trap.  The reactor core contains 9.4 kg of  235U and 2.8 g of the burnable poison 10B.  The

reactor began operation at full power in 1966 at 100 MW and was later reduced to 85 MW, the level at

which it operates today.  The primary coolant is pumped axially through the fuel element parallel to the

involuted fuel plates at approximately 13,000 gal/min.  

The fuel region of the spent fuel element is surrounded by a 0.3-m-thick concentric ring of

beryllium, which acts as a neutron reflector.  Between the beryllium shield and the fuel element are two

concentric cylinders containing poison-bearing metal to halt the reaction.  The reactor reactivity is increased
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as the outer cylinder plates are raised.  The control plates have three axial regions containing different

amounts of poison; any of these are capable of shutting the reactor down.

At a power level of 85 MW, a complete fuel cycle generally lasts for 24.7 days, depending on

downtime.  At 85 MW this then means that each fuel element is burned to 2100 MWd each, as evidenced

by a decrease in power level.  At this point, the fuel element is of little value and must be moved to the

cooling pool until the gamma field has sufficiently decayed that the element can be shipped back to

Babcock &Wilcox for dissolution and recycle.  In the pool, the short-lived isotopes initially produce an

intense gamma field that is estimated to be approximately 180 Mrad/h.5, 6  The test in the spent fuel element

did not start until after the 45th day of  decay  or  at  a  dose  rate  of 12.4 Mrad/h gamma.

During normal operation, the temperature of the water that is present in the spent-fuel-element pool

and makes contact with the reactor core vessel on the other end of the pool remains between 31 and

34EC.  The spent fuel elements are stored approximately 16 ft (to the top) below the surface of the pool,

while the  center  of  the  exchange  column,  down  inside  the  element,  was 5.4 m (17.8 ft) from the

pool’s surface.  The center of the CST column was located at the approximate center of the active fuel

region of the spent fuel element  from  HFIR  reactor  cycle  no. 380.

 3.  EXPERIMENTAL SETUP AND OPERATION

The majority of the skid-mounted equipment used in this experiment was constructed under

contract by Alloy Fabrication, Inc., of Clinton, Tennessee.  The umbilical hose, adapter, outer can, and

column were fabricated by various Oak Ridge machine shops.  All necessary quality control tests were

performed to conform to the strict guidelines of the HFIR facility as well as those of the ORNL Chemical

Technology Division.  All conceptual design work was performed in-house through the efforts of the ORNL

Engineering Technology and the Instrumentation and Controls Divisions. Engineering drawings were

prepared by the Y-12  Engineering and Drafting Section.

Because of concerns by HFIR management that a chemical spill could occur near the reactor and

spent-fuel-element storage pool, the entire skid was built so that  it  rested  upon  a 4- by 4-ft, 10-in.-deep

polyethylene spill-control pallet that could accommodate  up to 66 gal of spillage.  The simulant, coolant
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water, and humidifier solutions totaled approximately 26 gal; therefore, accidental spillage became less of

a concern when such a skid was used as a platform.

The skid-mounted equipment was composed of three primary sections:  helium pressurization and

control, chiller and column cooling, and simulant sparging and pumping systems.  Each of these systems was

monitored and controlled using LabView 5.1 control  software  running  under Windows NT.  The data

were recorded on two hard drives, which transferred data from the primary to the backup drive at noon

and midnight each day.  At the end of the 7-day test, data were transferred to write-only compact disks

— one copy for ORNL records and one for Savannah River.

Operation of the experiment at the HFIR required the use of mandatory alarms for certain critical

parameters that were considered safety issues at the facility to avoid primarily the potential for pool

contamination.  A total of 11 alarms were active during the 7-day operation of the experiment.  Three of

these were audible alarms in the Reactor Master Control Room (RMCR), while the remainder were local

alarms for the unit operator to respond to out-of-range settings.  The RMCR alarms were critical to

continued operation of the experiment.  Any activation of these alarms for which the cause was

undetermined could have resulted in termination of the experiment.  A few of the alarms that are most

important to the HFIR facility operations are described in general terms in this report.

The umbilical hose that carried tubing and wires to the column at the bottom of the pool was

pressurized using helium gas.  The pressure was specified never to drop below 8 psig.  It remained

nominally at 10 psig — above the hydraulic head pressure at the pool bottom — to preclude the ingress

of pool water.  The upper umbilical hose pressure limit was set at 11.0 psig. 

The second alarm that would have activated in the RMCR was for detection of moisture inside the

umbilical hose or can assembly.  Dry helium  gas entered the bottom of the umbilical hose and returned by

way of a 1/8-in. tube placed just below the column inside the can.  This gas then passed over gold-plated

alumina sensors (Nyad, Inc., Martinez, California, Series 100 moisture analyzer), which were capable of

detecting moisture in the gas either in units of parts per million of water or the equivalent dew-point

temperature.  An upper dew-point limit was set at  ö21EC.  At or above this temperature, an alarm would

sound to indicate the potential for an internal leak in the can surrounding the ion-exchange column.  This

moisture could have originated from a leak of cooling water or simulant solution, with very little likelihood

of pool water ingress due to the umbilical hose pressurization.
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The flow of dry helium at the entrance and exit of the umbilical hose was monitored using flow

controllers that constantly checked the entry and exit values to determine if a gas leak were present.  If the

difference between the values exceeded 50 cm2/min, an alarm would also sound in the RMCR and a search

for the source of the leak would be required if the experiment were to continue.

3.1  EQUIPMENT   

This section describes the primary pieces of equipment used in this experiment and explains their

general interrelationships.

3.1.1  CST Column 

The CST column was constructed primarily of 304 and 316 stainless steel (SS) with a nickel gasket

on the top where the knife edges of a Parr-type closure were tightened to effect a reliable seal.  The internal

working space of the column was 20 cm long and 1.5 cm  in  diameter  with  the  top 10 cm set aside for

liquid and/or gas and the bottom 10 cm for the CST charge.  At the top and bottom of this space, 200-

mesh 316 SS screens were spot-welded to aid in retaining any small-size fractions of CST.  Thermocouple

wells (0.040 in. in diameter) passed completely through the column such that they would have been 1 cm

above the bottom of a 10-cm bed and 1 cm below the top.  These wells were silver soldered into the body

of the steel column tube.  Surrounding the column was a double wall that served as a water jacket for

coolant water flowing from the bottom to the top of the column.  Because of the high-radiation field, all

tubing surrounding the column (shown  in  Fig. 1) was SS.  Away from the radiation field, the coolant lines

later became polyethylene.  Simulant entered the column through the top and exited the bottom by way of

1/8-in. SS tubing, while 1/4-in. SS tubing was used for the coolant lines close to the column.
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Fig. 1.  CST column with attached simulant and cooling lines.
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3.1.2  CST Column and Can Assembly

For an experiment to be placed inside a spent fuel element at the HFIR, procedures require the use

of a secure, dimensionally exact outer can of a specified design.  This can serves as a secondary barrier

surrounding the experiment and receives any unintended leakage, thereby protecting the pool water and

the inner environment inside the element.  The outer can with the column inside is shown in Fig. 2.  The SS

can fits inside the 5-in.-ID opening of the spent fuel element with enough clearance to meet the HFIR

guidelines.  Small tabs on the side of the can (as shown) allow the centerline of the CST sorbent to be

placed at the point of  maximum field strength.  The can is made from SS except for a high-purity aluminum

gasket that  joins the surfaces of the bolt head flange on top (as shown).  The SS pipe above is extended

at an angle away from the spent fuel element so that the Urebrade polyurethane umbilical hose attaches at

a point outside the gamma field, which could effect its rapid degradation.

As shown in Fig. 2,  the 1-in. umbilical hose was attached to the can extension pipe by two SS

clamps.  At this point, the 1/4-in. SS water-coolant lines transitioned to high-density polyethylene.  It should

be noted that the column and associated tubing are surrounded by the helium gas (from above) entering

through the umbilical hose.  As shown, a piece of 1/8-in. SS tubing is on the bottom of the can just below

the column.  This tubing serves to return the helium surrounding the column inside the can to the moisture

monitors on the experimental skid.

To ensure that the column would remain vertical and centered, it was held in place inside the outer

can assembly by a guide tube attached to the side of the column (as shown in Fig. 3).  The helium return

line just below the column is also more readily seen in this view.  A lifting and manipulation loop can be seen

welded to the top of the angled pipe above for use by HFIR operators, with tools on the end of pipe poles

normally used inside the pool.

3.1.3  Column and Spent-Fuel-Element Arrangement   

When the gamma-decay dose rate reached 12.4 Mrad/h (as indicated from the HFIR decay rate

tables), the column and outer can assembly was placed inside the spent fuel element from reactor 



9

Fig. 2.  CST column secured inside the standard outer can.
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Fig. 3.  Cutaway view of the column and can assembly.
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Fig. 4.  Cross-sectional view of the column and can inside the
spent fuel element.

cycle no. 380.  The operators used their standard pool tools attached to aluminum poles to place the

column and can assembly inside the spent fuel element, as shown in Fig. 4.  As shown in this cross-

sectional drawing, the column and can assembly rests on a cadmium post, which just makes contact with

the tabs on the side of the can.  It is interesting to note that the fuel centerline is 1.5-in. below that for the

CST column.  Because the maximum gamma dose rate actually exists above the centerline of the fuel, this

situation is counterintuitive.  As shown in the figure, the space surrounding  the can contains the enriched

uranium.
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3.1.4  In-Pool Experimental Setup

The centerline of the CST column was 17.8 ft below the surface of the HFIR pool, which itself is

20 ft deep, as shown in Fig. 5.  At the edge of the pool, the water passed into a scupper which, as in most

swimming pools, collected any floating debris.  Pool water is constantly pumped through filters and mixed-

bed ion exchangers to remove cations and anions.  Because the nearby reactor is surrounded by the same

water as that in the decay pool, the water remains thermally hot (typically between 31 and 34EC).

Fig. 5.  In-pool experimental setup, showing the attached umbilical hose.

The wall of the pool is 5 ft thick and composed of a barite-based concrete with a 2-in.-diam access

hole through which the Urebrade umbilical hose passed to connect with the experimental skid below.

Within 6 in. of the surface of the pool is a railed working platform.  From this platform, operators worked

to remove numerous spent fuel elements during their decay cycles prior to shipment to Babcock and Wilcox
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for remanufacturing.  The total length of the umbilical hose originating just above the experimental skid, in

what is shown (in Fig. 5) as the working area outside the wall, was approximately 40 ft.

3.1.5  Skid Configuration and Operation

The skid-mounted unit was transported to the HFIR facility and subjected to a number of electrical

and helium leak tests in accordance with established quality assurance procedures.  The CST column had

already been prepared in the laboratory.  The CST inside the column (11.10 g) remained in contact with

1.17 M sodium hydroxide solution until needed.  This mass of CST resulted in a bed length of 6.28 cm.

The column was bolted inside the outer can, which was attached to the Urebrade umbilical hose and

transported upstairs to the pool side for placement through pool wall penetration no. 174.  The end was

passed through the wall and down to just above the skid.  At this position, it was attached to a SS adapter

coupling, where all internal tubing and thermocouples exited and connected to various parts of the unit.

Prior to any other activity, the column was first pressurized to 10 psig with helium.  HFIR operators

lowered the column/can assembly to an empty jacket element 8–10 ft from the nearest element, where it

remained temporarily at the bottom of the pool.  The chiller/coolant circuit was then started.

The same  procedure for column preparation and placement was followed for both the first test in

the spent fuel element and the second baseline control test in the empty jacket element.  For the second

test, the can was opened at pool side for placement of the new column inside.  Shortly after placement in

the pool, the chiller/coolant circuit was started to quickly cool the column to the target temperature of 25

± 2EC.  Therefore, the first two preliminary steps during the startup procedure always required prompt

pressurization of the umbilical hose and cooling of the column followed by startup of the other skid circuits.

The following paragraphs describe the experimental skid startup procedure, operation, and control.

A schematic drawing of the unit and its associated equipment is provided in Fig. 6.  The startup procedure

requires the sequential activation of three circuits:  (1) the helium pressurization, (2) the chiller/coolant, and,

lastly, (3) the simulant flow.



  Fig. 6.  Schematic of the experimental equipment layout at the HFIR pool.
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The helium circuit operated with a feed pressure of 20 psig from regulated tanks near the skid.

Two mass flow controllers — FTCV-1 and FTCV-2 — in the outlet and inlet lines, respectively, were

used to check the difference in the incoming and outgoing volumetric flow of helium.  In this way, a leak

from the umbilical hose or column/can assembly can be quickly established with some confidence.  Initially

FTCV-2 was set at 100 sccm.  During operation, the difference between the two controllers would be

expected to be minimal.  In this way, the volume difference in gas flow is monitored.  (Pressure alone is

controlled by regulators and would not by itself be a good indicator of a leak.)  If the difference in values

recorded by these controllers exceeds 50 sccm for more than 5 min, an alarm activates.  Pressure in the

umbilical hose was controlled through PT-1 near the gas exit with FTCV-1 opened or closed to maintain

the target pressure in the umbilical hose at 10 psig.  The data acquisition system (DAS) operated these

controllers.  If pressure were to drop below 8 psig, an electric solenoid valve (FTCV-1) would close

completely to stop the loss of more gas and thereby temporarily maintain the pressure and sound an alarm.

The helium circuit was also used to monitor moisture exiting the column and can assembly and the

full length of the umbilical hose.  The dry helium gas contained less than 1 ppm moisture. The incoming

moisture content was measured at moisture element ME-3.  Two moisture elements measured the moisture

content of the exiting helium.  The dew point was displayed on a digital hygrometer, with a value of  21EC

as the upper alarm limit.  The two moisture elements, ME-1 and ME-2, located near the helium gas exit,

were redundant, that is, one acted as a backup because of the importance of this parameter to HFIR

management.

Following umbilical hose pressurization,  the  coolant  circuit  was  started.  A  high-capacity (600-

to 1000-W) chiller provided chilled water to maintain the column temperature at 25 ± 2EC.  Chiller

operation was controlled by the DAS as well as a flow control valve (FCV-2), which opened and closed

in order to increase or decrease the amount of water returned to the chiller sump.  A positive-displacement

piston pump (P-1) was used to force the chilled water through 1/4-in. polyethylene tubing located in the

umbilical hose, through the column jacket, and back to the chiller sump.  In addition to the temperature set

point in the chiller, at a given chiller operating temperature, column temperature was regulated by controlling

the amount of coolant recycle via control valve FCV-2.

Temperature was monitored inside the column using four type-K thermocouples — two at the top

of the column and two at the bottom — placed 1 cm below the top and 1 cm above the bottom of the bed,
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respectively.  A thermocouple well passed completely through both ends of the column and  the CST bed.

The 0.040-in.-diam thermocouples, TE-1 through TE-4, entered the wells and met in the middle of the

column.  Only the top thermocouple, TE-1, was used for control of column temperature; the others were

redundant.  All readings were displayed at the computer console.  The temperature was controlled very

well using this technique, and the column target temperature was maintained.

After the helium pressurization and coolant circuits had been stabilized, the simulant pumping circuit

was started.  At this point, the CST in the column was covered by 1.17 M caustic solution.  First, this

solution was displaced with cesium-free simulant, which also served to displace air inside the 1/8-in. SS

tubing before any cesium-containing simulant from the feed tank was pumped.  Cesium-free simulant was

then pumped into the column from the bottom because it was known that air could be displaced more

readily in this direction.  This solution was pumped sufficiently long enough to displace air in the lines and

in the two groundwater filters used to prefilter simulant going to the column.  When all air had been

displaced from the column and from the various tubing and valves in the circuit, that part of the circuit was

closed via a valve until needed.

The next step in the startup procedure was to saturate the cesium-containing simulant with CO2-free

air.  The method used to ensure that enough sparging time elapsed  is discussed in Sect. 4.1.  First, the

humidifier tank was filled with 5 gal of the simulant.  The simulant feed tank was then charged with 20 gal

of the simulant.  The air used for sparging inside the humidifier tank passed through the alkaline solution.

Upon exiting the solution, the air passed to the simulant feed tank through 1/4-in. SS tubing and

simultaneously sparged the simulant solution.  The small amount of CO2 in the high-purity air used for

sparging was removed in the humidifier as carbonate so that it could not pass through to the column.

Additionally, air passing to the simulant feed tank was prehumidified in this way to minimize evaporation

of the feed solution.  This sparging continued for 4 h (as described in the following paragraphs) before the

simulant feed was considered ready for use.  Sparging of the solutions in this way continued throughout the

entire week of the tests, with simultaneous mixing of the feed solution in the simulant feed tank.

When the feed solution was saturated with air, the valving on the skid was adjusted so that simulant

that contained cesium at a target of 50 ppm could be pumped to the column for entry at the top.  When

ready, the simulant pump (P-2) was started by the DAS and set at a target flow rate of 6.00  mL/min.

Solution  passed  through  one  of   two  0.45-µm  groundwater  filters  (GWV  lot no. 18440, Gelman
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Sciences) and then to the column.  The flow rate was adjusted by the DAS, based on signals from a

factory-calibrated RheothermTM metering apparatus with a low-flow-rate alarm set at 5 mL/min and a high-

flow-rate alarm at 8 mL/min. The flow rate remained very constant, varying only slightly from the target flow

rate over the duration of both tests.

Simulant exiting the column passed from the umbilical hose through the adapter and then flowed

to a gas-collection column made from clear polyvinylchloride (PVC) and calibrated along its side.  The

effluent solution in the returning column was allowed to fill the vertical column until it overflowed from the

top, at which time a valve was closed.  A side arm parallel to the column and originating from the bottom

of the column was used to equilibrate the gas volume in the collector with atmospheric pressure just prior

to taking a gas reading.  The gases from the column rose inside the collector, and the liquid effluent exited

at the bottom.  The column effluent passed a sampling valve and then flowed to a 30-gal simulant return

tank.  

The total volume of effluent passing the sampling valve was constantly integrated based on data

from the RheothermTM and clock time and was recorded at each liquid sampling of 12 mL of effluent.

Column effluent was removed every 2 h.  Care was taken to allow new sampling solution to displace

solution in the 1/8-in. tubing near the valve to avoid cross-contamination from a previous sample.  Every

second sample removed was submitted for chemical analysis of its cesium content.  The test continued for

168 h.  The same startup procedure was employed for both the baseline (control) test and the test in the

spent fuel element. 

3.2  DEVIATIONS FROM THE ORIGINAL TECHNICAL TASK PLAN

The work documented in this report was originally described under an Office of Technology

Development Technical Task Plan No. ORO-8-SD-11.7  However, a number of calculations and computer

modeling performed during the course of preparation for work at the HFIR facility  dictated some changes

to the planned operating conditions.  Most changes were made to ensure that  complete cesium

breakthrough curves were obtained or that conditions were near optimum to facilitate the maximum

generation of radiolysis gas.
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Originally, the cesium concentration in the feed simulant was 19 ppm.  This level was  increased

to 50 ppm to ensure that the full breakthrough curve was observed within the test duration.  In addition,

the silicate component of the simulant was omitted to prevent the plugging of CST pores that sometimes

occurs with this problematic chemical species in simulant.

Modeling of column operation, together with gas generation calculations, revealed that the simulant

flow rate and resulting superficial velocity should be lower to permit adequate residence time of simulant

in the radiation field to produce gas.  The original simulant flow rate was decreased  from 7.25 to 6.00

mL/min, with resulting superficial velocities decreasing from 4.1 to 3.4 cm/min.

The original column bed height was to be 10 cm, which would have required 17.1 g of CST charge.

However, due to a communications error, both columns were instead charged with 10 cm3  (11.1 g of

CST), yielding a bed height of 6.28 cm.  This unintended deviation from the standard bed size used in most

previous laboratory tests did not affect the results of this study.

4.  MATERIALS AND METHODS

The CST used in these column-loading tests was a commercial product that has been described

in detail elsewhere.8, 9  This granular sorbent, IONSIV IE-911®, was produced by UOP, LLC, of Mt.

Laurel, New Jersey, from a chloride-based process in 1998 and has a designation of lot no.

999098810005 CST (98-5).  Both wet and dry screenings of this batch were performed and showed an

average particle size of 410–437 µm (as received) and 412–457 µm following caustic pretreatment.  The

higher values in the latter range result from the wet-screen sizing, in which swelling was reported between

7 and 11%.

Taylor reports a Kd value for cesium from this batch of CST from high-nitrate simulant at 24EC of

1406 L/kg (based on a dry weight at 400EC) and 1300 L/kg (using a dry weight at 105EC).9  Additionally,

a weight loss of 6.5% was measured upon drying at 105EC for 2 days and 15.4% after 4 h at 400EC.

The CST (98-5) was weighed (11.1 g) into a beaker.  Excess  fines  were  removed  using 1.17

M caustic with swirling and decantation.  Using the same caustic solution, the CST was washed into the

SS column (1.5-cm diam by 20-cm length) and then pretreated by pumping 1.17 M caustic solution in the
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bottom-up mode at 6 mL/min for 24 h in a once-through pretreatment scheme.  This caustic concentration

stabilized the CST since it has the same molarity as in the high-nitrate simulant and is that specified in the

standard pretreatment procedure.10  The column was then sealed, and the resulting 6.28-cm-high bed

remained in contact with this solution.  The column remained in an upright position until it was transported

to the HFIR site for installation into the primary outer can.  In addition to attached simulant lines, the

CST bed and the empty space above it (13.7 cm) remained filled with the caustic solution.  In this way,

these areas remained free of air that would need to be displaced during the startup of our tests.  Based on

prior experience, the wet bed of CST was expected to have a liquid-filled, bulk porosity of 50 vol %.  The

same CST sorbent and pretreatment method were employed for material used in both the baseline and the

hot gamma- loading tests in the spent fuel element.

4.1  SIMULANT SATURATION PARAMETERS

Since the residence time of the high-nitrate simulant pumped through the column apparatus and bed

in the gamma field at the targeted flow rate of 6.00 mL/min was only 5.3 min, it was important to ensure

that conditions were conducive to radiolytic gas bubble formation.11  Within this period of time, sufficient

radiolytic gases would have to be produced to potentially have some effect on column performance. 

Solubilities of oxygen, nitrogen, and hydrogen gases were known from work performed at Hanford

on similar solutions (241-SY-101 simulated waste).  These values were corrected using the Schumpe

model  for activity differences in temperature and sodium content.11!13  In conjunction with corrected gas

solubilities,  G-values for these gases were derived by Walker at Savannah River using CST-free 5.6 M

high-nitrate simulant alone, as well as in the presence of the CST IONSIV™ IE-911  slurries.2, 11  Based

on these data, calculations, and tabulated gamma dose rates for the HFIR spent fuel elements, it was

decided to ensure that the simulant was presaturated with respect to atmospheric gases prior to being

pumped to the column.  In this way, we conservatively take credit for the simulant already being saturated

at 1 atm of pressure.

In order to accomplish this presaturation, CO2-free air was first sparged inside a sealed acrylic tank

containing approximately 5 gal of simulant which, since it is alkaline (1.2 M OH!), will aid in removing the
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small amount of remaining CO2 as carbonate and also prehumidify the exiting gas.  The exiting,

prehumidified, CO2-free air then passed to a 30-gal polyethylene tank containing 20 gal of simulant, where

it was constantly mixed and sparged by the air from the humidifier tank.  All sparging took place through

0.4-µm SS sintered metal spargers, which produced a very fine bubble froth in each tank.

Prior to implementing this sparging procedure in the field, it was necessary to determine how long

it would take to achieve saturation.  The mixing propeller energy input, temperature, propeller speed, and

sparging rate and time became important parameters that required testing at the same time the dissolved

oxygen content was measured.  These tests were performed on the bench top at Savannah River as well

as at ORNL inside the unit during early equipment checkout.  Tests at Savannah River showed that the use

of simulant or water yielded comparable results; therefore, tests with the unit at ORNL employed water.

The sparge time needed to saturate the solution with oxygen from air was measured using a fiber-

optic oxygen sensor that operates in both gas and liquid phases and is unaffected by alkalinity and high salt

content.14  These solution conditions precluded the use of a YSI™-type dissolved oxygen apparatus, which

would have resulted in membrane dissolution.  The apparatus used was purchased from Ocean Optics and

employed a fiber-optic oxygen probe that measured oxygen content via fluorescence quenching on an

immobilized ruthenium complex.  Mass transfer coefficients and sparge-time constants were derived from

a number of tests in which helium was first used to remove all oxygen from the mixed solution and air was

then sparged until steady-state oxygen saturation was approached.  The calculated mass transfer coefficient

of 4.2 × 10!4/s was obtained and corresponded to a sparge time constant of 39.7 min.14  The time to

steady-state saturation is approximately three times the calculated time constant or 120 min for a gas flow

rate of 200 cm3/min and a mixer speed of 400 rpm.  Due to the absence of baffles in the simulant feed tank,

the system was estimated to be 50% efficient.

Because it was important that the simulant be saturated with respect to atmospheric gases,  the

sparging time was doubled (from the calculated 2 h to 4 h) prior to pumping simulant to the column.  Air

sparging and mixing continued in this way for the full 7-day duration of both HFIR tests.

4.2  PRELIMINARY PUMPING TESTS
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During the construction phase for the experimental skid and associated equipment, a series of

pumping tests was performed to determine the expected pressure drop through 80 ft of 1/8-in. SS tubing.

It was expected that this same amount of tubing and test configuration would be used at the HFIR pool.

Two connected loops of tubing were strung overhead and attached to a scaffold with 15.5 ft of rise initially

and then 17.0 ft to the floor in the last loop.  This arrangement was to approximate pumping up the side of

the HFIR pool wall, through the wall, and down to the column in the pool — and then back.  High-nitrate-

based simulant was pumped through the tubing using a positive-displacement  piston-head  pump  (ACCU

SciLog,  Middleton,  Wisconsin,  with  an ACCU FM-40 RHOOSKY head with 450-rpm drive).  The

head on this pump would later be changed to a gear-drive type (Micropump, Vancouver, Washington,

Model 184-000-010) for use on the experimental skid at the HFIR.

During startup of the pump, the back pressure was displayed by a calibrated pressure transducer

and also by a calibration gauge as a secondary check.  The initial back pressure increased to 7.5 psig as

the solution moved up the first leg of tubing and then fell to approximately 2.5 psig as the solution flowed

downhill.  The back pressure then rose to 8.7 psig as it moved up the second leg; this sequence represented

the movement from the column at the bottom of the pool back to the top of the pool wall.  On the last leg

of tubing, the pressure dropped as solution moved downward (as it would outside the pool to our skid

below) and  settled  at  a  back  pressure  of  approximately 2.5 psig at steady state for as long as pumping

continued.

During actual operations at the HFIR pool facility, the back pressure of simulant through the 1/8-in.

SS line remained nearly constant at approximately 5 psig, as displayed at PT-5.  Coolant water pumped

through 1/4-in. polyethylene tubing that was parallel to simulant tubing, had less internal resistance to flow

to the column and back, and constantly displayed a back pressure of 0.9 to 1 psig at PT-3.  These values

are significant because — at the very low back pressures experienced in both the pumping tests and at the

pool side — bubble formation was predicated only upon overcoming  approximately 1 atm of pressure,

rather than the 1.5 atm existing inside the column under 17.8 ft of water head.  Without this benefit, gases

that exceeded the higher total pressure at depth might not have been able to form and exit the solution,

thereby compromising the success of the experiment.
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5.  ANALYTICAL METHODS

This project has relied on four analytical methodologies directed at identifying the compositions of

the high-nitrate simulant waste feed and column effluent solution and performing a final analysis of collected

radiolytic gas.  Most methods employed are traceable to accepted U.S. Environmental Protection Agency

(EPA) SW-846 test procedures and guidance that are needed to ensure compliance with the Resource

Conservation and Recovery Act, Public Law 94-580, as amended.15  All samples submitted for chemical

analyses were accompanied by chain-of-custody  documentation that was signed off by relinquishing and

receiving staff with specific tracking numbers to ensure proper sample and analysis control in accordance

with ORNL guidelines.  Additionally, to minimize preparation differences in concentrations, the high-nitrate

simulant feed solution was prepared as one large batch and then split in half for use in both the baseline test

and the hot test inside the spent fuel element.  After aging for 48 h and filtration through a 0.5-µm

polypropylene filter (Betafine-D™, CUNO Inc., Meriden, Connecticut), the simulant was ready for use.

This solution was then sampled for chemical analysis just prior to transport to the HFIR facility.

5.1  SIMULANT FEED AND COLUMN EFFLUENT

Simulant feed solution was analyzed for cations by inductively coupled plasma (ICP) analysis, using

a Model 61E Trace ICP from Thermo Jarrell Ash as specified in EPA method SW846-6010B,

“Inductively Coupled Plasma–Atomic Emission Spectrometry,” Revision 2, December 1996.  This method

analyzes multiple elements using sequential or simultaneous means.  Accuracy was maintained using

National Institute of Standards and Technology standards.  The high-nitrate simulant was analyzed using

nitric acid following a microwave pressure digestion.  The resulting cation data are presented in Table 1.
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Table 1.  Composition of high-nitrate simulant used in CST tests 

Component Target concentration (M) Analytical concentration(M)

Na+ 5.6 5.6a

K+ 0.0041 0.0045

Cs+ 0.00038 (50 ppm) 0.00039 (52 ppm)

OH! 1.17 NAb

NO3
! (total) 2.84 2.84

NO2
! 0.37 0.38

AlO2
! 0.32 0.32

CO3
2! 0.16 NAb

SO4
2! 0.22 0.20

Cl! 0.040 0.039

F! 0.050 0.050

PO4
3! 0.010 0.011

C2O4
2! 0.008 NAb

MoO4
2! 0.0002 0.0002

aCalculated from solution density at 22EC (Ref. 16).
bNot analyzed. 

Column effluent samples, removed every 2 h during testing, were analyzed for their cold cesium

(133Cs) content by ICP–mass spectrometry in accordance with method SW846-6020, “Inductively

Coupled Plasma-Mass Spectrometry,” Revision 0, September 1994.  This method of analysis can be

applied to over 60 elements, with detection limits generally below 0.02 µg/L (ppb) for simple matrices.

Typical detection limits from nitrate-based matrices in the range of 2 to 4 M 

are 10 ppb with an error bar of  ± 10% due to the need for an initial large dilution of 1:10,000, which is

responsible for the quoted probable error.  A detection limit for 133Cs from a simple matrix requiring no

dilution is stated as 10 ng/L (ppt).
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Primary anions comprising the high-nitrate simulant were analyzed in accordance with  method

SW846-9056, “Determination of Inorganic Anions by Ion Chromatography,” Revision 0, September

1994.15  Generally, minimum detection limits are in the range of 0.05 mg/L for F! and 0.1 mg/L for Br!,

Cl!, NO3
!, NO2

!, PO4
3!, and SO4

2!.  Due to dilution error, results quoted for anion concentrations are

± 10%.  The anion concentrations of the simulant feed solution are also presented in Table 1.

5.2  RADIOLYTICALLY FORMED GASES

Gases associated with the test performed inside the gamma field of the spent fuel element originated

from two sources:  those purposely dissolved in the saline simulant feed to saturate or supersaturate it with

respect to CO2-free atmospheric gases and those produced as a result of gamma radiolytic splitting of

water to form hydrogen and oxygen gases.  These gases were collected as they exited the column in a

vertical gas-collection tube filled with simulant that was displaced by the incoming gas.  Gas was removed

by attaching a double-valved, preevacuated steel sample bottle that was used to evacuate the gases for

transport to the Analytical Chemistry Laboratory at the Oak Ridge Y-12 facility.  Liquid was allowed to

flow into the bottom of the gas-collection column as gases were withdrawn to prevent solution degasing.

The  Mass Spectrometer Laboratory, located at the Oak Ridge Y-12 facility, used a method

referred to as Y-P65-6011.  The instrument used was a Model VG (Vacuum Generator) 3001

ISOTOPES mass spectrometer, manufactured in Winsford, England.  This model is a magnetic sector

instrument as opposed to the common quadrupole type.  Gas compositions were reported in volume

percent and included an analysis of local air, with reported 1% standard deviations; these data are reported

in Table 2 in Sect.6.

6.  RESULTS

6.1  RADIOLYTIC GASES
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Initially, a Lexan gas-collection column was used, but this column presented problems during

operation and had to be replaced with another.  This change was accomplished in less than 1 h, while the

system continued to operate.  The new column was made from clear PVC pipe with SS end caps and was

found to be superior to the Lexan column, which formed stress cracks from embedded fittings.  The new

PVC column operated during the last 101 h of the test, between hours 67 and 168.  The gamma dose rates

between these two times were 11.6 and 10.4 Mrad/h, respectively.  The changing gamma dose rate inside

the spent fuel element at the centerline can be represented by Mrad/h = 12.4 e -0.000924T for T = 0 to 168

h; the rate starts at 12.4 Mrad/h at T = 0 and is down to 10.4 at T = 168 h.  Upon integrating between T

= 67 h and 168 h, the gamma dose to the column during this gas collection period was 1124 Mrad of

gamma.

At the end of the test, the total volume of gas collected in the gas-collection apparatus was 90 mL.

Unfortunately, this volume contained not only the radiolytic gases but also air that entered the system

accidentally when the direction of flow of simulant was reversed in an effort to determine if any gases were

held back in the column.  The air entered through an open valve in the vicinity of the gas-collection column

on the unit.

The 90 mL of gas collected was measured at 1 atm.  Opening a valve next to the gas-collection

column to equilibrate it momentarily with atmospheric pressure resulted in no change in level inside the

column.  The gas was collected as previously described and submitted for mass spectrometry analysis.  The

results of the gas analysis — in addition to those for a standard air sample — are presented in Table 2.

Since the radiolytic gas is contaminated by air, it is necessary to determine the precise amount of

radiolytic gas alone.  To do this, one must assume that any nitrogen present has come from air, an

assumption that is justified based on past studies.2, 12  Walker has shown that N2O can form, probably from

nitrite or nitrate, but that nitrogen (an even more reduced form of the oxide) is much less favorable

thermodynamically.  As shown in Table 2, only a trace amount of mixed oxides of nitrogen (0.001%) was

measured.  Walker has reported production of 2.3% N2O upon irradiating a CST slurry in a 1-Mrad/h

gamma field.2  Therefore, we know that the primary radiolytic gases of interest will be hydrogen and

oxygen, with nitrogen and argon originating from the air.  Additionally, since air contains only traces of

hydrogen (0.003%, Table 2), we can assume with some confidence that the hydrogen present has come

from gamma radiolysis of the simulant water.



26

From the analysis of the air standard in Table 2, we can determine the amount of radiolytic oxygen

volume from the fixed volumetric ratio of nitrogen to oxygen in air (3.851).  We can conclude that of the

90 mL gas total, 15.35 mL of oxygen came from air.  Therefore, the difference (9.54 mL) came from

radiolysis.  Since 5.48% of the column gas was hydrogen,  then 4.93 mL of 

Table 2.  Gas analyses by mass spectrometry

                                                                                    Composition (vol %)

Gas Local air Gas column analysisa

Xe <0.001 <0.001

Kr <0.001 <0.001

CO2 0.06 0.005

Ar 0.98 0.61

O2 20.36 27.66

N2 78.4 65.68

H2 0.003 5.48

He <0.01 0.17

CH4 0.003 0.008

CO b 0.08

Ne b 0.003

NOx b 0.001

C2H6 b 0.003

H2O (est.) b 0.3
aThe column contained a total of 90 mL of both radiolysis gases and some air inleakage.
bNot detected.

hydrogen was produced, for a total volume of radiolysis gas of 9.54 mL O2 plus 4.93 mL of H2, or 14.48

mL over the last 101 h of gas collection at a simulant flow rate of 6 mL/min.  This would mean that 0.398

mL of radiolytic gas per liter of simulant pumped was produced on this basis.  The volume of total radiolytic

gas expected during 101 h (and, therefore, the gas-generation rate) is in line with the calculations of

Walker, who expected approximately 0.4 mL/L during this period of the test.2
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ORNL DWG 2000-282

Fig. 7.  Cesium fractional breakthrough curves.

6.2  CESIUM BREAKTHROUGH CURVES

Over the duration of both the radiological test (i.e., inside the intense field of the spent fuel element)

and the baseline test nearby (i.e., away from the radiation field), which were conducted under identical

operating conditions, effluent from the columns was removed every 2 h.  Every second sample was

submitted for cesium analysis by mass spectrometry.  The fractional amount of cesium in the column effluent

compared with the feed concentration (52 ppm) is  plotted  against  time in Fig. 7.  In addition to the

radiological and baseline breakthrough curves, that of the VERSE model is also plotted for comparison.

The VERSE model takes into account parameters such as starting cesium concentration, bed height, flow

rate, and superficial velocity of simulant.

One immediately sees that the shapes of the curves deviate from those in which scale and exchange

kinetics produce a mass transfer zone shorter than the length of the column.  Such curves normally have
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a more sinusoidal appearance.  In this simulant and with this CST, the mass transfer zone is “substantially”

longer than the column and is actually measured in feet.

Within the quoted analytical error of mass spectrometry, the breakthrough curves for the

radiological test and the baseline control test performed in the absence of the gamma field are identical, with

detection limits quoted at 10 ppb in our high-nitrate matrix.  Because the curves are essentially the same,

one may conclude that the radiolytic gas formed in the 12.4- to 10.4-Mrad/h gamma field during cesium

loading, compared with an expected dose rate in the field of 0.8 Mrad/h, had no observable effect upon

cesium-loading kinetics.  Changes in the shape of the curves due to exchange-site blinding inside

micropores, column short-circuiting, or CST interparticle hydraulic macroeffects are not apparent.

6.3  CST X-RAY SPECTRA

During the 168-h period that the CST was inside the intense gamma field of the spent fuel element,

it would have received a total dose of 1,930 Mrad.  That part of the energy absorbed by the crystalline

fraction of the CST could potentially produce a change in the crystal lattice.  To investigate the potential

and magnitude of such a change, the following X-ray spectral scans of the CST removed from the spent

fuel element and those for the unirradiated starting material are shown in Fig. 8.

The X-ray spectra in Fig. 8 indicate that some minor change has taken place in the CST exposed

to the gamma field (top spectrum) compared with the unirradiated baseline control sample.  The area

between 17 and 25E shows the most change.  A few scattered variations in peak intensity at a few other

angles are also observed; however, no attempt has been made to index these very minor changes.  These

changes may reflect dislocations in the CST lattice due to absorbed and stored energy.

7.  CONCLUSIONS

Tests in which cesium was successfully loaded onto CST-containing columns in ORNL’s HFIR

spent-fuel-element storage pool were performed under closely controlled conditions to take advantage of

the high gamma dose rates present inside reactor spent fuel elements.  These elements provided a uniquely

suitable and conservatively intense source of gamma radiation capable of forming potentially problematic
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Fig. 8.  X-ray spectra of irradiated and unirradiated CST.

radiolytic gases inside CST micropores and bulk column solution during loading.  Radiolytic gas composed

of oxygen and hydrogen (66% O2, 34% H2) was formed 

inside the exchange column at a previously calculated generation rate of 0.4  mL/L in high-nitrate simulant.

Gases formed during the loading of cesium onto the engineered 98-5 CST in the gamma
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field of the HFIR spent fuel element, at dose rates ranging from 12.4 to 10.4 Mrad/h over a 168-h period,

had no observable effect upon column loading or operation.  Cesium breakthrough curves for both the

irradiated test and the control test (i.e., that conducted in the absence of radiation) were shown to be

identical and were in good agreement with the VERSE computer-generated curve.  Results conclusively

indicate that even upon performing the column loading in an intense radiation field expected to be nearly

16 times that encountered in an actual field-loaded column, no operational problems stemming from

interparticle or intraparticle gas should be expected.  
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