
ORNL/SPR-2015/367

Update on ORNL TRANSFORM Tool:
Preliminary Architecture / Modules for
High-Temperature Gas-Cooled Reactor
Concepts and Update on ALMR Control

Richard E. Hale
David L. Fugate
M. Sacit Cetiner
Syd J. Ball
A. Lou Qualls
John J. Batteh
 Modelon, Inc.

August 2015

Approved for public release.
Distribution is unlimited

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

http://www.osti.gov/scitech/
http://www.ntis.gov/help/ordermethods.aspx
http://www.osti.gov/contact.html

ORNL/SPR-2015/367

Reactor and Nuclear Systems Division
Electrical and Electronics Systems Research Division

UPDATE ON ORNL TRANSFORM TOOL: PRELIMINARY ARCHITECTURE /
MODULES FOR HIGH-TEMPERATURE GAS-COOLED REACTOR CONCEPTS AND

UPDATE ON ALMR CONTROL

Richard E. Hale
David L. Fugate
M. Sacit Cetiner

Syd J. Ball
A. Lou Qualls

John J. Batteh, Modelon, Inc.

Date Published: August 2015

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

LIST OF FIGURES .. v
LIST OF TABLES ... vi
ACRONYMS .. vii
ACKNOWLEDGMENTS ... ix
EXECUTIVE SUMMARY ... xi
1. INTRODUCTION .. 1

1.1 BACKGROUND .. 1
2. PRELIMINARY HTGR ARCHITECTURE AND MODELS ... 1

2.1 HTGR INTRODUCTION... 1
2.2 HTGR MODELICA ARCHITECTURE .. 4
2.3 MODELICA VERSUS FORTRAN IMPLEMENTATIONS ... 6
2.4 HTGR MODELS .. 7
2.5 CORE MODEL ... 7
2.6 PRIMARY HEAT TRANSPORT SYSTEM WITH A SINGLE-CHANNEL CORE

MODEL .. 9
2.7 CORE MODEL MODELICA WRAPPER ... 13
2.8 RCCS MODEL ... 17
2.9 CROSS VESSEL MODEL ... 17
2.10 STEAM GENERATOR MODEL ... 18
2.11 BALANCE OF PLANT MODELS .. 20
2.12 EXAMPLE SIMULATIONS .. 20

3. ALMR END-TO-END CONTROL UPDATE ... 24
3.1 MAIN STEAM TURBINE CONTROL VALVE ... 24
3.2 FEEDWATER HEATER CONTROL .. 29

4. PRELIMINARY VALIDATION AND VERIFICATION STRATEGY ... 37
4.1 DEVELOPMENT ARCHITECTURE/ENVIRONMENT ... 37
4.2 MODEL DEVELOPMENT AND PRODUCTION OVERVIEW ... 38

4.2.1 Sandbox Area ... 39
4.2.2 Development Branch ... 39
4.2.3 Merging, Testing, and QA ... 41
4.2.4 Production Deployment ... 42

4.3 MODEL RELEASE AND ACCESS .. 44
5. CONCLUSIONS .. 44
6. REFERENCES ... 45
APPENDIX A. .. A-1

v

LIST OF FIGURES

Figure Page

Fig. 1. High-temperature gas-cooled reactor: isometric [8]. ... 2
Fig. 2. High-temperature gas-cooled reactor: prismatic core/vessel details [10]. ... 3
Fig. 3. High-temperature gas-cooled reactor system [9]. .. 4
Fig. 4. ALMR Modelica/Dymola architecture [5]. ... 5
Fig. 5. FHR Modelica/Dymola architecture [4]. ... 5
Fig. 6. HTGR Modelica/Dymola architecture (power production). .. 5
Fig. 7. ALMR Modelica/Dymola architecture (process heat production). ... 6
Fig. 8. HTGR core fuel choices [8]. .. 7
Fig. 9. NGNP core model choices: prismatic (L) and pebble bed (R) [1]. ... 8
Fig. 10. NGNP prismatic core detail [9]. .. 8
Fig. 11. Power density profile as a function of axial position. .. 11
Fig. 12. A simple configuration of the HTGR PHTS with a single-channel reactor core model. 12
Fig. 13. Nodal mean coolant temperature profile as a function of axial channel position. 13
Fig. 14. Simplified Modelica Fortran external call wrapper example. ... 14
Fig. 15a. Modelica Fortran external call wrapper “core” example. .. 16
Fig. 15b. Simplified Fortran example “core” code. .. 16
Fig. 15c. Simplified Modelica “CoreTest” model for Fortran implementation. ... 17
Fig. 16. Modelica representation of the cross-vessel subsystem. ... 18
Fig. 17. Modelica representation of the steam generator subsystem. ... 19
Fig. 18. Variation of helium mass flow rate in a single average channel due to partial loss of flow.......... 20
Fig. 19. Variation of normalized reactor power in response to partial loss of flow. 21
Fig. 20. Variation of helium temperatures as a function of time. ... 22
Fig. 21. (top) Helium pressure dynamics in the channel in response to partial loss of flow rate and

(bottom) variation of pressure drop across the core channel. .. 22
Fig. 22. Pressure vessel temperatures in response to the partial loss of primary helium flow rate. 23
Fig. 23. Helium axial temperature profiles for different flow rates. ... 24
Fig. 24. Turbine speed control concept diagram. .. 25
Fig. 25. Baseline ModelPower conversion system with throttle valve added to high pressure

turbine supply. ... 26
Fig. 26. Throttle valve parameters. ... 26
Fig. 27. Control loop algorithm. ... 27
Fig. 28a. Power plant dynamic test from 111 to 151MW with high pressure (HP) steam turbine

throttle valve control. ... 27
Fig. 28b. Power plant dynamic test from 111 to 151 MW with HP steam turbine throttle valve

control. ... 28
Fig. 29. Power plant dynamic test from 111 to 151 MW with HP steam turbine throttle valve

control. ... 28
Fig. 30. Feedwater heater example. .. 29
Fig. 31. PRISM diagram for one turbine-generator system [Fig. 10.1-1 in Ref. 12]. 32
Fig. 32. PRISM diagram for extraction steam system flow [Fig. 10.3-2 in Ref. 12]. 33
Fig. 33. PRISM diagram for condensate system flow [Fig. 10.A-2 in Ref. 12]. .. 34
Fig. 34. PRISM diagram for feedwater system flow [Fig. 10.A-3 in Ref. 12]. .. 35
Fig. 35. PRISM diagram for heater drains system flow [Fig. 10.A-4 in Ref. 12]. 36
Fig. 36. Sample issues from a GitHub repository. .. 39
Fig. 37. Sample page for an individual issue with comments. .. 40
Fig. 38. Branch creation serves as the start of the GitHub flow. .. 40

vi

Fig. 39. Commits on the branch by the development team. .. 41
Fig. 40. Opening a pull request. .. 42
Fig. 41. Code review and discussion... 42
Fig. 42. Deployment initiation following completion of branch testing. .. 43
Fig. 43. Merge from development branch into master. ... 43

LIST OF TABLES

Table Page

Table 1. Design data for HTGR steam generator .. 19
Table 2. Advanced reactor modeling environments ... 38

vii

ACRONYMS

ALMR advanced liquid-metal reactor
ART Advanced Reactor Technology
DOE US Department of Energy
DRACS direct reactor auxiliary cooling system
FH feedwater heating
FHR fluoride high-temperature reactor
FMIE functional mockup interface for Excel
FMU functional mockup units
GRSAC Graphite Reactor Severe Accident Code
HP high pressure (turbine)
HTGR high-temperature gas-cooled reactor
HTR heater
I&C instrumentation and controls
IHTS intermediate heat transport system
IHX intermediate heat exchanger
LOFC loss of forced circulation
LOOP loss of electrical power
LP low pressure (turbine)
MHTGR modular high-temperature gas reactor
NGNP next generation nuclear plant
NHSS nuclear heat supply system
NQA nuclear quality assurance
ORNL Oak Ridge National Laboratory
PCS power conversion system
PHTS primary heat transport system
PRISM power reactor innovative small module
QA quality assurance
RCCS reactor cavity cooling system
RPV reactor pressure vessel
SMR small modular reactor
TRANSFORM Transient Simulation Framework of Reconfigurable Models
V&V verification and validation

ix

ACKNOWLEDGMENTS

The research described in this report was sponsored by the Advanced Reactor Technology (formerly
Advanced Reactor Concept) Program of the US Department of Energy Office of Nuclear Energy.

xi

EXECUTIVE SUMMARY

The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in its fourth year of
development. The project supports collaborative modeling and study of various advanced SMR (non-light
water cooled reactor) concepts, including the use of multiple coupled reactors at a single site.

Previous deliverables focused on development of component and system models, as well as end-to-end
system models, using Modelica and Dymola for two advanced reactor architectures: (1) the advanced
liquid metal reactor and (2) the fluoride high-temperature reactor. This report focuses on the initial
development of architecture and preliminary modules for the high-temperature gas-cooled reactor. The
example chosen is based on the next generation nuclear plant development described in Ref. 1. The initial
core model is both developed within Modelica and presented as a Modelica wrapper around an existing
Fortran code as discussed and documented in Ref. 2.

Furthermore, improvements to the end-to-end control system for the advanced liquid-metal reactor model
have been added. These include mainsteam turbine valve and feedwater heater control system updates.
The mainsteam turbine valve model has been developed and documented in this report, along with initial
testing to determine the sensitivity to operations for valve control. The power reactor innovative small
module (PRISM) design for feedwater heaters and their control has been reviewed and used to develop
the requirements for modeling them [12]. The requirements for the feedwater heater and its control
indicate the inherent complexity of balancing the heat transfer and flow with the steam drum operation.
Further work towards development of a full feedwater heater system model remains. The strategy for
model validation and verification is discussed in this report. This strategy uses the developed GitHub
repository to provide the appropriate staging areas for workflow development of code, beginning with the
initial preliminary models and progressing through to the final production code. The production code is
available for web application simulation or model cosimulation with other platform models. Local
directories are used as a sandbox area, along with three branches of the repository that have been
identified to support this work flow.

As noted in the previous update, in 2015, the project has transitioned from the Advanced SMRs Research
and Development Program to the Advanced Reactors Technology (ART) Program to promote safety,
technical, economic, and environmental advancements of innovative Generation IV nuclear energy
technologies. The combined simulation environment and suite of models have been identified as the
Transient Simulation Framework of Reconfigurable Models (TRANSFORM) tool. Critical elements of
this effort include (1) defining a standardized, common simulation environment to be applied throughout
the ART Program, (2) developing a library of baseline component modules to be assembled into full plant
models using available geometry, design, and thermal-hydraulic data, (3) defining modeling conventions
for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate
simulation development (i.e., configuration and parameterization), execution, and results display and
capture.

These efforts have resulted in a set of streamlined tools and models to be used throughout the ART
Program. This report is the final deliverable to accomplish this goal, providing a collaborative foundation
as a path forward for future continued development and use.

1

1. INTRODUCTION

1.1 BACKGROUND

As documented in previous reports [3–5], the goal of this project is to develop simulation resources and
tools to allow a collaborative modeling and control study for various advanced (non-light water reactor),
small modular reactor (SMR) configurations. The project has been funded under the Advanced SMR
Research and Development Program and is in its fourth and final year of development. However, it is
being transitioned to the Advanced Reactor Technology (ART) Program, with less emphasis on SMRs
and more emphasis on advanced reactor concepts. Any further development will be transitioned to the
ART Program’s priorities.

The high-level objectives of this effort include (1) development of initial Modelica end-to-end system
models for the ALMR and fluoride high-temperature reactor (FHR) design concepts, (2) development of
the initial instrumentation and controls (I&C) overlays for the reactor and primary system as well as for
critical balance of plant systems, and (3) create a library of models and user interfaces that support the
further collaborative development of advanced reactor concepts. These objectives have been met and are
documented in previous reports [3–5]. This report documents the progress to meet the final objective,
which focuses on extending the range of advanced reactor concepts to include high-temperature gas-
cooled reactors (HTGRs). Furthermore, work on end-to-end control of the balance of plant systems
continues. This report considers the complex dynamics of the main steam turbine valve and the feedwater
heater control. Development of I&C for these systems follows industry practices and demonstrates the
challenges of control stability. Finally, the widespread use of these models for execution and development
will require workflows and procedures that allow for simultaneous development of simulation models by
multiple collaborators. This document also reviews validation and verification (V&V) of the resulting
models and workflows as required before final production implementation.

2. PRELIMINARY HTGR ARCHITECTURE AND MODELS

2.1 HTGR INTRODUCTION

Documented previous work [3–5] defines a flexible architecture and structure using Dymola and
Modelica to support modeling of various advanced reactor power plant concepts, including the advanced
liquid-metal reactor (ALMR) and the FHR. This modeling architecture and structure is the Transient
Simulation Framework Of Reconfigurable Models (TRANSFORM) tool, which supports the selection
and simulation of different power plant configurations and components, including different I&C
configurations. A third potential advanced reactor concept is the HTGR concept. The concept chosen for
development here is based on the next generation nuclear plant (NGNP) as described in Ref. 1. The
HTGR is a modular helium-cooled reactor concept with features that improve its inherent safety. The
reactor and the nuclear heat supply system (NHSS) are comprised of three major components: the reactor,
a heat transport system, and a cross vessel that routes the helium between the reactor and the heat
transport system. The NHSS supplies energy in the form of steam and/or high temperature fluid that can
be used to (1) generate electricity highly efficiently and (2) to support a wide range of industrial processes
requiring high-temperature process heat. This concept has a number of attractive features. These features
include the range of power ratings, temperatures, and heat transport system configurations that provides
flexibility in adapting the modules to the specific application.

2

The unique design features of the HTGR concept (Figs. 1–3) present several modeling differences from
prior efforts. An isometric of the basic HTGR system concept designed for power production is seen in
Fig. 1. Detail of the vessel and core can be seen in Fig. 2, along with an overall system schematic for
either power or process heat production in Fig. 3. The use of single-phase helium as a coolant and the
form of the fuel are the most obvious differences. Together, the design features allow for greater potential
reactor safety and improvements associated with high-temperature energy generation efficiencies, as well
as process heat applications. Challenges associated with HTGRs need to be modeled and understood
before the system can be developed, optimized, and finalized.

Fig. 1. High-temperature gas-cooled reactor: isometric [8].

3

Fig. 2. High-temperature gas-cooled reactor: prismatic core/vessel details [10].

4

Fig. 3. High-temperature gas-cooled reactor system [9].

2.2 HTGR MODELICA ARCHITECTURE

The implementation of this concept into a Modelica-based model is similar to the adaptation of the other
concepts previously considered (ALMR and FHR). The architecture makes use of the same structure
developed earlier, with the major components replaced with HTGR specifics. In particular, a reactor
cavity cooling system (RCCS) replaces the direct reactor auxiliary cooling system (DRACS) system with
HTGR-specific components developed using helium cooling with a steam generator for power production
or a helium-to-molten-salt heat exchanger used for process heat applications. The existing architectures
for the ALMR and FHR and the proposed architecture for the HTGR are represented in Figs. 4–7. There
are two potential architectures for the HTGR. For process heat applications, the heat exchanger is a
helium-to-molten-salt heat exchanger that delivers source heat to the application of interest. For power
generation, this heat exchanger is replaced with one that connects to a steam generator for power
production. Examples of these Modelica/Dymola architectures are shown in Figs. 6–7.

5

Fig. 4. ALMR Modelica/Dymola architecture [5].

Fig. 5. FHR Modelica/Dymola architecture [4].

Fig. 6. HTGR Modelica/Dymola architecture (power production).

6

Fig. 7. ALMR Modelica/Dymola architecture (process heat production).

The initial HTGR starting point models were developed in Fortran. Consistent with this, a multistep
approach has been used by other industries to adopt and develop models from different languages into
Modelica. The first step is to create a program that wraps around the Fortran code. This program calls the
code and returns values to the Modelica module. This approach uses existing code that has often been
validated and verified, so the initial Modelica code can be easily developed and benchmarked against the
existing code. However, with this approach, the control of the simulation is no longer available in the
Modelica environment. Rather, variables are passed back and forth between Modelica and Fortran and the
Modelica solver cannot optimize the simulation. The ability to down-select different architectures and
components through Modelica is retained, however. Reconstituting Fortran models within Modelica
provides modeling equations within the Modelica environment to allow for simulation control and to
provide for easy leveraging to other potential implementations by copying and pasting applicable systems
and component code in other Modelica objects. This process may be time consuming, so its relative value
should be evaluated for each case. If it is judged to be worthwhile, then the implemented Modelica
models can be benchmarked against the Modelica wrapper models that were benchmarked against the
original Fortran models. This chain of V&V allows for a transition between the Fortran models and full
Modelica-based system models. In this deliverable, the initial activity is to develop both an initial
Modelica HTGR core model as well as demonstrate the ability to create the Modelica wrappers around
the existing Fortran code. These initial models are described below.

2.3 MODELICA VERSUS FORTRAN IMPLEMENTATIONS

Code implementation of a core model both with and without a “wrapper” is included to highlight Fortran
implementation. The equations represented in the Fortran discussions may be used later to provide
comparison with the Modelica model. The optimum strategy for incorporating Fortran code into a
Modelica model includes several considerations. Rewriting the Fortran code into a Modelica
representation of the underlying physics in the system or component model would allow the Modelica
solver (like Dymola) to optimize the solution of the system of equations. Without this Modelica
implementation, the separate component/system models linked together in Modelica all act as black box
subroutines that return values based on inputs. While Modelica readily handles external calls to Fortran
code, complex interactions between multiple systems and components are usually handled best within
Modelica to allow the solver to monitor the time steps and to converge these systems toward an optimal

7

solution. Therefore, an advantage of Modelica is the potential for improved convergence and rapid
simulations. However, this is not always the case where existing Fortran code runs rapidly. If the
equations are brought into Modelica, the ability to reproduce these models for other components and
systems is also considerably improved. Conversely, an advantage to retaining models as Modelica
external calls to Fortran is the speed with which existing models can be incorporated into a Modelica
framework. These models in many cases have already completed V&V, and minimizing the modification
to the code improves the potential and speed for generating V&V Modelica code. This is of considerable
interest for the range of systems codes that exist within the accident simulation world for nuclear designs.
In either case, the highly desirable ability to choose different implementations of the architecture as part
of a graphical drop-down interface can be retained. The choice for whether to redevelop existing Fortran
models in Modelica code versus using external calls to Fortran is best decided on a case-by-case basis,
considering all of the factors identified above.

2.4 HTGR MODELS

The HTGR models are based on the physics representations in Ref. 1; the associated equations and details
of the mathematical representation for these models can be found in Appendix A.

2.5 CORE MODEL

There are two implementations of the core model for HTGRs based on the fuel type that results in either a
prismatic core or a pebble bed core, as shown in Figs. 8–9.

Fig. 8. HTGR core fuel choices [8].

8

Fig. 9. NGNP core model choices: prismatic (L) and pebble bed (R) [1].

A brief description of the challenging modeling physics associated with the HTGR core [1] is seen below.

A single-node representation of the temperature and the energy storage in a large hexagonal
graphite block fuel element [Fig. 10] or an array of fuel pebbles could not accurately portray the
fuel-to-moderator temperature differences that exist at full-power conditions. It would also
preclude approximating the at-power reactivity feedback for the neutron kinetics equations
because the individual effects of fuel and moderator temperature changes are not modeled.
However, for studies of shutdown power and flow scenarios, for which [Graphite Reactor Severe
Accident Code] GRSAC is primarily intended, the radial temperature gradients within the blocks
and pebble arrays are reduced to small values within a few minutes after shutdown, and the
reactivity effects are no longer significant after the reactor is scrammed.

Fig. 10. NGNP prismatic core detail [9].

The question remains, however, as to how accurately the single-node-per-element model can be
used to predict the temperature transients. In general, the accuracy of any finite differencing
scheme for modeling diffusion decreases as the frequency content of the perturbation increases;

9

and for heat conduction models, the grosser the node mesh size, the more the transient heat flux
between nodes is underestimated. In most cases, an underestimation of heat flux between
adjacent elements would yield conservative (i.e., higher-than-actual) hot fuel-element
temperatures.

Details of the physics equations associated with the core model are found in Appendix A.

2.6 PRIMARY HEAT TRANSPORT SYSTEM WITH A SINGLE-CHANNEL CORE MODEL

A simple primary heat transport system (PHTS) configuration was implemented with a single-channel
reactor core model. The reactor is represented by six-group normalized point kinetic equations.

𝑑𝑑
𝑑𝑡

=
(𝜌𝑡 − 𝛽)

𝛬
 𝑛(𝑡) + �

𝛽𝑖
𝛬

 𝑐𝑖(𝑡)
6

𝑖=1

𝑑𝑐𝑖
𝑑𝑑

= 𝜆𝑖 [𝑛(𝑡) − 𝑐𝑖(𝑡)]

where 𝜌(𝑡) is the total reactivity in the multiplying medium, 𝛽𝑖 and 𝜆𝑖 are the delayed neutron fractions
and the decay constants for the ith precursor group, 𝛬 is the mean neutron generation time, 𝑛(𝑡) is the
normalized prompt neutron flux, 𝑐𝑖(𝑡) is the normalized ith-group delayed neutron flux, and 𝛽 is the total
precursor fraction defined as

𝛽 = �𝛽𝑖

6

𝑖=1

The rate equations are subject to steady state initial condition, i.e.,

𝑑𝑑
𝑑𝑑

= 0, 𝑡 = 0
𝑑𝑑
𝑑𝑑

= 0, 𝑡 = 0

The delayed portion of normalized heat generation is implemented using Eq. (1)

𝑄𝑛−𝑑𝑑𝑑𝑑𝑑 = 0.1 �(𝑡 + 10)−
1
5 − (𝑡 + 𝑇𝑠)−

1
5 + 0.87(𝑡 + 𝑇𝑠 + 2 × 107)−

1
5 −

 0.87(𝑡 + 2 × 107)−
1
5�

,

(1)

where 𝑡 is time after shutdown and 𝑇𝑠 is the operation time prior to shutdown—both in seconds.

The reactivity feedbacks are modeled as follows:

𝜌𝑓 = 𝛼𝑓 �𝑇𝑓𝑓 − 𝑇𝑓0� , (2.a)

𝜌𝑀 = 𝛼𝑀 (𝑇𝑀𝑀 − 𝑇𝑀0) , and (2.b)

10

𝜌𝑡 = 𝜌𝑒𝑒 + 𝜌𝐶𝐶 + 𝜌𝑓 + 𝜌𝑀, (2.c)

where 𝜌𝑓 is the fuel Doppler reactivity feedback, 𝜌𝑀 is the moderator reactivity feedback, 𝜌𝑒𝑒is the
external reactivity, 𝜌𝐶𝐶 is the control-rod reactivity, and 𝜌𝑡 is the total reactivity.

The axial neutron flux is considered to have a cosine shape defined as

𝜑(𝑧) = 𝜑𝑚𝑚𝑚 cos �𝜋 𝑧
𝐻
�

,
 (3)

where 𝐻 is the active core length.

In order to account for axial leakage, Eq. (3) should be modified to account for extrapolated length, which
leads to a chopped-cosine distribution, that is,

𝜑(𝑧) = 𝜑𝑚𝑚𝑚 cos�𝜋
𝑧−𝐻2
𝐻𝑒
�

,
 (4)

where 𝐻𝑒 = 𝐻 + 2𝜀 is the extrapolated height of the core, and 𝜀 is the extrapolation distance at the top
and the bottom of the active core region.

Similarly, the power density profile, 𝑞′′′(𝑧), is proportional to neutron flux profile, that is,

𝑞′′′(𝑧) = 𝑞𝑚𝑚𝑚
′′′ cos �𝜋

𝑧−𝐻2
𝐻𝑒
�

.
 (5)

Obviously, Eqs. (4) and (5) are acceptable forms for analytical calculations. For nodal computations
where local values of variables are averaged over a finite domain, it should be discretized:

〈𝑞𝑖′′′〉 =
∫ 𝑞𝑚𝑚𝑚

′′′𝑧𝑖
𝑧𝑖−1

cos�𝜋
𝑧−𝐻2
𝐻𝑒

�𝑑𝑑

𝛥𝑧𝑖

 ,

(6)

where 𝛥𝑧𝑖 = 𝑧𝑖 − 𝑧𝑖−1 is the axial node 𝑖. For a uniform mesh size, as adopted in this derivation, the
value becomes 𝛥𝑧𝑖 = 𝐻

𝑁� for a total number of 𝑁 nodes.

Taking the integral in Eq. (6) leads to the following expression for node-averaged power density:

〈𝑞𝑖′′′〉 = 𝑞𝑚𝑚𝑚′′′ 𝑁
𝜋
𝐻𝑒
𝐻

 �sin �𝜋 𝐻
𝐻𝑒
� 𝑖
𝑁
− 1

2
�� − sin �𝜋 𝐻

𝐻𝑒
�𝑖−1
𝑁
− 1

2
���

,
 (7)

where 𝑞𝑚𝑚𝑚
′′′ is the ratio of maximum axial power to average power defined as

11

𝑞𝑚𝑚𝑚
′′′ = 𝑓𝑝𝑝 〈𝑞′′′〉 , (8)

where 𝑓𝑝𝑝 is the power peaking factor, and 〈𝑞′′′〉 is the core average power density. The value of 𝑓𝑝𝑝 =
1.3 is used as the default value, but the value can be changed through the user interface.

A continuous and discretized power density profile is plotted in Fig. 11 as a function of axial position.

Fig. 11. Power density profile as a function of axial position.

The reactor kinetics module is coupled to the coolant channel with helium as the primary coolant. As the
preliminary implementation, ideal gas equation-of-state model was used to compute the helium properties
[15]. This model uses temperature 𝑇 and pressure 𝑝 as the independent variables. Only density is a
function of 𝑇 and 𝑝 to incorporate compressibility of the substance. All other quantities are calculated
only as a function of 𝑇. The properties are valid in the range 200 𝐾 ≤ 𝑇 ≤ 6000 𝐾.

The core design is based on General Atomics modular high-temperature gas reactor (MHTGR) concept.
The geometric parameters were taken from the NGNP point reactor design study [16]. The reactor
delivers a thermal power of 600 MW(t). The nominal coolant inlet temperature is 𝑇𝑖 = 490ºC and the
outlet temperature is 𝑇𝑜 = 850ºC; the average core temperature differential is approximately 𝛥𝛥 = 360ºC.
The total nominal helium flow rate throughout the core is 𝜔 = 250 kg/s. The nominal pressure drop
across the core is 25 kPa. The core has an annular configuration that contains 102 fuel columns; with each
column having ten stacked fuel elements. Each fuel element contains approximately 100 coolant
channels—depending on its location and function.

The Modelica implementation of the simple core configuration is shown in Fig. 12. The model includes a
reactor kinetics module, which calculates normalized point power as a function of time. This model block

12

delivers a pre-calculated linear heat generation rate to the fuel element block, which is used to compute
the thermal conduction of heat into the coolant. The coolant channel is represented by a dynamic pipe
model that computes the convective heat transfer from the fuel block.

Fig. 12. A simple configuration of the HTGR PHTS with a single-channel reactor core model.

The dynamic pipe element computes the basic fluid flow behavior as a function of time. This object
solves the mass, momentum and energy equations using control-volume formulation for a user-specified
number of axial nodes along the flow direction. Friction losses and fluid heat transfer characteristics are
captured using proper correlations.

The nominal coolant temperature profile at steady state operation for an average channel is plotted in
Fig. 13. The system model reaches steady state equilibrium at an inlet temperature of 491.2ºC and an
outlet temperature of 853.4ºC with an average single channel flow rate of 𝜔 = 0.024 kg/s and a pressure
drop of 𝛥𝛥 = 23 kPa.

13

Fig. 13. Nodal mean coolant temperature profile as a function of axial channel position.

In addition to the core flow channel, the primary heat transport system also contains the lower and upper
plena; return coolant channel, a circulator and a pressure vessel.

The reactor pressure vessel is represented by a stack of circular rings of metal, and functionally acts as a
thermal storage element. The element is connected to the return coolant channel, which carries helium
returning from the steam generator up through the annulus around the core shroud through the upper
plenum and back into the reactor core. Incorporation of the reactor vessel model has noticeable effects on
the transient behavior of the system.

2.7 CORE MODEL MODELICA WRAPPER

A second potential workflow for developing advanced reactor system Modelica models includes the use
of existing models developed in other languages (principally Fortran) accessed via an external call in
Modelica. Modelica is designed to support this. For a Fortran subroutine call an example of the
corresponding Modelica code that is included in the Dymola examples is seen in Fig. 14.

14

Fig. 14. Simplified Modelica Fortran external call wrapper example.

For the purpose of developing HTGR Modelica models from the GRSAC model described in this report
and detailed in Ref. 1, a Modelica call and “wrapper” (Fig. 15a) and a simple representative Fortran
“core” code (Fig. 15b) was developed to illustrate how Fortran models can be brought into Modelica.
Using the simplified function call in Fig. 14 as an example, a more extensive Modelica “wrapper” was
developed (Modelica package “CoreTest.mo”) around a simplified Fortran based core model example.
The Modelica code is seen in Fig. 15a. The code is roughly divided into three sections indicated by the
green, blue and red boxes below. The green box represents the establishment of the Modelica package and
initialization of Modelica elements, parameters and variables consistent with the necessary inputs and
outputs between the Modelica and Fortran codes. The blue box is the external call to the Fortran routine
returning the derivatives of the variables of interest. The red box represents the output returned back to
Modelica along with the integration scheme for solving the core element along with the other elements in
the end-to-end system model.

model Core "sample model for a core implemented in FORTRAN"
 replaceable package Medium =
 Modelica.Media.Interfaces.PartialMedium "Medium in the component"
 annotation (choicesAllMatching = true);
 parameter Integer n "discretization";
 parameter Modelica.SIunits.Length L "core length";
 parameter Modelica.SIunits.Temperature T_start "start temperature";54
 Modelica.SIunits.Pressure p_out "outlet pressure";
 Modelica.SIunits.Temperature T_out "outlet temperature";
 Modelica.SIunits.MassFlowRate mdot_out "outlet mass flow rate";
 Modelica.SIunits.Temperature Tcore[n](start=fill(T_start,n))
 "core temperature";
 Modelica.SIunits.Temperature Tfluid[n](start=fill(T_start,n))
 "fluid temperature in core";
 Modelica.SIunits.Density rho_fluid
 "inlet fluid density evaluated at T and p_out";
 Real der_Tcore[n](unit="K/s") "time derivative of Tcore";
 Real der_Tfluid[n](unit="K/s") "time derivative of Tfluid";
 Modelica.Fluid.Interfaces.FluidPort_a port_a(redeclare package Medium =
 Medium)
 annotation (Placement(transformation(extent={{90,-10},{110,10}})));
 Modelica.Blocks.Interfaces.RealInput T "inlet temperature"
 annotation (Placement(transformation(extent={{-120,20},{-80,60}})));
 Modelica.Blocks.Interfaces.RealInput mdot "inlet mass flow rate"
 annotation (Placement(transformation(extent={{-120,-60},{-80,-20}})));
 Modelica.Fluid.Sources.MassFlowSource_T boundary(

15

 use_m_flow_in=true,
 use_T_in=true,
 nPorts=1,
 redeclare package Medium = Medium)
 annotation (Placement(transformation(extent={{60,-10},{80,10}})));
 Modelica.Blocks.Sources.RealExpression flow_source(y=mdot_out)
 annotation (Placement(transformation(extent={{20,-2},{40,18}})));
 Modelica.Blocks.Sources.RealExpression temp_source(y=T_out)
 annotation (Placement(transformation(extent={{20,-30},{40,-10}})));

 // Function with FORTRAN call to subroutine "core" to return der_Tcore and der_Tfluid
 // with interface to link parameters, variables, and outputs between Modelica and FORTRAN
 function core_derivs
 "Modelica function call to external FORTRAN code core, returns temperature derivatives"
 input Integer n;
 input Real L;
 input Real T_start;
 input Real p_out;
 input Real rho_fluid;
 input Real Tcore[n];
 input Real Tfluid[n];
 input Real mdot;
 input Real T;
 output Real der_Tcore[n];
 output Real der_Tfluid[n];
 external "FORTRAN 77" core(n,L,T_start,p_out,rho_fluid,Tcore,Tfluid,mdot,T,der_Tcore,der_Tfluid) annotation(Library="core");
 end core_derivs;

equation
 // Pressure is equal to downstream volume pressure. Distributed pressures could be calculated if80
 // handled properly
 p_out=port_a.p;
 // Let's assume the mass flow out is equal to the mass flow in but need not be if properly calculated
 mdot_out = mdot;
 // Outlet temperature is last element of Tfluid
 T_out=Tfluid[n];
 // Properties must be calculated consistently using Modelica medium model representation since surrounding
 // components could be implemented in Modelica so sample density calculation made and passed to FORTRAN code for illustration
 rho_fluid = Medium.density_pT(p_out,T);

 // Time derivatives returned from FORTRAN code via call to core Modelica function defined above
 (der_Tcore,der_Tfluid) = core_derivs(n,L,T_start,p_out,rho_fluid,Tcore,Tfluid,mdot,T);

 // Integration of FORTRAN derivatives in Modelica
 der(Tcore)=der_Tcore;
 der(Tfluid)=der_Tfluid;

 connect(boundary.ports[1], port_a)
 annotation (Line(points={{80,0},{100,0}}, color={0,127,255}));
 connect(flow_source.y, boundary.m_flow_in)
 annotation (Line(points={{41,8},{46,8},{60,8}}, color={0,0,127}));
 connect(temp_source.y, boundary.T_in) annotation (Line(points={{41,-20},{48,-20},
 {48,4},{58,4}}, color={0,0,127}));
 annotation (Diagram(coordinateSystem(preserveAspectRatio=false, extent={{-100,
 -100},{100,100}})), Icon(coordinateSystem(preserveAspectRatio=false,
 extent={{-100,-100},{100,100}}), graphics={
 Rectangle(
 extent={{-70,60},{80,-60}},
 lineColor={28,108,200},
 fillPattern=FillPattern.HorizontalCylinder,
 fillColor={175,175,175}),
 Polygon(
 points={{-30,-2},{-20,-28},{-12,-22},{24,-32},{26,-24},{48,-34},{52,-22},
 {64,2},{58,18},{40,24},{34,2},{24,24},{14,12},{8,-2},{-4,12},{-14,

16

 26},{-20,6},{-30,4},{-34,16},{-38,12},{-56,4},{-54,-4},{-30,-2}},
 lineColor={28,108,200},
 fillPattern=FillPattern.HorizontalCylinder,
 fillColor={255,0,0}),
 Text(
 extent={{-100,100},{100,60}},
 lineColor={0,0,0},
 fillPattern=FillPattern.HorizontalCylinder,
 fillColor={255,0,0},
 textString="%name"),
 Rectangle(extent={{-100,100},{100,-100}}, lineColor={0,0,0})}));
end Core;

Fig. 15a. Modelica Fortran external call wrapper “core” example.

In the example, there is a component called Core which is meant to represent a “dummy” core model
(Fig. 15b) and includes the function to the external Fortran code called “core.” For the implementation of
this, the actual Fortran code is included in the Modelica Resources\Include folder and the compiled code
is in Resources\Library folder. It is required that you compile the Fortran code as a .lib file and include
the lib file in the directory before simulation.

Fig. 15b. Simplified Fortran example “core” code.

The example core Modelica model was setup so that it looked representative. It has parameters, variables,
property calculations, etc. and it has been annotated so that one can see the structure and what would be
required to create this sort of interface. The Fortran code returns the derivatives and then Dymola
integrates. The FORTRAN code has dummy calculations for the derivatives shown below, that represent
the necessary structure.

DER_TCORE(I) = MDOT*0.1
DER_TFLUID(I) = T*0.01

The Modelica test model “CoreTest” as seen in Fig. 15c includes some other components to represent
how the Core model would exist as a component in a system integrated with other components in
Modelica.

17

Fig. 15c. Simplified Modelica “CoreTest” model for Fortran implementation.

The larger point to be made here is that there may be instances in which it is simpler and easier to make
an external call to a program and return a value than it is to develop the code in Modelica. However, there
is a tradeoff. Models developed in Modelica can be optimized for potential solutions easier than can be
done with externally called code. These considerations are important when deciding how best to
implement dynamic system models in Modelica.

2.8 RCCS MODEL

Like many advanced reactor concepts, the HTGR includes decay heat and passive vessel and core cooling
systems to allow for normal shutdown and decay heat removal, even with a loss of electrical power
(LOOP) transient. Reactor pressure vessel (RPV) heat removal occurs in loss of forced circulation
(LOFC) events by the RCCS, where most (typically ~70–90%) of the heat transferred from the RPV to
the RCCS is by thermal radiation, and the balance is by natural convection in the reactor cavity air. RCCS
degradation and failures involving reductions in coolant flows can currently be modeled in GRSAC
(v2.6); however, complete flow stoppages, where heat losses are primarily through the RCCS structure to
the surrounding cavity, are not modeled. The RCCS model makes use of some concepts previously
considered in DRACS, and it occupies the architectural DRACS element previously detailed in the
ALMR architecture. In particular, the use of natural convection cooling for both systems allows for
leveraging of existing models to be relatively easily tailored to the HTGR system.

2.9 CROSS VESSEL MODEL

The cross vessel model is essentially a transport model between the reactor core and vessel and the steam
generator and/or heat exchanger that delivers either steam or a heated fluid (typically a molten salt) to
power or process heat applications. This transport model performs the same function and will be based on
the intermediate heat transport system (IHTS) models developed for the ALMR and FHR systems.
Appropriate changes to sizes, dimensions, and fluid transport factors are expected.

The cross-vessel dynamics is modeled by two parallel pipes interacting through two concentric metal
walls, which are separated by a thermal insulator. The geometric parameters were obtained from Ref. 16.
The diagram layer of the design is shown in Fig. 16.

18

Fig. 16. Modelica representation of the cross-vessel subsystem.

2.10 STEAM GENERATOR MODEL

The steam generator model includes heat transfer from the helium coolant to water for the production and
pressure control of steam output. Although helium heat exchange has not been considered in the previous
steam generator models, the details of the heat exchange and the fluid properties will be adjusted from
previous Modelica implementations of the ALMR and FHR concepts to develop this component model.
Reference of the details to be modified for this model can be found in previous reports [3–5] and in the
HTGR GRSAC model [1].

The Modelica diagram layer of the steam generator subsystem is shown in Fig. 17. The steam generator
dynamics are represented by two dynamic pipe elements interacting via a metal wall through counter-flow
convective heat transfer. The primary coolant, helium, flows on the shell side, and the secondary coolant,
water-steam-superheated steam, flows in the tubes.

19

Fig. 17. Modelica representation of the steam generator subsystem.

The steam generator design parameters were obtained from Ref. 17. A partial list of design data is shown
in Table 1.

Table 1. Design data for HTGR steam generator

 Value
Heat duty (MWt) 547
Bundle height (mm) 3793
Helium inlet temperature (ºC) 850
Helium outlet temperature (ºC) 490
Helium flow rare (kg/s) 250
Helium inlet pressure (MPa) 7
Helium pressure drop (kPa) 24
Water inlet temperature (ºC) 200
Steam outlet temperature (ºC) 538
Water flow rate (kg/s) 216
Feedwater inlet pressure (MPa) 18.2
Steam outlet pressure (MPa) 17.2
Number of tubes 441
Tube mid-wall temperatures (ºC)

Feedwater inlet 332
Evaporator inlet 483
Evaporator exit 551
Initial superheater inlet 551
Finishing superheater inlet 597
Finishing superheater outlet 720

20

2.11 BALANCE OF PLANT MODELS

The balance-of-plant models for power production make use of many of the modules developed
previously for the ALMR and FHR models. For the power production architecture displayed in Fig. 6,
these include the power conversion system (PCS) and the grid models. These are described fully in Ref. 3
and are displayed in Fig. 4, so they are not reproduced here. For the process heat application, no
production of power is assumed. Rather, there is a direct delivery of heat to applications such as seawater
desalination, hydrogen production, district heating, tertiary oil recovery, and other industrial applications.
A specific application with heat loads and system design and parameters must be defined further to
complete the end-to-end system for process heat applications. This will be considered for future work but
is out of the scope of this deliverable.

2.12 EXAMPLE SIMULATIONS

This section is intended to demonstrate the developed simulation capability for HTGRs.

The transient is partial loss of flow in the primary heat transport loop, where 50% of the circulator
capacity is considered lost. The nominal flow rate is assumed recovered after a certain period. The
variation of mass flow rate in the primary loop as a result of circulator loss of performance is shown in
Figs. 18–19.

Fig. 18. Variation of helium mass flow rate in a single average channel due to partial loss of flow.

The partial loss of mass flow rate through the core results in degraded heat rejection performance, which
results in increased fuel and moderator temperatures. Elevated temperatures, in turn, lead to a very fast
response due to fuel and moderator temperature feedbacks, resulting in lower reactor power.

21

Fig. 19. Variation of normalized reactor power in response to partial loss of flow.

It should be noted that this implementation only considers the open-loop point (0-D) response of the
reactor core. Xenon dynamics are not yet included in this implementation.

The dynamic response of helium temperatures in an average coolant channel is plotted in Fig. 20. The
figure contains sixteen temperature traces that correspond to the temperature response of individual axial
nodes along the channel. The first node, i.e., the lowest temperature trace, corresponds to the coolant
entering the reactor core, and the last node, i.e., the highest temperature trace, corresponds to the exiting
fluid. The helium outlet temperature increases by about 40ºC and the core temperature difference
increases from approximately 360ºC to 400ºC.

22

Fig. 20. Variation of helium temperatures as a function of time.

The reduction in flow rate and increase in fluid temperature impact the pressure dynamics of the coolant.
Because the momentum dynamics are included in the simulation, the pressure transient exhibits
asymmetry due to compressibility of the fluid (Fig. 21.). Furthermore, the helium viscosity varies as a
function of temperature. Unlike liquids, gases exhibit a proportional relationship between temperature and
viscosity; that is, the coolant viscosity increases as the coolant temperature increases.

Fig. 21. (top) Helium pressure dynamics in the channel in response to partial loss of flow rate and (bottom)

variation of pressure drop across the core channel.

23

Changes in primary helium temperatures slightly impact the pressure vessel temperatures as shown in
Fig. 22. As seen in the figure, the wall temperatures are not much impacted by the slight increase in the
helium temperature due to its large thermal inertia.

Fig. 22. Pressure vessel temperatures in response to the partial loss of primary helium flow rate.

It was observed that incorporation of pressure vessel thermal dynamics significantly slows down the
simulation as it results in a highly stiff formulation.

It should be noted that the pressure vessel thermal model did not include axial conduction mode, which
may affect the thermal response under extreme temperature conditions. This capability will be considered
in the future releases of TRANSFORM package.

The variation of helium axial temperature profile in response to changes in coolant mass flow rate is
shown in Fig. 23. The figure includes three temperature traces; with red trace representing the nominal
profile, and blue and magenta traces representing the equilibrium profile with 25 and 50% loss of flow
rate.

24

Fig. 23. Helium axial temperature profiles for different flow rates.

3. ALMR END-TO-END CONTROL UPDATE

Modules for I&C overlays and event drivers have been developed for the models discussed in [3–5].
These I&C models were developed following the chosen flexible modeling architecture, and they
demonstrated the ability to adjust the power plant model to changing power outputs while maintaining
proper temperatures, flows, and pressures in the power plant. Previous work with I&C development
included control of the PHTS reactor power output using the control rod position, the PHTS reactor core
outlet temperature using the PHTS fluid temperature, intermediate heat transport system (IHTS) fluid
temperature using the IHTS cooling pump, and PCS electric power generation by adjusting the steam
flow to the turbine. Two control strategy approaches were developed, with control based on a desired
temperature or the temperature difference of key power plant temperatures. In addition to reactor control,
models were developed for steam generator control [3]. For a complete end-to-end I&C system for the
principal basic functions of a nuclear reactor system, two remaining control functions are essential: the
main steam turbine control valve, and the feedwater heater control. These control systems constitute the
balance-of-plant control necessary to regulate power production to the grid, and they process system
support for optimized steam generation. Their further development is discussed in the subsections below.

3.1 MAIN STEAM TURBINE CONTROL VALVE

In modern power plants, a throttling or governing steam valve is used to adjust the steam pressure and
flow supplied to the turbines to regulate a constant speed during varying generation loads. The turbine
speed must always be compatible with the generation frequency. As load changes, the turbine will
inherently react to the generation load change with a speed change which requires small amplitude and
fast acting control adjustments to the steam input. This control is performed by a steam regulation valve
that regulates the direct supply flow into the turbine or a bypass flow path. Figure 24 illustrates the

25

relationship of the valve area to steam pressure and flow, which ultimately affects the generator speed and
the electrical frequency. This approach is not used to vary the actual power output; that is performed by
controlling the energy provided to the turbine by the reactor and the heat transport systems.

The baseline liquid metal reactor model presented in Ref. 11 was examined for adding a throttle valve to
the high pressure turbine steam supply in the power conversion system. Figure 25 illustrates the updated
model with the throttle valve and the associated control concept. The throttle valve parameters are shown
in Fig. 26. These parameters were estimated based on power reactor innovative small module (PRISM)
reference data [12] but require further validation due to limited information on the steam control
subsystem.

Fig. 24. Turbine speed control concept diagram.

The valve control method is a proportional, derivative-based approach that compares the actual generation
electrical frequency with the desired reference and augments the valve area more open or closed based on
the frequency error (Fig. 27). The use of a derivative function is due to the desire to react quickly in a
predictive manner. The derivative acts due to the rate of change of the frequency error which is sensitive
to quick changes to the generator frequency due to a power plant dynamic change. Figures. 28a and 28b
illustrate that the throttle valve dynamically closing ~20% due to the control can reduce the generation
power output overshoot (Fig. 28a) and also the frequency error (Fig. 28b) during a power plant dynamic
test of increasing the power ~36% from 111MW to 151MW. The peak frequency error was reduced ~28%
with the addition of the throttle valve control. The actual values of frequency error and the dynamic
behavior should be considered as representative only because the turbine and generator inertia values are
conceptual. Fig. 29 illustrates the throttle valve effect on pressure and flow for the steam turbine. The
pressure is increased ~14%, which decreases the enthalpy flow ~4% (Fig. 29).

Future work would include integrating the steam turbine valve control with the steam generator level
control to provide a multivariable control for load following and responding to system failures and
degradation. The steam turbine valve parameters should be enhanced to provide the desired flow response
characteristics for different operating conditions.

26

Fig. 25. Baseline ModelPower conversion system with
throttle valve added to high pressure turbine supply.

Fig. 26. Throttle valve parameters.

27

Fig. 27. Control loop algorithm.

Fig. 28a. Power plant dynamic test from 111 to 151MW with

high pressure (HP) steam turbine throttle valve control.

28

Fig. 28b. Power plant dynamic test from 111 to 151 MW

with HP steam turbine throttle valve control.

Fig. 29. Power plant dynamic test from 111 to 151 MW

with HP steam turbine throttle valve control.

29

3.2 FEEDWATER HEATER CONTROL

In modern power plants, the process referred to as regeneration, or preheating the feedwater before entry
to the steam generator for boiling, is called feedwater heating (FH). This is typically accomplished by
extracting some bypass steam from the turbine for the purpose of heating up the feedwater prior to the
steam generator with a heat exchanger system [13]. An open FH system design consists of directly mixing
high pressure turbine exhaust extraction steam with the feedwater flow to raise its temperature. A closed
FH system design consists of using a heat exchanger that does not mix the steam and feedwater directly.
In closed FH systems, the feedwater typically flows through banks of heat exchanger tubes, with steam
flowing on the outside of the heat exchanger tubes.

Regeneration by preheating the feedwater reduces negative effects such as thermal shock and
irreversibility that are associated with unrestrained expansion. Regeneration also improves the
thermodynamic efficiency of the system by increasing the steam generator feedwater inlet temperature.
Large steam power plants commonly employ large quantities of FH using multistage extraction to supply
steam to the various feedwater heaters [13].

The extraction steam is the thermal energy source input to the FH vessel (Fig. 30). The feedwater typically
consists of collected condensed steam from the turbine exhaust and some makeup water. The feedwater is
pumped through the heat exchanger, typically a shell and tube type, in the vessel, and it exits at a raised
temperature due to the heat transfer. The steam condenses in the heat exchanger as it cools, which creates a
condensed steam water level in the vessel. A drain outlet is used to regulate the fluid level in the vessel. During
variations in the flows of feedwater or variation in the turbine steam extraction, the heat transfer energy
balance can become unstable. The key characteristics of an FH system are the water level, the feedwater inlet
and outlet temperatures, the steam inlet temperature, and the drain outlet temperature [14].

For example, if the condensate water level is lower than desired, then hot steam can approach the
condensate drain. This will heat the condensate back up and potentially flash the condensate back to
steam. This has negative impacts on the condensate drain subsystem. If the condensate water level is
higher than desired, water injection into the turbine can occur, steam extraction flow can be restricted, and
the condensing zone is restricted to interact with less of the heat exchanger area. In addition to these
negative concerns, improper condensate water levels can reduce the overall heat exchange effectiveness.

Fig. 30. Feedwater heater example.

30

Typical feedwater efficiency and performance monitoring includes measurements of the water level and
temperature [14]. The following defined measurements would be included in the instrumentation and
control system.

1. The feedwater temperature rise is the difference between the feedwater outlet and inlet
temperatures. The temperature rise will be stable if the feedwater level is also stable.This is a
common design point indicator of the proper water level.

2. The terminal temperature difference is the saturation temperature of the extraction steam minus
the feedwater outlet temperature. This can indicate the heat transfer performance. For example, an
increase indicates a reduction of heat transfer, and a decrease indicates an increase of heat
transfer. The design goal is typically 3~5°F.

3. The drain cooler approach temperature is the temperature difference between the drain cooler
outlet and the feedwater inlet. This suggests that there are condensate levels present in the
feedwater heater. For example, an increase in the drain cooler approach temperature will indicate
that the level is decreasing, while a decrease in the temperature will indicate that the level is
increasing. The design goal is typically 10°F.

In the PRISM reference design [12], each turbine has multiple stages of steam extraction for feedwater
heating (Fig. 31). The high-pressure turbine has a single extraction nozzle for high-pressure steam FH
(Fig. 32). The low-pressure turbine has four extraction nozzles for low-pressure steam FH (Fig. 32). The
low pressure (LP) turbines provide extraction steam to the two trains of LP regenerative feedwater heaters
(heater [HTR] 1 – HTR 4). The high pressure (HP) turbine shaft seal leakoff is directed to heater HTR 4.
The feedwater drain system directs condensed turbine extraction steam that was used for regenerative FH
to the condenser hotwell (Fig. 33).

The feedwater flow into the steam drum, feedwater heating, and other properties are part of the steam
generator drum control system. The PRISM design has a total of three feedwater systems and three FH
drain systems.

The PRISM feedwater heating instrumentation and control [12] includes:

1. Adjusting the different turbine steam extraction control valves to maintain the proper heating
efficiency as the feedwater flow is varied.

a. The extraction lines to feedwater heaters HTR 3 – HTR 5 have motor-operated valves for
automatic shutoff on an extreme high level in the feedwater heater to prevent backflow to
the turbine. Immediately downstream of each motor-operated valve, a fast closing bleeder
trip valve (non-return valve) is used to limit turbine overspeed due to entrained energy in
the extraction system. This valve affords protection from a water induction standpoint.
The bleeder trip valves are normally closed by heater high water level or turbine trip
signals.

b. In the condensate system, a 5°F terminal temperature difference and a 10°F drain cooler
approach temperature in the low-pressure feedwater heaters are the proper operating
conditions.

c. In the feedwater system, a 5°F terminal temperature difference and a 10°F drain cooler
approach temperature in the high-pressure feedwater heaters are the proper operating
conditions.

d. A steam generator inlet temperature of 420°F should be provided to avoid thermal shock.
2. The deaerator steam supply controls activate on turbine trip or on a signal from the turbine load

control system to prevent feedwater pump cavitation as a result of rapid load reductions or a
turbine trip (Fig. 34).

3. The steam dump system is controlled by the turbine bypass system controls to permit steam dump
to the condenser when the condenser is available.

31

4. The extraction steam isolation valve controls permit manual operation of each extraction steam
isolation valve from the main control room, and they provide automatic valve closing in the event
of an extremely high water level in the feedwater heater.

5. The extraction steam bleeder trip valve controls permit local testing of each extraction line
bleeder trip valve, and they provide power assist closing in the event of a turbine trip or an
extremely high water level in an associated heater.

6. The molten salt reactorteam flow valve controls modulate steam flow to each reheater for gradual
heat-up to protect the reheater and LP turbines from rapid temperature transients. It also permits
manual operation of the steam flow valve from the control center.

7. The FH drain is used to regulate the FH vessel shell side water level. The heater drains are
controlled with a series of control valves (Fig. 35).

A future project will develop the proper subsystems for the FH and the associated instrumentation and
control features. Developing a Modelica model of the different low-pressure and high-pressure feedwater
heaters will require development of the following subsystem models:

1. high and low-pressure turbine steam extraction connections from the turbine model, to include
a. nozzles and flow passages with proper geometries and flow properties, and
b. control valves and fast acting bleeder valves to regulate and bypass the turbine steam

extraction;
2. feedwater heater heat exchangers, to include

a. proper geometry heat exchangers for the various feedwater heaters,
b. proper plumbing configurations for the phased heat exchanges,
c. proper geometry, flow properties, and control valves for the feedwater drain systems, and
d. eat exchanger condensate-level monitoring and temperature monitoring; and

3. feedwater pumping, to include appropriate feedwater pump configurations and control.

32

Fig. 31. PRISM diagram for one turbine-generator system [Fig. 10.1-1 in Ref. 12].

33

Fig. 32. PRISM diagram for extraction steam system flow [Fig. 10.3-2 in Ref. 12].

34

Fig. 33. PRISM diagram for condensate system flow [Fig. 10.A-2 in Ref. 12].

35

Fig. 34. PRISM diagram for feedwater system flow [Fig. 10.A-3 in Ref. 12].

36

Fig. 35. PRISM diagram for heater drains system flow [Fig. 10.A-4 in Ref. 12].

37

4. PRELIMINARY VALIDATION AND VERIFICATION STRATEGY

Simulation models are never identical to the operation of real-world systems but instead represent
approximations. V&V of computer simulation models is conducted during the development of a
simulation model with the ultimate goal of producing an accurate and credible model. For the purposes of
confirming models, V&V have specific definitions. Verification is the process of confirming that models
are correctly implemented with respect to the conceptual model. Validation is the process of checking the
simulation against data or other benchmarks that represent the real system [6]. Development of models
that have undergone V&V is critical in nuclear reactor design analysis. Because of the critical importance
of reactor safety systems, considerable effort is made to develop codes that meet rigorous standards for
quality assurance. The level of effort necessary to produce a model that has passed V&V depends on the
model’s intended use. Some models are intended to provide scoping studies of potential design spaces.
For these, the development of full V&V as stipulated in requirements such as NQA-1 is not necessary.
The Modelica models that have been produced previously and described in Refs. 3 and 5 are all
considered operational models with no expectation of being used for accident simulation. A model should
be V&V to the degree needed for its intended purpose or application. Each system model should be based
on referenced preliminary concept models that are used to benchmark the Modelica models. For these
purposes, the benchmark and/or calibration of the Modelica models against existing models or test data
without extensive documentation is considered acceptable.

This report represents the first attempt to implement models designed specifically for accident analysis
(GRSAC code for HTGRs). This use case introduces a greater range of expected plant response and a
consequently larger range of expected uncertainty. However, these models are still considered
preliminary, as they are not part of any licensing calculations. As such, the appropriate level of V&V is
still a benchmark or calibration of the Modelica models against the existing models. In this case, the basis
models are developed in Fortran. The transition of Fortran-based models into Modelica is an important
part of any development of system-based models for nuclear applications; since over 50 years of
modeling work in nuclear systems analysis has been performed principally in Fortran. The ability to
rapidly assimilate these models and validate and verify them is essential for creating a new paradigm of
reactor systems modeling. The basic development of models within the Modelica framework is being
accomplished using a standard development architecture and environment. Below is a brief tailored
description of this standard code development workflow architecture as described in Ref. 7.

4.1 DEVELOPMENT ARCHITECTURE/ENVIRONMENT

The discussion within this section is based extensively on that provided in Ref. 7.

 In software development, an environment is the computer system in which a computer program or
software component is deployed and executed. This environment may be consistent with the user’s
environment. Typically, if software is developed for use by nonprogrammers, the user and development
environments are distinctly different. Changes to software are developed in the development environment.
The developer’s environment typically includes tools such as a compiler, an integrated development
environment, different or additional versions of libraries and support software, etc. These tools are not
present in a user’s environment, but they are useful for initial modification development, testing, and
revision control.

To ensure revision control, particularly with multiple developers, a developer has a working copy of
source code on his or her machine, and changes are submitted to the repository, being committed either
to the trunk or a branch, depending on development methodology. The environment on an individual
workstation, where changes are worked on and tried out, may be referred to as the local environment or

38

a sandbox. Building the repository’s copy of the source code in a clean environment is a separate step
and is part of integration (integrating disparate changes). This environment may be called the integration
environment or the development environment. In continuous integration this is done frequently, often for
every revision. The source code level concept of committing a change to the repository, followed by
building the trunk or branch, corresponds to pushing to release from the local, individual developer’s
environment to integration .

Environments may vary significantly in size: the development environment is typically an individual
developer’s workstation, while the production environment may be a network of many geographically
distributed machines in data centers, or virtual machines in cloud computing. Code, data, and
configuration may be deployed in parallel.

Exact definitions and boundaries between environments vary. The testing environment may be considered
part of or separate from the development environment, whereas the quality assurance (QA) environment
may be considered part of the testing environment, or it may be separate. The main tiers (or branches)
are progressed through in order, with new releases being deployed (rolled out or pushed) to each in turn.
For the purposes of this effort, these separate environments are specified in Table 2. A description of
their implementation in the GitHub repository library of models follows in the next section.

Table 2. Advanced reactor modeling environments

Environment/tier name Description

Local (sandbox) Developer’s desktop/workstation. This includes developers distributed around the
country under many separate computer systems and architectures.

Development This is the lowest level shared environment for developing and collaborating on
system/component model development.

Test/QA Testing includes functional, performance, and quality assurance testing, etc.

Production/live Upon completion of QA and functional testing, the models are moved to the
production environment for distribution and use by the user community.

4.2 MODEL DEVELOPMENT AND PRODUCTION OVERVIEW

An effective collaboration environment requires structure and rules for development and modification of
shared models. The overall V&V strategy described in Sect. 5.0 requires implementation in the GitHub
repository that serves as the development and testing environment. Strategies developed in other software
disciplines can be used to ensure this effective collaboration. The concept of workflow through the system
is described and detailed in the subsections below based on the special needs of each staging area. The
intended end results are production models that can be shared among other applications, including web-
based simulations that are available without special simulation software.

GitHub supports a distributed version control environment that is flexible for collaboration while also
providing structure for development, testing, verification, and deployment. GitHub support for the various
modeling environments and workflows is documented below using GitHub Flow and graphics from the
GitHub website (https://guides.github.com/introduction/flow/index.html). As described on this website,
GitHub Flow is a “lightweight, branch-based workflow that supports teams and projects where
deployments are made regularly.”

https://guides.github.com/introduction/flow/index.html

39

4.2.1 Sandbox Area

GitHub employs a distributed version control approach, so every user has a version of the repository on
his or her local machine that serves as a sandbox area. The sandbox area(s) are various cloned areas from
the GitHub repository copied onto each developer’s local machine. These areas are not intended to be
shared, but they constitute preliminary development of models. There are no requirements for
configuration control or procedures for development in the sandbox area. It is an unrestricted area for
early model development. The sandbox area can still be under version control in the user’s cloned
repository, which is isolated from the main repository and not accessible in general to other users.

4.2.2 Development Branch

A common approach to collaborative development is based on issue tracking and tickets (Figs. 36–37).
GitHub has excellent support for issue tracking (https://guides.github.com/features/issues/). Issues can
represent new model development or modification to existing models. Issues can be reported,
discussed/commented, categorized, prioritized, assigned to milestones, assigned to developers, and act as
the starting point for development.

Fig. 36. Sample issues from a GitHub repository.

https://guides.github.com/features/issues/

40

Fig. 37. Sample page for an individual issue with comments.

When working on a given issue, the developer should create a branch (see Fig. 38) in his or her repository
and name it according to the issue number (e. g., “issue25”). Until the developer’s changes have been
approved by the project manager, they remain in their repository. Nevertheless, they can still collaborate
with other developers.

Active collaboration and communication between developers occurs in this branch (see Fig. 39). Code
modification is tracked through the use of commits and Git push/pull protocols for developmental
changes on the branch and isolated from the main line of development. Individual users provide
improvements to modeling code or libraries and subroutines accessed and used in the simulations.

Fig. 38. Branch creation serves as the start of the GitHub flow.

41

Fig. 39. Commits on the branch by the development team.

Although not yet established, primary responsibility for various models is expected to be established via
assigning particular developers and team members to an issue and the subsequent branch. This approach
does not prevent others from collaborating or commenting on the models, but it identifies the individual
who coordinates the collaboration and provides the necessary documentation or decision-making
authority.

4.2.3 Merging, Testing, and QA

Once the developer considers an issue to be resolved, he or she can submit a pull request (Fig. 40). This
signals to the project manager that the developer feels the changes are complete and ready to be
incorporated into the main line of development.

At this point, the project manager reviews the changes. This review may involve inspecting the code
changes to ensure that style guidelines were followed and that the code looks correct. At that point, any
established testing procedures should be implemented to ensure that the models behave as expected and
that there are no regressions in existing tests.

Once a pull request has been opened, the person or team reviewing changes may have questions or
comments (see Fig. 41). Models that fail testing can undergo continued development on the branch until
adequate performance is reached.

Testing includes both functional and performance tests, as well as quality assurance tests. The primary
use of the QA/testing phase is to test all system and component models before they are applied to
production environment. This ensures that all selectable configurations in the production environment
will be completed reliably without errors and in minimum time. Performance testing, particularly load
testing, is also important to ensure the system and component models can be run in a reasonable period of
time. QA and functional tests are expected to be designated to either an overall integrator for the models
(Oak Ridge National Laboratory [ORNL]), or the tests are assigned to the most knowledgeable
developers under direction for final approval by ORNL.

42

Fig. 40. Opening a pull request.

Fig. 41. Code review and discussion.

4.2.4 Production Deployment

Deploying to production is the most sensitive step. Once the pull request has been reviewed and the
branch passes testing, changes can be deployed to verify them in production, including other changes
made to the main line of development. If the branch causes issues, changes can be rolled back, and the
existing master can be deployed to production. Once changes have been verified in production, the code
can be merged into the master branch (see Figs. 42–43). Once merged, pull requests preserve a record of
the historical changes to the code, and they allow any developer to understand how and why changes were
made in a completely searchable way.

43

Fig. 42. Deployment initiation following completion of branch testing.

Fig. 43. Merge from development branch into master.

With the exception of the web and the functional mockup interface for Excel (FMIE) applications, the
models themselves are not remote executables but rather constitute compiled simulations that can be run
via access to a Modelica solver. Currently the solver of choice is Dymola, as it retains many user-friendly
features and simulation libraries that enhance the simulation and execution of the models. Developers and
users will need access to a Dymola license to execute the simulations in the native form. However, the
production environment will also include the functional mockup units (FMUs) that allow for co-
simulation in other platforms. Therefore, except for the web application, the movement of the QA-tested,
approved models into production constitutes deployment. For the web application, minor modifications
associated with the database used for user choice selections will be needed to deploy the tested and
approved models through the web application. This may require restart of the web application, but it will
not result in any significant unavailability of the system. Users will be notified of any interruption
associated with this movement or any other interruption associated with system maintenance.

44

4.3 MODEL RELEASE AND ACCESS

Upon the completion of testing and movement of tested models into the production environment, release
notification to the development user base (GitHub registered and approved users) will be made by the
development integrator (ORNL). The Modelica models and any FMUs used for co-simulation modeling
and/or web application simulations will be deployed, and the web application will be updated to reflect
these new model choices. If released models are proprietary, information for permissions and/or request
for access will be included in the notification.

5. CONCLUSIONS

An initial HTGR architecture and preliminary example for a core Modelica model have been developed
as a starting point for the full development of an end-to-end system model. Additionally, an example for
wrapping existing Fortran based HTGR models developed as part of the GRSAC code has been
presented. HTGR architectures will include implementation of power production and process heat
application. Core and RCCS models are new, with the existing heat exchanger and steam generator
models expected to be modified to account for change in flows, geometries, and fluids. The balance-of-
plant models will also be tailored from the existing library of ALMR and FHR models, with the exception
of the process heat application. A new model(s) for process heat applications will be developed for use
with the HTGR, as well as other non-power production nuclear applications. These are expected to
include things such as seawater desalination, hydrogen production, district heating, tertiary oil recovery,
and other industrial applications.

Development has continued for the ALMR end-to-end control system. The remaining balance-of-plant
control systems include the main steam turbine valve and the feedwater heater. Strategies, approaches,
and example control systems have been developed for further refinement and implementation in the
repository.

A strategy for model V&V has been developed that makes use of the GitHub repository by the creation of
separate branches for the tiered workflow structure associated with model development. Initial scoping
development for models will be performed locally on user/developer computers in the sandbox area.
These areas are on the users’/developers’ local machine and are not shared or distributed. The developer,
QA/test, and production branches have been described and reside on the GitHub server. These branches
constitute shared areas for model development and collaboration. Procedures to promote models through
these work areas have not yet been fully developed, but they are expected to be consistent with those
developed for other software applications that make use of tiered development.

The work documented in this report represents the expected conclusion of the project under the ART
program. Further funding and development of the concept and models will be sought under other DOE
programs as well as the integration of these libraries and techniques in other projects.

45

6. REFERENCES

1. S. J. Ball, A Graphite Reactor Severe Accident Code (GRSAC) for Modular High-Temperature Gas-
Cooled Reactors (HTGRs) User Manual, ORNL/TM-2010/096, Oak Ridge National Laboratory, Oak
Ridge, TN, June 2010.

2. S. J. Ball to R. E. Hale, email correspondence, “Re: External Wrapper Example,” Date: 8/18/2015.

3. R. E. Hale, S. M. Cetiner, D. L. Fugate, J. J. Batteh, and M. M. Tiller, Update on Small Modular
Reactors Dynamic System Modeling Tool-Web Application, ORNL/SPR-2015/17, Oak Ridge
National Laboratory, Oak Ridge, TN, January 2015.

4. R. E. Hale, S. M. Cetiner, D. L. Fugate, A. L. Qualls, et al., Update on Small Modular Reactors
Dynamic System Modeling Tool-Molten Salt Cooled Architecture, ORNL/TM-2014/322, Oak Ridge
National Laboratory, Oak Ridge, TN, August 2014.

5. R. E. Hale, S. M. Cetiner, D. L. Fugate, A. L. Qualls, et al., Update on Small Modular Reactors
Dynamic System Modeling Tool, ORNL/TM-2014/50, Oak Ridge National Laboratory, Oak Ridge,
TN, March 2014.

6. Wikipedia, Verification and validation of computer simulation models,
https://en.wikipedia.org/wiki/Verification_and_validation_of_computer_simulation_models.

7. Wikipedia, Deployment environment, https://en.wikipedia.org/wiki/Deployment_environment.

8. “The High Temperature Gas-Cooled Reactor Next Generation Nuclear Energy,”
http://www.ngnpalliance.org/images/general_files/HTGR%204%20page%20individual%20040611.p
df

9. “Summary for the Next Generation Nuclear Plant Project in Review,” INL/EXT-10-19142/R1,
September 2010.

10. ”Prismatic HTGR Core Design Description,” INL/GA presentation to the HTGR Technology Course
for the Nuclear Regulatory Commission, May 24–27, 2010.

11. Update on Small Modular Reactors Dynamic System Modeling Tool, ORNL/TM-2014/50, March
2014.

12. Prism Preliminary Safety Information Document, GEFR-00793, UC-87TA, December 1987.

13. K. Weston, Energy Conversion – The Ebook, Fundamentals of Steam Power, 2000,
http://www.personal.utulsa.edu/~kenneth-weston/

14. D. Hite, Improved Plant Heat Rate with Feedwater Heater Control, Power – Business and Technology
for the Global Generation Industry article, August 01, 2013, http://www.powermag.com/improve-
plant-heat-rate-with-feedwater-heater-control/?pagenum=3

15. Computer program for calculation of complex chemical equilibrium compositions and applications.
Part 1: Analysis Document ID: 19950013764 N (95N20180) File Series: NASA Technical Reports
Report Number: NASA-RP-1311 E-8017 NAS 1.61:1311 Authors: Gordon, Sanford (NASA Lewis
Research Center) Mcbride, Bonnie J. (NASA Lewis Research Center) Published: Oct 01, 1994.

16. P. E. MacDonald, NGNP Point Design –Results of the Initial Neutronics and Thermal-Hydraulic
AssessmentsDuring FY-03, INEEL/EXT-03-00870 Rev., September 2003.

17. General Atomics, NGNP Steam Generator Alternatives Study, 911120, 2008.

https://en.wikipedia.org/wiki/Verification_and_validation_of_computer_simulation_models
https://en.wikipedia.org/wiki/Deployment_environment
http://www.ngnpalliance.org/images/general_files/HTGR%204%20page%20individual%20040611.pdf
http://www.ngnpalliance.org/images/general_files/HTGR%204%20page%20individual%20040611.pdf
http://www.personal.utulsa.edu/~kenneth-weston/
http://www.powermag.com/improve-plant-heat-rate-with-feedwater-heater-control/?pagenum=3
http://www.powermag.com/improve-plant-heat-rate-with-feedwater-heater-control/?pagenum=3

APPENDIX A.

A-3

Appendix A

Details for the HTGR models are reproduced below from Ref. 1. The initial models include the Fortran
implementation of the physics described below. As described in Section 2, these initial models within
Modelica include Fortran calls within Modelica. The wrappers for each of these models need to be further
developed consistent with the methodology and approached described for the Modelica core model
detailed in Ref. 1.

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

A-21

A-22

A-23

A-24

A-25

	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	ACKNOWLEDGMENTS
	EXECUTIVE SUMMARY
	1. INTRODUCTION
	1.1 BACKGROUND

	2. PRELIMINARY HTGR ARCHITECTURE AND MODELS
	2.1 HTGR INTRODUCTION
	2.2 HTGR MODELICA ARCHITECTURE
	2.3 MODELICA VERSUS FORTRAN IMPLEMENTATIONS
	2.4 HTGR MODELS
	2.5 CORE MODEL
	2.6 PRIMARY HEAT TRANSPORT SYSTEM WITH A SINGLE-CHANNEL CORE MODEL
	2.7 CORE MODEL MODELICA WRAPPER
	2.8 RCCS MODEL
	2.9 CROSS VESSEL MODEL
	2.10 STEAM GENERATOR MODEL
	2.11 BALANCE OF PLANT MODELS
	2.12 EXAMPLE SIMULATIONS

	3. ALMR END-TO-END CONTROL UPDATE
	3.1 MAIN STEAM TURBINE CONTROL VALVE
	3.2 Feedwater Heater Control

	4. PRELIMINARY VALIDATION AND VERIFICATION STRATEGY
	4.1 DEVELOPMENT ARCHITECTURE/ENVIRONMENT
	4.2 MODEL DEVELOPMENT AND PRODUCTION OVERVIEW
	4.2.1 Sandbox Area
	4.2.2 Development Branch
	4.2.3 Merging, Testing, and QA
	4.2.4 Production Deployment

	4.3 MODEL RELEASE AND ACCESS

	5. CONCLUSIONS
	6. REFERENCES
	APPENDIX A.

