
ORNL/TM-2015/211

Multi-Tenant Isolation via Reconfigurable Networks

Approved for public release; distribution is unlimited.

Ferrol Aderholdt
Blake Caldwell
Susan Hicks
Scott Koch
Thomas Naughton
Daniel Pelfrey
James Pogge
Stephen L. Scott
Galen Shipman
Lawrence Sorrillo

December 2014

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the
public from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.fedworld.gov
Website: http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Govern-
ment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.aspx
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2015/211

Computing & Computational Sciences Directorate

DoD-HPC Program

Multi-Tenant Isolation via Reconfigurable Networks

Ferrol Aderholdt2, Blake Caldwell1, Susan Hicks1, Scott Koch1,
Thomas Naughton1, Daniel Pelfrey1, James Pogge2,

Stephen L. Scott1,2, Galen Shipman2 and Lawrence Sorrillo1

1 Oak Ridge National Laboratory
Oak Ridge, TN 37831

2 Tennessee Technological University
Cookeville, TN, 38501

Date Published: December 2014

Prepared by
OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008
Oak Ridge, Tennessee 37831-6285

managed by
UT-Battelle, LLC

for the
US DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

CONTENTS

List of Figures . v
List of Tables . vii
Acronyms . ix

Executive Summary 1

1 Introduction 3
1.1 Report Outline . 4

2 Background 5
2.1 SDN and Network Function Virtualization . 5
2.2 Terminology . 6

3 Methods of Implementing Reconfigurable Networks 8
3.1 Typical Networking Environment . 8
3.2 Static Networks Involving VRF and Preconfigured VLANS 8
3.3 API . 9
3.4 Traditional SDN . 10
3.5 Hybrid SDN . 10
3.6 Overlay Network . 10
3.7 OpenStack . 11
3.8 Implementing Neutron Routers . 11
3.9 LXC / LXD . 12

4 Key Vendors and their role in SDN 14
4.1 Arista . 14
4.2 Brocade . 15
4.3 Cisco . 15
4.4 Dell . 15
4.5 Juniper . 15
4.6 Mellanox . 16
4.7 Vendor Conclusion . 16

5 Testbed Description and Evaluation Plan 17
5.1 Verification of Tenant Isolation with Respect to Compute and Storage 20
5.2 Performance . 20
5.3 Security . 21

5.3.1 Application Programming Interface . 21

iii

5.3.2 Control plane . 22
5.3.3 Data Plane . 22
5.3.4 Hypervisor management . 22
5.3.5 Storage Management . 22
5.3.6 Security Summary . 23

5.4 Scalability . 23
5.5 Reliability and Availability . 23

6 Conclusion 25
6.1 Synopsis . 25
6.2 Observations . 26
6.3 Future Plans . 27
6.4 Acknowledgments . 27

Bibliography 28

iv

LIST OF FIGURES

3.1 Neutron OVS SDN Router Configuration. 13
3.2 VNIC interface configuration. 13

5.1 Secure Enclaves Testbed Logical Diagram. 18
5.2 Secure Enclaves Testbed Rack Diagram. 18
5.3 OpenStack L2 Deployment. 19
5.4 ML2 and Layer 3 Service Plugin interactions . 19

v

LIST OF TABLES

4.1 Vendor compliance with the OpenFlow standard . 16

vii

ACRONYMS

ACL Access Control List
API Application Programming Interface
ASIC Application Specific Integrated Circuit
BGP Border Gateway Protocol
CLI Command Line Interface
CPU Central Processing Unit
DNAT Dynamic Network Address Translation
GRE Generic Routing Encapsulation
HPC high-performance computing
LACP Link Aggregation Control Protocol
LXC Linux Containers
MD5 Message Digest Algorithm V5
MLAG Multichassis Link Aggregation
NAT Network Address Translation
NFV Network Function Virtualization
NIDS Network Intrusion Detection System
OS operating system
OSPF Open Shortest Path First
OVS Open Virtual Switch
QOS Quality of Service
SDN Software Defined Networking
SDM Security Device Manager
SNAT Source Network Address Translation
SNMP Simple Network Management Protocol
VLAN Virtual Local Area Network
VMS Virtual Modular Switch
VNIC Virtualized Network Interface Control
VPC Virtual Port Channel
VRF Virtual Routing and Forwarding
XMPP Extensible Messaging and Presence Protocol
VXLAN Virtual eXtensible Local Area Network

ix

Executive Summary
Multi-Tenant Isolation via Reconfigurable Networks

High performance computing environments are often used for a wide variety of workloads ranging
from simulation, data transformation and analysis, and complex workflows to name just a few. These
systems may process data at various security levels but in so doing are often enclaved at the highest
security posture. This approach places significant restrictions on the users of the system even when
processing data at a lower security level and exposes data at higher levels of confidentiality to a much
broader population than otherwise necessary. The traditional approach of isolation, while effective in
establishing security enclaves poses significant challenges for the use of shared infrastructure in HPC
environments. This report details current state-of-the-art in reconfigurable network enclaving through
Software Defined Networking (SDN) and Network Function Virtualization (NFV) and their applicability to
secure enclaves in HPC environments.

SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of
which is very straight forward, the system administrator can deploy networks that are more amenable to
customer needs, and at the same time achieve increased scalability making it easier to increase overall
capacity as needed without negatively affecting functionality. The network administration of both the
server system and the virtual sub-systems is simplified allowing control of the infrastructure through
well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer
significant promise in meeting these goals, they also provide the ability to address a significant component
of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems
are built upon scalable high-performance networking technologies designed to meet specific application
requirements. Dynamic isolation of resources within these environments has remained difficult to achieve.
SDN and NFV methodology provide us with relevant concepts and available open standards based APIs
that isolate compute and storage resources within an otherwise common networking infrastructure.
Additionally, the integration of the networking APIs within larger system frameworks such as OpenStack
provide the tools necessary to establish isolated enclaves dynamically allowing the benefits of HPC while
providing a controlled security structure surrounding these systems.

Key Points SDN and NFV provides the functionality necessary to configure distributed networking
components on-demand, while at the same time providing desired performance, security, and reliability
goals. The requirements of these open standards are largely driven by the cloud computing community.
Adapting these standards to HPC systems can provide an increased level of flexibility with significantly
higher performance than that of a typical cloud computing infrastructure. Reconfigurable networks are a
key component of this flexibility providing a unique opportunity to achieve the performance and
application scalability of leading edge HPC platforms while providing the ability to isolate applications
within a shared infrastructure.

Recommendations Additional research into the application of SDN and NFV technologies within an
HPC context is required. Leveraging large-scale orchestration frameworks such as OpenStack to manage
HPC system components will broaden the applicability and improve the security of HPC systems. While
our initial work focuses on leveraging SDN and NFV capabilities of Ethernet based networks for secure
enclaves, the proposed techniques are readily adaptable to high-performance networking technologies
utilized within HPC. Adopting SDN, NFV and broader orchestration technologies such as OpenStack for

1

on-demand network reconfiguration will require further development including scalable low-overhead tools
that provide monitoring and auditing of networking components (including endpoints). All this
development should be within the scope of compliance with applicable and necessary security policies.

The remainder of this report is structured as follows:

• Section 1 introduces software defined networking and network function virtualization and their role
in addressing remote resource isolation in multi-tenant HPC systems.

• Section 2 provides background on the resource management and orchestration capabilities available
through SDN and NFV. Relevant terminology in SDN and NFV is also detailed in this section.

• Section 3 details alternative architectures and available methods for implementing dynamically
reconfiguring networks.

• Section 4 provides an overview of a number of SDN and NFV vendor technologies and the
capabilities provided by them.

• Section 5 provides an overview of our secure enclave testbed and planned activities to assess SDN
and NFV suitability and gaps for secure enclave resource isolation.

• Section 6 concludes the report and highlights key observations in the use of SDN and NFV to
support resource management and orchestration of secure enclaves. This includes a summary of
identified limitations in the current state-of-the-practice in SDN and NFV.

2

Chapter 1

Introduction

Server virtualization introduces immediate benefits in the improved sharing of centralized resources.
This offers several benefits, which include the efficient utilization of hardware, saving power, cooling and
cabinet space by only using components necessary for the application. Virtualization also aids in dynamic
deployment of new services, which makes capacity planning and growth more manageable. This ultimately
leads to improved flexibility for data managing the available resources. Additionally, reliability can be
improved by leveraging virtual machine migration and other resilience capabilities, which can be used to
move critical services away from failing hardware. Virtualization allows for new hardware to be integrated
without requiring a redesign of the infrastructure, which avoids service interruptions (downtimes) when
adding the new hardware.

As the use of virtualization becomes more ubiquitous, additional hardware support is emerging to
assist with the multiplexing of the physical resources. Many hardware specific services such as data storage
and networking were not initially easily realizable with available virtual machine technologies. However,
newer hardware functionality is helping to improve performance when virtualizing these critical I/O
services. In the specific case of HPC workloads, latency and bandwidth requirements place a higher
performance demand on these virtualized services and the hardware used to realize them. The adapting of
virtualization methods within the HPC community requires a more narrowly focused approach to
virtualization. Streamlined techniques such as the use of Linux containers provides a virtualized
environment rather than a complete virtual machine, enabling the flexibility desired within the HPC
community without sacrificing performance system performance.

Historically, networking has followed a tiered service level design based on connectivity, throughput
and Quality of Service (QoS) requirements. The use of routers, load balancers, switches, and firewalls are
dominated by the type, number and level of service each connection is expected to provide. This model
severely limits the flexibility required in multi-tenant systems, which seek to take advantage of the fast
deployment capabilities made possible by virtualized systems. Additionally, the use of proprietary
operating system (OS) and switch fabric hardware make the use of network appliances from multiple
vendors complicated and time consuming. This lack of commonality in the networking layer causes
burdens for maintenance and adds to operational costs. Even when considering the use of automated tools,
careful planning is required to ensure minimal system disruption as these necessary configuration changes
occur.

The growth of server virtualization is spurring increased interest in technologies that can be leveraged
to aid with network virtualization. A key element of modern networking with virtualized resources is the
combination of Software Defined Networking (SDN) and Network Function Virtualization (NFV). As

3

industry standard APIs are developed using a common open source standard, network appliance operation
moves seamlessly within the compute infrastructure.

The goal of this report is to present results from our investigation into mechanisms that can be used to
implement reconfigurable networks. The intent is to leverage these networking technologies to facilitate
isolation in multi-tenant environments. The report focuses on SDN and NFV to gain insights into their use
in a high-performance computing (HPC) context. This includes a review of methods and technologies for
implementing reconfigurable networks and a snapshot of key vendors that are providing products that
support SDN and NFV. The report includes a presentation of design concepts and solutions that allow
flexible implementation of reconfigurable networks within the topology outlined by the virtual containers
and compute nodes specific to a HPC implementation of virtualized environments. Particular emphasis is
placed on the near term challenges, such as designing, implementing, securing, and maintaining a dynamic
reconfigurable network that meets performance, security, and operational requirements.

1.1 Report Outline

The remainder of the report is structured as follows, Chapter 2 provides background on the resource
management and orchestration capabilities available through SDN and NFV. Relevant terminology in SDN
and NFV is also detailed in this section. In Chapter 3 details are given about alternative architectures and
available methods for implementing dynamically reconfiguring networks. Chapter 4 provides an overview
of a number of SDN and NFV vendor technologies and their capabilities. An overview of our secure
enclave testbed and planned activities to assess SDN and NFV suitability and for secure enclave resource
isolation is presented in Chapter 5. Lastly, Chapter 6 concludes the report and highlights key observations
in the use of SDN and NFV to support resource management and orchestration of secure enclaves. This
includes a summary of identified limitations in the current state-of-the-practice in SDN and NFV.

4

Chapter 2

Background

2.1 SDN and Network Function Virtualization

Prior work in programmable networks laid the foundation for the current efforts into Software Defined
Networking (SDN) [33]. Fundamentally, the SDN architectural model is based on the notion of decoupling
the control and data channels. This separation enables the control portion to be managed in a more flexible
manner without binding it to the actual data forwarding layer [30, 33], i.e., the control and data may be
managed (even implemented) separately.

This separation can be leveraged by virtualized environments to allow more dynamic configuration of
the network to meet the needs of applications. Allowing tenants (customers) to provision and configure
dynamic networks can be beneficial for testing applications, or scaling an existing production environment
or specific application. Virtualization saves time for the tenants since they don’t have to wait for network
administrators to provision and configure additional network resources. This saves time for both the
network engineers and systems engineers. The system engineers can focus on adding to resource capacity,
leaving the virtualization controller to handle the tenant flexibility needs. SDN works by separating the
control plane and data plane in the network environment. The control plane handles the configuration and
use management of available network resources including routing and monitoring functions. The control
plane is responsible for QoS and security policy enforcement on the network connections. The data plane
handles the actual flow of data between applications with connections and port sharing under direct
management of the control plane between tenant compute nodes and any external network connections.

In a traditional network the routers, switches, firewalls, and load balancers are dedicated to a physical
configuration. Often these pieces of hardware are from different vendors. Organizational network
topologies are typically centered on these functions. Virtualized networking is focused on commodity
servers that can perform all of these functions to various extents. The standardization of software based
services as opposed to application specific physical appliances provides on-demand flexibility in
provisioning the layout of the newly defined system. Routers, firewalls and load balancers can be rapidly
deployed as needed in a virtualized environment. As network commodity servers improve in performance
and lowered cost, additional network function virtualization can be realized. Advances in the switch fabric
ASIC and corresponding controllers will allow MAC (media access control) functions such as layer 2 and
layer 3 level control functions to be transferred to the virtualized network control resulting in a reduction in
system cost coupled with increased deployment flexibility.

The large scale adaptation of SDN facilitates the dynamic reconfiguration of networks to meet the
needs of both specific user requirements and applications. The incorporation of Network Function

5

Virtualization (NFV) on the other hand is changing how networks are scaled, enabling dynamically
configured functions such as firewalls, and load balancers to optimize deployment time. Systems can be
deployed and realized based on available CPU, network, and memory capacity in the virtual server farms.
This deployment model saves the network engineers from having to focus on rack space, cooling, and
cabling requirements associated with specific system expansion needs. NFV deployment reduces custom
hardware support costs, however server support costs will increase.

System performance requirements are more easily realized using SDN and NFV. The use of SDN
allows the user to quickly spin up network functions such firewalls and load balancers based on specific
needs. Additionally SDN has the potential to assist in optimizing traffic flows within the network to reduce
latency and network hot spots. For example, in a SDN environment, software could detect that tenant
traffic is spread out and is pushing heavy traffic among nodes causing potential hot spots and requiring QoS
to be enabled. Rearranging the host servers and changing the network to meet that service level agreement
is possible with reconfigurable networks. The software provisions the network in an underutilized area with
respect to virtual server resources and available network resources providing the hypervisors with the
necessary resources to move tenant traffic over to the newly created service. Likewise the software could
detect that a virtualized load balancer, or firewall, is nearing capacity and can spin up and configure
replacement virtual services with additional capability. The combination of SDN and NFV allows higher
functionality, while being able to monitor the network, and modify configurations as needed.

2.2 Terminology

This section reviews relevant terminology and background concepts. Standardizing of terminology is
still being worked out in the network virtualization community and inconsistencies exist in the literature.
For example, the available vendor documentation and associated research on both SDN and OpenFlow
discuss basic capabilities and functions in application specific terminology, often focusing on specific use
cases, rather than a generic capability.

SDN In the SDN architecture, the control and data planes are decoupled, network intelligence and state
are logically centralized, and the underlying network infrastructure is abstracted from the applications. As
a result, enterprises and carriers gain unprecedented programmability, automation, and network control,
enabling them to build highly scalable, flexible networks that readily adapt to changing business needs [17].

OpenFlow OpenFlow is an open standard that enables researchers to run experimental protocols in the
campus networks we use every day. OpenFlow is added as a feature to commercial Ethernet switches,
routers and wireless access points and provides a standardized hook to allow researchers to run
experiments, without requiring vendors to expose the internal workings of their network devices.
OpenFlow is currently being implemented by major vendors, with OpenFlow-enabled switches now
commercially available [27].

OpenDaylight OpenDaylight is a collaborative, open source project to advance Software-Defined
Networking (SDN). OpenDaylight is a community-led, open, industry-supported framework, consisting of
code and blueprints, for accelerating adoption, fostering new innovation, reducing risk and creating a more
transparent approach to Software-Defined Networking [34].

6

Control plane and Data Plane In traditional networking, the control plane and data plane traffic shares
the same path. In SDN, the control and data are separated to facilitate an abstract network design. Control
plane traffic consists of L2, and L3 protocols, management traffic such as Simple Network Management
Protocol (SNMP) and Secure Shell (SSH). The data plane is the traffic containing the data exchanged
between applications, i.e., application data.

Abstraction The concept of network abstraction is primarily focused on supporting network policy and
controls rather than specific methods that can be used to deploy the controls through physical hardware. In
the context of SDN, it refers to connections, ports and data flow policies rather than the physical
connection descriptions such as VLANs, IP addresses, and physical networking devices. This network
abstraction layer facilities APIs that can be used to configure details about the network.

Decoupling The separation of the control plane, and the data plane, allows the network to be abstracted.
The control plane is defined in general terms and manages policies. The data plane is the physical interface
that acts on these policies, thus abstracting the network design, from the planning and manipulation of
physical connections.

Northbound and Southbound interfaces The concept of North and Southbound traffic refers to the
information exchanged between the decoupled control and data planes of the SDN. Northbound specifically
refers to information from the data plane to the control plane, and Southbound refers to information from
the control plane to the data plane. Restated, the Southbound interface involves the controller-to-switch
interaction and is defined by protocols like OpenFlow [33]. Conversely, the Northbound interface involves
the controller(s) and network services/application and the standards for this are less well defined [33].

In the context of OpenDaylight, a Northbound interface allows applications to gather information about
the network used to modify the existing connection resources and capabilities such as bandwidth assigned
to the network. The Southbound interface deals with the hardware, and network layers, control policies are
translated to the data plane as instructions for connections, traffic management and security policies [35].

Agents and Controllers Tenants or applications interact with provisioning mechanisms that
communicate with agents or controllers. This allows the administrator to reconfigure the network to meet
tenant or application needs. An agent requests network resources through an API in the controller, which
then provisions the requested resources. The available resources are reported back to the agent. This
exchange allows the agents or tenants to dynamically provision resources during a heavy load, and then
release resources when the demand is low.

7

Chapter 3

Methods of Implementing Reconfigurable
Networks

There are a variety of methods for dynamically reconfiguring the network, each with different
challenges and limitations. This section contrasts typical networking techniques with virtual networking
methods.

3.1 Typical Networking Environment

In the typical environment, the system is analyzed and requirements documents are generated to realize
the needs of the application. Initially the Layer 3 appliance is built out in the appropriate location and then
specific security policies are added. The Layer 2 structures are built out depending on customer needs. In a
rapidly changing environment, meeting the Layer 2 change requests presents a challenge. If a customer
requires additional Layer 3 instances on top of the requested Layer 2 functions, it can force a complete
redesign of existing security policies. Additionally, the physical connections must be considered for the
deployment, taking into consideration:

1. Are the tenant nodes connected?
2. Is there a need for external WAN and Internet connectivity?
3. As the system grows, how will load balancing be handled?

The primary concern with traditional networking deployment models is that the physical connections
have to change as rapidly as the user’s needs change. This means a considerable amount of time is spent
reallocating existing physical connections and facility (space) resources as well as the down time
associated with reconfiguring the existing equipment or adding new appliances.

3.2 Static Networks Involving VRF and Preconfigured VLANS

The availability of preconfigured static Virtual Routing and Forwarding (VRF)s and corresponding
Virtual Local Area Network (VLAN)s allows for tenants to be placed into separate service areas, where all
traffic is carried between physical virtualization servers using different VLANs. This topology works well
if the network is rigidly defined with fixed connections and port definitions. Access to external servers and
infrastructure is handled through connection policies maintained directly on the server. This method does

8

not allow the tenants to run services in an environment where inbound and outbound filtering is applied.
This is especially true if each customer has unique and frequently changing network requirements. As the
requirements change, the Access Control List (ACL)s, firewall rules, and both physical & virtual switch
policies and configurations must change as well. Altering connectivity requires updating all of the traffic
defining policies and connection information.

3.3 API

A common method used in reconfigurable networks is deployment automation. This methodology
implies that all network appliances are managed by a centrally control system. The network administrators
push out bulk changes and policies across the entire network without having to configure each device
manually. In a secure environment, after verifying the correct permissions, tenants can request additional
resources and these requests are pushed through the central network management system. The central
management system configures the available resources with appropriate security policies and connection
rules and then pushes out these changes where they are needed. All SDN methods have a need for a
common interface to abstract the physical connections from the vendor specific (physical) device [5]. As
each vendor uses a combination of proprietary hardware and appliance OS the associated application
software commonality is accomplished through a vendor specific API.

The vendor API interacts with the OpenStack service software and acts as a common interface to
translate SDN functionality into direct corresponding functions on the vendor hardware. The resulting
control interface approaches the desired universal control layer envisioned by the virtual system designers
without sacrificing the capabilities of the individual hardware. Additionally this method allows, within
some parameters, the multiple vendor deployment capability desired by server farm administrators. This
capability further eliminates the need to have one specific switch appliance vendor throughout the facility.
Systems are streamlined in this virtual common platform approach. As an example, with a large group of
tenants, this allows the central management system to limit the networks carried over a Layer 2 trunk to the
physical virtual servers, which saves bandwidth by removing unneeded broadcast traffic. The existence of
common connectivity templates in place allows each tenant to securely operate without interacting with
other tenants. Further, access to external networks is provided to the tenant systems, while maintaining
existing connection and security policies. Network access APIs are vendor specific, with only common
functions called out specifically in the OpenFlow standard. In many cases vendors add functionality to
increase performance, statistics or reliability outside of the standard in an effort to entice the use of their
hardware. Additionally since switch fabric bandwidth and connection agility change the vendors port
configuration, vendor syntax will often be different. The syntax for shutting down and reconfiguring ports
will vary from vendor to vendor on the command line interface. The use of a vendor API allows the central
management system to communicate with the physical appliance over a controller attached port, using a
common control language. This allows the central control authority to authenticate and then make any
necessary network configuration changes. The OpenFlow based API can make all changes at all layers,
once the established security policies have been met. In addition to configuration APIs, some network
appliances support third party configuration management software such as Chef, or Puppet. In most cases
APIs will use a JSON like interface for human readable code and configuration data, but will have
commands that are unique for their specific capabilities and platforms.

9

3.4 Traditional SDN

In a traditional SDN, there is no implied intelligence on the network appliance as all decisions with
respect to the control plane and data plane originate from a logically central control authority. While this
methodology offers flexibility, it does not however scale well, representing a recognized single point of
failure. The use of traditional SDN through a single central controller works well for small deployments
with high flexibility and low availability requirements [46]. Some of these limitations can be addressed by
employing a clustered central controller architecture with an active/passive or active/active failover
strategy. There are SDN architectures that adopt an active/active centralized controller architecture to
address both scalability and resiliency requirements.

3.5 Hybrid SDN

Hybrid SDN uses a separate control plane like traditional SDN, but network devices also maintain
control plane functions independently. In this model each network device still functions independently
from the central controller, but also receives configurations from the central controller. The central
controller handles traffic by reconfiguring the individual nodes as needed by each device. This allows a
simple method for dynamically handling traffic hot-spots.

Applications can talk to the central controllers via API to get network health, or to make provisioning
changes leveraging the abstraction concept. In a hybrid SDN control responsibility is both shared and
dispersed, losing the central controller does not result in the loss of the entire network, only the
management and configuration is crippled until the system is repaired. Individual network appliances can
still be configured if central control is lost, the network is still capable of running the current applications
with a temporarily frozen configuration and policies rule set. The hybrid SDN model scales better, and
maintains high availability.

3.6 Overlay Network

Network overlays are accomplished by using tunneling or encapsulation techniques. This allows the
extension of the network at Layer 2 from one location to another, increasing flexibility in terms of scaling
the network as large as needed. The use of overlays also overcomes some of the intrinsic limitations of
network appliances such as the 4096 VLAN limit. Overlay networks are beneficial in a data center
environment due to low latency, higher bandwidth, and increased control over bandwidth utilization.
Additionally, overlay methods extend Layer 2 networks across Layer 3 boundaries, either within the data
center, or across WAN links. Keeping this local to the data center allows additional control flexibility unless
dedicated paths are required. For example, if Service Level Agreements (SLAs) exist to a certain path
across a provider’s network. Overlay networks can extend across the WAN interface to other data centers as
long as the connection is compatible in performance such as bandwidth, latency, and jitter. Essentially the
network overlay is a network built on top of an existing network structure. Connectivity is accomplished
through the creation of network tunnels, requiring endpoints within both connected domains which are
configured to allow traffic transferred across the tunnel appearing as a contiguous Layer 2 domain.

The necessary overlay endpoints can be created manually, or via APIs. Similar overlay methods found
within the data center are implemented by using encapsulation methods such as Virtual eXtensible Local
Area Network (VXLAN). Protocols like VXLAN allow you to create virtualized Layer 2 networks across
different Layer 3 networks and can scale up to 16 million logical networks.

10

3.7 OpenStack

Open Stack uses a hybrid SDN approach where the network appliances are considered stand-alone
devices and function as separate entities from OpenStack. It is possible to have all Layer 2 and Layer 3
traffic preconfigured statically on the individual network device. In this configuration, Open Stack handles
traffic between tenants. Some network vendors support OpenStack plugins that allow OpenStack to make
port and VLAN configuration changes as part of their OpenStack interface API. OpenStack includes a
network control node application called Neutron that facilitates SDN networking accomplished using the
internal OpenStack routing engine for both inter- and intra-VLAN traffic. Neutron has the capability to
communicate with the network via dynamic routing.

3.8 Implementing Neutron Routers

The use of multiple flat networks require bridge interfaces for each network connection, the addition of
VLANS further complicates the setup by requiring switch and gateway configuration per instance. Neutron
contains a plugin agent specifically to handle L3 connectivity. This agent allows both administrators and
tenants to create routers that handle traffic between directly connected tenant network interfaces, either
Generic Routing Encapsulation (GRE) or VLAN, and a single management or controller network node.
Access to external provider networks, including WAN services are handled through this Neutron router
structure. The external network is typically implemented as either a FLAT or VLAN provider network.

Nova compute nodes use both fixed and floating IP addresses. The fixed IP addresses are assigned to
the compute instance on creation, and remain until the instance is terminated. Floating IP addresses are
dynamically associated with the instance as needed. Floating IP addresses can be associated or
disassociated with a instance at any time. A public or provider network involves a connection that is
potentially outside of Neutron control. In a Nova network the use of 1:1 NAT translation allows for a
customizable “floating” IP address implementation, it is common for the same IP that is used as the L2
address to also be used in the bridge to the hypervisor. This is accomplished by using the iptables
configuration on the host by modifying the Source Network Address Translation (SNAT)/Dynamic
Network Address Translation (DNAT) rules. Re-association of a floating IP address is accomplished by
removing the rule from the iptables SNAT/DNAT rules list and re-associating on another instance, in
this way the instance IPs remain static, only the NAT rules change.

Neutron routers act as gateways for each tenant instance using the Neutron L3 agent, instead of
manipulating the iptables on the hypervisor. The iptable in the router handles the NAT translations,
by instantiation of connections to Virtualized Network Interface Control (VNIC) devices connected to its
ports. The floating IP addresses are procured from the provider network through pre-determined tables or
using the Neutron DHCP agent. Containers1 or VE can be instantiated without worrying about using
redundant IP addresses on the same networks nor requiring the user to reset or manually load tables as part
of a start up script. Access to the node within a container is only granted by using the network ID
(namespace) and setting the connection in the routing tables. Attempts to access without proper credentials
can be tagged and monitored easily in this configuration. This method limits the floating IP addresses to
that of the WAN address space. The MAC addresses of the tenant NICs can have fixed IP addresses in the
NAT tables as well as be associated with defined security group IDs. The Neutron L3 agent should be
present on both the network and controller node. Once a container is established only the compute node

1Also referred to as Virtual Environments (VEs) in the other project report titled, “Review of Enabling Technologies to Facilitate
Secure Compute Customization.”

11

within the container have unfettered access to each other and controlled access to the external network.
Nova nodes are simply added to the table in the router as created, no other management action is necessary.
This also applies to VMs that perform other functions including additional routers for separate internal
networks.

The use of routers in Neutron is possible using existing technology, however it is a fairly new
development. Bottlenecks have been observed in the layering necessary to perform the function as it is
currently being built up with existing software blocks rather than implemented as a stand-alone function.
The redundancy factor is higher than normal to achieve otherwise simple NAT pairings. The beta release of
LXD in Ubuntu 14.04 OpenStack and the re-writing of most of the access agents in Neutron is well
underway. Preliminary reports suggest it is possible to have near zero latency network within a LXD-LXC
structured environment. The list of current considerations for implementing virtual routers is given below.

A. When configuring the L3 agent using the agent config file, specifying an external network bridge,
causes Neutron to associate the external NIC directly with the bridge. The attributes for “vlan”
“segmentation ID”, and “provider network” are ignored, Neutron assigns an IP address to its
translation table from the provider network.

B. The gateway can be manually specified using the gatewayexternalnetwork_id attribute,
otherwise Neutron looks for the gateway from the provider network if the attribute
external=true is set otherwise, Neutron will stall if gateway not found.

C. If an external bridge is not set, Neutron uses the external interface into the Open Virtual Switch
(OVS) bridge specified by the provider network from the Neutron Controller. Any subsequent
network traffic is handled through the Open VSwitch flow rules present in the controller. This is the
typical interface for controlling VLANs through OVS.

D. Traffic within a GRE based tenant network is limited to that network only, bridging is now through
the router.

E. The Neutron router will allow directly connected tenant networks to communicate with each other
freely, and the external provider network only if the router rules allow the connection. All tenant
nodes are behind the Neutron router, and no longer have floating IP addresses, therefore there is no
direct connection to them outside the Neutron router or within the DHCP namespace instance.

A test network (Figure 3.1) is proposed as a sandbox test using a Network Node, and Network
Controller Node, and a Nova Compute Node. In the test there is only one Nova Node but more are
possible, the container must be limited to one network Node and one Network Control Node however. All
nodes have both Neutron control Agents and the OVS agent running, the controller node does not require
the OVS agent. The Open vSwitch plugin can be replaced with a proprietary Neutron Switch interface
provided by the physical switch manufacturer. The provider network is modeled using a network node
instance. Connections to the networks are through bridging (br-ext) and using GRE tunnels (br-tun) set in
the OVS router configuration file. Internally the VLAN interfaces are configured using bridging adapters
configured using Neutron as shown in Figure 3.2.

3.9 LXC / LXD

LXD [25] is an extension of the successful LXC [24], which includes the use of Docker [15] support
and similar services in establishing containers. It was envisioned by Open Stack Canonical to have the
virtualization environment where LXC is the client support and LXD is the server. LXD will allow secure
containers set ups for Linux based compute nodes, there is no support for other operating systems. Further

12

the LXD/LXC pairing eliminates the redundant bridge structures that cause intrinsic delays in packet
delivery by replacing the need for additional structures to perform the routing function directly within the
hypervisor.

Figure 3.1. Neutron OVS SDN Router Configuration.

Figure 3.2. VNIC interface configuration.

13

Chapter 4

Key Vendors and their role in SDN

All network traffic between physical servers eventually must be connected through real network
switching appliances. Each of these hardware devices are built to industry connection standards while
providing proprietary hardware, software and capability to make them more desirable on the open market.
In addition to the industry developers working on OpenFlow [43], OpenDaylight [35], and OpenStack [36],
there are many key network vendors embracing these software platforms and tools as an industry standard.
This section is a brief overview of the key players in this field and a discussion of current capabilities and
contributions of each.

4.1 Arista

Arista Networks, employs the EOS (Extensible Operating System), a Linux based platform, that
provides resiliency and programmability across their network products. The purpose of this extension is to
provide uniformity in management, the end user does not define and manage individual network appliances
as much as the entire enterprise system as a whole. Modern networks require agility and scalable
provisioning to handle changes in deployment and recovery from changes or outages. They support
OpenFlow, and DirectFlow. Arista supports the OpenFlow v1.3 API providing the ability to control flows
through a centralized OpenFlow controller. In addition, Arista has developed DirectFlow, an Arista
proprietary technology, which allows controller-less direction of flows using the capabilities within their
EOS platform. Support for OpenFlow is provided through an interface on top of their DirectFlow API.
Arista’s support for OpenFlow on top of DirectFlow can be categorized as a hybrid SDN technology
relying upon functionally independent switching infrastructure that can take configurations from a
centralized controller. In addition to OpenFlow, Arista supports application interface plugins for
OpenStack and was one of the first vendors to support VXLAN. Arista offers centralized management via
zero touch provisioning, and uses Extensible Messaging and Presence Protocol (XMPP) [45] to configure
groups of network devices. Arista supports multi chassis link aggregation (MLAG) making active use of all
links in the network. Network redundancy and making all paths available is important to the modern data
center and relevant to reconfigurable networks [1].

14

4.2 Brocade

Brocade’s entry in SDN is the Brocade VCS (Virtual Control System) Enhancing the existing Linux
based OS with embedded OpenFlow API capability such that the inclusion and addition of specific plugins
to handle OpenFlow SDN are not necessary. Brocade favors a higher level of support for virtualization as a
key feature of its entry. This is accomplished by combining the OpenFlow command control features with
additional support for data plane overlay protocols such as VXLAN. Brocade supports Open Stack. In
addition to selling Ethernet, and Fiber Channel equipment, they also have SDN and NFV products. They
recently purchased the company Vyatta, and now offer a virtualized firewall product, and OpenDaylight
based Vyatta SDN controller [6, 7, 8].

4.3 Cisco

Cisco is undoubtedly the largest player in the networking appliance market. They have embraced SDN
as the path forward with Cisco ONE (Open Networks Environment). Ironically they have the most to lose
from the trend toward SDN as they hold the majority of legacy systems in the marketplace. The SDN
environment commoditizes Cisco’s enterprise strategy, allowing competitor devices to seamlessly share the
network control space. Cisco has SDN support for OpenFlow [12] on their Nexus series, in addition to
their Open Network Environment initiative. Cisco also supports VXLAN. Cisco supports multi chassis link
aggregation (MLAG) which they call Virtual Port Channel (VPC). Cisco is also championing another form
of application driven network configuration called Application Centric Infrastructure (ACI) [11]. ACI
appears to be primarily a Cisco backed initiative. For automation Cisco supports standard command-line
interface (CLI), API mechanisms, and can operate with configuration management tools such as
Puppet [23], or Chef [10].

4.4 Dell

Dell has partnered with BigSwitchNetworks to provide its SDN support. This means Dell will use
BigSwitch’s Switch Light OS. The offering works on newer switches with all features and partial features
on legacy Dell switches. Dell’s network lineup consists of their Force10 acquisition, and the
Power Connect series. Both product lines can work well as bare metal switches using Cumulous
Linux [13], or can interoperate with Vendor specific APIs through a central controller such as the NEC
ProgrammableFlow Networking Suite [31]. Both Power Connect and legacy Force10 lines now support
Cumulus Networks [13]. They also support a Dell backed managed SDN solution [14].

The SDN offering from HP is the most generic on the market. HP’s switch fabric ASICs are the most
flexible in their intrinsic control capabilities and therefore can handle virtually any possible combination of
routing paths possible on their ports. Utilizing a custom version of Linux, HP has most of the common
open source SDM solutions available, and even allows the user to use their own flavor of Linux, such as
RedHat, SuSE, or Ubuntu on the switches if they so desire [20].

4.5 Juniper

Juniper Networks has incorporated the Junos OS as their solution to SDN and virtualization support.
Their approach is to provide a platform that allows the OS to work with all of their products and to add

15

functionality through extensions and applications running on the OS. This means that the OS has been
designed to provide support for these functions rather than the functionality itself. Junos has a modular
approach that allows their range of network appliances to be configured to meet specific needs. Different
models therefore may have specific versions of modules that share similar features with other models but
are written for that device. The underlying OS is common for all [22].

4.6 Mellanox

Mellanox is known for their high speed, low latency InfiniBand appliance. They expanded into
Ethernet networking and have one rack unit on top of rack switches. These are non-blocking and have full
Layer 2, and Layer 3 functions, as well as SDN support [29]. They have introduced aggregating switches
into a fabric using a technology called Virtual Modular switching. This is similar to MLAG and VPC,
except, if you lose one of these switches, you don’t lose half of your bandwidth [28].

4.7 Vendor Conclusion

All of the major vendors are supporting SDN to various degrees. Some are embracing their own
solutions, while others are embracing the open source community and standards, often including industry
standards combined with proprietary capability. Cisco, and Arista are looking at making bare metal
switches and using Cumulus Linux as their operating systems. The advantage to OS and SDN standards is
the ability for network appliance vendors to focus on the ASIC and hardware development. The adoption
of open-source software technologies by switch vendors poses challenges for differentiation in a
competitive marketplace. It would be reasonable to expect that switch vendors will continue to adopt open
source software and open standards while continuing to differentiate by offering more advanced features
through proprietary software and interfaces. For the secure enclaves project, we will focus on the use of
broadly supported SDN capabilities to alleviate reliance on vendor proprietary technologies [16].

A summary of the vendor compliance with the OpenFlow standard is given by Nunes et al. [33], which
is repeated here for easy access in Table 4.1.

Maker Switch Model Version
Hewlett-Packard 8200zl, 6600, 6200zl, 5400zl, and 3500/3500yl v1.0

Brocade NetIron CES 2000 Series v1.0
IBM RackSwitch G8264 v1.0
NEC PF5240 PF5820 v1.0

Pronto 3290 and 3780 v1.0
Juniper Junos MX-Series v1.0
Pica8 P-3290, P-3295, P-3780 and P-3920 v1.2

Table 4.1. Main current available commodity switches by makers (vendors), compliant with the Open-
Flow standard (from Table-II of [33]).

16

Chapter 5

Testbed Description and Evaluation Plan

ORNL has constructed a testbed environment to develop and evaluate the use of HPC and cloud
computing technologies. This testbed, illustrated in Figures 5.1 & 5.2, will be used to prototype SDN/NFV
for resource isolation in an HPC environment. This environment consists of eight Dell C6220 nodes
configured as follows:

• One OpenStack management system
• Three compute systems capable of running bare metal OS images, Virtual Machines, and Linux

containers
• One GPFS storage server
• One Lustre storage server

Two DDN 10K storage systems each with dual storage controllers and over 1/2 petabyte usable capacity.
Arista 7150S network switches connecting compute and storage resources. InfiniBand is used for
connectivity between storage servers and storage controllers.

To expose SDN capabilities to OpenStack, Arista provides plugins and drivers for OpenStack
integration of Layer 2 and Layer 3 functionality. The Layer 2 plugin enables the OpenStack networking
service (Neutron) to communicate with Arista’s CloudVision eXtension (CVX) through an Arista
mechanism driver over the Arista Command API (eAPI) to provision tenant networks. A typical Layer 2
OpenStack integration is shown in Figure 5.3. CVX is a series of open source extensions to Arista switches
that enable them to use the open-standard XMPP protocol to establish a single view of the network via an
industry-standard CLI. eAPI allows applications and scripts to have complete programmatic control over
the switch. Once the API is enabled, commands using Arista’s CLI syntax are accepted. Responses are
machine-readable output and errors serialized in JSON, served over HTTP.

CVX has visibility of the entire network environment and provisions VLANs on switch interfaces so
that the compute instances on the compute nodes have connectivity to the appropriate tenant VLANs. CVX
can run in a VM or on an Arista switch itself. The Arista Layer 3 Service Plugin communicates directly
with the Arista switches, either TOR or Spine, to provision routing functionality. In response to router
create/delete and interface add/remove requests in the OpenStack environment, appropriate SVIs (Switched
Virtual Interfaces) are created on respective switches. In future releases the Layer 3 service plugin will
communicate through CVX. A typical Layer2/3 OpenStack integrated environment is depicted in
Figure 5.4.

This testbed environment will be used to evaluate the ability of the Arista OpenStack integration to
establish high performance network enclaves. Enclaves will be created using both the Layer 2 and Layer 3

17

Figure 5.1. Secure Enclaves Testbed Logical Diagram.

Figure 5.2. Secure Enclaves Testbed Rack Diagram.

capability. This will enable evaluation of the isolation of the tenant networks as well as the performance of
the integrated environment in comparison to the virtualized environment.

18

Figure 5.3. OpenStack L2 Deployment.

Figure 5.4. ML2 and Layer 3 Service Plugin interactions

19

5.1 Verification of Tenant Isolation with Respect to Compute and Storage

During evaluation of various reconfigurable network solutions in a test environment, an agent must be
allowed to interact with a controller to accomplish certain networking configuration tasks. This includes
creating new networks, releasing resources, and making changes to existing network resources. In the case
of secure enclaves, a typical task list includes provisioning a new VLAN, attaching resources (compute
nodes) and then creating a Layer 3 path from the new VLAN to other external services. Each of these tasks
must then be verified to ensure that the networking and host resources are properly configured for the
enclave rule set, including Layer 2 path verifications, access control lists verifications, and overlay
verifications. Once a VLAN is created, it must be unique to the tenant, allowing connectivity only on the
compute resources where the tenant has access. As and example, with VM based compute resources the
configuration of the hypervisor must be verified to make sure that the VLAN access is allocated only to the
VMs assigned to the tenant. In addition to providing isolated connectivity to compute nodes within the
enclave, the tenant will need to be able to access the necessary storage resources. In a secure enclave
architecture, this will require that the storage servers are accessible either via a Layer 2 path by using a
VLAN specific to the storage servers or via a Layer 3 path between the compute nodes and the storage
servers. In a Layer 2 scenario, each compute node resource within the enclave will need to be attached to a
dynamically generated storage VLAN specific to the the tenant. Each storage server must then be attached
to this VLAN as well. Alternatively, a Layer 3 path routing traffic between the compute node and storage
server resources could be employed. In either case, then releasing resources (tear down of an enclave), the
network, compute, and storage resources must be verified to ensure that all contiguous resources have been
released and that the network configuration has been removed. Similarly, when changing existing
configurations, a repeat of the test methodology when creating and releasing resources should be utilized.

Once connectivity within the compute node enclave and the storage servers are established and verified,
isolation of the enclave must also be verified. A test of isolation includes an attempt to reach other known
tenant enclaves. If overlays are used, all virtual endpoints will need to be verified. Network evaluation
tools such as NMAP will be utilized from within an enclave to assess isolation to and from other enclaves.

Once isolation of the enclave is verified, security of the network management services must be
assessed. This test will attempt to reach network management resources outside of the network
management services API. This test includes using alternate interfaces such as Telnet, HTTP, HTTPS,
SNMP, SSH, and attacks against well known API port vulnerabilities. An important test is to request
resources that are known to be in use by other tenants. For each of these verification tasks, there will be
repeat attempts to verify results and collect useful statistics.

5.2 Performance

Once tenant functionality and isolation has been assessed, performance and scalability of network
reconfiguration will be explored. Initially performance measurements will focus on the time that it takes to
create networks of various sizes. The measurement will begin when the agent makes the request, and will
end once the controller has sent confirmation back to the requesting agent. Additionally any information
that the agent requires to utilize the requested resources will be included in the survey. This test will be
repeated with various types and sizes of network resources requested.

A similar test will be done for access control list requirements such as allowing certain networks, or all
networks, into specific hosts on specific ports. These tests will aim to assess the performance of allocating
network resources at different scales.

20

Scalability of network reconfiguration as a function of concurrent agents interacting with the controller,
will also be tested. In this scenario multiple tenants will make simultaneous requests for networking
resources, making both changes to and releasing those resources. The main metric is the time that it takes
for the controller to respond to individual requests as a function of concurrent agents making these requests.

Network reconfiguration will then be tested under sustained load. In this scenario the data plane will be
saturated with known test traffic and will then be verified that provisioning and configuration continues to
function as expected under sustained load. This is a direct evaluation of the robustness of the controller
under high load, high traffic, and high latency conditions [4].

It is important to test the functionality, and performance of your infrastructure in reconfigurable
network environment. Gathering these metrics will help evaluate various solutions. In following sections,
we will cover hardening the system, monitoring, scalability, reliability, monitoring and
troubleshooting [37, 41, 42].

5.3 Security

SDN systems are not immune to security attacks. There are numerous acknowledged SDN attack
vectors. Most of the security vulnerabilities employ exploits within both the OS implementation and the
SDN API. The exploits effect the control plane, data plane, hypervisor and storage management
interfaces.The use of ACL and namespace control as authentication methods for mitigating these exploits
falls under the best use practice control model. As the system is virtualized, snapshots of known secure
systems against what is perceived to be deployed can mitigate against unauthorized changes and
configurations. Deep packet analysis techniques remain the only method for identifying packets that carry
additional data used to attack and control the SDN switch network.

A particular vulnerability in SDN is the assumption that Northbound traffic to the control plane has
been previously vetted by another controller on the network before reaching the data plane and therefore is
readily accepted. Research is currently ongoing that involves the tagging of data packets within SDN as
part of the port control process. This method acts as a port by port firewall authenticating all packets that
pass through a port. This method is effective in that it has a much lower latency than deep packet sniffing or
NIDS (Network Intrusion Detection System) specific appliances or software. Neutron Routers using OVS
can use names space based authenticated security by blocking any and all packet frames that do not match
preconfigured IP addresses on VLANs between VMs within a container, this is accomplished by using the
name space token and checking it against a localized static IP list. All external or WAN traffic must pass
through the Neutron Node before being passed to the OVS component on the Nova Node and therefore is
not only passed through a firewall, but has a secondary authentication as to its providence. The Neutron
router node using OVS has the advantage of only allowing access to the connected nodes within the specific
list, or sharing the VE. Modification to the access list is only possible through the use of the Keystone or
similar authentication key server and the VMs at configuration start up time. This is accomplished through
the use of the Neutron Firewall API plug in or through internal configuration files within the VM enclave.

5.3.1 Application Programming Interface

The network reconfiguration API represents a well-defined attack vector that must be protected.
Changes or upgrades to the API including those for plugins used on vendor devices should be authenticated
through a trusted source and checked against a current accepted version list and checksum. Further
authentication can be made through the use of access control lists, allowing only authenticated and

21

authorized agents to interact with the API. Without the introduction of additional layers of security, the
API’s authentication, authorization, and accounting mechanisms will have to be trusted and as such should
be validated. All traffic between the agents and the API should be encrypted to protect credentials, and any
data about the tenant or the tenant configurations. Additionally, the API is an obvious denial of service
attack vector, limiting the number of concurrent connections or connections per agent may prevent this
attack vector but could limit the scalability of the service.

5.3.2 Control plane

The next security consideration is the control plane. All network appliances should use MD5 for OSPF,
BGP, and other routing protocols. This will help prevent rogue elements from taking over, or corrupting
your routing table. Additionally the network appliances configured by the central controller(s) should have
access control lists allowing only the controllers IPs as sources, and use strong encrypted passwords. A
separate subnet from tenant traffic should be used only for routing control and connect the OVS component
of the VE with the Neutron control node. Tenant dynamic use policies for routing within their private
domain. The attached OVS plug in should be used in conjunction with the Neutron controller to control
traffic to any external network with firewall and packet authentication active. Pre-configured route maps,
and other precautions such as separate OSPF keys using MD5 may need to be enforced. This will help
prevent an unauthorized controller from configuring network elements. Traffic to the network management
should use encryption for all access. The network management subnet should only contain network
devices, and not be accessible by tenant networks, or outside networks.

5.3.3 Data Plane

Each tenant should be in their own broadcast domain, and should block broadcast, or unicast traffic
including that which originates from other tenants. All tenants still pass through the same data plane, so if
there is a potential for Denial of Service vector in protocols such as Multichassis Link Aggregation
(MLAG), or Virtual Port Channel (VPC). Hash bugs in protocols such as Link Aggregation Control
Protocol (LACP) could exist where traffic will not load balance correctly causing congestion. The best
practices for these risks are using up to date code releases and standardizing the code used across the
system. Anomaly detection methods such as monitoring graphs automated system trend/alert to identify
drastic traffic pattern shifts are also effective.

5.3.4 Hypervisor management

Hypervisor management should only have hypervisors in their subnet. This network should be
protected by access control lists, and not be accessible by tenants, or the outside world. This network
should only include trusted management hosts, and controller/provisioning systems. All accounts on these
systems should use remote authentication, and have strong passwords as a fall back mechanism. All traffic
to these systems should use encryption methods.

5.3.5 Storage Management

Storage management should only have storage devices in their subnet. This network should be
protected by access control lists, and not be accessible by tenants, or the outside world. This network
should only include trusted management hosts, and controller/provisioning systems. All accounts on these

22

systems should use remote authentication, and have strong passwords as a fall back mechanism. All traffic
to these systems should use encryption methods.

5.3.6 Security Summary

SDN attack vectors similar in nature to those found in standard wired and wireless protocol networks.
Each system and application changes the operating dynamic and therefore both the potential and type of
attack that is possible. Even considering the multiple possible exploits, only the ones that are based on
specific bugs are the ones that are most difficulty to detect. The majority of exploits are based on
performance hits due to DOS, type jamming or blocking of traffic. All of these base exploits are designed
to cause both frustration and the causal dropping of security systems in an effort to find the cause system
disruption. Methodical analysis and authentication practices should be maintained to ensure that these
exploits have little to no effect on the system [19, 40].

5.4 Scalability

There are interesting statements concerning scalability and SDN as noted in the following: The first
SDN controller can serve only 30,000 flow initiation requests per second while keeping the response time
less than 10ms. It is challenge to serve more flows while keeping the response time within a reasonable
small duration.

Thus, understanding and quantifying the scalability of the SDN controller is a critical problem for
successful adoption of SDN for large scale networks or networks with many flows. The SDN Control plane
is limited in its ability to handle extremely wide data plane domains. As the data plane size increases the
reaction time of the control plane exhibits equivalent latency. The scalability of the control plane is
therefore dependent on its processing capability [21].

High speed and enterprise backbone switches, such as those from Mellanox, allow custom switch
fabric deployment using VMS (Virtual Modular Switch), and 40 Gb/s connections to scale up to 720 ports
using only two tiers. Similar networks can be realized by using Arista (MLAG), or Cisco (VPC). In the
case of such large build outs a single controller does not have the processing power to handle the entire
high speed traffic switching . Scaling this type of system requires the networking elements to have some
level of autonomy and still functional independent of the central controller. This is consistent with the
movement towards Hybrid-SDN architectures, which applies directly to virtualization and enclaves in HPC
environments [38].

There are two accepted approaches to scaling SDN to large data center deployments. One is to build
separate SDN instances, and let L3 traffic traverse one instance to another as needed. The majority of the
traffic in each instance would be to an externally connected network or WAN, making the migration from
one SDN data center instance to another difficult. The other method of scaling data centers, is to have a
load balancing mechanism where tenants exist in different data centers. This method can prove problematic
if there were performance requirements (latency or bandwidth) between tenants as latency and bandwidth
constraints will be far more pronounced for inter data-center workloads [21].

5.5 Reliability and Availability

Under normal conditions SDN is reliable as long as there are no heavy performance demands. Losing
the central controller will cause a total loss to all network functionality [3]. Note, Ulema [44] reviews

23

challenges of reliability and availability concerning the various types of reconfigurable networks.
A hybrid SDN allows switches and routers to continue functioning even if the central controller fails.

Hybridization allows the controller to handle many more connections through delegation of the lower level
intra-tenant traffic switching. When a controller fails in a hybrid SDN environment, you lose the ability to
make changes in an easy/automated way [2].

24

Chapter 6

Conclusion

Supporting multi-tenant environments within HPC systems holds the promise of supporting a diverse
set of workloads at significantly higher levels of performance and scalability than a traditional utility
compute cloud environment. Traditional cloud computing environments address the security challenge of
multi-tenancy through judicious use of full machine virtualization, network virtualization, and per-tenant
storage. This approach sacrifices performance, scalability, and usability in favor of secure multi-tenancy.
Our work is focused on providing multi-tenant environments, ’secure enclaves’, at very low overhead
through the use of alternative techniques to traditional cloud environments.

In this report we review the state-of-the-art in SDN and NFV as one technique for providing isolation
of enclave resources at very low overhead when compared to full network virtualization. Through the use
of hybrid-SDN architectures secure enclaves can be configured on demand by isolating compute and
storage resources using layer 2 and layer 3 based approaches. This hybrid-SDN approach allows for the use
of high-performance switching technologies that can be configured to isolate resources without the
overhead of software based network virtualization. While the promise of hybrid-SDN architecture holds
promise, it is not without Manageability, security, and scalability challenges. Orchestration frameworks
such as OpenStack help address Manageability but additional work is required to access the security of
these systems and their ability to scale to support highly concurrent enclave configuration.

6.1 Synopsis

A brief background of SDN and NFV is discussed in Section 2. This is followed by an overview of
relevant terminology and background concepts in Section 2.2. This includes discussion of state-of-the-art
technologies and emerging standards such as OpenFlow and OpenDayLight.

Section 3 provides an overview of methods of implementing reconfigurable networks with specific
focus on utilizing reconfiguration as a mechanism to support secure enclaves. This overview of methods
includes traditional SDN, Hybrid SDN, and the use of OpenStack Neutron. A more detailed treatment of
Neutron based approaches is provided in Section 3.8

SDN and NFV vendor technologies are reviewed in Section 4, including Arista, Brocade, Cisco, Dell,
Juniper, and Mellanox. Each of these vendors are supporting SDN and NFV to various degrees either by
adoption of open source community technologies or through a combination of proprietary technologies and
open APIs. A summary of vendor compliance to the OpenFlow standard is presented in Section 4.7.

Section 5 describes the ORNL secure enclaves testbed environment and provides an overview of our
evaluation plan for this testbed as it relates to SDN and NFV. The evaluation plan includes:

25

• Verification of isolation of compute and storage resources within an instantiated enclave
• Performance benchmarking of network reconfiguration to assess how long instantiating an enclave

will take within the testbed and how performance is impacted by concurrent requests
• Assessment of the security of the API and network control plane for network reconfiguration in the

testbed
• Assessment of security of the data plane within the testbed
• Assessment of security of both hypervisor and storage management within the testbed

Finally, an overview of suggested best practices for architecting for scalability, reliability, and availability
is provided in Sections 5.4 and 5.5 .

In Section 6.2 an overview of notable issues and limitations for SDN/NFV is discussed. Although SDN
and NVF are becoming the operational standards of large compute resource deployments, the
implementation of these standards is still being refined [33]. Our goal in this assessment is to identify
secure practices and verify there is proper control over security and management of networking resources
within the defined environment. As the available vendor APIs and technologies mature toward a more
workable standard, these methods and deployment rules will act as a framework for evaluation and
verification of secure networking in the enclave environment.

6.2 Observations

There are several limitations and issues with current networking technologies ranging from vendor
dependence, technology complexity & management overheads and scalability.

Monolithic Vendor Dependence The first notable limitation is the monolithic vendor dependence.
Large-scale data centers require routers and switches to meet the needs of the core network. The number of
vendors providing these large-scale solutions is small and each have developed proprietary SDN
technologies alongside open standards such as OpenFlow. The adoption of proprietary SDN interfaces to
orchestrate these large-scale resources may result in vendor lock-in. Given this, insulating applications
from these proprietary SDN interfaces should be a top priority either by only exposing open standards
based APIs or through the development of middleware that insulates the application from the underlying
proprietary API. In the context of secure enclaves we will focus on the use open standards based APIs or
the use of middleware such as OpenStack Neutron that will then interface with vendor proprietary APIs
through Neutron plugins.

Complexity A dynamic reconfigurable network environment will let users, or tenants, request resources
to include compute, storage, and networking. This functionality is made possible through standards based
APIs that can control the configuration of individual networking components. While an API simplifies the
mechanism by which network configuration takes place, the complexity of configuring many individual
components to satisfy what might appear to be a simple tenant requirement remains. By using standard
templates for common requirements that can be layered upon one another we can manage this complexity
while simultaneously ensuring that network security policies can be verified and enforced. Using a template
based approach, common low-risk configurations can be configured on-demand by the tenant, while other
templates might require approval through a formal change request process. For example one tenant wishing
to communicate with another tenant would require both tenants to agree and potentially be approved by a
third-party. Once the request is reviewed, the tenant could be authorized to use the specified template.

26

Scaling Issues Vendors have their own method of managing a large number of devices and different ways
of building large non-blocking fabrics. These design paradigms may include:

• Leaf and spine, to host.

• Leaf and spine to top of rack.

• Standard core, distribution, access models.

Each of these designs scale differently and optimal placement of a workload in these fabrics is
dependent on a variety of factors [18]. Supporting multiple tenants within these environments while
providing optimal data plan performance and scalability to meet tenant requirements will require a
thorough understanding of the overall architecture and how compute and storage resources are
interconnected within the networking architecture. For the secure enclaves project we will make the
simplifying assumption that tenants (enclaves) will be placed on compute resources that are interconnected
in a fully non-blocking network. Orchestrating optimal placement of enclaves within alternate networking
architectures based on performance and scale requirements, while an interesting challenge, will not be
addressed by our initial work [18, 39].

Another important aspect of scalability is the number of concurrent isolated enclaves that can be
supported within a single network fabric. One mechanism of implementing isolation of enclaves is to map
enclaves to one or more distinct VLANs. Under IEEE 802.1Q the maximum number of VLANs is limited
to 4,094 (due to a 12-bit VID field minus reserved values 0x000 and 0xFFF). Using this technique would
limit the number of supported enclaves within a single fabric to 4,094. Latest generation switching
technologies that provide support for VxLAN scale to supporting up to 16 million logical networks. This is
accomplished by encapsulating layer 2 Ethernet frames within layer 4 UDP packets. Many switch vendors
and Open vSwitch are now offering VxLAN support [32, 26, 9].

6.3 Future Plans

We conclude with a brief overview of plans moving forward. The current testbed is now being
configured to support hybrid-SDN based isolation techniques and will provide a platform on which we can
complete our evaluation plan. Virtual network based approaches to resource isolation will be evaluated
using Open vSwitch and Neutron plugin applications as discussed in Section 3.8. With the exception of the
external physical router all of the virtualization based isolation can be tested in this manner. We will then
compare the performance and security of these approaches and provide more detailed recommendations
based on our assessment.

6.4 Acknowledgments

This work was supported by the United States Department of Defense (DoD) and used resources of the
DoD-HPC Program and the Compute and Data Environment for Science (CADES) at Oak Ridge National
Laboratory.

27

Bibliography

[1] Software driven cloud networking, 2014. Arista Inc. URL:
http://www.arista.com/en/products/software-driven-cloud-networking/articletabs/0

[cited 20-dec-2014].

[2] Charlie Ashton. Demystifying software-defined networking, 2014. Allied Telesis. URL:
http://www.alliedtelesis.com/userfiles/file/WP_Demystifying_SDN_RevA.pdf [cited
20-dec-2014].

[3] Charlie Ashton. Don’t confuse ‘high availability’ with ‘carrier grade’, April 2014. SDN Central.
URL: https://www.sdncentral.com/education/
dont-confuse-high-availability-carrier-grade/2014/04/ [cited 20-dec-2014].

[4] S. Azodolmolky, P. Wieder, and R. Yahyapour. Scalable Software-Defined Networking Deployment.
In Second European Workshop on Software Defined Networks (EWSDN), pages 68–74, Berlin,
October 2013. IEEE. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=
true&tp=&arnumber=6680561&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6679578%

2F6680541%2F06680561.pdf%3Farnumber%3D6680561 [cited 20-dec-2014].

[5] Siamak Azodolmolky. Software Defined Networking with OpenFlow, volume 1. Packt Publishing
Ltd, first edition, October 2013. URL: https:
//www.packtpub.com/networking-and-servers/software-defined-networking-openflow

[cited 20-dec-2014].

[6] Brocade Vyatta controller, 2014. Brocade Inc. URL: http://www.brocade.com/products/all/
software-defined-networking/brocade-vyatta-controller/index.page [cited 20-dec-2014].

[7] Network Functions Virtualization (NFV), 2014. Brocade Inc. URL:
http://www.brocade.com/products/all/network-functions-virtualization/index.page

[cited 20-dec-2014].

[8] OpenStack overview, 2014. Brocade Inc. URL:
http://www.brocade.com/solutions-technology/technology/openstack/index.page [cited
20-dec-2014].

[9] Jefferey Butt. Cisco CTO warrior software-only SDN has ‘limitations’. eWeek Online Magazine,
June 2013. URL: http://www.eweek.com/networking/
cisco-cto-warrior-software-only-sdn-has-limitations.html [cited 20-dec-2014].

[10] Chef: Automation for Web-Scale IT. URL: https://www.chef.io/ [cited 21-dec-2014].

28

http://www.arista.com/en/products/software-driven-cloud-networking/articletabs/0
http://www.alliedtelesis.com/userfiles/file/WP_Demystifying_SDN_RevA.pdf
https://www.sdncentral.com/education/dont-confuse-high-availability-carrier-grade/2014/04/
https://www.sdncentral.com/education/dont-confuse-high-availability-carrier-grade/2014/04/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6680561&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6679578%2F6680541%2F06680561.pdf%3Farnumber%3D6680561
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6680561&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6679578%2F6680541%2F06680561.pdf%3Farnumber%3D6680561
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6680561&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F6679578%2F6680541%2F06680561.pdf%3Farnumber%3D6680561
https://www.packtpub.com/networking-and-servers/software-defined-networking-openflow
https://www.packtpub.com/networking-and-servers/software-defined-networking-openflow
http://www.brocade.com/products/all/software-defined-networking/brocade-vyatta-controller/index.page
http://www.brocade.com/products/all/software-defined-networking/brocade-vyatta-controller/index.page
http://www.brocade.com/products/all/network-functions-virtualization/index.page
http://www.brocade.com/solutions-technology/technology/openstack/index.page
http://www.eweek.com/networking/cisco-cto-warrior-software-only-sdn-has-limitations.html
http://www.eweek.com/networking/cisco-cto-warrior-software-only-sdn-has-limitations.html
https://www.chef.io/

[11] Cisco application centric infrastructure, 2014. Cisco Inc. URL: http://www.cisco.com/c/en/us/
solutions/data-center-virtualization/application-centric-infrastructure/index.html

[cited 20-dec-2014].

[12] Cisco plug-in for OpenFlow, 2014. Cisco Inc. URL: http://www.cisco.com/c/en/us/td/docs/
switches/datacenter/sdn/configuration/openflow-agent-nxos/cg-nxos-openflow.pdf

[cited 20-dec-2014].

[13] Cumulus Linux hardware compatibility list, 2014. Cumulus Networks. URL:
http://cumulusnetworks.com/support/linux-hardware-compatibility-list/ [cited
20-dec-2014].

[14] Dell and the software defined network, 2014. Dell Inc. URL: http://en.community.dell.com/
techcenter/networking/w/wiki/4904.dell-and-the-software-defined-network [cited
20-dec-2014].

[15] Docker: An open platform for distributed applications for developers and sysadmins. URL:
https://www.docker.com [cited 05-dec-2014].

[16] Jim Duffy. Cisco, Arista disaggregating? Network World Online Magazine, 2014. URL: http://
www.networkworld.com/article/2844941/cisco-subnet/cisco-arista-disaggregating.html

[cited 20-dec-2014].

[17] Open Networking Foundation. Software-defined networking: The new norm for networks, April
2012. URL: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
white-papers/wp-sdn-newnorm.pdf [cited 20-dec-2014].

[18] Dan Froelich. PCI express 4.0 electrical previews parts i & ii, 2014. PCI SIG. URL:
https://www.pcisig.com/developers/main/training_materials/get_document?doc_id=

b5e2d4196218ec017ae03a8a596be9809fcd00b5 [cited 20-dec-2014].

[19] Scott Hogg. SDN security attack vectors and SDN hardening, 2014. NetworkWorld Online
Magazine. URL: http://www.networkworld.com/article/2840273/sdn/
sdn-security-attack-vectors-and-sdn-hardening.html [cited 20-dec-2014].

[20] SDN infrastructure technology, 2014. HP Inc. URL: http://goo.gl/XLErKS [cited 20-dec-2014].

[21] Jie Hu, Chuang Lin, Xiangyang Li, and Jiwei Huang. Scalability of control planes for software
defined networks: Modeling and evaluation. In Proceedings of the IEEE/ACM International
Symposium on Quality and Service (IWQoS’14). IEEE, 2014. URL:
http://www.cs.iit.edu/~xli/paper/Conf/scale-SDN-IWQOS14.pdf [cited 20-dec-2014].

[22] Software Defined Networking, 2014. Juniper Inc. URL:
http://www.juniper.net/us/en/products-services/sdn/index.page [cited 20-dec-2014].

[23] Puppet Labs. Puppet Documentation Index. URL: https://docs.puppetlabs.com/puppet/ [cited
02-dec-2014].

[24] LXC - Linux Containers: Userspace tools for the Linux kernel containment features. URL:
https://linuxcontainers.org [cited 19-nov-2014].

29

http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/index.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/openflow-agent-nxos/cg-nxos-openflow.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/openflow-agent-nxos/cg-nxos-openflow.pdf
http://cumulusnetworks.com/support/linux-hardware-compatibility-list/
http://en.community.dell.com/techcenter/networking/w/wiki/4904.dell-and-the-software-defined-network
http://en.community.dell.com/techcenter/networking/w/wiki/4904.dell-and-the-software-defined-network
https://www.docker.com
http://www.networkworld.com/article/2844941/cisco-subnet/cisco-arista-disaggregating.html
http://www.networkworld.com/article/2844941/cisco-subnet/cisco-arista-disaggregating.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.pcisig.com/developers/main/training_materials/get_document?doc_id=b5e2d4196218ec017ae03a8a596be9809fcd00b5
https://www.pcisig.com/developers/main/training_materials/get_document?doc_id=b5e2d4196218ec017ae03a8a596be9809fcd00b5
http://www.networkworld.com/article/2840273/sdn/sdn-security-attack-vectors-and-sdn-hardening.html
http://www.networkworld.com/article/2840273/sdn/sdn-security-attack-vectors-and-sdn-hardening.html
http://goo.gl/XLErKS
http://www.cs.iit.edu/~xli/paper/Conf/scale-SDN-IWQOS14.pdf
http://www.juniper.net/us/en/products-services/sdn/index.page
https://docs.puppetlabs.com/puppet/
https://linuxcontainers.org

[25] LXD: The Linux Container Daemon. URL: http://www.ubuntu.com/cloud/tools/lxd [cited
30-nov-2014].

[26] Bob Lynch. OpenFlow: Can it scale? SDN Central, June 2013. URL:
https://www.sdncentral.com/technology/OpenFlow-sdn/2013/06/ [cited 20-dec-2014].

[27] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in campus networks. Technical
report, March 2008. Stanford University, University of Washington, MIT, Princeton University,
University of California Berkeley, Washington University in St. Louis. URL:
http://archive.openflow.org/documents/openflow-wp-latest.pdf [cited 20-dec-2014].

[28] Mellanox OpenStack and SDN/OpenFlow Solution Reference Architecture, 2014. Mellanox Inc.
URL: http://www.mellanox.com/sdn/pdf/Mellanox-OpenStack-OpenFlow-Solution.pdf [cited
20-dec-2014].

[29] Mellanox’s software defined networking (SDN), 2014. Mellanox Inc. URL:
http://www.mellanox.com/sdn/ [cited 20-dec-2014].

[30] Thomas D. Nadeau and Ken Gray. SDN: Software Defined Networks. O’Reilly Media, first edition,
September 2013.

[31] ProgrammableFlow networking, 2014. NEC Inc. URL: http://www.necam.com/SDN/ [cited
20-dec-2014].

[32] The scaling implications of SDN, June 2011. NetworkHeresey.com. URL:
http://networkheresy.com/2011/06/08/the-scaling-implications-of-sdn/ [cited
20-dec-2014].

[33] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti.
A survey of software-defined networking: Past, present, and future of programmable networks. IEEE
Communications Surveys & Tutorials, 16(3):1617–1634, Third 2014.
doi:10.1109/SURV.2014.012214.00180.

[34] FAQ: What is OpenDaylight?, 2014. OpenDaylight.org. URL:
http://www.opendaylight.org/project/faq#1 [cited 20-dec-2014].

[35] OpenDaylight technical overview, 2014. OpenDaylight.org. URL:
http://www.opendaylight.org/project/technical-overview [cited 20-dec-2014].

[36] OpenStack: Online Documentation. URL: http://docs.openstack.org [cited 21-dec-2014].

[37] OpenStack: SDN Performance, 2014. URL:
https://www.OpenStack.org/summit/OpenStack-summit-atlanta-2014/session-videos/

presentation/software-defined-networking-performance-and-architecture-evaluation

[cited 20-dec-2014].

[38] Ivan Pepelnjak. OpenFlow SDN is not a silver bullet for network scalability, 2014. High Scalability
Online Magazine. URL: http://highscalability.com/blog/2012/6/4/
OpenFlowsdn-is-not-a-silver-bullet-for-network-scalability.html [cited 20-dec-2014].

30

http://www.ubuntu.com/cloud/tools/lxd
https://www.sdncentral.com/technology/OpenFlow-sdn/2013/06/
http://archive.openflow.org/documents/openflow-wp-latest.pdf
http://www.mellanox.com/sdn/pdf/Mellanox-OpenStack-OpenFlow-Solution.pdf
http://www.mellanox.com/sdn/
http://www.necam.com/SDN/
http://networkheresy.com/2011/06/08/the-scaling-implications-of-sdn/
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://www.opendaylight.org/project/faq#1
http://www.opendaylight.org/project/technical-overview
http://docs.openstack.org
https://www.OpenStack.org/summit/OpenStack-summit-atlanta-2014/session-videos/presentation/software-defined-networking-performance-and-architecture-evaluation
https://www.OpenStack.org/summit/OpenStack-summit-atlanta-2014/session-videos/presentation/software-defined-networking-performance-and-architecture-evaluation
http://highscalability.com/blog/2012/6/4/OpenFlowsdn-is-not-a-silver-bullet-for-network-scalability.html
http://highscalability.com/blog/2012/6/4/OpenFlowsdn-is-not-a-silver-bullet-for-network-scalability.html

[39] Arjun Roy, Kenneth Yocum, and Alex C. Snoeren. Challenges in the emulation of large scale
software defined networks. University of California, San Diego, 2013. URL:
http://cseweb.ucsd.edu/~snoeren/papers/forgery-apsys13.pdf [cited 20-dec-2014].

[40] SDN security challenges in SDN environments, 2014. URL:
https://www.sdncentral.com/security-challenges-sdn-software-defined-networks/ [cited
20-dec-2014].

[41] Performance aware software defined networking, 2013. Sflow.com. URL:
http://blog.sflow.com/2013/01/performance-aware-software-defined.html [cited
20-dec-2014].

[42] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sherwood. On
controller performance in software-defined networks. In Proceedings of the 2nd USENIX Workshop
on Hot Topics in Management of Internet, Clound and Enterprise Networks and Services
(Hot-ICE’12), April 2012. University of Toronto/ICSI, University of Toronto, Nicira Networks, Big
Switch Network. URL: https:
//www.usenix.org/conference/hot-ice12/workshop-program/presentation/tootoonchian

[cited 20-dec-2014].

[43] Vivek Twari. SDN and OpenFlow for beginners with hands on labs. First edition. URL:
http://www.amazon.com/SDN-OpenFlow-beginners-hands-labs-ebook/dp/B00EZE46D4/ref=

sr_1_1?ie=UTF8&qid=1410613111&sr=8-1&keywords=SDN [cited 20-dec-2014].

[44] Mehmet Ulema. Vulnerabilities and opportunities in SDN, NFV, and NGSON, 2014. IEEE CQR
2014 International Workshop Emerging Technology Reliability Roundtable. URL:
http://www.ieee-cqr.org/2014/ETR-RT/Ulema_IEEE-ETR-RT-2014_Vulnerabilities%20in%

20SDN%20NFV%20NGSON_12May2014.pdf [cited 20-dec-2014].

[45] RFC-3920: Extensible Messaging and Presence Protocol (XMPP): Core, October 2004. IETF
Network Working Gropu, P. Saint-Andre, Ed. URL: http://www.ietf.org/rfc/rfc3920.txt
[cited 21-dec-2014].

[46] S.H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-defined networking. IEEE
Communications Magazine, 51(2):136–141, February 2013.
doi:10.1109/MCOM.2013.6461198.

31

http://cseweb.ucsd.edu/~snoeren/papers/forgery-apsys13.pdf
https://www.sdncentral.com/security-challenges-sdn-software-defined-networks/
http://blog.sflow.com/2013/01/performance-aware-software-defined.html
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/tootoonchian
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/tootoonchian
http://www.amazon.com/SDN-OpenFlow-beginners-hands-labs-ebook/dp/B00EZE46D4/ref=sr_1_1?ie=UTF8&qid=1410613111&sr=8-1&keywords=SDN
http://www.amazon.com/SDN-OpenFlow-beginners-hands-labs-ebook/dp/B00EZE46D4/ref=sr_1_1?ie=UTF8&qid=1410613111&sr=8-1&keywords=SDN
http://www.ieee-cqr.org/2014/ETR-RT/Ulema_IEEE-ETR-RT-2014_Vulnerabilities%20in%20SDN%20NFV%20NGSON_12May2014.pdf
http://www.ieee-cqr.org/2014/ETR-RT/Ulema_IEEE-ETR-RT-2014_Vulnerabilities%20in%20SDN%20NFV%20NGSON_12May2014.pdf
http://www.ietf.org/rfc/rfc3920.txt
http://dx.doi.org/10.1109/MCOM.2013.6461198

	Front Matter
	Cover Page
	Document Availability
	Title Page

	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Executive Summary
	Introduction
	Report Outline

	Background
	SDN and Network Function Virtualization
	Terminology

	Methods of Implementing Reconfigurable Networks
	Typical Networking Environment
	Static Networks Involving VRF and Preconfigured VLANS
	API
	Traditional SDN
	Hybrid SDN
	Overlay Network
	OpenStack
	Implementing Neutron Routers
	LXC / LXD

	Key Vendors and their role in SDN
	Arista
	Brocade
	Cisco
	Dell
	Juniper
	Mellanox
	Vendor Conclusion

	Testbed Description and Evaluation Plan
	Verification of Tenant Isolation with Respect to Compute and Storage
	Performance
	Security
	Application Programming Interface
	Control plane
	Data Plane
	Hypervisor management
	Storage Management
	Security Summary

	Scalability
	Reliability and Availability

	Conclusion
	Synopsis
	Observations
	Future Plans
	Acknowledgments

	Bibliography

