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ABSTRACT

We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse
grids points and functions that are induced from a one dimensional hierarchical rule via tensor
products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from
the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides
a more complex structure that allows for various anisotropic and hierarchy selective refinement
techniques. We consider the more advanced refinement techniques and apply them to a number
of simple test functions chosen to demonstrate the various advantages and disadvantages of each
method. While there is no refinement scheme that is optimal for all functions, the fully adaptive
family-direction-selective technique is usually more stable and requires fewer samples.
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1 Introduction

Many real world phenomena are modeled as a set of deterministic algebraic and differential equa-
tions, where the solution and the outputs of interest depends on a set of operational parameters.
For example, the power output of a combustion engine is a function of the concentration of vari-
ous chemical species in the cylinder, spark timing, intake and exhaust pressure etc [6]. However,
in practice, exact values of the input parameters are seldom available as they may be difficult to
measure or they may vary depending on external factors (e.g. external temperature). Therefore, in
order to accurately predict the behavior of a physical system, we must consider the full range of
possible input parameters.

A common approach is to make every uncertain parameter into an extra dimension of the asso-
ciated equations and then solve the higher dimensional model. For example, if the physical process
is modeled by a partial differential equation (PDE) and the uncertain inputs are parametrization of
a noise field via a Karhunen-Lovéle expansion [17], then the PDE can be discretized in both real
and stochastic domain using a finite element scheme [2, 3, 5, 10, 15]. This technique is commonly
known as stochastic Galerkin method (SGM) and it can accurately approximate the solution to
the PDE over the full range of the uncertainty parameters. However, the intrusive nature of this
approach requires solving a fully coupled system of equations over both stochastic and real spaces,
which significantly increases the computational cost. In addition, the numerical code associated
with the the intrusive methods is significantly more complex, and while robust intrusive tools for
some types of PDEs exist (e.g. via template programming), such tools are not available for general
multi-physics problems (e.g. non-linear coupled PDEs). Furthermore, in many situations, restric-
tions on code licensing or the need to rely on legacy code, forces scientists and engineers to work
only with deterministic solvers, i.e. a software that can only treats the inputs as fixed values.

Sampling methods are an alternative to the intrusive approach. A number of realization of the
deterministic problem are computed for a set of values of the input parameters. From that set of
samples, the behavior of the solution or an output of interest is inferred over the entire domain
of uncertainty. In addition, the samples can often times be computed completely independently
leading to natural parallelism. The Monte Carlo (MC) family of sampling methods is the oldest
and one of the most popular approaches to estimating the statistics of outputs of interest, see
[7,14,19] and references therein. The MC samples are taken at random according to a pre-selected
probability distribution, and one of the main advantages of the method is that the convergence
rate is independent from the regularity of the problem or the number of inputs. However, this
independence comes at the expense of very slow convergence of O(N−1/2) to O(N−1), where N
is the number of samples. In many cases, the number of samples needed to achieve an accurate
approximation is prohibitively large.

For problems with low to moderate number of inputs as well as smooth dynamics (i.e. multi-
ple bounded derivatives), methods for structured sampling have demonstrated much faster conver-
gence. The most popular approach for structured multidimensional sampling is the sparse grids ap-
proach [1,8,12,20–22,24,25]. One dimensional interpolation and integration rules (e.g. Clenshaw-
Curtis or Gauss-Legendre [4, 23]) are extended to multidimensional rules by taking a select set of
tensors. This approach has been demonstrated to converge exponentially for outputs of interest
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with globally smooth behavior over the entire range of the uncertain parameters.

A more difficult problem is to approximate locally sharp dynamics, i.e. regions with very large
or unbounded derivatives. Approaches have been proposed that are based on a combination of
sparse grids and hierarchical basis functions with local support [9, 11, 13, 16, 18]. The idea of one
dimensional local adaptivity based on hierarchical surpluses is extended to the multidimensional
context. A multidimensional hierarchy is considered and samples from the next level of the hierar-
chy are taken only in the vicinity of current samples with large multidimensional surplus. However,
the multidimensional hierarchy has a more complex structure that allows for a large variety of re-
finement techniques in both space (i.e. locally isotropic or anisotropic refinement) and hierarchy
(i.e. refinement by selecting samples from both higher and lower levels of the hierarchy).

In this paper, we propose several techniques for multidimensional locally adaptive sampling.
Unlike the classical approach, we consider both isotropic and anisotropic selection of the refine-
ment as well as simultaneous selection from multiple levels of the hierarchy. We demonstrate that
the choice of selection technique can have a significant impact on the stability and convergence of
the adaptive approximation.

In Section 2 of the paper, we presents the problem of multidimensional interpolation as well as
the various techniques for adaptivity and local refinement. Section 3 gives numerical comparison
between the various refinement techniques for a number of functions.
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2 Multidimensional Interpolation

In this section we present the problem of multidimensional interpolation using function basis and
abscissas induced by tensor products of one dimensional rules. In particular, we are interested in
nested hierarchical interpolation local adaptivity.

2.1 One Dimensional Hierarchical Family of Points and Functions

Let Γ ⊂ R be a bounded interval and let N0 be the set of non-negative integers. We consider a
sequence of nested hierarchical grids (meshes) defined over Γ. The standard approach for labeling
the points is to use two indexes corresponding to the level and the index within each level, however,
this can significantly and unnecessarily complicate our notation in the multidimensional context.
We take a single index approach and order all the points in a sequence {xj}j∈N0 with an associated
index to level map g(j) : N0 → N0, so that xj is associated with level l = g(j). We define the
hierarchy via a number of index sets. We define the level index sets Dl ⊂ N0 as the indexes of
points associated with level l

Dl = g−1(l) = {i ∈ N0 : g(i) = l}.

The cumulative level sets V l are defined as all points at levels less than or equal to l

V 0 = D0, V l = V l−1
⋃

Dl ≡ {i ∈ N0 : g(i) ≤ l}.

In addition, we have the hierarchical family structure defined by the index sets Pj and Oj that give
the parents and children associated with point xj

Pj = {i ∈ N0 : xi is a parent of xj},
Oj = {i ∈ N0 : xi is a child (offspring) of xj}.

The points on level l = 0 have no parents

D0 ≡ {i ∈ N0 : Pi = ∅},

and in all other cases the parents of a point xj are on the previous level,

Pj ⊂ Dg(j)−1.

For all points, the children belong to the next level

Oj ⊂ Dg(j)+1.

Thus, the hierarchical grid is described via the points {xj}j∈N0 , levels given by g(j) and Dl, and
the family relations defined by Pj and Oj . Table 1 gives a glossary of the notation used throughout
this section.

In addition to the grid points, we have corresponding set of basis functions φj(x) : Γ → R,
so that every funciton is associated with one point and the functions and points form the same
hierarchy defined by the same index sets Dl, Pj and Oj .
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Example: Uniform Hierarchical Mesh and Piece-Wise Polynomials with Local Support

Consider the example of nested hierarchical points on Γ = [−1, 1] given on Figure 1. The points
on each level are uniformly spaced starting with the midpoint 0 at level zero, at level 1 we add the
two end points −1 and 1, then for every level l > 1 we add points that bisect the intervals defined
by the points on levels less then l. We index the points top to bottom in terms of level and left to
right at each level. Hence the first point on level 0 is x0 = 0, then on level 1 we have x1 = −1 and
x2 = 1, then on level 3 we have x3 = −0.5 and x4 = 0.5. The point to level map is given by

g(j) =


0, j = 0,
1, j = 1,

1 + blog2(j − 1)c, j > 1,

where bxc = max{i ∈ N0 : i < x} is the floor function. The points xj are given by

xj =


0, j = 0,
−1, j = 1,

1, j = 2,
−3 + 2−g(j) (4j − 2) , j > 2.

(2.1)

The first few index sets Dl are

D0 = {0}, D1 = {1, 2}, D2 = {3, 4}, D3 = {5, 6, 7, 8}, · · ·

The family relations are described via the sets

O0 = {1, 2}, Q1 = {3}, O2 = {4}, Oj = {2j, 2j − 1},

P0 = ∅, P1 = P2 = {0}, P3 = {1}, P4 = {2}, Pj =

{⌊
j + 1

2

⌋}
.

Note that the hierarchy in this particular example has a tree structure, however, this is not a general
requirement, e.g. one point can have multiple parents or level zero can have multiple points.

We consider functions φj(x) that are defined as piece-wise polynomials with local support.
For illustration purposes, on Figure 1, we show the linear, quadratic and cubic polynomials. The
functions φj(x) associated with each xj are defined as

φlinear0 (x) = 1, φlinearj (x) =

{
1− 21−g(j)|x− xj|, 21−g(j)|x− xj| < 1
0, otherwise,

(2.2)

the second order basis is defined as

φquadratic0 (x) = 1, φquadratic1 (x) = 0.5x(x− 1), φquadratic2 (x) = 0.5x(x+ 1)

φquadraticj (x) =

{
1− 41−g(j)|x− xj|2, 21−g(j)|x− xj| < 1
0, otherwise,

(2.3)
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third order polynomials are defined as

φcubic0 (x) = 1, φcubic1 (x) = 0.5x(x− 1), φcubic2 (x) = 0.5x(x+ 1),

φcubicj (x) =

{
1
3

(
3 + 21−g(j)|x− xj|

)
φquadraticj (x), j is even,

1
3

(
3− 21−g(j)|x− xj|

)
φquadraticj (x), j is odd.

(2.4)

In order to illustrate our methodology, we restrict our attention to only the linear, quadratic and
cubic basis. However, higher order polynomials can also be constructed, see [11] for details.

2.2 One Dimensional Hierarchical Adaptive Interpolation

Let f(x) ∈ C0(Γ), i.e. f(x) is a continuous function defined over the interval of interest Γ.
We assume that f(x) has complex behavior and evaluating f(x′) for a specific x′ ∈ Γ is very
computationally expensive (e.g. it requires solving one or more differential equations). Our goal
is to create an interpolant that approximates f(x) and we want to achieve maximum accuracy with
as few evaluations of f(x) as possible.

Given a hierarchical grid {xj}j∈N0 and basis functions {φj(x)}j∈N0 , an interpolant I is defined
by an index set S ⊂ N0 as

IS(f) : C0(Γ)→ span{φj(x)}j∈S, IS(f)(x) =
∑
j∈S

cjφj(x), (2.5)

where the coefficients cj are chosen so that the value of the interpolant matches the value of the
function at the sample points ∑

j∈S

cjφj(xi) = f(xi), for all i ∈ S. (2.6)

Condition (2.6) gives us an n × n system of equations, where n is the number of indexes in S. In
general, the conditioning of the linear system is of consideration, however, there are well known
hierarchical grids and basis that allow us to find cj in a stable way. For example, the points and
functions described in (2.1) and (2.2-2.4) have the property

φj(xi) = δi,j, for all j ∈ Dl, i ∈ V l, (2.7)

where δi,j is the Kronecker delta. If a hierarchical basis has this property (2.7), then the coefficients
cj can be found recursively via the relation

cj = f(xj)− IS∩V g(j)−1(f)(xj), (2.8)

where, to simplify notation, we assume that V −1 = ∅ and I∅(f)(x) = 0. Combined with the local
properties of the basis functions φj(x), the coefficients cj are a computable practical local error
indicator.
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For any finite set of points indexed by S, there is a function f ′(x) ∈ C0(Γ) so that

‖IS(f)(x)− f ′(x)‖∞ = 1,

therefore, no interpolant can approximate all functions in C0(Γ) to an arbitrary tolerance. The same
is true if the L2-norm is used. We need to dynamically update the accuracy of the interpolant by
identifying regions where f(x) is not well approximated (e.g. local sharp transitions) and then add
more points in those regions. Furthermore, we also want to use as few sample points as possible in
regions where f(x) is already well approximated.

One way to adapt the interpolant is to consider full levels V l for l = 1, 2, 3 and use the inter-
polant with smallest level l for which

‖IV l(f)(x)− IV l−1(f)(x)‖∞ < ε, (2.9)

where ε is the desired error tolerance. Note that if the coefficients cj are computed via the relation
(2.8), then (2.9) is equivalent to the magnitude of the largest coefficient on the level l

‖IV l(f)(x)− IV l−1(f)(x)‖∞ =

∥∥∥∥∥∥
∑
j∈Dl

cjφj(x)

∥∥∥∥∥∥
∞

= max
j∈Dl
|cj|.

Thus, we can use the coefficients cj as an indicator of the accuracy of our interpolant.

However, considering only full levels of the hierarchy can add unnecessary number of points
in regions where f(x) is very smooth. We need to consider only a subset of points on each level
and we can use the coefficients cj as local error indicators. We include points from the next level
of the hierarchy only in the vicinity of points xj that are associated with coefficients cj with large
magnitude.

Let l be the initial level of the interpolant and let ε be the desired tolerance for our error indi-
cator. We can iterate k = 0, 1, 2, · · · and build a sequence of interpolants

Ik,l,ε(f)(x) = ISk,l,ε(f)(x),

where the index sets Sk,l,ε are defined recursively. For k = 0 the initial index set is

S0,l,ε = V l.

The next set Sk+1,l,ε is constructed by first considering the points with big coefficients

Bk,l,ε = {j ∈ Sk,l,ε : |cj| > ε}.

The set Bk,l,ε gives us the indexes of points that are candidates for refinement. For each candidate
point j ∈ Bk,l,ε, we define the refinement set Rk,l,ε

j as

Rk,l,ε
j = Oj. (2.10)
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The interpolant for the k + 1 iteration is defined by the set

Sk+1,l,ε = Sk,l,ε
⋃ ⋃

j∈Bk,l,ε
Rk,l,ε
j

 .

Thus, at each iteration, we update the interpolant by adding the children of the points with large
surpluses. We terminate the iteration when

Sk+1,l,ε = Sk,l,ε,

and we say that the iteration has “converged”. We use Ik,l,ε(f)(x) with the last k as our adaptively
constructed hierarchical interpolant.

The choice ofRk,l,ε
j on equation (2.10) is unique in the context of grid points with tree structure,

e.g. the hierarchical piece-wise polynomials on Figure 1. However, should the hierarchical basis
fail to form a proper tree, then the choice of Rk,l,ε

j is no longer trivial and it can have significant
impact on the accuracy, convergence and number of points of the adaptive interpolant. This is
particularly true in the multidimensional context, where points have multiple parents and children
associated with different direction.

2.3 Multidimensional Hierarchical Family of Functions

We consider a multidimensional hierarchy of points and functions that is induced from a single
dimensional rule by tensor products. We use bold letters to identify multi-indexes, sets of multi-
indexes and the multidimensional point to level map. Let d be the number of dimensions and Nd

0

be the set of multi-indexes
Nd

0 = N0 ⊗ N0 ⊗ · · · ⊗ N0,

with elements
j = (j1, j2, · · · , jd) ∈ Nd

0.

The order of a multi-index |j| is defined as

|j| =
d∑

α=1

jα.

Note that we use the Greek letters (e.g. α and β) to denote direction. The domain of interest is

Γd = Γ⊗ Γ⊗ · · · ⊗ Γ ⊂ Rd,

and a point in the multidimensional hierarchy is a vector of points from the one dimensional hier-
archy defined by a multi-index j

xj = (xj1 , xj2 , · · · , xjd) ∈ Γd.
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The point to level map is a multi-index relation

g(j) : Nd
0 → Nd

0, g(j) = (g(j1), g(j2), · · · , g(jd)) .

The level associated with a point xj is the order of |g(j)|, e.g.

Dl =

{
i ∈ Nd

0 : |g(i)| =
d∑

α=1

g(jα) = l

}
.

The multidimensional cumulative level sets Vl are defined as before

V0 = D0, Vl = Vl−1
⋃

Dl.

The multidimensional parent and children sets are associated with each direction, Pα
j and Oα

j are
the parents and children of point xj in direction α,

Pα
j =

{
i ∈ Nd

0 : iβ = jβ for β 6= α, and iα ∈ Pjα
}
,

Oα
j =

{
i ∈ Nd

0 : iβ = jβ for β 6= α, and iα ∈ Ojα

}
,

in other words,

(j1, j2, · · · , jα−1, i, jα+1, · · · , jd) ∈ Pj
α, if and only if i ∈ Pjα ,

(j1, j2, · · · , jα−1, i, jα+1, · · · , jd) ∈ Oj
α, if and only if i ∈ Ojα .

Note that the multidimensional hierarchy does not form a tree since most points have d parents,
i.e. one parent in each direction.

The functions associated with the hierarchy are the tensor product of one dimensional functions

Φj(x) : Γd → R, Φj(x) = φj1(x1)φj2(x2) · · ·φjd(xd).

Thus, a multidimensional hierarchy is described by a set of points {xj}j∈Nd0 with associated basis
functions {Φj(x)}j∈Nd0 , the hierarchical structure described via the point to level map g(x) and
parents and children sets Pα

j and Oα
j .

2.4 Multidimensional Hierarchical Adaptive Interpolation

Given a multidimensional hierarchy, we define an interpolant of a multidimensional function
f(x) ∈ C0(Γd) via a multi-index set S ⊂ Nd

0

I : C0(Γd)→ span{Φj(x)}j∈S, I(f)(x) =
∑
j∈S

cjΦj(x), (2.11)

9



where the coefficients cj are chosen so that I(f)(xj) = f(xj) for all j ∈ S. The only difference
between (2.5) and (2.11) is the multi-index notation. If the one dimensional hierarchical functions
have the property (2.7), then so does the multidimensional hierarchy and the coefficients cj can be
computed in the same way

cj = f(xj)− IS∩V|g(j)|−1(f)(xj), (2.12)

where the previous conventions hold V−1 = ∅ and I∅(f)(x) = 0. Interpolants using full levels
IVl(f)(x) corresponds to classical Smolyak sparse grids [11, 22]. Figure 2 gives two examples of
full level grids using V3 and V8 induced by the uniform hierarchical mesh described in (2.1).

Local iterative refinement follows a very similar procedure as the one dimensional interpolant.
Given an initial level l and tolerance ε, for k = 0, 1, 2, 3, · · · , we construct the sequence of inter-
polants

Ik,l,ε(f)(x) = ISk,l,ε(f)(x),

where the multi-index sets Sk,l,ε are constructed recursively from S0,l,ε = Vl and the set of big
coefficients Bk,l,ε as

Bk,l,ε =
{
j ∈ Sk,l,ε : |cj| > ε

}
, Sk+1,l,ε = Sk,l,ε

⋃ ⋃
j∈Bk,l,ε

Rj
k,l,ε

 ,

where Rj
k,l,ε is the refinement set associated with point xj. However, unlike the one dimensional

case, the choice of Rk,l,ε
j is no longer trivial. It is possible for xj at iteration k to be associated

with a large coefficient (i.e. j ∈ Bk,l,ε), while some of the parents of xj are not included in the
interpolant (i.e. Pj

α 6⊂ Sk,l,ε for some α). Furthermore, we have the opportunity to either refine
isotropically in all directions or anisotropically in only a select set of directions. Thus, we have to
answer two important questions

• If some of the parents of j ∈ Bk,l,ε are not included in Sk,l,ε, do we refine the interpolant by
adding the parents or the children?

• Do we refine isotropically or anisotropically, i.e. do we add parents Pα
j and children Oα

j for
all directions α or only for a select subset? If we chose to refine anisotropically, then how do
we chose the refinement directions?

Depending on how we answer the above question, we have multiple possible choices for Rj
k,l,ε and

the choice of refinement has a significant impact on the stability and convergence of the interpolant.

Classic Refinement

Isotropic refinement that adds only the children of the points with large coefficients was first pro-
posed by Griebel [11]. The refinement sets are defined as

Rj
k,l,ε =

d⋃
α=1

Oj
α. (2.13)

10



This approach has been demonstrated to produce accurate interpolants for many problems. How-
ever, in some cases, adding only the children may result in an unstable interpolant, i.e. the algo-
rithm may fail to converge, e.g. see Section 3.1. Furthermore, anisotropic refinement may result in
an interpolant with the same overall accuracy, but fewer number of points, e.g. see Section 3.3.

Family Selective Refinement

In order to improve the stability of the refinement algorithm, we propose a family selective strat-
egy. If a point xj with j ∈ Sk,l,ε is associated with a large coefficient (i.e. j ∈ Bk,l,ε), then for
every direction α we first consider the parents Pα

j . If the parents are not already included in the
interpolant (i.e. Pα

j 6⊂ Sk,l,ε), then we refine by adding the parents, otherwise we add the children
Oα

j . Define ∆k,l,ε
j to be the set of “orphan” directions associated with j ∈ Bk,l,ε, i.e.

∆k,l,ε
j =

{
α ∈ {1, 2, · · · , d} : Pα

j 6⊂ Sk,l,ε
}
.

Then, we define the family selective refinement set

Rj
k,l,ε =

 ⋃
α∈∆k,l,ε

j

Pα
j

⋃
 ⋃
α 6∈∆k,l,ε

j

Oα
j

 . (2.14)

Adding the parents first improves the stability of the adaptive interpolant. However, in some cases
it may result in an interpolant with more points than the classical refinement (2.13), for example
see Section 3.2.

Direction Selective Refinement

Sparse grids, induced by interpolation rules withO(2l) number of points per level, have strong axis
bias. Observe on Figure 2, how the grids introduce a lot of points in straight lines, first on the main
axis, then on the boundaries, then on the mid-points and so on. It is natural to seek anisotropic
refinement strategy that tends to add fewer points in already clustered directions.

We propose a direction selective strategy that is based on a series of one directional interpolants.
For every j ∈ Sk,l,ε and every direction α, let Wk,l,ε

j,α index the points that belong to the same line
as xj in the direction α

Wk,l,ε
j,α =

{
i ∈ Sk,l,ε : iβ = jβ, for all β 6= α

}
.

For xj with j ∈ Bk,l,ε consider the one directional interpolants IWk,l,ε
j,α

(f)(x) and the corresponding

coefficients cj. Let Λk,l,ε
j be the set of directions where xj is associated with a large one directional

coefficient

Λk,l,ε
j =

{
α ∈ {1, 2, · · · , d} : |cj| > ε, where cj is associated with IWk,l,ε

j,α
(f)(x)

}
.

11



The direction selective refinement set is given by

Rj
k,l,ε =

⋃
α∈Λk,l,εj

Oα
j . (2.15)

The direction refinement strategy has the effect of reducing the number of points needed for con-
vergence while still preserving the overall accuracy of the final interpolant. Section 3.3 gives an ex-
ample of the saving provided by anistoropic refinement. This refinement strategy has the additional
computational cost associated with forming each of the one directional interpolants IWk,l,ε

j,α
(f)(x),

however, all of those interpolants require a subset of the same samples already computed to build
Ik,l,ε(f)(x). In most practical applications, the cost of a single evaluation of f(x) dominates the
cost of forming the interpolant by many orders of magnitude, hence, a saving of even a single
sample would justify the relatively small additional work needed to from the one directional inter-
polants. The stability of the direction selective interpolant, however, may be reduced as compared
to the classical interpolant.

Family Direction Selective Refinement

We combine the refinement strategies in family hierarchy (2.14) and direction (2.15) to have a fully
adaptive scheme. For every points with large surplus, we only refine in the directions of large one
directional surplus and we refine by first considering the parents and adding the children only if the
parents are already included in the current interpolant. The family-direction-selective refinement
sets are

Rj
k,l,ε =

 ⋃
α∈Λk,l,εj ∩∆k,l,ε

j

Pj
α

⋃
 ⋃
α∈Λk,l,εj \∆k,l,ε

j

Oj
α

 . (2.16)

The fully adaptive scheme couples advantages of both selective refinements, while mitigating some
of the disadvantages. It is possible for the family direction selective scheme (2.16) to produce an
interpolant with more points and less stability than the classical refinement (2.13), for an example
see Section 3.4, however, our experience shows that functions associated with such pathological
cases are not common in practical applications.
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One Dimensional Context
Γ ⊂ R interval of interest
N0 the set of non-negative integers used to index the points and functions
i, j ∈ N0 indexes associated with points and functions
xj ∈ Γ the point on the mesh with index j
φj(x) : Γ→ R the basis function associated with xj
g(j) the point to level map, i.e. g(j) is the level associated with point xj
l ∈ N0 denotes the level of a point, a function or an interpolant
Dl ⊂ N0 the set of indexes associated with level l
V l ⊂ N0 cumulative index set V 0 = D0, V l = V l−1 ∪Dl

Pj ⊂ Dg(j)−1 the index set of the parents associated with point xj
Oj ⊂ Dg(j)+1 the index set of the children (offspring) associated with point xj
S ⊂ N0 an arbitrary set of indexes
IS(f)(x) the interpolant of f(x) using points indexed by S, IS(f)(x) =

∑
j∈S cjφj(x)

cj the coefficient associated with function φj(x)
k denotes the iteration of the adaptive interpolant construction algorithm
ε error tolerance used to compare |cj|
Ik,l,ε(f)(x) the adaptive interpolant at iteration k with initial level l using tolerance ε
Sk,l,ε the index set of points used by the adaptive interpolant

for iteration k, starting at initial level l using tolerance ε i.e.Ik,l,ε(f)(x) = ISk,l,ε(f)(x)
Bk,l,ε this is the set of indexes j ∈ Sk,l,ε

for which the coefficients cj have magnitude bigger than ε
i.e. this is the set of points that are candidates for refinement

Rk,l,ε
j for every j ∈ Bk,l,ε, the indexes of the points that should be added to Sk+1,l,ε

to improve the interpolant in the vicinity of xj
Multidimensional Context

d denotes the number of dimensions in the multidimensional context
α, β denote directions in the multidimensional context
Γd = ⊗dα=1Γ is the multidimensional domain of interest
Nd

0 = ⊗dα=1N0 the set of all multi-indexes
i, j ∈ Nd

0 multi-indexes associated with points and functions
|g(j)| the level of a point xj in multidimensional context
xj,Φj(x) points and functions in the multidimensional hierarchy
Dl,Vl,S capital bold letters indicate corresponding sets of multi-indexes
Pj

α, Oj
α parents and children associated with point xj in the direction α

Wk,l,ε
j,α the set of multi-indexes of all the points i ∈ Sk,l,j

that belong to the same line as xj in direction α
Λk,l,ε

j the set of directions α, where the one directional interpolant IWk,l,ε
j,α

(f)(x)

has a coefficient cj with large magnitude (i.e. |cj| > ε)
∆k,l,ε

j the set of directions α, for which xj is orphan (i.e. Pj
α 6⊂ Sk,l,ε)

Table 1: Glossary of notation.
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Figure 1: One dimensional hierarchical points and basis functions. On top, we have level 0 with
only one point x0 = 0. Level 1 has two points x1 = −1 and x2 = 1. On level 2 we add the
two mid-points x3 = −0.5 and x4 = 0.5. On level 3 we have the next four points x5 = −0.75,
x6 = −0.25, x7 = 0.25 and x8 = 0.75. The three type of funciton basis are piece-wise local
polynomials: linear (left), quadratic (center) and cubic (right).
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Figure 2: Examples of sparse grids induced by the uniform hierarhical mesh. The two grids corre-
spond to levels 3 (left) and 8 (right). Note how the sparse grids isotropic algorithm clusters points
on straight lines, which often times leads to samples with negligible contribution to the overall
accuracy of the interpolant.
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3 Numerical Examples

In this section we present numerical examples of several test functions. We select a number of sim-
ple test functions that are artificially constructed to demonstrate the advantages and disadvantages
of the various refinement techniques. Application to problems governed by differential equations
is beyond the scope of this work.

All numerical experiments are done using the Sparse Grids module of the Toolkit for Adaptive
Stochastic Modeling and Non-Intrusive Approximation (TASMANIAN). The software is available
at http://tasmanian.ornl.gov

3.1 Instability Due to Missing Parents

We want to test the adaptive hierarchical interpolation algorithms applied to a function with sharp
behavior. Consider the function

f(x, y) =
1

1 + exp(16− 40
√
x2 + y2)

, (3.1)

which is plotted on Figure 3. The walls of the sinkhole present a challenge for any interpolation
technique.

We use the one dimensional hierarchy described (2.1) with cubic functions basis (2.4) and we
take the initial level to be l = 7; we use tolerance ε = 10−4. The initial grid has 705 points, which
is way too few to capture the sharp behavior. We first use the classical refinement given by (2.13).
After 13 iterations, the method stagnates. For k > 13, every iteration requires exactly 160 new
points taken in the vicinity of 4 bad regions around (±0.265625,±0.265625). Figure 4 gives a
close up plot of the points in S16,7,10−4 around (0.265625, 0.265625).

We run the adaptive algorithm with the same parameters, however, we use the family selective
refinement (2.14). In that case, the algorithm converges after 9 iterations with total number of
points 9, 937. If we look at the same region that causes problems for the classic refinement, we see
that the family selective algorithm has added the point (0.265625, 0.265625) which corresponds to
j = (104, 104). The function Φ(104,104)(x) associated with this point has a significant contribution
to the local behavior of the sinkhole function, however, the classical refinement technique fails to
add that point. Instead, the classical refinement attempts to resolve the behavior with the children,
which is unfeasible and hence the method fails to converge.

We could start the initial iteration at a higher level l, however, g(104, 104) = (7, 7) and hence
we need to use minimum level of l = 14. At that level, the initial interpolant requires 147, 457
samples, which is unreasonably high when compared to the 9, 973 samples of the family selective
iteration.
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Figure 3: Surface plot of funciton (3.1) using dense grid on the entire domain [−1, 1]2. The sharp
behavior of the funciton makes it difficult to interpolate and causes the classical refinement tech-
nique (2.13) to become unstable.

3.2 Unnecessary Inclusion of Parents

As a counter example to (3.1), we present a function for which the family selective refinement
technique would unnecessarily require more points than the classical refinement. Consider the
function

f(x, y) = sin(x) sin(y) (3.2)

which is plotted on Figure 5. Note that each point of the hierarchy has at least one ancestor that
belongs to the main axis and the function (3.2) is constant along x = 0 and y = 0. Samples chosen
on the main axis, do not contribute to the accuracy of the interpolant.

We use the one dimensional hierarchy described (2.1) with linear functions basis (2.2) and we
use l = 4 and ε = 10−4. We compare the results from applying the hierarchical adaptive inter-
polation algorithms with classical (2.13) and family selective (2.14) refinement. Both algorithms
converge, however, the classical algorithm requires only 1, 049 points, while the family selective
one takes 1, 165. Figure 6 gives the final grids. We note that the family selective algorithm adds a
lot of points on the main axis.
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Figure 4: Close view of the points associated with the classical and family selective interpolants
applied to function (3.1). The plots focus around the points (0.265625, 0.265625), which is in-
cluded in the family selective interpolant, but missing from the classical one. The two plots on the
left correspond to the classical refinement and they show the clustering of points near the missing
parent. The plots on the right correspond to the family selective refinement and show the much
coarser grid that is sufficient for convergence.

The previous section gave an example of instability due to missing parents. The children of
a function cannot resolve its parents, hence, a missing parent can result in a failure to converge.
However, parents do not always have a more significant contribution to the accuracy of the inter-
polant, hence, the second example shows that a family selective refinement technique may result in
more points than the classic one. The function (3.2) was specifically chosen to be zero for many of
the sample points, however, we expect that functions associated with real world application would
not have this behavior or at least the behavior would not be common.
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Figure 5: Surface plot of funciton (3.2) using dense grid on the entire domain [−1, 1]2. The function
is zero along both axis and hence the associated points do not contributite to the accuracy of the
interpolant. However, the family selective algorithm (2.14) will include more parents and many of
those coinside with the axis.

3.3 Direction Selective Improvement

In order to test the direction selective refinement, we consider the function

f(x, y) = exp(−x2 − y2) (3.3)

which is plotted on Figure 7. Despite the fact that the function is globally isotropic (i.e. it is
globally invariant under rotation), (3.3) is locally anisotropic. Furthermore, sparse grids add a
lot of points along straight lines and even for a fully isotropic function the direction selective
refinement (2.15) may result in improvement over the classical refinement (2.13).

We use the one dimensional hierarchy described (2.1) with linear functions basis (2.2). We
use l = 3 and ε = 10−3 and we compare the results from applying the hierarchical adaptive inter-
polation algorithms with classical (2.13) and direction selective (2.15) refinement. The classical
refinement converges to a grid with 421 points, while the direction refinement requires only 397.
Figure 8 shows the two final grids. We observe the clustering of points in both cases, however,
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Figure 6: The resulting adaptive grids form applyting classical (2.13) (left) and family selective
(2.14) (right) algorithms to the function (3.2). The classical grid contain 1, 049 points, while
the family selective grid has 1, 165. We observe that the family selective algorithm adds a large
number of points on the main axis, however, those points do not contribute to the accuracy of the
interpolant.

the grid corresponding to the direction selective refinement reduces the cluster in several regions
along the boundary. The amount of points that is saved depends on the function, order of the basis,
initial level and refinement tolerance. However, 5% saving is significant and many other examples
exhibit an bigger savings.

3.4 Family Direction Selective Higher Dimensions

We want to test our method for a function of dimensions higher than 2. We expect that for a higher
number of dimensions, the anisotropic refinement would result in even more savings. Consider the
function

f(x) =
1

1 + exp(−0.1‖x‖)
, (3.4)

where x ∈ Rd and ‖x‖ indicates the Euclidean norm.

We use the one dimensional hierarchy described (2.1) with linear functions basis (2.4). We use
l = 5 and ε = 10−3. We test the different refinement techniques for two values of d = 4 and
d = 5. We compare the classical refinement (2.13) to the fully adaptive (2.16). For d = 4, the
fully adaptive scheme converges with only 3, 401 samples as opposed to 9, 249, which is a 63%
improvement. When we increase the dimension to d = 5, the fully converges scheme converges
with 19, 145 as opposed to 53, 425 samples, which is an bigger savings of 64%. This demonstrates
the massive advantage that the fully adaptive scheme can have for some problems.

A summary of all of the numerical tests is shown on Table 2. We note that while there is no
scheme that converges with fewer samples in all cases, the fully adaptive scheme (2.16) requires
fewer samples in almost all cases.
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Figure 7: Surface plot of funciton (3.3) using dense grid on the entire domain [−1, 1]2. Despite
the fact that the funciton is globally istorpic (i.e. it is globlly invariant under rotation), it is locally
anisotropic.

Function l ε Basis Number of Points
Classic Family Direction FDS

(3.1) 8 10−4 Cubic ∞ 9937 ∞ 8157
(3.2) 4 10−4 Linear 1033 1165 889 1021
(3.2) 4 10−6 Linear 12745 14245 11769 13269
(3.3) 3 10−3 Linear 421 421 397 397
(3.3) 3 10−4 Linear 1657 1657 1433 1433
(3.3) 3 10−4 Quadratic 561 561 545 545
(3.3) 3 10−4 Cubic 329 329 313 313

(3.4) with d = 4 5 10−3 Cubic 9249 9249 3401 3401
(3.4) with d = 5 5 10−3 Cubic 53425 53425 19145 19145

Table 2: Summary of the number of tests performed on all the functions. While there is no scheme
that is always better, the fully adaptive family-direction-selective scheme (FDS) most often re-
quires the least number of samples.
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Figure 8: The resulting adaptive grids form applyting classical (2.13) (left) and direction selective
(2.15) (right) algorithms to function (3.3). The classical grid contain 421 points, while the direction
selective grid has 397. We observe that the direction selective scheme does not add as many point
to the already clusteed lines, mainly along the boundary.

22



4 Conclusions

We consider the problem of multidimensional adaptive hierarchical interpolation. We present the
construction of a multidimensional interpolation rule that is induced by a one dimensional rule via
sparse selection of the tensor products. We observe that the multidimensional hierarchy has more
structure than the original one dimensional rule, which allows for a wide variety of refinement
techniques beyond the classical isotropic selection of children. We present refinement schemes
that refine anisotropically as well as adding samples from multiple levels of the hierarchy.

We present a number of numerical examples of simple functions that are designed to demon-
strate the different advantages and disadvantages of each refinement scheme. There is no scheme
that will always converge to an interpolant with smallest number of samples, however, the fully
adaptive scheme wins on all but a small number of carefully crafted examples. In practice, such
functions would be at best rare, hence, the fully adaptive family-direction-selective scheme is the
most competitive method.
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