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HFIR is a Multi-Purpose High-Performance
Research Reactor

* Operated since 1966 with one of
the world’s highest thermal
neutron fluxes ~2.5x101°
neutrons/(cm?-s )

Involute-shaped fuel plates,
beryllium reflected, light water-
cooled and —-moderated,
pressurized, flux-trap type
research reactor

Highly enriched uranium (~93%
235U/U) fuel embedded in
aluminum-6061 clad

Cold and thermal neutron
scattering, materials irradiation,
isotope production, neutron
activation analysis




The HFIR Core
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Physics of Interest for HFIR LEU Safety
Analyses
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Parametric Geometry and Mapped Meshing

x(s) = Ry, [sin(s) —s- cos(s)]. /
y(s) = Rp, [cos(s) +s-sin(s)], where /
Omin < 5 < Omax, /_//

R, = base radius of the involute, and y4

Omin = angle for the starting point of the involute, and

Omax = angle for the end point of the involute.
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Volumetric Heat Source Distributions
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Simulation for Nominal Operation at the
Beginning of Reactor Cycle

Top unfueled
region (2 in. tall)

Inlet velocity = 15.6 m/s
Inlet temperature =120 °F
‘ Conjugate Heat Transfer Physics

k-epsilon Turbulence Model
Thermal Expansion Physics

Pressurized
water ca

Coolant
channel

Heat Bottom unfueled

source region ( 2 in. tall)

Outlet pressure = 366 psig

10 mil

Note 1 mil = 0.001 in



Inner Fuel Element - Nominal Conditions
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Axially Non-Contoured Fuel Plates
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Outer Fuel Element - Nominal Conditions
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“Hot Channel” Safety Basis Cases at the
Beginning Of Cycle

Conservative boundary conditions
(135 °F inlet temperature and 232.7 psia outlet pressure) /I (ﬁ'?ﬁi,)
P
e U2 = Uncertainty in the fissile loading = 1.05 (3F0urer|1il)
U3 =Uncertainty in the power density
distribution = 1.199 Oxide layers /I(ﬂar:il)
. _ . : (1 mil)
U4 = Uncer.taln.ty in average fuel —
concentration in hot plate = 1.06
e U18 = Fuel Segregration Flux Peaking = 1.1
Coolant Channel
(46 mil)
 Ueff=U2*U3*U4*U18 =1.4679

e Effective heat source =
Ueff*PowerFactor*MCNP_Power
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IFE, Axially Non-Contoured LEU Fuel
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OFE, Axially Non-Contoured LEU Fuel

Power Factor=1.6

Surface: Temperature (degC) Power_Factor(4)=1.6 Surface: Pressure (psi)
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Conclusions and Future Directions

« COMSOL Multiphysics is providing a robust platform to simulate HFIR fuel
plates and coolant channels.

 Models developed for IFE and OFE are continually being advanced with a
goal to simulate HFIR’s safety basis conditions (or, worst possible
conditions).

* Preliminary work is also underway to develop a one-dimensional HFIR
system model with the primary/secondary piping loops, heat exchangers,
pumps, valves and bends. This model is based on HFIR’s existing RELAPS
models.

 Coupled CFD/SM models of IFE and OFE could later be coupled with the
HFIR system model.

« Parallel and scalable solvers in COMSOL need to be improved and made
easier to implement to allow significantly “bigger” HFIR simulations on
leadership class computing clusters (e.g., Jaguar/Titan, Kraken etc.).
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