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ABSTRACT 

This study identified trade-offs and complementarities between seasonal flow regimes that favor 

energy producers and those that benefit salmon production in the Tuolumne River, California 

below Don Pedro Dam.  We produced and analyzed a non-dominated set of solutions using two 

models, one to estimate relative energy value and one to estimate relative salmon production 

from candidate flow regimes.  The analysis suggested that both salmon and energy producers 

benefitted from pulse-flow releases during hot summer temperatures.  However, the timing of an 

earlier pulse flow differed substantially between optimal flow regimes favoring the two 

objectives.  Earlier flow releases that favored salmon production were allocated in late-winter 

over an extended period.  This broad late-winter pulse inundated floodplain and promoted faster 

juvenile growth for early cohorts, whereas the later pulse flow mitigated exposure to high river 

temperatures by later cohorts of juvenile salmon.  Optimal minimum flows were also higher in 

salmon-oriented solutions than in those that favored energy value.  Flow releases allocated to 

maximize energy value occurred in both summer and winter, when cooling and heating increased 

electricity demand.  Intermediate solutions generally allocated steeper and narrow pulses both in 

summer and during the late-winter, at times mirroring those used by salmon regimes.  The 

steepness of pulse flows to maximize energy was driven primarily by hydraulic capacity 

(maximum generating flows).  In summary, this analysis has improved understanding of the 

trade-offs and complementarities between seasonal patterns of reservoir releases that favor 

salmon and those that favor energy value to producers. 

Keywords:  hydropower, marginal cost of electricity, Chinook salmon, multi-objective 

optimization, NSGA-II, genetic algorithm, Pareto-optimal solutions, quantile model, 

Oncorhynchus tshawytscha 
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1. INTRODUCTION 

 

Reservoir flow releases must be allocated over time to meet objectives related to energy 

production and other water uses.   In optimization terms, this is a resource allocation problem.  

Clearly, water is a scarce resource and competing needs change over time.  In multi-objective 

optimization there is not a single solution, but rather a set of non-dominated solutions that define 

a Pareto-optimal frontier.  Although conflicts over timing and amounts of flow are difficult to 

resolve, perhaps the least controversial proposition is that releasing water at times that are sub-

optimal for all parties concerned is something to be avoided.  This paper focuses on two 

important objectives served by reservoir flow releases:  Generating hydropower and support for a 

thriving aquatic ecosystem downstream of dams.  The results presented here apply to the 

Tuolumne River, California.  Don Pedro Dam is the main storage project on this tributary of the 

San Joaquin River. 

Multi-objective reservoir optimization has a long history, and this study focuses on two areas 

that have received less attention:  addressing environmental objectives and incorporating 

seasonal-scale variation in electricity prices.  Beginning with environmental objectives, 

applications considering downstream biota as objectives have been fairly rare (Jager and Smith 

2008).  Studies have typically settled for allocating flows to meet regulatory constraints rather 

than maximizing benefits to downstream biota (Jager and Smith 2008).  Even those rare cases 

that considered downstream habitat, relationships were developed over a moderate range of 

flows (Sale et al. 1982, Cardwell et al. 1996, Jager and Rose 2003).  Only recently have the 

benefits of occasionally inundating shallow, slow habitat for rearing fish have been considered 

(Jager in review).  On the methodological side, the set of Pareto-optimal solutions was until 

recently estimated by weighting various objectives and solving the problem (e.g., Labadie 2004; 

2005).  Although solutions thus obtained are good, efficiency is low because a diversity of 

solutions sets is not maintained during the search (Shukla and Deb 2007).  More recently, 

heuristic methods have been developed for directly solving for the set of non-dominated 

solutions using genetic algorithms (Deb et al. 2002), and in two cases applied to reservoir 

operation (Reddi et al. Cioffi and Gallerano 2012). 

On the energy side, electricity prices are highly variable and unpredictable, but there are 

predictable influences at different temporal scales.  Harou et al. (2009) review the extensive 

literature on hydroeconomic modeling, which focuses on maximizing the economic value of 

water.  These models consider some or all of the values associated with urban, agricultural and 

industrial water demands, hydropower and environmental and recreational uses.  On the other 

hand, the value of downstream biota (for itself, rather than assigning it to a recreational value) is 

typically overlooked.  From a producer’s perspective, timing reservoir releases to generate 

hydroelectric power during peak demand is a critical consideration that determines the economic 

profitability of hydropower.  Variations in demand occur on both within-day and seasonal time 

scales.  Prices are predictably higher during “peak” periods, during daytime hours on weekdays, 

and lower during off-peak periods that are typically captured by load-following operation.  

Economic models seeking to forecast short-term, day-ahead price fluctuations have attracted 

considerable attention because of its relevance for system control, unit commitment, and energy 

markets.  Models typically seek to describe short-term variations through stochastic processes, 

including, mean-reverting diffusion processes (Clewlow et al. 2000; Deng 2003), autocorrelated 
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(GARCH) time-series models (Garcia et al. 2005), and neural-network models (Georgilakis 

2007). 

Medium and long-term forecasting, which is the scale of interest here, has not received nearly as 

much attention as short-term forecasting (Hyndman and Fan 2010).  Yet, electricity prices vary 

seasonally as heating and cooling needs increase.  In California, air conditioning needs are met 

by electricity, whereas much of winter heating is supplied by natural gas (Knittel and Roberts 

2001).  Thus, calendar influences are likely to be important (e.g., Hyndman and Fan 2010).  

Previous models have found temperature to be an important factor in explaining price 

fluctuations mediated by load.  For example, Ruibal and Mazumdar (2008) found that 

temperature explained 75% of short-term variation in load.  Temperature also predicted 

fluctuations in peak demand in South Australia (Hyndman and Fan 2010).  Garcia et al. (2011) 

recently refined their GARCH model by added seasonal components to describe electricity price 

variation on the Iberian Peninsula.  Similarly, seasonal patterns were included in a weekly 

forecasting model by Zhou and Chan (2009). 

The goal of this study is to understand how seasonal allocation patterns that benefit energy 

producers and those that benefit salmon differ, and where they show similarities.  We used 

genetic algorithm to estimate a Pareto-optimal frontier describing trade-offs in the allocation of 

seasonal flows to benefit salmon and energy producers.  Energy value derived from reservoir 

releases was estimated by an empirical model describing seasonal variation in electricity prices.   

To represent benefits to salmon, we relied on the Quantus model, which was previously used to 

optimize flows for Chinook salmon (Oncorhynchus tshawytcha) in a Central Valley river (Jager 

in review).  Salmon production is an environmental objective that is important in many coastal 

rivers, and we used the Tuolumne River, located in the Central Valley of California as a case 

study for this analysis.  Quantus was developed as an effort to simplify an earlier, more-complex 

spatially explicit and individual based population model linking fish growth, development, 

reproduction, movement, and survival to dynamic flow- and temperature-driven changes in 

physical river habitat (Jager et al. 1997; Jager and Rose 2003).  Two main advantages over more 

complex models are that it represents the effects of floodplain inundation on juvenile salmon 

growth and is much faster to run than spatially explicit and individual-based population models.  

Thus, three features of the approach here should enhance efficiency in discovering a Pareto-

optimal frontier:  1) use of a simple salmon model, 2) use of a low-dimensional parametric 

model to describe seasonal flow regimes, and 3) use of the NSGA-II method to discover non-

dominated solutions. 
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2. METHODS 

 

The optimization approach used here allows the user to discover a set of flow regimes that are close to 

Pareto-optimal with respect to two objectives: maximizing simulated salmon production and maximizing 

relative energy value.   Jager (in review) developed a quantile-based salmon recruitment model, Quantus.  

For a given seasonal flow regime and total annual flow, Quantus returns the proportion of Chinook 

salmon eggs surviving to migrate to sea.  To estimate the effect of flow on energy value, we developed an 

empirical model for seasonal variation in marginal electricity price as a function of temperature.  Models 

to describe both salmon and energy value of proposed seasonal flow regimes are described in sections 

below.   

 

2.1 CLIMATE DRIVERS AND PHYSICAL HABITAT 

River habitat in this model consists of longitudinal representation of three drivers, flow, air temperature, 

and dam-release temperature.  Flow is the decision variable in the optimization.  Water temperature is 

derived from equilibration between dam-release temperature and air temperature as a function of flow 

(Jager in review).  Inundation of floodplain areas begins in the Tuolumne River when flows exceed 

approximately 30 cms based on aerial photographs taken between 1988 through 1995 at flows ranging 

from 2.83 to 237.9 cms (Gard 2008). 

The flow-regime generator begins with a total annual flow, which is expressed as average flow, Qavg, in 

cms.  This analysis was conducted for an annual flow of 0.631 km
3
 (511 TAF).  If allocated uniformly 

throughout a year, this would correspond with a constant flow of 20 cms (cubic meters per second).  For 

reference, the quartiles of regulated flows in the Tuolumne River between 1971 and 1997 were 25% ≤ 6.4 

cms, 50% ≤ 12.0 cms, and 75% ≤ 36.5 cms (Brown and Ford 2002).  Unimpaired flows were historically 

much higher, with a median daily average flow of 33.6 cms (Brown and Ford 2002).   

Generated flow regimes, Q(t), were represented by a parametric model mainly to reduce the number of 

decision variables in the optimization problem and to facilitate interpretation of results.  Our goal is to 

understand how seasonal allocation patterns that benefit energy producers and those that benefit salmon 

differ and where they show similarities. 

The flow model consist of three parts:  a minimum flow, Qmin,and two flow pulses, one in fall and one in 

spring (Equations 1 and 2).  Each pulse was represented by a uni-modal pattern of flows and four 

parameters of the double Weibull distribution.  The fall pulse begins on Julian date FallJday and extends 

FallDur days.  The spring pulse begins on day SprJday and extends SprDur days.  Input parameters, 

provided in Julian dates, are converted by transformation W to water-year dates that begin on Julian day 

274.  Parameters FallK and SprK control how steeply the flow pulses increase and decrease (k in Equation 

3).  Weibull location parameter, tm, which shifts the distribution forward or back in time, is set to zero 

(beginning of the water year) for the putative fall pulse and optimized across values less than SprJday for 

the spring pulse.  In the equations below, Jday, refers to either the start of the spring or fall pulse. 

 



ORNL/TM-2012/500 

4 

 

2 1 2 1
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 ,

0,

k k
W t W tm W t W tm

W Jday W tm W Jday Dur W tm

pulseQ
t tm

t tm

e e
 (1) 

, ,
( )

min pulse fall pulse spr
Q Q Qf t               (2) 

 

( ) ( )
( )
avg

T

T Q
Q t f t

f t
 (3) 

2.2 HYDROPOWER VALUE 

We developed an empirical model that describes seasonal variation in hydropower value.  Within-day 

variation, which is clearly an important economic driver, is not considered as part of the seasonal 

allocation of flows, but would be a next step in refining the flow regime.   

Two main influences on daily average energy value at a particular hydropower project are the amount of 

water generating electricity and seasonal influences on the value of electricity.  Only flows up to the 

hydraulic capacity through the four turbines, Qgen <= Qspill, = 155.76 cms, generate electricity.  It is rare 

for spill to occur at the Don Pedro (TID/MID 2011) because the storage capacity of Don Pedro exceeds 

the annual reservoir inflows in most years.  Furthermore, a significant fraction is diverted to support 

agriculture in the Central Valley.  Thus, spill under current operations is rare for this particular project, 

but it is likely to be important for smaller projects. 

 

2.3 ELECTRICITY GENERATION 

Daily electricity generation is currently modeled empirically using top-down relationships derived from 

the US Energy Information Agency.  In future, this approach will be compared with, and replaced by 

bottom-up estimates of turbine deployment and efficiency.   

Top-down method.—Jager and Sale (2006) fitted a linear relationship between daily generation and flow, 

based on annual generation data and daily average flows (cms) during the period 1970-2003.  The linear 

relationship Gt (MWh) = 810.43 + 6.265 Qgen explained 77% of variation in energy generation, in spite of 

presumed variation in reservoir storage and hydraulic head.  Under optimal conditions, the maximum 

output is 203 MW (TID/MID 2011).  In the daily optimization model, we estimated energy using 

Equation 4, where maximum generating capacity, Gcap = 203 MW x 24 h. 

 

0 1 ,
( ) ,

,

gen gen cap

t

cap

b b Q Q Q
G MWh

G otherwise

 
 


 (4) 

 

Bottom-up method.—An additional consideration is the loss of efficiency when turbines are deployed 

using sub-optimal flows.  The efficiency and power generated by hydroelectric facilities is highest when 

the flow released through each turbine results in peak efficiency.  Power generation is a product of 



ORNL/TM-2012/500 

5 

 

hydraulic head, generating flow, and efficiency (Mesa Associates & ORNL 2011).  Consequently, to 

estimate the variation in generation, we need not only the proposed seasonal flow regime, but also 

seasonal variation in head, and generation efficiency.  At this point, the relationship between efficiency 

and flow has been quantified at three different levels of head (Figure 1a), and what remains to be done in 

future is to describe predictable seasonal variation in head (Figure 1b).   

 

 

 

Figure 1.  Two relationships that describe seasonal influences on power generation: (top) turbine efficiency, 

power generation vs. flow; (bottom) predictable seasonal variation in head, as determined by reservoir 

elevation (Source of bottom graph: Stillwater Sciences 2011). 

 

The Don Pedro Dam has 4 Francis turbines, three of which generate Gc1 = 55 MW and one Gc2 =38 MW 

at peak hydraulic capacity (TID/MID 2011).  The estimated hydraulic capacity estimated for the larger 
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turbines was 37.19 cms, and by difference from a total of Qspill = 155.76 cms (TID/MID 2011), the smaller 

turbine generates using flows up to Qc2 = 44.22 cms. 

An analysis of efficiency ratings for the three larger turbines was presented in a pre-application document 

(TID/MID 2011) for three different values of net head.  We fitted relationships between power generation 

and flow for three identical turbines (Figure 1a).  The relationship with the maximum head (176 m), g(x) 

in Equation 5, has parameters c0 = 8.625 and c1 = 1.681.  The fourth turbine’s curve can be assumed to be 

the same, but with a lower hydraulic capacity, Qc2.  Beyond peak capacity, generation can be assumed to 

be flat, as no decline was evident in the testing. Total power on each day, t, is given by Equation 5, where 

the maximum number of larger-capacity turbines, k1, is first fully employed.  Allocation of remaining 

flow depends on whether it exceeds the capacity of smaller turbines.  If so, another large turbine is first 

engaged and the remainder allocated to the smaller turbine.  If not, the remainder is used to generate by 

engaging the smaller-capacity turbine, up to its maximum capacity. 

 

  1 1 1 2 2 1 1

0 1

0,3( ) 24 ( ) min ( ),0, ,sup{ [ ] },

, 0
( )

0,

t c spill c c c spillG MWh k g Q g Q k Q k Q k k Q Q

c c x x
where g x

otherwise

      
 

 
 


 (5) 

Seasonal value.—Each day’s relative energy value is estimated as the product of electricity generation, Gt 

(MWh) and the relative seasonal deviation in marginal price at the time of generation, Pt in $/MWh.  To 

scale the energy objective on [0, 1], because we are only interested in relative profit, we keep units of 

fraction of Gcap x relative price (Equation 6), where the price deviations, having been modeled by a 

generalized logistic function, are on a 0-1 scale. 

 

365

1

t t

t

cap

EnergyValue

G P

G




 (6) 

We developed an empirical model to describe predictable patterns in temporal variation in marginal cost 

of electricity in the California electricity market relevant to the Don Pedro project.  Two modeling 

objectives were (1) to characterize influences of temperature and time components on the mean and 

variance in marginal cost of electricity (MCE), and (2) to estimate relative seasonal fluctuations in MCE 

for use in optimizing flow releases.  We obtained historical price data for the period 2003-2008 from the 

California ISO site (http://oasis.caiso.com/mrtu-

oasis/?doframe=true&serverurl=http%3a%2f%2ffrptp09.oa.caiso.com%3a8000&volume=OASIS).  We 

avoided earlier data that were influenced by the transition to market deregulation in 2000 (Knittel and 

Roberts 2001). 

Climate can potentially influence electricity demand through temperature, which determines the need for 

cooling.  In a previous study, forecasts of temperature and demographic increases were used to forecast 

long-term electricity demand in South Australia (Hyndman and Fan 2010).  Because temperature seems a 

more natural or direct influence on electricity use than day of year, we included this as a predictor of 

MCE.  We obtained historical daily climate data for the period 2003-2008 from DAYMET 

(http://www.daymet.org/), which is maintained at Oak Ridge National Laboratory. 

In a two-stage modeling approach, we first removed year-to-year variation because the optimization 

model is concerned only with seasonal variation.  I focused on modeling residuals, Pt, from year effects 

http://www.daymet.org/
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using variables related to demand and short-term lagged prices as predictors (Equation 7).  These 

residuals can be thought of as deviations from mean-average price. 

 0MCE   t t t tt
P IsYear       (7) 

Demand-related variables daily average temperature, Tavg, and Tdis, a discomfort index, calculated as 

zero for Tavg, in the range 18 to 24°C and the minimum deviation from this comfort range for 

temperatures outside this comfort zone. Autocorrelation (ACF) plots were used to assess residual 

autocorrelation, and based on this, we fitted a model using 1-day lagged values of Tavg and Tdis 

(Equation 8).  This corresponds with the reasonable assumption that prices are based on lagged 

information.  Parameters of this generalized logistic model were fitted using non-linear least squares as 

implemented by the ‘nlme’ package in R. 

 
min max min ,

, 0 1 1 2 1 2 1

( ) ,

exp( )
,      + 

1 exp( )

t rel t

t
rel t t t t t

t

P R R R P

y
P where y y Tavg Tdis

y
      

  

   


 (8) 

On an annual basis, we evaluated the producer benefit from each annual flow regime, VE, as the sum over 

days of the product of electricity generation and the relative value of electricity.  Relative price deviations 

were scaled on [0, 1]. 

 

2.4 ECOLOGICAL VALUE 

Quantus tracks the development, growth, and survival of fall Chinook salmon by representing quantiles of 

the temporal and spatial distribution of redds (nests).  These space-time quantile-cohorts are then tracked 

and encounter seasonal changes in flow and water temperature at different developmental stages and 

sizes.  To be considered successful, cohorts must grow to a minimum size threshold and successfully 

travel downstream to the confluence. Overall production is quantile-weighted survival from egg to smolt. 

Temporal variation in the distribution of spawning dates for the fall run is represented by a triangular 

distribution beginning October 1
st
, peaking on October 27

th
, and ending on December 22

nd
.  The spatial 

distribution of initial redds was represented by a triangular distribution over the upper portion of the river 

to Lsegsp = 40.5 rkm as described in Jager et al. 1997).  The 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 quantiles of 

10,000 draws of each is used to characterize the distribution of redds in time and space, independently. 

For each quantile-cohort, development through the egg and alevin life stages proceeds based on 

accumulated degree days.  Incubation survival was modeled as a function of temperature.  Fry emerge 

from the gravel at a size of 35 mm after accumulating 895.8 degree days (⁰C) (Murray and McPhail 

1988).  From this point forward, each quantile’s growth, movement, and survival is tracked.  The 

migration process starts at the initial redd location of the quantile-cohort.  Once a quantile cohort reaches 

a specified fraction of minimum smolt size, downstream migration begins, with the rate depending on 

juvenile size, flow, and temperature.   

Growth is simulated for each quantile cohort from emergence until fry become smolt and leave the 

tributary.  The simulated growth rate of juveniles belonging to a quantile cohort depends on temperature, 

fish size, and the amount of inundated floodplain (a function of flow).  When flows are high enough to 

inundate floodplain, simulated growth is enhanced because of increased prey availability.  Ration was 
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increased from a specified minimum to one as the antecedent area of floodplain inundated increased 

(Sommer et al. 2001; Jeffres et al. 2008).   

Survival is estimated for two periods, incubation and the juvenile rearing period.  Values are calculated 

for cohorts each space-time quantile and depend on the unique temperatures and growth opportunities that 

they experience.  Once the cohort reaches the smolt life stage and migrates to the mainstem, calculation of 

survival ends.  Fry survival for a given quantile cohort continues to decline until that day in spring when 

the cohort attains a length of 75 mm and reaches the confluence with the mainstem San Joaquin River.  

Components of survival that affect different life stages are described in Jager (in review). 

Juvenile production, the endpoint of Quantus is defined by thresholds in fish size and position.  At the end 

of the simulation, survival through these periods is used to reweight quantiles when calculating the 

number of juveniles that survive to migrate to sea.  Thus, the final proportion of eggs, Efr, surviving to 

migrate as smolts is a convolution of the probability covered by each space-time quantile, fqs, qt and its 

egg-smolt survival, Sqs,qt, (Equation 9).  This is used as the salmon objective in the optimization described 

in the next section. 

 

, ,qs qt qs qtqts qs
SalmonValue f SV

  

(9) 

 

2.5 FLOW OPTIMIZATION 

The optimization problem solved here is designed to shape seasonal flows to maximize both value to 

salmon and value to energy producers by directly minimizing the non-domination rank (i.e., number of 

previous solutions with higher values with respect to at least one of the two objectives, VE and Vs in 

Equations 8 and 9).  

 

1 2

min Rank{ ( ), ( )},

subject to:

: integer, 1,...

[ , ,..., ]

S E

L U

i i i

n

V x V x

x x x i n

x x x x

  



 (10) 

 

The decision variables were n = 8 integer parameters describing flow regime, including scaled minimum 

flow, Qmin, and seven parameters that control the seasonal timing and duration of two pulses in flow.  

Qmin was constrained to be greater than 1.42 cms. 

Two approaches to multi-criterion optimization are to solve for a weighted objective, where different 

weights (summing to 1) are assigned to different objectives, or to directly seek solutions along a Pareto 

optimal front by minimizing domination rank of solutions.  We implemented the latter approach, using the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II), a multi-objective evolutionary optimization 

algorithm implemented in R (Deb et al. 2002) to solve for the values of x.  The truncation approach of 

Deep et al. (2009) was used to make the algorithm suitable for integer decision variables.  Solutions to 

optimizations with 100% weight assigned to salmon were compared with solutions on the non-dominated 

front to assess the quality of solutions. 
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Evolutionary or genetic algorithms borrow concepts from evolution.  A sequence of generations is 

simulated for a virtual population of individuals.  The ‘genotype’ of each individual has values (i.e., 

alleles) corresponding to integer values of parameter vector Pq = {Qmin, FallJday, FallJdel, SprJday, 

SprJdel, Falltmin, FallK, and SprK} that describe the flow regime.  Each genotype is associated with a 

‘fitness’ that corresponds with the objective (i.e., salmon production).  As with other heuristic global 

search methods, genetic algorithms have a deterministic and a random component.  In the process of 

evolution, natural selection is deterministic, whereas mutation and sexual recombination are random 

features that provide the capability to generate new combinations and consequently escape from local 

optima.  Parameters controlling the distributions used to draw subsequent generations were, cprob = 0.8, 

cdist = 5, mprob = 0.1, mdist = 10.  All flow parameters were treated as integer decision variables (Qmin 

scaled by 1000). 

The maximum number of generations was set to 1,000 and population size to 100.  Results are presented 

for an average flow of 20 cms.  Convergence was assumed to occur after 20 generations with no change in 

the solution, within a specified solution tolerance of 10
-5

 for the weighted objective.  For the solution with 

100% weight assigned to salmon, convergence can be evaluated by comparing three solutions with the 

highest salmon objective (Figure 2). 

 

 

Figure 2. Optimal flow regimes to meet the salmon production objective.  These flow regimes allocated total 

annual flows of 0.632 km
3
 and were obtained using a single-objective method, with a weight of one assigned 

to the salmon objective.  Results are shown for three different initial seeds, two of which overlap 

substantially. 
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3. RESULTS 

 

Below, we describe results of our energy value modeling and optimization results.  Results of 

modeling salmon production can be found in Jager (in review) and are not repeated here. 

 

3.1 HYDROPOWER VALUE 

Seasonal relative marginal prices, as represented by the model fitted in Equation 8), showed a 

large peak in summer and a secondary, lower peak in winter (Figure 3).  Parameters are listed in 

Table 1 below.  Although model and its coefficients were highly significant, the correlation 

between predicted and observed values remained fairly low, 0.316. The residual standard error 

was 0.1268 on 2,530 degrees of freedom.  Based on comparisons of AICc, removals of 

predictors did not result in a more-parsimonious explanatory model.  Residual analysis showed 

that the majority of autocorrelation was removed by this AR-1 model using lagged predictors. 

 

 

Figure 3.  Seasonal patterns in relative marginal energy value, based on fitted model. 
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Table 1.  Estimated parameters for relative price model given by Equation 8. 

Parameter Estimate SE T and Pr(>|T|) 

β0 -1.1202 0.0686 -16.324  (<0.00001) 

β1 0.00327  0.0002 15.844 (<0.00001) 

β2 0.01323   0.0029   4.509 (<0.00001) 

β3 0.01908 0.0050 3.806 (0.00014) 

 

3.2 OPTIMAL SEASONAL RELEASE SCHEDULE 

We identified a set of seasonal patterns of reservoir releases representing 100 non-dominated 

solutions among those evaluated by NSGA-II.  These solutions fall along a gradient from 

maximizing the production of Chinook salmon downstream to maximizing energy value (Figure 

4).   

Comparing flow regimes along the continuum from maximizing energy value vs. salmon 

production we see both similarities and differences (Figures 4 and 5).  The optimal flow regime 

that maximized only salmon production was characterized by a steep spring pulse flow 

corresponding with minimum and maximum temperatures (Figures 4 and 5).  A sampling of flow 

regimes from the non-dominated set, ranging from those with higher values for energy objectives 

to those with higher values for salmon objective, reveals the gradation of change in suggested 

patterns of seasonal flow release indicated by this analysis (Figures 4 and 5).
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Figure 4. Frontier of non-dominated solutions showing the shift in seasonal flow regimes favoring 

model-simulated salmon production and those favoring energy value.  Three examples of optimal 

flow regimes are illustrated above their positions along the frontier. 
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Figure 5. Optimal flow regimes in the non-dominated set of solutions, with color indicating the 

relative value of the salmon objective, which generally implies a lower value of the energy objective. 
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4. DISCUSSION 

 

This analysis revealed one interesting correspondence between allocating pulse flows to favor 

salmon production vs. energy value.  Overall, the set of 100 non-dominated solutions included 

none at the extremes with no salmon production or no energy value, and we obtained extremes 

through separate single-objective (weighted with weight=0 and 1) optimizations.  However, we 

compared extremes that were represented in the set.  These revealed some commonalities and 

some differences between salmon- and energy-favoring solutions.  Specifically, both salmon and 

energy producers benefitted from releases during high late-spring and early-summer 

temperatures (Figure 3).  For energy producers, later releases generate electricity when air 

conditioners are most required.  For salmon, late-exiting cohorts are better protected from high 

water temperatures during out-migration.  One might expect energy-focused solutions to call for 

these pulses later in summer than those required by salmon, but these results, if anything, show 

later pulses in the solutions favoring salmon production (Figure 5).  We would not expect many 

juveniles to exit as late as the end of June, unless they were members of the late-fall run (see 

Jager and Rose 2003 for discussion of maximizing life history diversity in salmon). 

The analysis revealed trade-offs between objectives primarily in the allocation of a second, 

earlier pulse flow.  Energy-favoring solutions included a pulse flow in winter, whereas salmon-

favoring solutions shifted this to produce a broad floodplain-inundating pulse in early spring.   

Evaluation of different hydrologic years indicated that floodplain-inundating flows were not 

optimal in drier years (Jager in review).  Interestingly, the intermediate solutions produced much 

narrower and steeper floodplain-inundating pulses.  This might raise concerns about stranding 

juveniles (Sommer et al. 2005; Grand et al. 2006).  Representing stranding might help to refine 

the shape of the descending limb for high pulse flows, which was quite steep in these solutions. 

This was a first step toward incorporating economic objectives, as suggested by Harou et al. 

(2012).  Here, we represented energy value, but ecological value was not addressed specifically.  

Although we successfully represented seasonal price variation, uncertainty in marginal prices has 

not been incorporated, nor is it clear how we can compare the relative credibility’s of the two 

model-derived objectives.  In particular, the relative price model had fairly low inherent 

predictive capability, and it would not be particularly difficult to use a risk-based formulation for 

the energy objective.  We have not yet formally explored parameter sensitivities of these results.  

For example, we observed that the maximum hydraulic capacity (Qspill) has a large influence on 

the steepness of energy-favoring flow pulses.  In future, turbine efficiency could be considered as 

well, and this would require combining the influences of generation and relative price.   

The prospects for assessing the economic value of, and incorporating uncertainties associated 

with, salmon production are bleaker.  Previous efforts to compare model results against salmon 

outmigrants counts using rotary-screw traps have not been particularly successful, in part 

because counts are confounded with flow (Jager and Sale 2006).  In future, a sensitivity analysis 

of parameters can help to assess these influences.  The ecological value of salmon, which was 

estimated by Loomis and White (1996) to be range from $31 to $88 in 1993 dollars, can also be 

incorporated in future. 

In summary, despite the uncertainty in model-estimated objectives, this analysis has led to an 

improved understanding of the trade-offs and complementarities between seasonal patterns of 

reservoir releases that favor salmon and those that favor energy value to producers.
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