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For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous
uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for
propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method.
The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively,
the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The
consistency of these two methods in quantifying uncertainties in the multiplication factor and in the core power distribution was
examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island
Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results
were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions
were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.

1. Introduction

Computational modeling of nuclear reactor stability and
performance has evolved into a multiphysics and multiscale
regime. Various computer codes have been developed and
optimized to model individual facets of reactor operation
such as neutronics, thermal hydraulics, and kinetics. These
codes are most often coupled to produce more realistic
results. While it is crucial to produce best-estimate calcula-
tions for the design and safety analysis of nuclear reactors, it
is equally important to obtain design margins by propagating
uncertainty information through the entire computational
process. The purpose of the OECD (Organization for Eco-
nomic Cooperation and Development) Uncertainty Analysis
in Modeling (UAM) benchmark is to produce a framework
for the development of uncertainty analysis methodologies
in reactor simulations [1]. Three phases comprise the

benchmark, with each phase building in scale on its prede-
cessors. The first phase deals with uncertainties in neutronics
calculations, the second phase deals with neutron kinetics,
and the final phase requires the propagation of uncertainties
through coupled neutronics/thermal-hydraulics simulations.

The neutronics phase of the UAM benchmark deals
specifically with the propagation of input parameter uncer-
tainties to uncertainties in output parameters on a full-core
scale. In the established framework of full-core analyses,
lattice homogenized few-group cross sections are used as
inputs to core simulators. Core simulators utilize a number
of approximations to the exact transport equation, effectively
introducing uncertainties into output parameters. Geometri-
cal uncertainties and numerical method simplifications can
also be attributed to the introduction of modeling uncer-
tainties. While it is important to propagate all known uncer-
tainties when conducting a thorough uncertainty analysis,
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the necessary methods to make this possible must still be
developed. However, rigorous methods already have been
developed to propagate cross section uncertainties from
lattice transport solvers to core simulators. Consequently,
few-group homogenized cross section errors are assumed for
now to be the sole source of uncertainty in the subsequent
analyses.

Two methods already exist for propagating cross section
uncertainties through core simulators. The first method is
commonly referred to as the stochastic sampling (Monte
Carlo) method. The XSUSA (Cross Section Uncertainty and
Sensitivity Analysis) code system is representative of this
approach [2]. XSUSA was developed by GRS based on the
SUSA code package [3]. An alternate approach, the two-
step method, utilizes generalized perturbation theory in
the first step and stochastic sampling in the second step
[4, 5]. The purpose of this paper is to show consistency
between these two methods in the framework of phase I-3
of the UAM benchmark. As defined in the UAM benchmark
specifications, the Three Mile Island Unit 1 (TMI) core
will be the focus of application for the XSUSA and two-
step methods. The TMI core is chosen for analysis mainly
because it has been the focus of past benchmark problems
and is therefore of great familiarity in the nuclear engineering
community [6].

The two-step method is motivated largely by the com-
putationally expensive solution of the transport equation.
In the stochastic sampling approach there is effectively a
one-to-one mapping between the solutions of the transport
equation and the set of homogenized cross section inputs
for a core simulator. Alternatively, for practical problems the
two-step method provides a means by which an unlimited
number of core simulator inputs can be generated at the
cost of relatively few transport-type solutions. The means
mentioned above is a few-group covariance matrix whose
elements are generated with linear perturbation theory.
Hence, the quality of the core simulator inputs produced
by the two-step method is limited by the extent to which
linear perturbation theory can describe the system under
study. Contrarily, stochastic sampling through the XSUSA
approach produces core simulator random inputs whose
distributions are not subject to linear approximations. This
paper shows that the linear approximations used in the two-
step method can be remarkably accurate.

2. Methodology

Both the stochastic and two-step methods actively use the
modules in SCALE to propagate cross section uncertainties
[7]. Also, both methods make strong use of SCALE’s 44-
group covariance library. The multigroup cross sections are
assumed to follow a multivariate normal distribution and
so expected values and a covariance matrix suffice to fully
describe the distribution. In the XSUSA approach, all input
parameters are varied simultaneously, and the number of
required calculations to achieve a certain statistical accuracy
in output parameters of interest is independent of the
number of inputs [2]. The number of required runs can

be calculated by Wilks’ formula, which gives the confidence
level that the maximum code output will not exceed with
some specified probability. Contrarily, the two-step method
depends on the number of input parameters since each
input requires a transport-like solution. The two different
methodologies are summarized below.

2.1. XSUSA Approach. The covariance matrix between
inputs plays a central role in stochastic sampling. Cross
section uncertainties are correlated, and the degree of
correlation can be described by a covariance matrix. Cross
section uncertainties must be perturbed such that their
correlation relations are always preserved. If X is a vector
of mean values whose covariance relations are defined by

the matrix Σ, then correlated random variables X′ can be
generated by applying [8]

X
′ = X + A

T
Z. (1)

In (1) the operator A
T

is the upper right triangular matrix
obtained by taking the Cholesky decomposition of the
covariance matrix. Every covariance matrix is Hermitian
and positive definite; thus, all covariance matrices have a

Cholesky decomposition Σ = A
T
A. The vector Z in (1)

is a random normal vector. When A
T

multiplies Z, linear
combinations of the uncertainties are taken in accordance
with their covariance relations, and so X

′
is normally

distributed with covariance Σ.
Hence, to produce perturbed cross sections X

′
, only the

Cholesky decomposition of the cross section’s covariance
matrix is needed along with a random normal vector. In
the XSUSA approach, ENDF/B-VII nuclear data in the
SCALE 238-group structure are used. Spectral calculations
are performed in BONAMI and CENTRM to produce a
problem-specific cross section library, as seen in Figure 1.
By use of SCALE’s 44-group covariance library with the
problem-specific library generated by the spectral calcula-
tions, the XSUSA code applies perturbations to create a
set of N varied, problem-dependent cross section libraries.
Specifically, the MEDUSA module samples the 44-group
covariance library that is enlarged to accommodate all
problem-specific nuclides and reactions. CLAROL-plus then
takes the output from MEDUSA and creates a problem-
specific multigroup library. The XSUSA code works to make
sure varied data are physically consistent. This procedure
does not include the implicit effects of uncertainties in self-
shielding, but extensions are currently being made to include
these effects [9].

Each set of N cross section libraries produced by XSUSA
is passed to SCALE’s lattice physics transport solver NEWT,
which in turns produces N perturbed, homogenized, few-
group cross section libraries. The perturbed few-group
libraries are then used as input for core simulators such
as PARCS [11] and QUABOX/CUBBOX [12]. Once all N
libraries are processed by the core simulator, statistics can
be taken on the output parameters of interest. As indicated
in Figure 1, NEWT can be replaced by any of SCALE’s
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Figure 1: Flow diagram of the XSUSA approach starting from use of the ENDF/B-VII 238-group library and ending with a statistical
evaluation of output parameters.

transport solvers. For example, XSDRN can be used for one-
dimensional (1D) calculations and KENO for Monte Carlo
reference solutions [2].

2.2. Two-Step Method. Unlike the XSUSA approach, the two-
step method is only partly based on sampling techniques. In
the first step it makes use of the generalized adjoint for the
transport equation [13]. In the two-step method, problem-
dependent self-shielded data are also generated before any
perturbed cross sections are calculated, as seen in Figure 2.
Using the problem-dependent cross sections, the TSUNAMI
module is applied to calculate the forward transport, adjoint
transport, and generalized adjoint transport solutions to
the problem at hand. The SCALE module SAMS then uses
the problem solutions to calculate sensitivity coefficients for
responses of interest. A response RxG for reaction type x in
broad-group G is defined as a ratio of inner products with
the forward neutron flux [10]:

RxG = 〈H1Φ〉
〈H2Φ〉 . (2)

The explicit sensitivity coefficient of the response RxG with
respect to some nuclear data parameter σng in the transport
equation is then given as [10]

∂RxG

∂σng
=
〈
Φ
(
∂H1/∂σng

)〉

〈ΦH1〉 −
〈
Φ
(
∂H2/∂σng

)〉

〈ΦH2〉

+

〈
Γ∗xG

∂(L− λP)
∂σng

Φ

〉
,

(3)

where Φ is the solution of the forward transport equation, L
is the migration and loss operator, and P is the production
operator.

The generalized adjoint Γ∗xG can be obtained by solving
the generalized adjoint transport equation in [10]

(L∗ − λP∗)Γ∗xG =
1
RxG

dRxG

dΦ
. (4)

The solution of (4) requires the solution of the adjoint trans-
port problem for each response. The pertinent responses
of interest are the homogenized few-group cross sections
needed for core simulators. Equations (3) and (4) above
are used to compute explicit sensitivity coefficients. The
TSUNAMI methodology incorporates implicit sensitivity
effects arising from resonance self-shielding [10].

If the covariance matrix Ci of some input parameters is

available along with the sensitivities S relating the change in
outputs with respect to the change in input parameters, the
“sandwich rule” can be applied to obtain a covariance matrix

for the outputs Co. The “sandwich rule” is expressed in [14]

Co = SCiS
T
. (5)

Consequently, since Ci is the SCALE 44-group covariance
matrix, a covariance matrix for the few-group homoge-
nized cross sections can be obtained. The SCALE module
TSUNAMI-IP is used to generate a global covariance matrix
relating the few-group cross sections in each assembly and
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Figure 2: Flow diagram for the proposed two-step method, which mainly utilizes the generalized perturbation theory modules in SCALE
[10].

reflector regions comprising a full-core problem. With (1),
this global covariance matrix is sampled to produce N
perturbed cross section libraries that can then be used as
input for a core simulator. By applying the XSUSA and two-
step methods to calculate uncertainties in output param-
eters of interest for the full-core TMI problem, it can be
shown that the two different approaches produce consistent
results.

3. Application

3.1. Implementation. The computational implementation of
the two-step and XSUSA methods strays somewhat from
their theoretical formulations. Specifically, modifications
must be made since the generalized perturbation theory
capabilities in SCALE are currently limited to only some
of the responses required by core simulators. First, the
TSUNAMI module currently cannot compute the uncer-
tainty in the few-group homogenized transport cross section.
However, uncertainties in the total and scatter cross sections
can be calculated. To approximate perturbations to the
transport cross section, is used the following:

Σ∗tr,G = Σt,G − μΣs,G. (6)

The average cosine of the scattering angle μ is held constant
while the total cross sections Σt,G and scatter cross sections
Σs,G are perturbed to yield an effectively perturbed transport
cross section Σ∗tr,G that can be used as input to a core
simulator. Normally a critical spectrum based on either
the P1 or B1 approximation is utilized to compute few-
group cross sections. However, the critical spectrum cannot
be correctly accounted for in the TSUNAMI generalized
perturbation theory methodology. Consequently, in the
proceeding analysis the default B1 critical spectrum calcu-
lation in SCALE is disabled in favor of the simplified P1
formulation shown in (6). Similarly, TSUNAMI does not
generate uncertainties for kappa, the average energy release
per fission event. To calculate a perturbed kappa-fission
cross section, the average value of kappa κ is multiplied by
a perturbed fission cross section Σ f ,G to obtain an effec-
tively perturbed kappa-fission cross section κΣ∗f ,G as shown
in

κΣ∗f ,G = κΣ f ,G. (7)

A more subtle modification must be made when calculating
the uncertainties in assembly discontinuity factors (ADFs).
At the assembly level where reflective boundary conditions
are used, TSUNAMI can approximate ADF uncertainties
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very well by taking the ratio of the average flux of a thin
surface at the assembly boundary to the assembly averaged
flux [15]. A cell volume normalization factor is also needed
to account for the size of the thin surface at the assembly
boundary. While this approach is valid for an infinite
system, TSUNAMI is currently not capable of accurately
quantifying ADF uncertainties at reflector interfaces due to
leakage effects. To calculate uncertainties in few-group ADFs
along reflector interfaces, a method developed by Yankov
et al. is used [15]. The method is based on the 1D adjoint
diffusion approximation generally used to treat reflector
interface ADFs, the neutron balance equation on a fuel
assembly/reflector interface, and the “sandwich rule.”

The two-step method is presented algorithmically in
Table 1. The majority of the algorithm consists of file manip-
ulations. In the second step of the algorithm, it is important
to check that the global covariance matrix produced by
TSUNAMI-IP is positive definite. The global covariance
matrix consists of examining the correlations among few-
group cross sections between all assemblies in the core. Use
of a global covariance matrix is essential when sampling cross
sections for an entire core, since otherwise the similarity
of the nuclide composition of different fuel assembly types
is neglected. If the global covariance matrix is not used,
the output parameter uncertainties can be greatly misrepre-
sented. In most cases, the global covariance matrix produced
by TSUNAMI-IP will only be nearly positive definite due to
a lack of diagonal dominance. However, the matrix can be
made more diagonally dominant by multiplying the matrix’s
off-diagonal terms by 1 − ε for some very small value
ε.

Note that the XSUSA approach does not require any of
these modifications since it is fundamentally a statistically
based approach, whereas the two-step method uses a deter-
ministic approach in the first step.

3.2. Results

3.2.1. Pin-Cell Calculations. Before the two-step and XSUSA
methods are applied to a full core problem, it is prudent to
perform a preliminary investigation on an easily tractable
problem. Such a tractable problem consists of a single TMI
pin-cell, as defined in the UAM benchmark [1]. Since the two
methods of interest fundamentally work with covariances,
the preliminary investigation will compare how the two-step
and XSUSA methods can calculate variances and covariances
for few-group parameters. Recall that SCALE/TSUNAMI,
the underlying code system used in the two-step method,
considers both the explicit and implicit contributions from
cross sections. The XSUSA method only considers explicit
effects for the same perturbations. Consequently, to produce
a fair comparison the implicit sensitivity coefficient com-
ponent is disabled in TSUNAMI. To this end, 1000 XSUSA
samples of few-group scatter and fission cross sections are
compared to those produced by the modified TSUNAMI
code.

First, the standard deviations for the scatter and fission
cross sections are compared in Figure 3, which depicts ratios

Table 1: Algorithm for applying the two-step method using SCALE
and a core simulator.

(1)

For each assembly and reflector in the core, create a
TSUNAMI-2D input file. In each input, responses should
correspond to the few-group total, absorption, nu-fission,
fission, Chi, and scatter cross sections. Responses for ADFs
should also be specified. The TSUNAMI-2D input files
can be executed in parallel.

(2)

From the “.sdf” sensitivity files in TSUNAMI-2D outputs,
use TSUNAMI-IP to generate a global covariance matrix
along with mean and standard deviations of the responses.
Verify that the global covariance matrix is positive definite.

(3)

Sample the covariance matrix to produce N perturbed
cross section sets. Using (6) and (7), process the perturbed
cross sections to obtain perturbed values for the transport
and kappa-fission cross sections. Also, apply the method
developed by Yankov et al. [15] to determine uncertainties
in the reflector ADFs.

(4)
Using each set of perturbed cross sections, produce N
input files for the core simulator.

(5)

Execute the core simulator N times using a different cross
section set each time. These executions can be done in
parallel.

(6)
Scanning the core simulator’s N output files, extract
relevant data. Perform a statistical analysis on the relevant
output data.

of standard deviations produced by XSUSA and SCALE. In
Figure 3, two different SCALE results are shown. The first
result, labeled “GPT(explicit),” considers only the explicit
sensitivity coefficients in SCALE. The second result, labeled
“GPT(explicit, XSUSA),” not only considers the explicit
sensitivity coefficients but also utilizes the same perturbation
factors generated by the XSUSA simulations. For an in-
depth discussion of how perturbation factors are used in
the pertinent methodologies the interested reader is referred
to [16]. Ideally, all ratios in Figure 3 would be identical
unity in the case where the responses depend linearly
on the uncertain parameters. However, since XSUSA is a
statistical method, some variability is present in the results.
Some variability can also result from nonlinear phenomena.
When the same perturbation factors are used in SCALE
and XSUSA, all points are well contained in the 95%
confidence interval bounds. The same phenomenon can
be observed when the generalized perturbation theory and
statistically generated covariance matrices are compared in
Figure 4.

In Figure 4 the correlation coefficients should ideally lay
along the dotted line, representing a one-to-one relationship.
Figure 4(b) has points concentrated more closely around
the dotted line because identical perturbation factors are
used in XSUSA and SCALE. All effects considered, the slight
discrepancies visible in Figure 4(b) must be from nonlinear
effects. The black lines bounding the points in Figure 4
represent the 95% confidence bounds for the correlation
coefficients calculated with the Fisher transformation [17].
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Table 2: Uncertainty in the effective multiplication factor from using the two-step and XSUSA methods with a sample size of 290.

Two-step method XSUSA method Absolute difference (pcm)

k-eff mean 1.30268 1.30330 62

k-eff stand. deviation 0.00569 0.00564∗ 5

Relative SD % 0.43706 0.43272
∗

The 95% confidence interval is [0.00522, 0.00614].

Table 3: Uncertainty in the effective multiplication factor from using “one-step” schemes.

XSUSA/KENO TSUNAMI-3D Absolute difference (pcm)

k-eff mean 1.30294 1.30279 15

k-eff stand. deviation 0.00608∗1 0.00588∗2 20

Relative SD % 0.46679 0.45120
∗1

The 95% confidence interval is [0.00563, 0.00661]. ∗2The 95% confidence interval is [0.00544, 0.00639].

3.2.2. Full-Core Calculations. The TMI core under con-
sideration consists of 11 different UO2 assemblies and a
reflector region placed in 1/8 symmetry. All control rods are
ejected from the core, which is at hot zero power [1]. By
use of the XSUSA and two-step methods, uncertainties are
obtained for the core-wide multiplication factor and for the
assembly-wise relative power distribution. For a two-group
formulation, each assembly in the TMI core requires 11
perturbed cross sections. These are the transport, absorption,
kappa-fission, and nu-fission cross sections along with a
down-scatter cross section and two ADFs. The reflector
region requires only 7 cross section inputs for a total of 128
perturbed cross sections per core simulation.

The core simulator utilized for the proceeding analysis is
PARCS. The multigroup NEM nodal kernel is used to execute
all 290 core simulations [11]. Initially 300 core simulations
were proposed, but some of the cross section perturbations
in the two-step method were too large, so PARCS was
unable to produce a converged solution. The large number
of core simulations ensures that the largest output values
obtained will not be exceeded with a high probability by
Wilks’ formula. The multiplication factor uncertainty results
obtained with the XSUSA and two-step methods for the TMI
core are summarized in Table 2. The table clearly shows that
the XSUSA and two-step methods can consistently calculate
uncertainties in the multiplication factor.

Both the “one-step” reference solutions and the two-
step and XSUSA methods produced results that are well
within statistical uncertainty of each other, as evidenced
by comparing Tables 2 and 3. The agreement between the
“one-step” reference solutions and between the two-step
and XSUSA methods appears to be better than the overall
agreement among all four calculation schemes.

The mean power distributions obtained from the
XSUSA/PARCS and two-step methods are shown in Figure 5
along with XSUSA/KENO reference solutions. The values
displayed in Figure 5 are relative power distributions such
that the mean power in the core is unity. As expected,
the mean power distributions predicted by the XSUSA and
two-step methods are very similar, with the largest node-
wise discrepancy being less than 1%. The relative standard
deviation (%) in power for each node is shown in Figure 6.

Before looking at the numerical values of the uncertainty
in the core power distribution calculated by the three meth-
ods in Figures 6 and 7, it is evident that the distribution of
uncertainty is spread evenly in all the methods. Uncertainties
with the highest magnitudes congregate around the center
of the core. This is due to the radial heterogeneity of
the core configuration [18]. The two-step method seems
to attribute less uncertainty overall to each nodal power.
Although the reasons for this observation are currently under
investigation, the authors have noticed that the relative power
distribution uncertainties are particularly sensitive to the way
in which uncertainties are propagated to the transport cross
section in the two-step method.

4. Conclusions

The core simulator output uncertainties for the TMI core
obtained with the XSUSA and two-step methods indicate
that both methods are consistent in general and are able to
propagate nuclear data uncertainties to the core simulator.
However, further investigation is needed to explain some of
the discrepancies observed between the two methods, espe-
cially in the calculation of uncertainty in the relative power
distribution. Since the TMI core used in this analysis is rel-
atively homogeneous, the linear approximations employed
by the two-step method are completely satisfactory. While
the authors anticipate that the linear approximations will
hold for more inhomogeneous cores, such as the MOX cores
specified in the UAM benchmark [1], this matter should be
examined in greater detail.

Despite some of the current limitations of the general-
ized perturbation theory implementations in SCALE, both
uncertainty quantification methods yield an uncertainty of
Δk = 0.5% in the core simulator k-effective. Currently, the
limitations of generalized perturbation theory as applied in
the two-step method make the XSUSA approach a more
robust choice for reactor uncertainty analysis. In order
to perform a steady-state uncertainty analysis, methods
should be developed in the current generalized perturbation
theory framework in SCALE to capture all uncertainty
within reach of the XSUSA approach. Methods should
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are calculated such that unity is the core average power. Quarter symmetry is displayed.
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1.17 1.14 1.17 1.16 1.10

0.12 0.34 0.40 1.22 1.89 1.89

0.84 0.85 0.26 0.46 1.53 1.89 1.10

1.85 1.57 1.18 0.27 0.46 1.22 1.16

2.40 2.38 1.76 1.18 0.26 0.40 1.17 1.14

2.98 2.69 2.38 1.57 0.85 0.34 1.14 1.26

3.04 2.98 2.40 1.85 0.84 0.12 1.17 1.37

Figure 6: Relative standard deviation (%) calculated by the two-step and XSUSA methods along with the XSUSA/KENO reference.
Uncertainties in assembly discontinuity factors are included. Quarter symmetry is displayed.
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1.95 1.98 1.53 1.26 0.54 0.23 0.81 0.98

95% upper confidence bound

1.15 1.07 1.02

0.96 0.94 0.97 0.95 0.86

0.27 0.36 0.29 0.96 1.48 1.53

0.63 0.72 0.24 0.35 1.19 1.48 0.86

1.48 1.2 1.02 0.35 0.35 0.96 0.95

1.8 1.89 1.36 1.02 0.24 0.29 0.97 1.02

2.33 2.03 1.89 1.2 0.72 0.36 0.94 1.07

2.29 2.33 1.80 1.48 0.63 0.27 0.96 1.15

1.41 1.31 1.20

1.25 1.22 1.30 1.25 1.08

0.05 0.37 0.34 1.36 2.12 2.06

0.86 0.99 0.27 0.40 1.70 2.12 1.08

2.06 1.66 1.39 0.35 0.40 1.36 1.25

2.53 2.63 1.89 1.39 0.27 0.34 1.30 1.20

3.25 2.84 2.63 1.66 0.99 0.37 1.22 1.31

3.20 3.25 2.53 2.06 0.86 0.05 1.25 1.41

XSUSA method
95% lower confidence bound

95% upper confidence bound

1.67 1.54 1.42

1.47 1.44 1.53 1.47 1.27

0.06 0.44 0.40 1.60 2.50 2.42

1.02 1.17 0.32 0.47 2.00 2.50 1.27

2.42 1.96 1.64 0.41 0.47 1.60 1.47

2.98 3.10 2.23 1.64 0.32 0.40 1.53 1.42

3.83 3.34 3.10 1.96 1.17 0.44 1.44 1.54

3.77 3.83 2.98 2.42 1.02 0.06 1.47 1.67

XSUSA/KENO
95% lower confidence bound

1.26 1.17 1.05

1.08 1.06 1.08 1.07 1.02

0.11 0.31 0.37 1.13 1.75 1.75

0.78 0.78 0.25 0.42 1.41 1.75 1.02

1.71 1.45 1.10 0.25 0.42 1.13 1.07

2.23 2.20 1.63 1.10 0.25 0.37 1.08 1.05

2.76 2.49 2.20 1.45 0.78 0.31 1.06 1.17

2.81 2.76 2.23 1.71 0.78 0.11 1.08 1.26

95% upper confidence bound

1.48 1.37 1.24

1.27 1.24 1.27 1.26 1.19

0.13 0.37 0.43 1.33 2.05 2.05

0.91 0.92 0.29 0.50 1.66 2.05 1.19

2.01 1.70 1.29 0.30 0.50 1.33 1.26

2.61 2.59 1.92 1.29 0.29 0.43 1.27 1.24

3.24 2.92 2.59 1.70 0.92 0.37 1.24 1.37

3.30 3.24 2.61 2.01 0.91 0.13 1.27 1.48

Figure 7: The 95% confidence bounds are shown for the relative standard deviations corresponding to Figure 6.
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also be developed so that two-step-type methods can be
applied to burnup and transient calculations, as defined in
phases II-III of the UAM benchmark. The XSUSA approach
already allows for such calculations, as evident from
[16, 19].

In terms of efficiency, the XSUSA and two-step methods
require similar computation times if parallel computing is
employed. For the TMI core, 128 transport-like solutions
on an assembly were required to obtain a global covariance
matrix in TSUNAMI, one solution for each response.
To obtain the desired statistical accuracy this covariance
matrix was sampled around 300 times. Relatively speaking,
sampling the covariance matrix and running the perturbed
cross sections through a core simulator are free. Since no
covariance matrix is used in the XSUSA approach, some
3600 full transport solutions on an assembly are needed to
be able to execute 300 core simulations (11 assemblies plus
1 reflector, multiplied by 300 perturbed cross section sets).
To summarize, for full-core problems the computational
burden is much less when the two-step method is used.
However, due to the nature of parallel processing the two-
step and XSUSA methods can take the same amount of
time. Overall, more work should be done with the two-
step method to make it a viable tool for uncertainty
quantification in core simulations. However, the results
in this paper suggest that the two-step method can be
made to be fully consistent with more versatile stochastic
methods.
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