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INTRODUCTION

 

 

Most of the leading three-dimensional (3D) 

computational fluid dynamics (CFD) software for 

turbulent flow simulations in geometries of practical 

interest solves the Reynolds-averaged Navier-Stokes 

(RANS) equation with closure turbulence models (e.g., 

k-ε, k-ω, low Reynolds number turbulence model). 

Though RANS-based turbulence models can provide a 

reasonably accurate time-averaged behavior for steady 

state flows, they usually fail to deliver the details and 

accuracy needed to follow a flow instability transient, 

model thermal striping physics or capture transient 

forcing terms in flow-induced structural vibrations in a 

nuclear reactor.  

Several persisting issues in other approaches for 

turbulent flow simulation [e.g., those related to parallel 

scalability and very fine grid requirements in large eddy 

simulation (LES) for incompressible flows] can be 

resolved by a new kinetic method called the lattice 

Boltzmann method (LBM) [1], which has better 

algorithmic parallel scalability and can use a longer time 

step than Navier-Stokes equation (NSE)-based explicit 

solvers, resulting in a significant speedup and reduced 

wall-clock time for large simulations of practical interest. 

Compared with the NSE-based approaches, use of LBM 

offers several advantages, including the following. 

1. LBM-based turbulent flow simulations are based on a 

first-order partial differential equation (PDE), the 

lattice Boltzmann equation, in contrast to the second-

order PDE form of NSE. Also, the nonlinear 

convective term of NSE is avoided by using an 

advection-collision algorithm in LBM. The 

nonlinearity is hidden in the quadratic velocity terms 

of the equilibrium distribution function in LBM. 

Because of this, LBM simulations are more robust 

and relatively less prone to numerical instabilities in 

capturing large gradients. 

2. LBM essentially simulates the incompressible flows 

by using a quasi-compressible approach in which the 

pressure is given by a density-dependent equation of 

                                                           

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-

00OR22725 with the US Department of Energy. The US government retains and the 

publisher, by accepting the article for publication, acknowledges that the US government 

retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce 

the published form of this manuscript, or allow others to do so, for US government 

purposes. 

state. Because pressure is not an independent variable 

of the simulation, there is no need to solve the elliptic 

pressure Poisson equation in LBM. Note that because 

of its elliptic nature, the pressure Poisson equation 

needs to be iteratively solved in the NSE-based 

incompressible flow solvers and requires significant 

global communications for parallel simulations, 

adversely affecting their scalability for large 

problems. 

3. The time step, dt, and the spatial step, dx, in LBM are 

strictly coupled through the so-called light-cone 

condition, dx = c.dt, where c is the constant 

characteristic speed of the lattice. Because of this, the 

numerical stability criterion for LBM differs from 

NSE-based explicit solvers. In LBM, dt   dx, rather 

than the dt   dx
2
 of NSE [2], implying that the time 

steps do not need to reduce quadratically with 

decreasing mesh size, which indicates a relatively 

huge time saving for high-resolution simulation of 

turbulent flows. 

 

PRATHAM CODE 

 

At the Oak Ridge National Laboratory, efforts are 

under way to develop a 3D, parallel LBM code—called 

PRATHAM (PaRAllel Thermal Hydraulic simulations 

using Advanced Mesoscopic Methods)—to demonstrate 

the accuracy and scalability of LBM for turbulent flow 

simulations in nuclear applications. The code has been 

developed using FORTRAN-90, and parallelized using 

the message passing interface MPI library. Silo library is 

used to compact and write the data files, and VisIt 

visualization software is used to post-process the 

simulation data in parallel. Both the single relaxation time 

(SRT) [1] and multi relaxation time (MRT) [3-4] LBM 

schemes have been implemented in PRATHAM. To 

capture turbulence without prohibitively increasing the 

grid resolution requirements, an LES approach [5] is 

adopted allowing large scale eddies to be numerically 

resolved while modeling the smaller (subgrid) eddies. In 

this work, a Smagorinsky model has been used, which 

modifies the fluid viscosity by an additional eddy 

viscosity depending on the magnitude of the rate-of-strain 

tensor. In LBM, this is achieved by locally varying the 

relaxation time of the fluid. 
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TEST PROBLEMS  

 

To demonstrate the applicability of LBM, and to 

verify the computational package under development, 

three test problems have been simulated. The first and 

second test cases are for flow inside a lid-driven cavity, 

and the third test case is flow around a cylinder. In both 

the problems, the most important parameter governing the 

solutions is Reynolds number, Re = UL/, where U is the 

velocity scale, L is a characteristic length, and  is the 

kinematic viscosity of the fluid. The characteristic time 

scale is defined as t0 = L/U and the nondimensional time 

is defined to be t* = t / t0. Note that PRATHAM is fully 

3D, and the two-dimensional (2D) tests were run by 

collapsing the third dimension to retain only two grid 

points. Periodic boundaries were used along the third 

dimension for these 2D simulations. 

In a lid-driven cavity problem, a square cavity is 

completely filled with an incompressible fluid and flow is 

driven by the motion of the top surface (lid). For this case, 

L is the cavity length and U is the speed of the lid. 

Figure 1 illustrates the 2D case. 

 
(a) 

 
(b) 

Fig. 1. PRATHAM simulation of flow inside a two-

dimensional lid-driven cavity for Re = 1,000 using a 

(200)
2
 lattice: (a) problem schematic, (b) validation of 

centerline velocity profile with Ghia et al. [6]. 

Figure 1(a) shows the steady state flow pattern inside 

the cavity, and one can clearly identify the primary vortex 

and secondary vortex. In Fig. 1(b), the normalized X-

velocity on the vertical centerline of the cavity [dashed 

line in Fig.1(a)] for Re = 1,000 using PRATHAM is 

compared with the benchmark numerical results of Ghia 

et al. [6], obtained using a stream-function vorticity 

approach. The LBM result agrees well the benchmark 

solution. 

In Fig. 2, preliminary results for a 3D lid-driven 

cavity flow at Re = 10,000 are shown to highlight the 3D 

transient capabilities of PRATHAM. In general, the 3D 

lid-driven cavity problem has several features that make it 

more challenging than the 2D problem. For example, the 

side walls cause the flow to have significantly different 

flow features, as indicated by the enstrophy
†
 contours in 

Fig. 2(a). Also, the 3D flow spans the entire cavity, 

meaning that all fluid particles travel through every point 

of the cavity. This is in contrast to the 2D flow, where 

flow is separated into several vortices, with particles in 

one vortex restricted to that portion of the flow domain. 

The instantaneous streamlines shown in Fig. 2(b) provide 

additional insight into the complexity of the flow field. 

This simulation was run using a (400)
3
 lattice on 480 

computing cores, and exhibited very good scaling 

performance. Parallel speed up and efficiency results for 

PRATHAM will be reported later. [
†
Enstrophy is a 

measure of the local rotational kinetic energy, and defined 

as the square of flow vorticity.] 

(a) 

(b) 

Fig. 2. PRATHAM simulations of flow inside a three-

dimensional lid-driven cavity at Re = 10,000 and t* = 

17.5 showing (a) contours of the enstrophy and 

(b) instantaneous streamlines. This simulation was run for 

200,000 time steps using a (400)
3
 lattice with 480 cores. 
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Finally, PRATHAM was applied to study flow past a 

fixed circular cylinder (Figure 3). In this case, L was set 

equal to the cylinder diameter D and the velocity scale U 

was the inlet velocity, U∞, (assumed to be uniform). Zero-

gradient conditions were used at the domain outlet. 

Simulations were carried out for Re = 200, 500, 1000, 

5000, 100000 using a lattice size of 1000×2×500. 

 
(a) 

 
(b)  

 
(c) 

Fig. 3: Two-dimensional simulation of vortex shedding: 

(a) vortex shedding downstream of the cylinder; 

(b)  oscillation of the vertical velocity component on the 

domain centerline, located just downstream of the 

cylinder; and (c) PRATHAM predictions of the Strouhal 

number for various Reynolds numbers, showing good 

agreement with experimental findings (figure adapted 

from [7]). 

In Fig. 3(a), vorticity contours are shown for Re = 

200 and t* = 100, where alternate vortices are being shed 

from the top and bottom of the cylinder. The vortex 

shedding frequency f is described by the Strouhal number, 

St = fD/U. Frequency f can be estimated from the 

PRATHAM solution by selecting a point just downstream 

of the cylinder and plotting the variation of the Y-velocity 

component with time [Fig. 3(b)]. Figure 3(c), shows good 

agreement of the PRATHAM results with the 

experimental data of Mutlu and Fredose [7]. 

 

CONCLUSIONS 

 

A 3-D parallel LBM code, called PRATHAM, is 

being developed to simulate both the laminar as well as 

turbulent flows. This code features both the SRT and the 

MRT LBM approaches, and their corresponding LES 

models. The code is currently being validated using prior 

experimental and computational results, and has been 

scaled up to 480 cores. Ongoing developments including 

integration of PRATHAM with an in-house Cartesian 

mesh generator for CAD support and implementation of 

nonuniform meshing will allow LBM simulations in 

complex flow geometries.   

 

REFERENCES 

 

1. S. CHEN and G. D. DOOLEN, “Lattice Boltzmann 

Method for Fluid Flows,” Annu. Rev. Fluid Mech., 30, 

329–364 (1998). 

2. M. MEHL, T. NECKE and P. NEUMANN, “Navier–

Stokes and Lattice–Boltzmann on Octree-like Grids in the 

Peano Framework”, Int. J. Numer. Meth. Fluids, 

65(1):67–86, (2011). 

3.  D. D’ HUMIERES, I. GINZBURG, M. KRAFCZYK, 

P. LALLEMAND, and L.-S. Luo, “Multiple-relaxation-

time lattice Boltzmann in three dimensions,” Phil. Trans. 

R. Soc. Lond. A., 360, 437–451 (2002). 

4. K. N. PREMNATH, M. J. PATTISON, and S. 

BANERJEE, “Generalized Lattice Boltzmann Equation 

with Forcing Term for Computation of Wall Bounded 

Turbulent Flows,” Phy. Rev. E., 79, 026703 (2009). 

5.  M. KRAFCZYK, J. TOLKE and L.-S. LUO, “Large-

Eddy Simulations with a Multiple-Relaxation-Time LBE 

Model,” International Journal of Modern Physics B, 17, 

33–39 (2006). 

6.  U. GHIA, K. N. Ghia, and C. T. SHIN, C. T., “High-

Re Solutions for Incompressible Flow Using the Navier-

Stokes Equations and a Multigrid Method,” J. Comp. 

Phys., 48, 387–411 (1982). 

7. B. MUTLU SUMER and J. FREDSOE, 

“Hydrodynamics around Cylindrical Structures,” 

Advanced Series on Ocean Engineering, 26 (2006). 

 

 


