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Overview

• Background and motivation for work

• Analysis
– Failed fuel configurations
– Casks and fuel types
– Computer codes & modeling

• Results

• Conclusions 

• Future work
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Background

• In the United States, used nuclear fuel (UNF) is currently stored in multi-
assembly canisters, and will continue to be for the foreseeable future

• There is no assurance currently that UNF (cladding and fuel) and canister 
internals will be intact (not degraded) after extended storage (ES) periods

• This lack of assurance exists regardless of aging study R&D conducted on 
UNF in the near future (next ~10-20 years) due to uncertainties in 
extrapolating test results (e.g., over ES durations or to include consideration 
of non-experiment conditions).

Source: Connecticut Yankee, 
http://www.connyankee.com/html/fuel_storage.html
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Motivation for work

• The potential for fuel/clad degradation and reconfiguration is 
a key issue for ES that cross-cuts virtually all safety-
significant regulatory requirements
– Will UNF remain in the configuration considered in the original 

safety analysis?
– If the as-analyzed configuration cannot be assured, what are the 

safety and operational implications?

• UNF could be “canned” in single assembly fuel canisters 
that are inserted into larger multi-assembly canisters. 
– This approach would ensure future retrievability of the assemblies, 

but would impact cost and operations
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• To address the issue of, or potential for, fuel reconfiguration 
it is necessary to understand the… 

Likelihood of fuel 
reconfiguration and 
associated 
dependencies
• Thermal history

• Burnup – low, med, high?

• Storage time, conditions

• Stress history and future 
stresses during normal 
transport

• Cladding specifics

• etc…

Potential extent of 
fuel reconfiguration 
and associated 
dependencies
• Thermal history

• Burnup – low, med, high

• Storage time, conditions

• Stress history and future 
stresses during normal 
transport

• Cladding specifics

• etc…

Impact of fuel 
reconfiguration on 
safety
• Criticality safety
• Containment 

• Shielding 

• Thermal 

• Structural performance 

• Fuel handling and ability to 
retrieve 

1 2 3

Experimental efforts are planned to 
address the likelihood and extent of fuel 

reconfiguration during ES; MANY
inter-dependencies to consider

Effort described here to assess  
impact of fuel reconfiguration 
on safety, with initial focus on 

criticality safety

Motivation for work (cont.)
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Analysis – failed fuel configurations

• Six configuration categories identified and considered
– Gross rod failures - Removal of single and multiple rods from assembly 

lattice

– Cladding thinning/loss – Reduced cladding thickness up to removal of 
cladding material (non-physical condition)

– Loss of rod pitch control – Uniform rod pitch expansion within fuel 
storage cell, both with and without cladding; “birdcaging”; non-uniform 
pitch expansion

– Neutron absorber degradation – Gaps of varying location and size; 
uniform thinning of absorber panels

– Loss of assembly position control – Axial displacement of fuel 
assemblies

– Gross assembly failure – Dodecahedral arrays of pellets with varying 
pitch and homogenous rubble with varying H/X ratios
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Analysis – casks and fuel types

• 32-assembly (high-capacity) PWR cask
– Loaded with W 17x17 OFA assemblies
– Representative loading curve end points 

considered
• Fresh 1.92 w/o 235U fuel

• 5 w/o 235U with 44.25 GWd/MTU burnup

– Also considered:
• High burnup (70 GWd/MTU)

• Variations in cooling time (5 – 300 y)

Bottom half cutaway of 32-
assembly PWR canister
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Analysis – casks and fuel types

• 68-assembly (high-capacity) BWR cask
– Loaded with GE 10x10 assemblies
– Fresh 5 w/o 235U fuel
– Also considered:

• Variations in burnup (35 and 70 GWd/MTU)

• Variations in cooling time (5 – 300 y)

Bottom half cutaway of 68-
assembly BWR canister
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Analysis – codes and modeling

• SCALE 6.1 code system used for all analyses
– Depleted fuel compositions calculated with ORIGEN-ARP
– Criticality calculations performed with KENO using 238-group 

ENDF/B-VII library

• Modeling assumptions
– Canister inner volumes flooded with 1.0 g/cm3 water
– All assemblies have identical compositions
– All fuel assemblies/absorber panels experience the same 

degradation
– Canister wall, lid, base plate, and storage basket do not degrade

• Fuel assembly spacers assumed to fail in axial displacement configurations
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Results – interpretation 

– Gross rod failures
• Single rod removal credible

• Multiple rod removal credible

– Cladding thinning/loss
• Cladding thinning credible

• Cladding loss not credible

– Loss of rod pitch control
• Expansion with cladding credible

• Expansion without cladding not credible

– Neutron absorber degradation
• Gaps via degradation credible

• Uniform thinning via degradation credible

– Loss of assembly position control
• Small (≤20 cm) axial misalignments 

credible

• Large (˃20 cm) axial misalignments not 
credible

– Gross assembly failure
• Uniform pellet array not credible

• Homogeneous rubble within absorber 
region credible

• Homogeneous rubble outside absorber 
region not credible

• Our assessment of credibility and relevance for ES

Configurations in green considered 
relevant and potentially credible 

Configurations in red considered 
not credible
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Results – 32-assembly PWR cask

Configuration Maximum keff increase
(% Δkeff)

Single rod removal 0.10

Multiple rod removal 1.87

Cladding thinning/loss 0.035% Δkeff/% cladding loss
(3.52 total)

Loss of rod pitch control, with cladding 2.65

Loss of rod pitch control, without cladding 5.34

Neutron absorber degradation – 5 cm gap 1.24

Neutron absorber degradation – 10 cm gap 2.63

Loss of assembly position control, 20 cm/30 cm 12.49/17.38

Uniform pellet array 22.21

Homogeneous rubble, within absorber region -3.58

Homogeneous rubble, outside absorber region 15.34
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Results – 32-assembly PWR cask
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Results – 32-assembly PWR cask
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Results – 68-assembly BWR cask

Configuration Maximum keff increase
(% Δkeff)

Single rod removal 0.29

Multiple rod removal 2.42

Cladding thinning/loss 0.050% Δkeff/% cladding loss
(4.98 total)

Loss of rod pitch control, with cladding 2.09 (channel)

Loss of rod pitch control, without cladding 15.33

Neutron absorber degradation – 5 cm gap 2.90

Neutron absorber degradation – 10 cm gap 6.36

Loss of assembly position control, 20 cm/38 cm 8.52/20.76

Uniform pellet array 35.63

Homogeneous rubble, within absorber region 9.51

Homogeneous rubble, outside absorber region 30.40
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Results – 68-assembly BWR cask
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Results – 68-assembly BWR cask
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Observations – 32-assembly PWR cask

• Maximum increase in keff for all potentially credible 
configurations considered is: 2.65% ∆keff

• Key assumptions associated with this max increase (that 
must be confirmed/justified):
– Configurations judged to be not credible can be justified
– Axial assembly displacement (beyond absorber panel elevations) 

cannot exceed 7.5 cm
– Cell walls constrain rod pitch expansion
– Absorber degradation conditions do not result in a case that is 

worse than a uniform 10-cm gap in the most reactive axial region
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Observations – 68-assembly BWR 
cask

• Maximum increase in keff for all potentially credible 
configurations considered is: 6.36%∆keff

• Key assumptions associated with this max increase (that 
must be confirmed/justified):
– Configurations judged to be not credible can be justified
– Axial assembly displacement (beyond absorber panel elevations) 

cannot exceed 17.5 cm
– Fuel channel constrains rod pitch expansion
– Poison degradation conditions do not result in a case that is worse 

than a uniform 10-cm gap in the most reactive axial region
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Conclusions

• A set of potential failed fuel configurations was developed 
and analyzed relative to criticality safety
– Study was motivated by ES, but configurations have broader relevance

– Analysis considered representative casks, fuel types, and parameter ranges

• The configurations were then assessed for credibility and 
relevance to ES

• Pending confirmation of key assumptions related to 
credibility of configurations, the increase in keff is < 6.5% Δk 
(for the casks and fuel types considered)

• Increases not significantly dependent on burnup or cooling 
time
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Future work

• Focus effort on reconfiguration of fuel at points on canister 
loading curve
– Consider more enrichment/burnup/cooling time combinations

• Investigate impacts of non-uniform pitch expansion

• Consider range of number of failed assemblies within 
canister
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Backup Slides
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Results: 32-Assembly PWR Canister

Configuration
Maximum keff increase

(% Δkeff)

Limiting Condition

Burnup
(GWd/MTU)

Cooling Time
(years)

Single rod removal 0.10 44.25 300

Multiple rod removal 1.87 44.25 80

Cladding thinning/removal
0.035% Δkeff/% cladding 

loss
(3.52 total)

44.25 80

Expanded rod pitch, clad 2.65 44.25 5

Expanded rod pitch, unclad 5.34 44.25 5

Poison degradation – 5 cm gap 1.24 70 300

Poison degradation – 10 cm gap 2.63 70 300

Axial misalignment, 20 cm/30 cm 12.49/17.38 70/44.25 300/300

Uniform pellet array 22.21 44.25 80

Homogeneous rubble, poison 
elevations

-3.58 0 0

Homogeneous rubble 15.34 44.25 300
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Results: 68-Assembly BWR Canister

Configuration
Maximum keff increase

(% Δkeff)

Limiting Condition

Burnup
(GWd/MTU)

Cooling Time
(years)

Channel 
present?

Single rod removal 0.29 0 0 Yes

Multiple rod removal 2.42 35 300 Yes

Cladding thinning/removal
0.050% Δkeff/% cladding 

loss
(4.98 total)

0 0 Yes

Expanded rod pitch, clad 2.09 (channel) 0 0 No

Expanded rod pitch, unclad 15.33 0 0 No

Poison gap – 5 cm 2.90 70 80 Yes

Poison gap – 10 cm 6.36 70 300 Yes

Axial displacement, 20 cm/38 cm 8.52/20.76 70/70 80/300 Yes/Yes

Uniform pellet array 35.63 70 300 No

Homogeneous rubble, poison 
elevations

9.51 0 0 No

Homogeneous rubble 30.40 70 300 No


