
A New Semi-Implicit Direct Kinetics Method with Analytical Representation of Delayed Neutrons

J.E. Banfield∗ , S.P. Hamilton† , K.T. Clarno† , G. I. Maldonado∗

∗Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996
†Oak Ridge National Laboratory, Oak Ridge, TN 37831

jbanfie1@utk.edu

INTRODUCTION

The key physics involved in accurate prediction of reactor
fuel element behavior includes neutron transport and thermal
hydraulics. For analyzing time- and space-dependent reactor
transient powers, space-time neutron kinetics is the most ac-
curate method, if sufficient high-performance computing re-
sources are available. This work seeks to establish a new
method for space-time neutron kinetics that is amenable to
massively parallel steady-state transport codes, such as Denovo
[1] , that can be coupled with massively parallel fuel perfor-
mance codes, such as the AMP Nuclear Fuel Performance code
[2]. Typically, spatial kinetics will be described using factor-
ization or direct kinetics methods [3]. We introduce a new
method that shares some features of both while employing its
own approximations. One key approximation in this initial
approach is neglecting the time-dependent change in the angu-
lar flux. This approximation allows the omission of the shape
function from the factorization derivation [4] and facilitates a
quasi-steady-state derivation of the transport equation for the
direct method. The method thus becomes a semi-implicit direct
kinetics method featuring an analytic explicit representation of
the precursor groups, dependent upon a time-averaged power.
The advantages of this method are the ease of implementation
in high-fidelity massively parallel transport codes, low amounts
of communication required, and low memory requirements.

METHODOLOGY

Consider the time-dependent multigroup Boltzmann trans-
port equation with an explicit representation of delayed neu-
trons:
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where ψ is the angular flux, t is time, v is velocity, L is the
streaming plus collision operator, S is the scattering matrix, F
is the fission matrix, M is the angular prolongation (moment-to-
angle) operator, D is the angular restriction (angle-to-moment)
operator, χ is the fission spectrum, i denotes the delayed precur-
sor group, I is the number of precursor groups, λi is the group
decay constant, βi is the group delayed neutron fraction, Ci is
the group precursor concentration, and β =

∑
i βi is the total

delayed neutron fraction.

We assume the time derivative of the angular flux is negli-
gible, so that Eq. (1) can be written as

[L −MSD − (1 − β)MFD]ψ = χ

6∑
i=1

λiCi. (3)

The motivation for this assumption is that the neutron velocity
is typically large compared with other quantities in the equation,
so the impact of this term will typically be small. Additionally,
many radiation transport solvers that are not designed specifi-
cally for time-dependent calculations do not explicitly store the
angular flux because of the large memory requirement, so the
angular flux may not be available. Instead of entirely neglecting
this term, an alternative is to approximate the time derivative
of the angular flux with the time derivative of the angular flux
moments φ ≡ Dψ, as was done in [5]. This approach is not
considered further in the current study. The impact of neglect-
ing the angular flux derivative term is that behavior at time
scales on the order of the neutron lifetime cannot be correctly
captured. However, the behavior at longer times is expected to
to be represented well.

Next, we make a further approximation by treating the
precursor concentrations in Eq. (3) fully explicitly (i.e., they
are evaluated at the beginning of a given time interval) and the
angular fluxes in Eq. (2) fully implicitly (i.e., they are evaluated
at the end of a given time interval). Under these assumptions,
Eq. (3) can be written as

[L −MSD − (1 − β)MFD]ψ j+1 = χ

6∑
i=1

λiC
j
i , (4)

where the superscript j denotes a quantity at the beginning of
time interval j, and j + 1 denotes the quantity at the end of that
interval. This equation represents a fixed-source Boltzmann
transport equation with a known source based on the precursor
concentration from the previous time step, easily adaptable to
work within most neutron transport solver frameworks. Addi-
tionally, Eq. (2) is transformed into six independent ordinary
differential equations, the analytical solutions for which can be
written

C j+1
i = C j

i exp(−λi∆t j) +
βi

λi
FDψ j+1

[
1 − exp(−λi∆t j)

]
, (5)

where ∆t j = t j+1 − t j. The solution at each time step thus
requires a fixed source transport solve plus effectively one
exponential evaluation for each delayed precursor group at
each spatial point.



RESULTS

To evaluate the scheme described in the previous section,
we examine an infinite homogenous medium problem so that an
exact solution can be obtained for comparison. In the creation
of this verification program, MATLAB [6] was used.

Point kinetics can be used to obtain an exact solution for
the two-group infinite homogeneous medium problem. How-
ever, if the adjoint is not solved to obtain appropriately weighted
parameters, each energy group must be represented explicitly
in order to obtain the exact solution. The difference in using
multiple energy groups in the point kinetics equations is the
addition of one ODE for each additional energy group, allow-
ing explicit representation of each group’s mean generation
time. This difference primarily appears in the prompt jump
portion of the transient, which showed a 3% difference in the
analyses performed in this report. The power equations in this
formulation appear as the transport equation, which is greatly
simplified for an infinite homogeneous medium.

Two common solution approaches are employed for the
point kinetics evaluations: methods that approximate the matrix
exponential (such as Padé) and Runge-Kutta methods (such as
backward Euler, RK4, RK45, and others) [7]. Although the
Runge-Kutta methods are typically quite fast, they can become
unstable for stiff systems, such as point kinetics equations,
which can necessitate such a small time step that the method
is no longer fast. Padé iterative matrix methods are generally
slow but highly accurate for such systems, depending upon the
approximation order. Alternatively, for problems in which the
reactivity is not changing in time, the exact solution at time t
can be obtained by evaluating the matrix exponential eAt, where
for our problem the matrix A is a matrix combining Eqs. (4)
and (2), i.e.

A =


[
L −MSD − (1 − β)MFD

]
χλ1 · · · χλ6

β1FD −λ1
...

. . .

β6FD −λ6

 . (6)

A similar approach was applied to the point kinetics equations
in [7].

Infinite Homogeneous Medium Benchmark

The first benchmark considered is an infinite homogenous
medium with the delayed neutron parameters given in Table I.
The case is intially at steady state and is then perturbed so that
there is a 0.5% increase in νσ f , resulting in a positive reactivity
insertion of approximately 0.69β. This perturbation results in
a power increase of around a factor of three occurring on the
order of the prompt neutron lifetime, followed by an exponen-
tial growth on a longer time scale governed by the kinetics
parameters. The semi-implicit direct kinetics method (as coded
into MATLAB[6]) is compared with the exact solution found
using the matrix exponential. The evolution of the power from

t = 0 to t = 1.0s is shown in Figure 1 and the error at several
values of t over a range of ∆t values is shown in Figure 2. One
important thing to observe in these results is that the error does
not approach zero as the time step is reduced. This is an ex-
pected result of not correctly capturing the prompt jump portion
of the transient as a result of neglecting the time derivative of
the angular flux. It is interesting to observe, however, that for
a sufficiently small time step, the error does not increase very
significantly from t = 0.1s to t = 10.0s. This indicates that the
primary source of error occurs during the initial prompt jump
and that the time discretization performs well beyond that point.
The Denovo code [1] was able to reproduce the semi-implicit
results as coded into MATLAB within machine precision, veri-
fying the implementation of the method in Denovo.

TABLE I. Delayed Neutron Parameters

Group β λ (s−1)

1 2.4e-4 1.3e-2
2 1.5e-3 3.2e-2
3 1.3e-3 1.2e-1
4 2.9e-3 3.1e-1
5 1.0e-3 1.4
6 2.5e-4 3.8

Fig. 1. Semi-implicit direct kinetics vs. two-group point kinet-
ics (in black).

1-D Fast Reactor Transient

The next benchmark selected for this effort was the Ar-
gonne National Laboratory benchmark problem 16-A1, which
is a 1-dimensional spatial-kinetics benchmark for a sodium fast
reactor [8]. The problem features seven material regions of fuel
blankets, fuel regions, sodium regions, and two energy groups,
cross sections for which are provided in the benchmark. Mesh-
ing information is also provided in the benchmark, as the mesh
used is nonuniform. In order to approximate the quadrature
given in the benchmark, a Gauss-Legendre product quadrature
was used, with four azimuthal and four polar octants. The
convergence criterion was 1e-6, the scattering order used was



Fig. 2. Relative error of semi-implicit decoupled direct kinetics
at t = 0.1, 1.0 s, and 10.0s

P0, and the solver used was a Krylov solver. The perturbation
considered is a change in the material densities in the leftmost
fissile regions, which constitutes an increase in the fission cross
sections, as well as a decrease in the material density in the
rightmost fuel region. The second flux solution, at t=0.01 s,
consists of several intermediary transport, or shape, solutions,
which are run as fixed-source problems. This problem is run us-
ing the analytically determined spatially dependent precursors
as the fixed source. The comparison of the perturbed steady-
state fluxes with the flux at some short time (t = 0.01s) after
the perturbation is shown in Figure 3. The fluxes from the semi-
implicit direct kinetics method used with the Denovo[1] code
at t = 0.01 seconds were within 5% of the fluxes given in the
16-A1 benchmark. These differences are primarily attributable
to the neglect of the time-dependent angular flux change term
in the kinetics equations [4].

Fig. 3. 16-A1 benchmark 1-D fast reactor.

CONCLUSIONS

A previous paper [4] demonstrated that this kinetics
method could be rapidly implemented within a traditional
steady-state radiation transport code and was able to produce
reasonable results for unperturbed and perturbed fluxes against
the 16-A1 benchmark. This paper has shown that the method
is capable of reproducing an exact multigroup point kinetics

solution with an average error on the order of 0.5%. This paper
has also shown the appropriate time step size to use with the
semi-implicit direct kinetics method derived in the paper. In
future work, the time derivative of the angular flux will be ap-
proximated with moments, which will be exact for the infinite
homogenous medium problem [5]. Future work will include
scaling studies that are under way on a cluster owned by the
University of Tennessee Nuclear Engineering department, as
well as the Kraken supercomputer operated by the National
Institute of Computational Sciences. Because of the low error
of the approximation, as well as the ease of implementation,
this method can be favorable for rapid implementation in tra-
ditional steady-state massively parallel transport codes, which
are particularly well suited to coupling with thermal-hydraulic
codes [2].
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