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Abstract - Information security analysis can be performed 

using game theory implemented in dynamic simulations of 

Agent-Based Models (ABMs). Such simulations can be verified 

with the results from game theory analysis and further used to 

explore larger scale, real world scenarios involving multiple 

attackers, defenders, and information assets. Our approach 

addresses imperfect information and scalability that allows us 

to also address previous limitations of current stochastic game 

models. Such models only consider perfect information 

assuming that the defender is always able to detect attacks; 

assuming that the state transition probabilities are fixed 

before the game assuming that the players’ actions are always 

synchronous; and that most models are not scalable with the 

size and complexity of systems under consideration. Our use 

of ABMs yields results of selected experiments that 

demonstrate our proposed approach and provides a 

quantitative measure for realistic information systems and 

their related security scenarios. 

Keywords: Information Security Analysis, Game Theory, 

Simulation, Confidentiality, Integrity, and Availability 

 

1 Introduction 

 Title 44 of the U.S. Code [1] defines Information 

security as a means of protecting information and information 

systems from unauthorized access, use, disclosure, disruption, 

modification, or destruction in order to provide: 

 confidentiality, which means preserving authorized 

restrictions on access and disclosure, including 

means for protecting personal privacy and 

proprietary information; 

 integrity, which means guarding against improper 

information modification or destruction, and includes 

ensuring information nonrepudiation and 

authenticity; and  

 availability, which means ensuring timely and 

reliable access to and use of information 

 Today’s security, economic, and industrial systems 

depend irrevocably on the security of myriad devices and the 

networks that connect them and that operate in ever-changing 

threat environments. Adversaries are applying increasingly 

sophisticated methods to exploit flaws in software, 

telecommunication protocols, and operating systems; to 

infiltrate, exploit, and sabotage weapon systems, command, 

control, and communications capabilities, economic 

infrastructure, and vulnerable control systems; or exfiltrate 

sensitive data, and to obtain control of networked systems in 

order to prepare for and execute attacks. Information security 

continues to evolve in response to disruptive changes with a 

persistent focus on information-centric controls. A healthy 

debate is needed to address balancing endpoint and network 

protection, with a goal of improved enterprise / business risk 

management. 

 Traditional network security solutions, typically 

employing firewalls and intrusion detection devices do not 

have a quantitative decision framework [2]. To this end, a few 

groups of researchers have started advocating the utilization 

of game theoretic approaches [2]. Game Theory provides 

mathematical tools and models for investigating multi-player 

strategic decision making. Another technique that is 

promising is the application of simulations [3]. 

1.1 The Problem 

 The motivation for this work, is highlighted by existing 

and emerging technologies that complement The Roadmap for 

Cybersecurity Research in context of survivability of time-

critical systems [4] and the President’s Comprehensive 

National Cybersecurity Initiative [5] with respect to extending 

cyber security into critical infrastructure domains. 

 The research and practicing community have been 

paying close attention to cyber security problems for more 

than two decades. However, Shiva et al. [6] state and it is 

generally agreed that the problem is far from being solved. In 

fact, some would argue that it is getting worse. As our 

dependence on the cyber infrastructure grows more complex 

and more distributed, the systems that compose it become 

more prone to failures and exploitation [7]. Failures in 

complex, tightly coupled systems can only be mitigated by 

collective decision making and organizational learning [8]. 

This is one way to view this game-theoretical approach. 

The submitted manuscript has been authored by a contractor of the 

U.S. Government under contract DE-AC05-00OR22725. Accordingly, the 

U.S Government retains a nonexclusive, royalty-free license to publish or 

reproduce the published form of this contribution, or allow others to do so, 

for U.S. Government purposes. 



1.2 Paper Organization 

 In this paper, we first define information security and 

briefly review the weakness of traditional security solutions as 

they do not have a quantitative decision framework. We 

address the motivation for this work and in Section 2 

introduce the game theory in the context of information 

security. In that section, we will also identify the 

distinguishing features of our approach to the subject domain. 

We then document four scenarios that will be the basis for the 

development of the Agent-Based Model (ABM) and its 

testing. An overview of the alignment of computational 

models and the challenges with comparing models is 

presented. This concept is important since when comparing 

models, one would want to know which features or 

capabilities are superior to other models. To address this 

subject, we pattern our ABM after two works which utilize a 

similar base, but approach game theory from different 

perspectives. We set our model up according to their 

assumptions and produce some interesting results. In the 

experimental section, we address the probability of successful 

attacks, and the tenants of information security dealing with 

confidentiality, integrity and availability. We conclude with a 

discussion on ideas for future work. 

2 Related Work: Game Theory In 

Information Security 

 Roy et al. provide an excellent review of the taxonomy 

and different approaches to game theory as it can be applied 

to network security [2]. Recent work analyzes information 

security in the subject domain of e-commerce based on game 

theory with the introduction of the penalty parameter of the 

defender and the attacker [9]. This approach encourages the 

defender to invest in information security. Another recent 

paper defines and uses an analytical framework to analyze 

strategic choices and identify the best strategies and 

corresponding defenses used in virtual coordinate systems 

[10]. 

2.1 Limitations of Present Research 

 Many of the current game-theoretic security approaches 

are based on either static game models (e.g. Bayesian 

Formulation [2]) or games with perfect information or games 

with complete information. However, in reality a network 

administrator often faces a dynamic game with incomplete 

and imperfect information against the attacker. Some of the 

current models involving dynamic game with incomplete and 

imperfect information are specific to mobile ad hoc networks 

[11] while others do not consider a realistic attack scenario 

[2]. 

In particular, Roy et al. [2] point out that some of the 

limitations of the present research are: (a) Current stochastic 

game models [12] only consider perfect information and 

assume that the defender is always able to detect attacks; (b) 

Current stochastic game models [13] assume that the state 

transition probabilities are fixed before the game starts and 

these probabilities can be computed from the domain 

knowledge and past statistics; (c) Current game models 

assume that the players’ actions are synchronous, which is not 

always realistic; (d) Most models are not scalable with the 

size and complexity of the system under consideration [2]. 

2.2 Distinguishing Features of Our Approach 

2.2.1 Hypothesis and Explanation 

 Information security analysis can be performed using 

evolutionary game theory implemented in dynamic 

simulations of ABMs. Such simulations can be verified with 

game theory analysis results and further used to explore large-

scale, real world scenarios involving multiple attackers, 

defenders, and information assets.  

2.2.2 Simulation Approach 

 The simulation is based on ABM where the active 

components of the model, referred to as agents, engage in 

interactions on scenario-by-scenario basis.  

2.2.3 Agent-Based Model (ABM) Overview 

 ABMs have been used to simulate evolutionary game 

theory involving multiple players in both cooperative and 

competitive or adversarial postures [14, 15].  

 ABMs bring significant benefits when: (1) interactions 

between the agents are complex, nonlinear, discontinuous or 

discrete; (2) space is crucial and the agents’ positions are not 

fixed; (3) the population is heterogeneous; (4) the topology of 

the interactions are heterogeneous and complex; or (5) the 

agents exhibit complex behavior, including learning and 

adaptation [14, 15]. 

 The agents in the simulation include the attacker and the 

defender or administrator. The agents perform actions that can 

change the system state of the enterprise. For each state, 

agents are limited in the actions they can perform. Depending 

on the scenario, the attacker executes one of many actions 

with an associated probability of deciding to do the action and 

a probability that the action will be successful once the 

decision has been committed. Within each time unit, the 

simulator thread visits each agent giving them the opportunity 

to perform an action or not. 

 The administrator performs actions that begin with the 

probability of detecting something wrong with their 

enterprise. Since the enterprise state is known, the simulation 

limits the administrator’s actions, which for the most part is a 

possible counter action to the most current action performed 

by the attacker. This is a reasonable assumption in that a 

competent administrator is assumed to be able to recognize a 

problem with their system. Before the administrator performs 

any counter action, a detection action is required to confirm 

the type of attack. In the simulation, our time unit represents 

one minute. We executed 1,000 simulations with each 

simulation spanning 250 simulated minutes. Experimental 



 

Figure 1. Enterprise network topology showing attach paths and 

enterprise servers. 

results were aggregated into bins and averaged to arrive at the 

probabilities of attack success. 

 Several scenarios are considered with a description of 

one of many sequence s that can be realized in the simulation 

as depicted in Table 1 for the scenario involving httpd being 

hacked by an attacker and recovered by the administrator. 

This scenario is used to gain an understanding for the agent 

interactions and the probabilities associated with decision 

points. There are many branches that the attacker can decide. 

Our ABM is flexible to accommodate arbitrary topologies and 

enterprise states. For familiarity, we have chosen the network 

topology for our analysis to those similar to Lye and Wing 

[12] and expanded upon in [13] and Wang et al. [16] as 

shown in Fig. 1. 

In Table 1, we use P (a) to indicate the probability of taking 

the action and P(s) to indicate the probability of success of the 

action. P(s) is also the trigger for the state changes within the 

system. For example, at each time unit and for an attacker 

with the opportunity to continue_attacking, the attacker in 

Table 1 has a 0.5 uniform probability of deciding to perform 

that action and if so, has a 0.5 probability of succeeding. 

When the administrator performs a successful detection, in 

this case the detection of httpd being hacked, the payoff of -1 

indicates that the recovery will not be considered until the 

next time unit. Hence the payoff of a negative value is 

interpreted as a delay in the number of time units. At that next 

time frame, the httpd is corrected with a 1.0 probability of 

action and a 1.0 probability of success. The payoff of -20 

indicates a 20 minute duration to perform this action. 

2.2.4 Overview of Challenges with Comparing Models 

Computational models differ widely in their assumptions 

and implementations. These models must be normalized so 

their respective results can be analyzed to determine which 

model is more general and advances the field in question. This 

alignment is needed to determine whether two models can 

produce the same results, which in turn is the basis for critical 

experiments and for tests of whether one model can subsume 

another. This "alignment of computational models" has been 

referred to as “replicating” [17] or “docking” [18]. 

Table 1. Scenario 001 with Simulation Parameters 

Scenario 001. httpd is hacked 

and recovered  

Simulation parameters and notes  

1. The attacker attacks an httpd 

process. 

Attack_http,  P(a)=0.5, P(s)=1.0 

2. The attacker continues the 

attack to compromise the httpd. 

continue_attacking, P(a)=0.5, 

P(s)=0.5 

3. The attacker compromises the 

httpd system, httpd has been 

hacked. 

State change to Httpd_hacked. 

4. The admin detects the hacked 

httpd. 

detect_httpd_hacked, P(a)=0.5, 

P(s)=0.5, payoff = -1. 

5. The admin removes the 

compromised account and 

restarts httpd. 

remove_compromised_account_restar

t_httpd, P(a)=1.0, P(s)=1.0, payoff= -

20. 

Table 2. Scenario 002 Deface Website with Admin Correction 

Scenario 002. Deface Web Site 

1. The httpd is hacked, but not recovered (see Scenario 001). 

2. The attacker defaces the web site. 

3. The admin detects the defaced web site. 

4. The admin restores the website and removes the compromised account. 

Table 3. Scenario 003 Denial Of Service (DOS) 

Scenario 003. Denial of Service (DOS) 

1. The httpd is hacked, but not recovered (see Scenario 001). 

2. The attacker installs a sniffer and a backdoor program. 

3. The attacker runs a DOS virus on the web server. 

4. The network traffic load increases and degrades the system. 

5. The admin detects the traffic volume and identifies a DOS attack. 

6. The admin removes the DOS virus and the compromised account. 

Table 4. Scenario 004 File Server Data Stolen 

Scenario 004. File Server Data Stolen 

1. The httpd is hacked, but not recovered (see Scenario 001). 

2. The attacker installs a sniffer and a backdoor program. 

3. The attacker attempts to crack the file server root password. 

4. The attacker cracks the password; the file server is hacked. 

5. The attacker downloads data from file server. 

6. The admin detects the file server hack. 

7. The admin removes the file server from the network. 

 



Model equivalence testing is of central importance when 

comparing two or more computational models. The 

“equivalence” of models with stochastic elements must be 

defined in a precise statistical context. In many cases this is 

not trivial. There are at least two categories of equivalence 

beyond the initial criterion of numerical identity, (1) 

distributional and (2) relational equivalence. Distributional 

equivalence describes models that produce distributions that 

are statistically equivalent. Relational equivalence describes 

two models that produce the same internal relationship among 

their results [18, 19]. 

2.3 Attack Models 

 For certain defense techniques, some of the best attack 

strategies involve an inflation attack with varying percentages 

of malicious nodes [10].  

2.4 Defense Models 

 From a defense posture, spatiotemporal and spatial 

outlier detections produce the best results against attacks. 

Temporal outlier detection in isolation is ineffective [10]. 

2.5 Experimental Plan to Test Hypothesis 

 We have focused our model on previous works that have 

documented several attack scenarios. The chosen case study 

was developed by interviewing network managers [12, 13]. 

Our enterprise network topology illustrated in Fig. 1 is quite 

similar to the previous papers [13, 16] and serves as our 

exploratory basis. 

2.5.1 States 

 Our enterprise network is typical of many current 

configurations. Our model utilizes the following states from 

Lye and Wing [13] as follows: 

1. normal_operation 

2. httpd_attacked 

3. httpd_hacked  

a. detect. httpd_hacked_detected 

4. ftpd_attacked 

5. ftpd_hacked 

6. website_defaced 

a. detect. website_defaced_detected 

7. webserver_sniffer 

8. webserver_sniffer_detector 

9. webserver_dos_1 

a. detect. webserver_dos_1_detected 

10. webserver_dos_2 

11. fileserver_hacked 

a. detect. fileserver_hacked_detected 

12. fileserver_data_stolen_1 

13. workstation_hacked 

a. detect. workstation_hacked_detected 

14. workstation_data_stolen_1 

15. network_shut_down 

2.5.2 Actions 

An action pair (one from the attacker and one from the 

administrator) causes the system to move from one state to 

another in a probabilistic manner. A single action of the 

attacker can be any part of his attack strategies, such as 

flooding a server with SYN packets or downloading a 

password file. 

When a player takes no action, we denote the inaction as 

ø. Attacker consists of all the actions he can take in all the 

states. The actions can be described as: 

 Attack_httpd 

 Attack_ftpd 

 Continue_attacking 

 Deface_website_leave 

 Install_sniffer 

 Run_DOS_virus 

 Crack_file_server_root_password 

 Crack_workstation_root_password 

 Capture_data 

 Shutdown_Network 

 

The action candidates in each state are taken from this list. For 

example, in the state Normal operation, the attacker has 

actions Attack_httpd, Attack_ftpd and ø. 

In [13, 16] for similar actions taken by the administrator 

are mainly preventive or restorative measures. Our model uses 

the nomenclature provided in [13]. The actions of the 

administrator can be described in the following:  

 Remove_compromised_account_restart_httpd 

 Restore_Website_remove_compromised_account 

 Remove_virus_and_compromised_account 

 Install_sniffer_detector 

 Remove_sniffer_detector 

 Remove_compromised_account_restart_ftpd 

 Remove_compromised_account_sniffer 

 

The explanations of the above actions are similar to that 

of Lye and Wing [13], and Wang et al. [16]. Both papers 

assume that the administrator does not know whether there is 

an attacker or not, as we do. We also assume, as in [13, 16], 

that the attacker may have several objectives and strategies 

that the administrator does not know. Another realistic aspect 

of this model is assignment of probabilities of attack and 

success. Furthermore, not all of the attacker’s actions can be 

observed. 

2.5.3 Parameter Modeling Set 

Following the logic of our of our model of our typical 

enterprise network, Table 5 identifies the parameter modeling 

set that guided the data collection and analysis section for the 

attacker. Table 6 identifies the parameter modeling set that 

guided the data collection and analysis section for the 

defender administrator. 



Figure 3. The probability of successful attacks cumulatively in the 

enterprise network per system time. 

Figure 2. The probability of successful attacks in the enterprise 

network per system time. 

Table 5. Attacker Parameter Modeling Set 

Action Name Prob. 

Action 

Prob. 

Success 

Payoff State 

From 

State 

To 

Attack_httpd 0.5 0.5 10 1 2 

Continue_attacking 0.5 0.5 0 2 3 

Deface_website_leave 0.5 0.5 99 3 6 

Install_sniffer 0.5 0.5 10 3 7 

Run_dos_virus 0.5 0.5 30 7 9 

Crack_file_server- 

root-pw 

0.5 0.5 50 7 11 

Capture_data_file_-

server 

0.5 0.5 999 11 12 

Shutdown_network 0.5 0.5 999 9 15 

 

Table 6. Defender Administrator Parameter Set 

Action Name Prob. 

Action 

Prob. 

Success 

Payoff State 

From 

State 

To 

Detect_httpd_hacked 0.5 0.5 1 3 3a 

Detect_defaced_website 0.5 0.5 -1 6 6a 

Detect_webserver_sniffer 0.5 0.5 -1 7 8 

Remove_sniffer 1.0 1.0 0 8 1 

Remove_compromised_-

account_restart_httpd 

1.0 1.0 10 3a 1 

Restore_website_remove_-

compromised_account 

1.0 1.0 -10 6a 1 

Detect_dos-virus 0.5 0.5 -1 9 9a 

Remove_virus-and_-

compromised_account 

1.0 1.0 -3.0 9a 1 

Detect_fileserver_hacked 0.5 0.5 -1 11 11a 

Detect_fileserver_hacked 0.5 1.0 -1 11 11a 

Remove_compromised_-

account_restore_fileserver 

1.0 1.0 -20 11a 1 

 

3 Experimental Results 

In this section we simulate the security of the enterprise 

network via the above model. We initially address what 

constitutes a successful attack and then address the 

confidentiality, integrity and availability of the enterprise 

network.  

3.1 Security Analysis – Probability of a 

Successful Attack 

The probability of a successful attack is determined by 

the parameter modeling set defined in Table 6. Fig. 2 

illustrates the successful attacks in the enterprise network at 

each time interval (minutes), which is not cumulative. 

Fig. 3 shows the same data as a cumulative distribution 

indicating when the probability of successful attacks reaches 1 

for the arrival rates (0.13, 0.37, 0.65 and 0.94) respectively. 

This particular model illustrates that the attacker has a distinct 

advantage as the arrival rates of the attack increases. 

 

 

3.2 Confidentiality 

Wang et al. [16] define confidentiality as the absence of 

unauthorized disclosure of information. A measure of 

confidentiality is the probability that important data and 

information are not stolen or tampered. We adapt this logic to 

our model and the confidentiality can be shown as: 

C = 1 – (PFileserver_data_stolen × PWorstation_data_stolen)    (1) 

where PFileserver_data_stolen and PWorkstation_data_stolen are the 

probability that the attacker succeeded in the “data stolen” 

category. Fig. 4 illustrates the confidentiality variation over 

time of the PWorstation_data_stolen to illustrate similar data trending. 

When compared to data in [16], it is clearly evident that our 

approach lends itself to the alignment of disparate models 

quite well. 

3.3 Integrity 

Wang et al. [16] define integrity as the absence of 

improper system alterations, preventing improper or 

unauthorized change. It is further described as the probability 

that the normal network services are affected or destroyed. 



Figure 6. Availability dynamics of PWebserver_DOS in the enterprise 

network. 

Figure 4. Confidentiality dynamics of PWorstation_data_stolen in the 

enterprise network. 

Figure 5. Integrity dynamics of PWebsite_defaced in the enterprise 

network. 

Our model follows Lye and Wing [13]. Integrity can be shown 

as: 

I = 1-(PWebsite_defaced × PWebserver_DOS)     (2) 

 

where PWebsite_defaced and PWebserver_DOS denote the probability in 

our model that the attacker succeeded in defacing the website, 

or inserting a virus and/or shutting down the network via the 

actions Website_defaced and Webserver_DOS. Fig. 5 

illustrates the integrity dynamics of PWebsite_defaced over time. 

Again the arrival rate of attacks has a profound effect on the 

dynamics of the probability of the particular website being 

defaced.  

 

3.4 Availability 

Wang et al. [16] define availability as systems being 

available when needed, and computing resources can be 

accessed by authorized users at any time. It is further 

described as whether the authorized users can access the 

information when necessary, when considering the probability 

that the normal network services are affected or destroyed. 

Our model differs from Wang et al. [16] with availability 

expressed as: 

A = 1-(PWebserver_DOS × PNetwork_shut_down).     (3) 

 

Here PWebserver_DOS denotes the probability the attacker succeeded 

in the defacing the website, or inserting a virus and/or 

PNetwork_shut_down denotes shutting down the network via the 

actions Webserver_DOS and Network_shut_down. Fig. 6 

illustrates the availability variation. 

Comparing and contrasting Figs. 4-6, we find 

confidentiality, integrity, and availability decrease at the 

beginning of the attack and then increase over time, as the 

administrator recovers from the attack. Therefore, it is crucial 

to the safety of the system that the administrator can discover 

the attack as early as possible. 

4 Conclusion and Future Work 

The main motivation for this work was that many of the 

current game-theoretic security approaches are based on either 

static game models (e.g. Bayesian Formulation [2]) or games 

with perfect information or games with complete information. 

In reality a network defender (the administrator) often faces a 

dynamic game with incomplete and imperfect information 

against the attacker. Some of the current models involving 

dynamic game with incomplete and imperfect information and 

others do not consider a realistic attack scenario. 

In particular, Roy et al. [2] point out that some of the 

limitations of the present research are: (a) Current stochastic 

game models [12] only consider perfect information and 

assume that the defender is always able to detect attacks; (b) 

Current stochastic game models [12, 13] assume that the state 

transition probabilities are fixed before the game starts and 

these probabilities can be computed from the domain 

knowledge and past statistics. This second premise is the basis 

for our selection of the ABM approach. This allows us to 

expand our data collection beyond fixed probability values. 

Additionally, they state that current game models assume that 

the players’ actions are synchronous, which is not always 



realistic and most models are not scalable with the size and 

complexity of the system under consideration [2]. As we 

embarked on the development of our ABM approach, great 

care was taken to duplicate exacting the underlining 

assumptions (transition probabilities) in the works by Lye and 

Wing [12, 13] and Wang et al. [16]. 

Our model is a simulation based on Agent Based Model 

(ABM) where the active components of the model, the agents, 

engage in interactions on scenario-by-scenario basis. The 

agents in the simulation include the attacker and the defender 

(or administrator). This is in contrast to the previous 

techniques that utilized nonlinear program in MATLAB [13] 

and Petri nets [16]. The agents perform actions that can 

change the system state of the enterprise. For each state, 

agents are limited in the actions they can perform. Depending 

on the scenario, the attacker executes one of many actions 

with an associated probability of deciding to do the action and 

a probability that the action will be successful once the 

decision has been committed. Within each time unit, the 

simulator thread visits each agent giving them the opportunity 

to perform an action or not. In our particular simulation, each 

time unit represented one minute. We executed 1,000 

simulations with each simulation spanning 250 simulated 

minutes. Experimental results were aggregated into bins and 

averaged to arrive at the probabilities of attack success. 

We believe that model equivalence testing 

(normalization) for comparing models is of central importance 

when comparing two or more computational models. The 

“equivalence” of models with stochastic elements must be 

defined in a precise statistical context. In some cases, this is 

not trivial. There are at least two categories of equivalence 

beyond the initial criterion of numerical identity, (1) 

distributional and (2) relational equivalence as described 

earlier. From a comparative perspective, our results matched 

modeling techniques that utilized nonlinear program in 

MATLAB [13] and Petri nets [16], even though our technique 

was quite dissimilar.  

One interesting finding we discovered during the analysis 

of the results is in reality, damage can occur in other states, 

while the initial attack is being repaired. Future work will 

address this subject. We also plan to broaden the field of play, 

allowing multiple attacks to occur over the enterprise. An 

interesting theme will be to address unknown or zero-day 

attacks. The ABM approach will provide security analysts 

with a useful decision-making tool for information security. 

This tool will also provide security analysts and financial 

analysts a useful decision-making tool to augment analysis and 

investments decision making in the enterprise.  
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