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Abstract 

This paper describes a hidden Markov model to assist in the weight measurement error 

that arises from complex vehicle oscillations of a system of discrete masses. Present 

reduction of oscillations is by a smooth, flat, level approach and constant, slow speed in a 

straight line. The model uses this inherent variability to assist in determining the true total 

weight and individual axle weights of a vehicle. The weight distribution dynamics of a 

generic moving vehicle were simulated. The model estimation converged to within 1% of 

the true mass for simulated data. The computational demands of this method, while much 

greater than simple averages, took only seconds to run on a desktop computer. 
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1.  Introduction 

 

Previous work has been performed to estimate static axle weights from multiple sensor 

WIM systems. These works include multiple algorithms varying from Maximum 

Likelihood (Stergioulas et al. 2000) to Kalman Filtering techniques (Sainte-Marie et al. 

1998). More recent developments include a new Statistical Spatial Repeatability (SSR) 

algorithm that removes bias due to pavement (O’Brien et al. 2010) and impact factors 

(O’Brien et al. 2008, 2009). To this end, an effort to perform probabilistic modeling on 

Weigh-in-Motion (WIM) Gen II sensor data was performed in order to reduce error in the 

static weight measurement due to vehicle oscillation.  These errors arise from oscillations 

as a vehicle traverses the WIM system and are a result of true dynamic forces acting on 

the sensors. These dynamics occur, because a vehicle is (i) a multi-body system of 

discrete masses (e.g., body, load, wheels) that are (ii) interconnected by springs (e.g., 

cab-load coupling, wheel suspensions) and are (iii) excited by various aperiodic external 

forces (e.g., uneven terrain, steering changes, acceleration, wind variability, load shifts in 

liquids, engine vibration) with (iv) nonlinear damping by slip-stick friction and shock 

absorbers. Lower-frequency oscillations (1-5 Hz) arise from vehicle dynamics (e.g., side-

to-side rocking, front-to-back rocking, vertical bouncing of the load on the suspension, 

load-bed flexure, twisting about coupling points, and nonlinear couplings among them). 

Higher-frequency oscillations (9-14 Hz) depend on vehicle size (e.g., tire rotation). 

Accurate weights require minimization of these oscillations, which are presently reduced 

via a combination of: (a) minimal excitations by a smooth, flat, level approach, weighing, 

and exit; (b) constant, slow speed driving in a straight line; (c) several single-axle weight 

measurements as the vehicle crosses multiple weigh pads; and (d) continuous motion to 

foster dynamic friction, which reduces the slip-stick friction (Abercrombie et al., 2008).  

 

The work focused on modeling simulated data of a Ford F-250 driving slowly in a 

straight line across a portable low speed Gen II measurement system shown in Figure 1 

(Abercrombie et. al., 2008). Rather than focusing on reconstructing the original signal, 

the emphasis was to estimate the hidden parameters of the vehicle dynamics. A simplified 

model of the moving vehicle was created. The relevant differential equation for the 

simplified model was: 
 

mxt +gxt +kxt = Ft                (1) 

 

where xt is the distance of the vehicle’s center of mass below its equilibrium point at time 

t, x t and x t are the first and second time derivatives of xt, m is the mass of the vehicle, γ 

is the damping coefficient, k is the spring coefficient, and Ft is the external (broadly 

defined) force pushing down on the vehicle at time t. The observations are not directly of 

xt, but rather the readout of a sensor that has its own dynamics and includes measurement 

error. We chose a further simplification: to subsume the sensor dynamics into the sensor 

measurement error. 

 



 
Figure 1. WIM Gen II System diagram showing control/data management pathways 

 

2.  Hidden Markov Model 

 

A hidden Markov model is a probabilistic model of observables (sensor readings) given 

in terms of a hidden state (vehicle position) that is subject to particular transition 

probabilities. These transition probabilities are determined from the differential equations 

that define the dynamics of the vehicular system. The observations include error.  Our 

hidden Markov model discretizes both position and time. It differs from a Kalman filter 

primarily in the method by which the parameters are estimated. 

 

The hidden Markov model is based on a Markov chain of the state X = {xt} which 

transitions over time according to the differential equation.  We allow an arbitrary forcing 

function to act on the vehicle, but model it as independent identically distributed (i.i.d.) 

normal random variables with mean zero and known variance. The observations, S, of the 

hidden Markov model come from the sensor data. Given sensor observations, the 

approach is as follows: (1) choose an initial value of the parameters P, (m,γ,k), (2) use P 

and S to find the expected values of the position at each time, (3) use S and X to find P 

that maximizes the likelihood of the S given X and P (4) go back to step 2 and iterate 

until P converges. This has been implemented and it is possible to show that better 

estimates can be derived from poor initial starts.  

 

The position and derivative of the position at time t+1 can be written in terms of the 

velocity and acceleration at times t and t+1 (as follows from the definition of the time 

derivative where a small time difference  between samples is assumed). 

 

               (2) 

 

xt+1 = xt +
D

2
xt + xt+1( )                (3) 

 

1. System Rationale 

Recent developments for the low-speed Weigh-in-Motion (WIM) Gen II produced 

breakthrough results enabling an order of magnitude improvement in weighing precision 

(better than 0.1% error). Concomitant software and hardware revisions reflect a philosophical 

and practical change to the previously reported approach and the changes presented here 

represent a significant improvement compared to those previously reported (Abercrombie et. 

al., 2005). Moreover, such improvements enable a full set of new commercial/governmental 

application features including the flexibility to extend the systems information and 

communication technology to future needs. Gen II validation testing enabled the development 

team to understand both operational process
 
and product precision issues. Most recently, 

studies on vehicle oscillation error have enabled time-serial error filtration algorithms to be 

developed which were key 

to gaining the higher 

precision as will be 

described here.  

 

Vehicle characterization, 

such as weight and 

volumetric measurements 

has obvious purpose: 

highway inspections, air, rail 

and seaports checkpoints for 

compliance, safety and 

security. Precise and 

accurate load planning characterizations for air and surface movements is a common practice. 

Durable accurate portable devices that can be easily deployed and quickly assembled provide 

obvious advantages over traditional methods.  

1.1 System Overview 

The portable low speed Gen II measurement system is shown in Figure 1. The Gen II system 

automatically obtains from a moving vehicle and its cargo the following data: weight on each 

tire (or pair); single-axle weights; total vehicle weight; axle spacing; longitudinal and 

transverse center of balance; wheel spacing on each axle using from one to four pairs of weigh 

pads. The Gen II system uses the ascertained axle spacing data to derive an estimate of 

vehicle volume (length, width, and height) from two digital camera acquired images. 

Moreover, the system was designed to enable vehicle identification via radio-frequency 

identification tags, barcodes, or manual entry and characterization of the vehicle and cargo. 

The Gen II system also includes features to facilitate data management via a Pocket PC/WiFi-

enabled PDA or cell phone and/or XP-Windows based ruggedized tablet platforms and an 

information infrastructure (including data repository) needed for secure in process visibility. 

The system’s portability features include a total weight of 2200 pounds crated in a specially 

designed ruggedized box, as well as carefully designed physical, electrical and software 

interfaces highly tolerable to weather and human error. Additionally, the Gen II system is 

capable of acquiring data in either a static or dynamic mode when assembled on smooth 

asphalt or concrete surfaces (with roughly no more than 2 degrees of longitudinal or 

transverse slope). 

 Figure 1 - WIM Gen II System Diagram Showing Control/ 

Data Management Pathways.



 

The second derivative is determined by Newton’s second law of motion using Equation 1 

for the value of the acceleration: 
 

xt = Ft + mg- kxt -gxt( ) / m               (4) 

 

These equations can be used to write a relation between the xt for three consecutive times, 

t. This allows for the development of the second derivative, which is necessary to include 

the force function and the parameters. 
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where 
 

   

F t +1 =
Ft + 2Ft +1 + Ft +2

4
                (6) 

 

As a result, expected values for the sequence of positions and parameter estimates can be 

used to compute the smoothed forcing function 

   

F t. The log likelihood of that sequence is 

monotonically equivalent to the mean squared error of the sequence. 

 

In estimating parameters of a hidden Markov model, it is also necessary to have a 

probability distribution of the observations given the hidden states. The sensor 

measurements are modeled as: 
 

st = k
xt + xt+1

2
+g

xt+1 - xt

D
+et

               (7) 

 

where the εt are the sensor errors, which are modeled as independent and identically 

distributed (i.i.d.) normal with mean zero and known variance. (This is actually the 

expected sensor measurement for time t + ½. Using this offset simplifies the analysis.)  

 

(Let P = (m,γ,k) be the parameters, X = {xt} be the state, and S = {st} be the sensor data.) 

 

Now a key observation is that the Ft and εt error terms are linear in state, xt, and also in 

the parameters m, γ, k after multiplying Equation (5) through by m. Therefore maximizing 

the likelihood of X given P or of P given X, because of the i.i.d. normality assumptions, is 

computationally a least squares regression. It is then possible to complete the following 

computations. 

 

1. Given P and S, find the most likely state sequence X. 

2. Given X and S, find the most likely parameters P. 

 

In each case, the likelihood increases. Iterating between the two leads to a locally optimal 

solution. 



 

3.  Simulated Analysis, Experiment, and Results 

 

The analysis used 100 simulated measurements taken over 1 second. The sensor and 

forcing errors were given standard deviations of 100N, which was used as the known 

variance in the fitting. The forcing function values were created randomly according to 

their distribution.  These values were then used to update the state xt according to the 

update relation, Equation (5). At each point, a sensor observation was simulated using the 

sensor equation, Equation (7), wherein the error term was randomly generated according 

to its distribution.  The sensor measurements were then input into the hidden Markov 

model estimation algorithm. The estimation algorithm also requires a preliminary “guess” 

of the parameters, which were intentionally selected to be very different from the true 

values. 

 

Figure 2 shows the fit of the estimated forcing function (in red) as compared to the true 

values (in blue). The forcing function red line essentially overlaps with the horizontal 

axis in Figure 2. It can be seen that the estimate of the forcing function is generally much 

smaller than the actual forcing function.  

 

Figure 3 shows the first of the estimated sensor measurements (in red) as compared to the 

true values (in blue). The initial low estimates of the observations were due to an 

underestimation of the forcing function. The initial low valley in the forcing function, 

when underestimated, results in an overestimate of the sensor error, which in turn leads to 

the low line toward the beginning. Despite the imperfect estimation of the forcing 

function, the sensor estimation was generally fairly good.   

 

More important than the estimations of position and sensor error are the estimates of the 

vehicle parameters. The true, initial guess, and final estimate parameters are shown in 

Table 1. The mass estimate is shown to be within 1% of the true mass.  The spring 

coefficient was not as good, being too high by 33%. The main shortcoming is in the 

damping coefficient, which was estimated at zero. It seems that to better estimate these 

values, more advanced methods need to be employed, such as incorporating prior 

distributions on the parameters. 

 

The model is currently being implemented into a modified Gen II WIM System. 

 

 
 



 
Figure 2. Simulated forcing function data and fitted data (red line overlaying horizontal 

axis) 

 

 

 

 
Figure 3. Estimated sensor data (red) superimposed on the simulated sensor data 

 

 

 

Sensor Measurements (Sample Number) 

 Force (N) 

Sensor Measurements (Sample Number) 

Force (N) 



Table 1. True, initial guess, and final estimate parameters (The initial guess was an 

arbitrary choice simply selected to be different from the true parameters) 

 

 True Initial Final 

Mass 450 kg 700 kg 454 kg 

Damping Coefficient 7300 N/(m/s) 3000 N/(m/s) 0 N/(m/s) 

Spring Coefficient 35000 N/m 70000 N/m 46563 N/m 

 

 

4.  Conclusion 

 

A hidden Markov model was used on simulated data of a Ford F-250 driving slowly in a 

straight line across a portable low speed Gen II measurement system to assist in the 

weight measurement error that arises from complex vehicle oscillations of a system of 

discrete masses. The model estimation converged to within 1% of the true mass for 

simulated data. The computational demands of this method, while much greater than 

simple averages, took only seconds to run on a desktop computer. While our method 

appears to accurately estimate the mass coefficient, the effect of the spring and damping 

coefficient may be too subtle to estimate without longer runs of measurements. Recent 

research on sensor corrugated plates (Bin and Xinguo, 2010) may lend itself to the 

manufacture of larger sensors, thus allowing longer runs of measurements. Further 

research will investigate data requirements for these parameters and for parameters 

within more complex models of vehicle dynamics. Ongoing work is investigating 

extracting better estimates of uncertainty, and exploiting the learned spring coefficients 

associated with tires, as they may be useful for detecting under and over inflated tires. 

Additionally, ongoing work will apply this model to data taken from sensor 

measurements made in the field.  Future goals include the implementation of this model 

into a next generation Weigh-In-Motion system with newly architected load cells. This 

work is ongoing and being funded under the US Army Small Business Innovation 

Research (SBIR) program. In cooperation with International Electronic Machine 

Corporation, the development of a Slow-speed Weigh-in-Motion Error Reduction System 

(SWIMERS) is being developed that will refine and implement the model discussed in 

this paper as well as algorithms and refinements used in the modified Gen II WIM 

System (Abercrombie et al. 2008). 
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