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In a prototypic AHTR design, spherical fuel pebbles
with 30 mm diameter shown in Fig. 2 are employed [3]. 
TRISO particles are embedded within a spherical shell in 
the pebbles with high-density graphite as the binder. This 
spherical shell surrounds a low-density graphite sphere in 
the center of the pebble that affects the overall density of 
the TRISO particle. The detailed information on the 
dimensions of the pebbles and TRISO particle is listed in 
Table 1.  

Fig. 2. Structure of a fuel pebble and TRISO particle [3] 

Table 1 Dimensions of the spherical fuel pebble and 
TRISO particle [4] 
Spherical fuel pebble 

Graphite 
kernel 
radius 
(mm) 

Fuel zone 
outer 
radius 
(mm) 

Coating 
thickness 

(mm) 

Total # 
of 

TRISO 

Volumetric 
fraction of 

TRISO 

9.92 12.5 2.5 2,144 20% 
TRISO particle 

Layer 
Fuel 

kernel 
Porous 
carbon 

Pyro-
carbon 

SiC 
Pyro-
carbon 

Radius 
(mm) 

0.251 0.3425 0.3824 0.4177 0.4577 

The effective properties of the entire pebble were 
evaluated based on the properties of the materials 
composing the fuel pebbles. For the high-density coating 
and filling graphite in the fuel pebbles, H-451 that is used 
as the structural graphite in HTGRs was adopted. The 
information on material properties was summarized by 
Gougar et al. [5]. The physical properties of these 
materials depend on their temperature and per Ref. [4], 
were evaluated in this study based on a reference 
temperature of 750 oC. In addition, the thermal 
conductivity is also a function of the received neutron 
fluence.  

We used volumetric averaging to evaluate the 
effective density and mass weighted averaging to evaluate 
the effective specific heat capacity. The determination of 
the effective thermal conductivity was rather complicated 
and consisted of three steps. First, we considered that the 
total thermal resistance of a TRISO particle is in series 
and computed by the summation of individual thermal 
resistance. The harmonic average was therefore used to 

obtain the effective thermal conductivity of the TRISO 

particle (
TRI
k ) as follows: 
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where i is the layer index inside the TRISO particle. 
Secondly, we treated the spherical shell, in which the 
TRISO particles are embedded in H-451 filling as a 
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Thirdly, Eq. (6) was used to calculate the effective 
thermal conductivity of the entire pebble. The calculated 
values of the effective properties of a pebble are given in 
Table 2. 

Table 2 Effective properties of a fuel pebble 
Fluence 
(×����
n/m2) 

0 0.1 0.2 0.5 1 3-8 

k (W/m-K) 65.89 55.6 47.16 30.77 22.31 20.4 
cp (J/kg-K) 1,635 

ρ  (kg/m3) 1,894 

Fig. 3. Core design in experiment 

Next, a heater bundle as shown in Fig. 3 was chosen 
to emulate the reactor core in our experiments. It consists 
of 7 electric heater rods arranged in an equilateral 
triangular pattern in a circular vessel. The flow channels 
are categorized into the interior sub-channel (type I), and 
the wall sub-channel (type II). Heat transfer coefficients 
in such an arrangement were obtained by Mohanty and 
Sahoo [7, 8]. We adopted the design with P/D of 1.6 and 
W/D of 1.4 since this configuration results in a large 
Nusselt number for the wall sub-channel. Here, P, W, and 
D are the pitch, shell wall spacing, and rod diameter, 
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respectively. The effective Nusselt number was calculated 
by area-weighted averaging. The relevant information is 
summarized in Table 3. 

Table 3 Design parameters of heater rods 
30° interior sub-
channel (type I) 

120° wall sub-
channel (type II) 

Average 

# 36 12  

D (mm) 9.5 9.5  

P/D 1.6 1.6  

W/D -- 1.4  

Dh (mm) 17 13 14 

Nu 12.18 5.742 8.44 

Furthermore, FLiNaK (LiF-NaF-KF, with 46.5-11.5-
42 in mol%) was chosen as both the primary and 
secondary coolants in our experiment, due to its low price, 
low toxicity, and high thermal conductivity. With this salt, 
the average heat transfer coefficient considering the 
interior and wall sub-channels in the simulated core in our 
typical experiment was estimated as 511 W/m2-K.  
Incoloy 800H was adopted as the heater sheath material. 

  
SUMMARY OF SCALING ANALYSIS 

Table 4 Loop scaling results 
Fluence    

(×���� n/m2) 
0 0.1 0.2 0.5 1 3-8 

Power (kW) 8.48 
Power ratio 4.24% 

Primary loop 
Time ratio 1.11 1.31 1.55 2.37 3.27 3.57 

Length ratio 0.5 0.5 0.5 0.5 0.5 0.5
Dh

ratio 
in 

Core 

From 
scaling 

0.84 0.99 1.17 1.80 2.48 2.71 

From 
design 

1.07 

δ ratio in core 0.58 0.68 0.80 1.23 1.70 1.86 

Velocity ratio 0.45 0.38 0.32 0.21 0.15 0.14 
Area ratio 0.08 0.14 0.22 0.80 2.10 2.75

ΔT ratio 0.28 0.20 0.15 0.06 0.03 0.03 

Heat source 
number ratio

155 258 422 1521 3991 5220 

Secondary loop 
Time ratio 1.11 1.31 1.55 2.37 3.27 3.57

Length ratio 1 1 1 1 1 1 
Velocity ratio 0.90 0.76 0.65 0.42 0.31 0.28 

Area ratio 0.01 0.02 0.03 0.11 0.30 0.39 

ΔT ratio 0.82 0.58 0.42 0.18 0.09 0.08 

With all the necessary information, the convection 
time ratio was obtained and the complete scaling analysis 
of the DRACS was accomplished. The analysis of the 
heat exchangers, i.e., DHX and NDHX, was performed 

with Incoloy 800H as the structure and piping materials. 
In addition, the same power ratio and convection time 
ratio were assumed for both the primary and secondary 
loops of the DRACS. The results are summarized in 
Tables 4 and 5, in which the column in bold gives the best 
scaling results. This is the case when the reactor has been 
operated for about 160 days with an average neutron flux 
level of 1013 n/cm2-s. All the dimensionless numbers are 
matched except the heat source number, which will 
mainly affect the peak temperature of the core structure.  

Table 5 Scaling results of DHX and NDHX  
Fluence        

(×���� n/m2) 
0 0.1 0.2 0.5 1 3-8 

DHX 
Shell 
side 

δ  ratio 1.24 1.35 1.46 1.81 2.13 2.22 

Dh  
ratio 

1.09 1.19 1.29 1.60 1.87 1.96 

h  ratio 0.80 0.73 0.68 0.55 0.46 0.44 

DHX 
Tube 
side 

δ  ratio 1.24 1.35 1.46 1.81 2.13 2.22 

Dh  
ratio 

0.88 0.96 1.04 1.29 1.52 1.59 

h  ratio 0.80 0.73 0.68 0.55 0.46 0.44 

NDHX 

δ  ratio 1.24 1.35 1.46 1.81 2.13 2.22 

Dh  
ratio 

0.88 0.96 1.04 1.29 1.52 1.59 

h  ratio 0.80 0.73 0.68 0.55 0.46 0.44 

SUMMARY 

In the present work, by applying the scaling 
methodology developed in Ref. [1], the scaling results for 
a scaled-down experimental facility from a prototypic 
DRACS design were obtained. All the dimensionless 
numbers are matched except the heat source number, 
which will distort the peak temperature in the core during 
the transient.  
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