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Presentation Outline 

• Brief HFIR background 

• Brief review of reactor physics 
concepts 

• Reactor Kinetics Studies 

– Nuclear data generation via NEWT 

– Control cylinder ejection transient 

– Space-time kinetics equation-based 
modeling methodology 

• Results 

• Conclusions 
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Beryllium reflected, light-water cooled, 

pressurized, flux-trap type reactor.  

• Currently operates at 85 MWth 

• Cycle length 21 – 26 calendar days 

• Two Fuel Elements [Inner Fuel Element (IFE) and Outer Fuel Element (OFE)] 

• Highly Enriched Uranium fuel (~93 wt.% 235U) in the form of U3O8-Al with Al-6061 clad 

• Two Control Elements (CEs) for regulation and safety purposes 

• Cold and thermal neutron scattering, isotope production, materials irradiation, 
Neutron Activation Analysis 
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If positive reactivity is inserted, the power will increase. If 
negative reactivity is inserted, the power will decrease. 
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• The effective neutron multiplication factor (keff) is the ratio of the number of 
neutrons produced in generation “i+1” to the number produced in generation “i” 

• Reactivity (ρ cents, dollars, Δk/k, etc.) is a measure of the deviation from critical 
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PDE coefficient form application mode. 
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Multi-Energy-Group Neutron Diffusion 

Delayed Neutron Precursor Concentration 
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 neutron flux (neutrons/m2-s) 

average neutron velocity (m/s) 

diffusion coefficient (m) 

absorption cross section (1/m) 

scattering cross section g→g’ (1/m) 

probability of prompt neutron born in g 

average # of neutrons emitted per fission 

fission cross section (1/m) 
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DNP concentration (neutrons/m3) 

Decay constant (1/s) 

probability of delayed neutron born in g 

fraction of neutrons born delayed 
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The TRITON/NEWT sequence in SCALE is 

used to calculate nuclear data. 

• 2-D neutron discrete-ordinates 
code 

• Provides a solution for multigroup 
transport calculations 

• Calculates the spatial flux 
distribution and prepares 
collapsed cross sections 

3-group # 238-group # Lower Energy 

1 44 100 keV 

2 199 0.625 eV 

3 238 10 μeV 

NEWT input modified from the model documented in: 

Dr. G. Ilas, et. al., New Cross Section Processing Methodology for HFIR Core Analysis, PHYSOR-2008, Interlaken, Switzerland, Sep. 2008.  
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If the control cylinder is ejected, positive reactivity 
would be inserted; thus, giving rise to a power 
transient. 

• Transient initiated by a control 
cylinder ejection  

– vcc = -1.68 cm/s (-0.662 in/s ) 

• Initial reactor power = 1 kW  

– Zero power condition (lowest critical 
power and worst case scenario) 

• Power scram set point = 5.001 MW 

• Safety plate response time = 10 ms 
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2. Stationary study 

• Set up constraint (ODE) to normalize fluxes and determine keff 

 

 

 

• Solution used as initial values for study step 3 

Three study steps are solved in sequential order.  

1. Eigenvalue study 

• Good spatially-dependent solution, but normalized to maximum value 

• Solution used as the initial values (starting guesses) for study step 2 
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3. Time-dependent study 

• Define moving interfaces, i.e. Zgib(t)=-2.54[cm]-1.68[cm/s]*t[s] 

• Assign axially-dependent properties (cross sections) to simulate 
control element movement, i.e. if(z<Zgib,Σbi,if(z<Zgit,Σgi,Σwi)) 

• Smoothing functions applied to transitions from high absorption to 
low absorption, i.e. flc2hs(z–z2,scale) 

• Track power as a function of time 
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2-D axisymmetric geometry and vacuum 

boundary conditions are utilized. 
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• Symmetry BC defined at 
the axial centerline 

 

• Vacuum BCs defined at 
the 3 outer pool 
boundaries 

 

• Continuity BCs defined 
for all interior boundary 
interfaces 

core axial centerline. 

z 

r 



 University of Tennessee (10) COMSOL Conference 2011 Boston  Nuclear Engineering 

COMSOL’s built-in mesh generator used to discretize 
the geometry and Direct solvers are utilized. 

• Mapped mesh in moving domains 

• Boundary layers in narrow domains located near steep flux gradients 

• Free triangular mesh elsewhere 

– “Extremely fine” in core region (+refinements) 

– “Extra fine” in pool water outside of Be reflector 

• Each model set up with ~100-150k elements 

– ~1-2 million DOF → 24 hr solution time 

– 3 compute nodes, dual quad core processors, 64 GB RAM 

• PARDISO for stationary and eigenvalue 

– Efficient, but does not run in distributed parallel mode 

• MUMPS for transient calculations 

– Less efficient, but runs in distributed parallel mode 
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Beginning-of-cycle neutron fluxes. 

(0.1 MeV ≤ En ≤ 20 MeV)  (0.625 eV ≤ En ≤ 0.1 MeV )  (1x10-5 eV ≤ En ≤ 0.625 eV )  

Fast Flux  Thermal Flux  Epithermal  Flux  
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Power shifts to the OFE during control cylinder ejection 
and then back to IFE during safety plate insertion. 

t = 0.00 s, P = 1.0 kW t = 1.39 s, P = 10.6 MW t = 1.70 s, P = 22.6 kW 
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Summary and Conclusions 

• COMSOL-based neutron diffusion models of HFIR were created 
via equation-based modeling 

– 3 neutron energy groups and 6 delayed neutron precursor groups  

– 2-D axisymmetric geometry 

– Nuclear data derived from TRITON/NEWT sequence in SCALE 

• New space-time (PDE and ODE modes) and point kinetics (ODE 
mode) methodologies were developed in COMSOL 

– Point kinetics are much more computationally efficient and were shown to 
produce accurate results for small perturbations 

• Additional results and methods documented in full length paper 

• COMSOL is also being used at the HFIR for thermal hydraulic and 
structural analyses 


