
1 Managed by UT-Battelle
for the Department of Energy RIS2 PDR 8b-1 16 & 17 Oct. 2007 1 Managed by UT-Battelle
for the Department of Energy

Python for Development of
OpenMP and CUDA Kernels
for Multidimensional Data

1 Nuclear Material Detection & Characterization/NSTD/ORNL
2 Radiation Transport/RNSD/ORNL

3 Computational Mathematics/CSMD/ORNL
4 Scientific Computing/CCSD/ORNL

5 Measurement Science and Systems Engineering/EESD/ORNL

2011 Symposium on Application Accelerators in HPC

20 July 2011

Zane W. Bell1, Greg G. Davidson2, Ed D’Azevedo3,
Thomas M. Evans2, Wayne Joubert4, John K. Munro, Jr.5,

Dilip R. Patlolla5 and Bogdan Vacaliuc5

2 Managed by UT-Battelle
for the Department of Energy

Overview

• Use Python environment
- Problem setup, data structure manipulation, file I/O
- The “architecture of the computation”

•  Implement optimal computation kernels in C++,
Fortran, CUDA or 3rd Party APIs
- Leverage experts and existing code subroutines
- The “details” of the computation

“Raising the level of programming should be the single most important goal for
language designers, as it has the greatest effect on programmer productivity.”

J. Osterhout [14]

3 Managed by UT-Battelle
for the Department of Energy

Boltzmann Transport Equation

Where
 ψ Is the radiation intensity (flux) at position r, with energy E moving in µ

The Boltzmann transport equation for the special case of one dimensional,
spherical symmetry, discrete ordinates, time-independent transport is

To solve numerically, we discretize in energy, angle and radial terms.

σ and σs are the total and scattering cross-sections
q is the external source particle density

4 Managed by UT-Battelle
for the Department of Energy

Energy Discretization

E1

E2

E3

EG-1

EMax

EG E near 0

…

Thermal Groups

•  Choose number of energy
groups (G) and EMax to
correspond to the
resolution of interest

•  Energy groups may be of
different sizes, depending
on resolution of interest.

5 Managed by UT-Battelle
for the Department of Energy

Angular and Radial Discretization

Toward sphere center Toward sphere boundary
-1 1

0

Gauss-Legendre
Angular quadrature µ = cosθ	

Sphere boundary Sphere center

Diamond Difference
Method

6 Managed by UT-Battelle
for the Department of Energy

Angular and Radial Discretization

http://www.oar.noaa.gov/climate/t_modeling.html

7 Managed by UT-Battelle
for the Department of Energy

“Sweep” radial cells within Each
Energy Group

0 R

Sphere center Sphere boundary

cells Outgoing
angles 1

0 R

Sphere center Sphere boundary

cells
Incoming
angles

•  A transport “sweep” is the process of solving the diamond difference,
space-angle SN equations
-  A wavefront solution in which the value of each cell depends on the flux

entering in the “upwind” direction.

2 3

2 1 3

8 Managed by UT-Battelle
for the Department of Energy

Algorithm Structure and Profile

9 Managed by UT-Battelle
for the Department of Energy

Python Reference Implementation
(prob1.py)

def prob1(Z,M,G,L,a_sxs,a_ofm,a_ext,a_mu):

 r_src = zeros([G,Z,M]).astype(a_ext.dtype)

 for z in range(0,Z):

 for m in range(0,M):

 ss = 0.0

 for g in reversed(range(0,G)):

 for el in range(0,L+1): # NB: [0,L+1)

 v = plgndr(el,a_mu[m])

 ss = ss + (2*el+1)/(4*(PI)) * a_sxs[G-1,g,el] * v * a_ofm[g,z,el]

 r_src[G-1,z,m] = ss + a_ext[G-1,0]/(4*(PI))

 return r_src

10 Managed by UT-Battelle
for the Department of Energy

C++ Template Implementation
(prob1_c.h)

11 Managed by UT-Battelle
for the Department of Energy

Flow for C++ Wrapper

12 Managed by UT-Battelle
for the Department of Energy

Python F2PY Interface Declaration
(prob1_c.pyf)

! -*- f90 -*-
! File prob1_c.pyf
python module _prob1_c
interface
 subroutine prob1_dp(z,m,g,l,sxs,ofm,ext,mu,src)
 intent(c) prob1_dp ! is a C function
 intent(c) ! all arguments are
 ! considered as C based
 integer intent(in) :: z
 integer intent(in) :: m
 integer intent(in) :: g
 integer intent(in) :: l
 real*8 intent(in),dimension(g,g,l+1),depend(g,l) :: sxs(g,g,l+1)
 real*8 intent(in),dimension(g,z,l+1),depend(g,z,l) :: ofm(g,z,l+1)
 real*8 intent(in),dimension(g),depend(g) :: ext(g)
 real*8 intent(in),dimension(m),depend(m) :: mu(m)
 real*8 intent(out),dimension(g,z,m),depend(g,z,m) :: src(g,z,m)
 end subroutine prob1_dp

13 Managed by UT-Battelle
for the Department of Energy

Python C++/F2PY Interface Building
(setup_c.py and makefile)

File setup_c.py
def configuration(parent_package='',top_path=None):

 from numpy.distutils.misc_util import Configuration
 config = Configuration('',parent_package,top_path)

 config.add_library(name='prob1_c', sources=['prob1_c.cxx'])

 config.add_extension('_prob1_c',
 sources = ['prob1_c.pyf','prob1_c_wrap.c'],

 libraries = ['prob1_c'])
 return config

if __name__ == "__main__":
 from numpy.distutils.core import setup

 setup(**configuration(top_path='').todict())

build OpenMP-versions

omp:
 @(export ARCHFLAGS=$(ARCHFLAGS) ; \

 export CPPFLAGS="-fopenmp $(TUNE)" ; \
 export LDFLAGS="-lgomp" ; \

 python setup_c.py build_src build_ext --inplace)

14 Managed by UT-Battelle
for the Department of Energy

Flow for C++ Wrapper (again)

15 Managed by UT-Battelle
for the Department of Energy

Python Call C++ Kernel
(prob1.py)

interface C-code via F2PY
def prob1_c_f2py(Z,M,G,L,a_sxs,a_ofm,a_ext,a_mu):
 import _prob1_c as c_f2py
 if len(Z.shape) > 1:
 Z = Z[0,0]
 if len(M.shape) > 1:
 M = M[0,0]
 if len(G.shape) > 1:
 G = G[0,0]
 if len(L.shape) > 1:
 L = L[0,0]
 r_src = zeros([G,Z,M]).astype(a_ext.dtype)
 if a_ext.dtype == "float64":
 r_src = c_f2py.prob1_dp(Z,M,G,L,a_sxs,a_ofm,a_ext,a_mu)
 else:
 r_src = c_f2py.prob1_sp(Z,M,G,L,a_sxs,a_ofm,a_ext,a_mu)
 return r_src

16 Managed by UT-Battelle
for the Department of Energy

Flow for CUDA Wrapper

17 Managed by UT-Battelle
for the Department of Energy

Python GPU/F2PY Interface Building
(setup_g.py)

File setup_g.py
See also:

http://www.scipy.org/Dynetrekk/f2py_OpenMP_draft

def configuration(parent_package='',top_path=None):
 from numpy.distutils.misc_util import Configuration

 config = Configuration('',parent_package,top_path)

 config.add_library(name='prob1_g',
 sources=['prob1_g.cxx'])

 config.add_extension('_prob1_g',
 sources = ['prob1_g.pyf','prob1_c_wrap.c'],

 extra_objects = ['prob1_kernel.o'],
 libraries = ['prob1_g','cuda','cudart'])

 return config
if __name__ == "__main__":

 from numpy.distutils.core import setup
 setup(**configuration(top_path='').todict())

18 Managed by UT-Battelle
for the Department of Energy

Python GPU/F2PY Interface Building
(makefile)

build GPU-versions

$(MOD)_kernel.o: $(MOD)_kernel.h $(MOD)_kernel.cu

 nvcc $(NVCC_CU_FLAGS) $(INCLUDES) -c $(MOD)_kernel.cu

_$(MOD)_g.so: $(MOD)_kernel.o $(MOD)_g.h $(MOD)_g.cxx $(MOD)_c_wrap.c
 $(MOD)_g.pyf setup_g.py

 (export ARCHFLAGS=$(ARCHFLAGS) ; \

 export CPPFLAGS="-fopenmp $(TUNE)" ; \

 export LDFLAGS="-L$(CLIB) -lgomp" ; \

 python setup_g.py build_ext --inplace)

gpu: _$(MOD)_g.so

19 Managed by UT-Battelle
for the Department of Energy

“problem set #1”
Ø  Loop over all radial cells (Z)

Ø  Loop over all angles (M, typically 8)
Ø Loop over all energy groups (G)

Ø Integrate Legendre expansion for this angluar
moment, accumulate the source term (L ~ 24th order)

Ø  Update the radial cell source term

1.  Compute Legendre
table in CPU memory

2.  Copy Legendre table
lookup to constant
memory on GPU

3.  Copy solver state to
GPU (Unit Test Only)

4.  Load Shared Memory
5.  Execute
6.  SP’s work
7.  Copy result (angular

flux) to CPU memory
(Unit Test Only)

Z*M*G*L integrations

20 Managed by UT-Battelle
for the Department of Energy

Runtime Comparison (with I/O overhead)

•  Verified matching results for single-precision, double-precision ~ 1e-6
•  Fermi implements accelerator-model speedup of 1.3x to 6.2x

-  accounting for the I/O to and from CPU memory
-  versus 2 and 4 core CPUs

0

5

10

15

20

25

30

35

40

45

 E=10 E=100 E=500

AMD 2350

Intel core2-6700

TESLA M2070

G G
0

10

20

30

40

50

60

70

80

90

 Z=1000 Z=4000 Z=40000

AMD 2350

Intel core2-6700

TESLA M2070

TIME
(sec)

4000 radial cells 100 groups

“prob1”, 24th order Legendre expansion, 8 angles
G

21 Managed by UT-Battelle
for the Department of Energy

Runtime Comparison (kernel only)

• NOTE: logarithmic scale
•  Kernel-only timing shows 65x to 115x speedup (vs. 2-core CPU)

-  OK, because our final code has all data resident on the GPU memory
•  Significant performance differences between experimental systems

TIME
(sec)

4000 radial cells 100 groups

0.001

0.01

0.1

1

10

100

 E=10 E=100 E=500

AMD 2350

Intel core2-6700

TESLA M2070

0.001

0.01

0.1

1

10

100

 Z=1000 Z=4000 Z=40000

AMD 2350

Intel core2-6700

TESLA M2070

“prob1”, 24th order Legendre expansion, 8 angles
G G G

22 Managed by UT-Battelle
for the Department of Energy

Performance Model

•  Pmem and Pfpu are efficiency factors applied (simplified model)
•  Pbits is 64 (IEEE-754 double-precision)
•  Applied to both CPU and GPU (naiive)

23 Managed by UT-Battelle
for the Department of Energy

CPU/GPU Comparison (with I/O overhead)

•  Measured vs. Estimated Runtime (performance model)
-  M2070 factors in a 2.5 second application load delay (CUDA overhead)

•  M2070 (448 cores, 225W) similar to Dual X5670 (12 cores, 190W)
-  M2070 {Pmem=46, Pfpu=50 (2%)}
-  X5670 {Pmem=12, Pfpu=58 (1.7%)}

24 Managed by UT-Battelle
for the Department of Energy

CPU/GPU Comparison (with I/O overhead)

• Measured vs. Ideal Runtime (performance model)
-  Pmem and Pfpu set to 1

• M2070 (448 cores, 225W) similar to Dual X5670 (12 cores, 190W)
-  Keeping in mind that we are factoring the I/O overhead

25 Managed by UT-Battelle
for the Department of Energy

M2070 “Fermi” GPU

26 Managed by UT-Battelle
for the Department of Energy

Multi-Core CPU, GPU, FPGA
“Exploratory System”

27 Managed by UT-Battelle
for the Department of Energy

Next Task (#2) has Loop Dependency

28 Managed by UT-Battelle
for the Department of Energy

Computational Engine:
multi-core CPU with GPU and FPGA

(5GB/s)

(12.8GB/s, each QPI)

32GB/s 32GB/s

(2.5GB/s)

29 Managed by UT-Battelle
for the Department of Energy

Summary
•  Use Python environment

-  Problem setup, data structure manipulation, file I/O
-  Use the wide array of available modules
-  Syntax similar to Matlab (the scientists will like it)

•  Implement optimal computation kernels in C++, Fortran, CUDA or 3rd Party
APIs

-  Leverage experts and existing code subroutines
-  Opportunities to use ASIC/Heterogenous Computation Devices (via API calls)

•  All code referenced in this paper
-  http://info.ornl.gov/sites/publications/Files/Pub30033.tgz

“Raising the level of programming should be the single most important goal for
language designers, as it has the greatest effect on programmer productivity.”

J. Osterhout [14]

30 Managed by UT-Battelle
for the Department of Energy

Thank You

