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INTRODUCTION

An initial validation1 of the AMP nuclear fuel perfor-
mance package previously demonstrated capabilities on par
with legacy fuel performance packages. However, in or-
der to move towards a truly predictive software package,
several issues must be addressed. In this study, a strat-
egy is proposed to use the Denovo4 radiation transport
solver to generate spatially dependent neutron flux (and
thus power) distributions as a heat generation source term
for AMP, providing more accuracy than current problem-
independent power shapes. Because Denovo solves the
transport equation on a Cartesian mesh, whereas AMP uses
an unstructured hexahedral mesh, transferring solutions be-
tween codes is a problem that must be addressed. We pro-
pose a strategy using polynomial expansions of the relevant
quantities as an intermediary step to facilitate transfer be-
tween meshes. This paper outlines the mathematical frame-
work for this mapping process.

MOTIVATION

Legacy fuel performance codes (such as FRAPCON2)
typically use a problem-independent reference shape for
the spatial distribution of the heat generation rate. In par-
ticular, the radial distribution is usually assumed to be a
Bessel function, the analytic solution to the neutron diffu-
sion equation in an infinite cylinder. Although this assump-
tion is reasonable for many problems, the inability to take
into account detailed, problem-dependent power shapes is
likely to be a significant limiting factor for predictive sim-
ulations.

As an example, Fig. 1 shows the thermal neutron flux
computed by Denovo for a 3 × 3 array of PWR fuel rods
where the center rod contains a strong absorber (B4C).
Although the thermal flux in the corner rods appear az-
imuthally symmetric, it is evident that the rods adjacent
to the absorber experience a dramatic deviation from such
symmetry. In addition, steep gradients near the edges of
the fuel rods are unlikely to be well represented with sim-
ple functions. Using a radiation transport solver to create
power generation rates for specific problems will allow in-
vestigation into assembly-level effects outside the limits of
axisymmetric assumptions.

Figure 1: Thermal Neutron Flux near B4C Rod

ZERNIKE POLYNOMIALS

The Zernike polynomials are a set of orthogonal poly-
nomials defined on the unit disk3. Although they can be
written purely as polynomials in x and y, the most com-
mon representation is in terms of the radial and azimuthal
components, i.e.

Zm
n (r, θ) = Rm

n (r)gm(θ), (1)

where Zm
n is the Zernike polynomial of degree n and order

m, Rm
n is a polynomial of degree n, and gm is either a sine

or cosine term. Although they are primarily used in the
optics community, they are well suited to any application
involving generally smooth quantities defined on a disk,
particularly where separability of the radial and azimuthal
components of the function is desirable or necessary. The
Zernike polynomials form a complete set of functions on
the disk so that any function f can be written as

f(r, θ) =

∞∑
n=0

n∑
m=−n

fm
n Zm

n (r, θ), (2)

where fm
n is the Zernike coefficient of degree n and or-

der m for the function f . Provided that the function being
represented is sufficiently smooth, the magnitude of these
coefficients will decay rapidly and an accurate approxima-
tion of the function can be achieved with only a few terms
in this series. Using orthogonality, the coefficients can be



computed with integrals over the disk as

fm
n =

∫ 1

0

dr

∫ 2π

0

dθZm
n (r, θ)f(r, θ). (3)

These are the coefficients we will use to transfer solutions
from a Denovo Cartesian mesh to an AMP unstructured
mesh. Evaluating the integral in Eqn. 3 analytically is
challenging because the intersection of Cartesian cells with
the disk introduces complicated limits of integration. As
an alternative, it is possible to approximate the integral us-
ing a quadrature formula on the disk. Quadrature formulas
for integration on disks are readily found in the literature
(e.g. 36 and 72 point formulas exactly integrating algebraic
functions of degree 13 and 19, respectively5). It is impor-
tant to note that, if a degree N expansion is desired then to
maintain orthogonality it is necessary to choose a quadra-
ture that accurately integrates functions of degree 2N (be-
cause the orthogonality relationship involves the product
of two degree N functions). Thus, the 36 point quadrature
should be sufficient for up to a degree 6 expansion and the
72 point quadrature for a degree as high as 9.

RESULTS AND FUTURE EFFORTS

In order to quantify the ability of the Zernike func-
tions to represent neutron flux distributions, we compare
specified functions to an N th order Zernike reconstruction
of those functions. The first test function is

F (r) = J0

(ν0r
R

)
, (4)

where J0 is the zeroth Bessel function of the first kind, ν0
is the first root of this Bessel function, and R is the outer
radius of the region. This function is the analytic solution
to the diffusion equation in an infinite cylinder with radius
R and also the radial flux distribution used in FRAPCON.
The second test function is

G(x, y) = 1 + (1 + 0.4x)e−0.5(1−x2−y2). (5)

This function is intended to reproduce several features
likely to be present in the neutron flux distribution in a reac-
tor lattice, such as sharp gradients near the outer boundary
and significant azimuthal variation.

The reconstruction error for these functions for a range
of Zernike expansion orders and for two different quadra-
tures are shown in Fig. 2. The reconstruction error is com-
puted using the infinity, or maximum, norm defined as

E = ∥F − FN∥∞, (6)

where FN is the degree N expansion of the function F .
These results demonstrate that the Zernike functions are
indeed a strong candidate for representing radial/azimuthal
flux distributions within a fuel rod. It appears that an ex-
pansion order as low as 4–6 is sufficient to guarantee a re-
construction of the function with several digits of accuracy.

Figure 2: Convergence of Zernike Expansion

The divergence of the curves using the 36 point quadrature
at N = 6 occurs due to a loss of orthogonality, as men-
tioned previously.

Preliminary functionality to compute the Zernike co-
efficients of a given flux distribution is now available for 2-
D spatial discretizations in Denovo. Additional capability
is also available in the 3-D discretizations by incorporating
an axial shape function in the form of Legendre polynomial
coefficients in addition to the radial/azimuthal distribution
provided by the Zernike polynomials. Ongoing efforts aim
to utilize these shape functions as source terms in AMP for
multiphysics computations.
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