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INTRODUCTION

The development of efficient solution strategies for the
k-eigenvalue formulation of the neutron transport equation
is an area of significant interest in the design and analysis
of nuclear reactors. The availability of rapidly convergent
and robust methods becomes even more vital when radia-
tion transport is only a single component of a larger multi-
physics computation. Current strategies almost invariably
suffer from either poor convergence behavior or a lack of
stability for many problems of interest. Additionally, ex-
isting methods rely on a nested iteration structure that re-
quires selection of multiple convergence tolerances, lead-
ing to possible degradation in performance or even a loss in
the accuracy of computed quantities. We proprose a strat-
egy based on a generalized Davidson eigensolver that alle-
viates many of these issues. Although subspace methods
(such as Arnoldi’s method) have been investigated previ-
ously, to our knowledge this is the first use of a Davidson
solver for the transport k-eigenvalue problem. Numerical
results using the NEWT transport solver demonstrate the
effectiveness of this approach.

DAVIDSON EIGENSOLVER

The k-eigenvalue formulation of the discrete first or-
der neutron transport equation can be written in operator
notation as

(L−MSD)ψ =
1

k
MFDψ, (1)

where L is the discretization of the streaming and collision
term, S and F are the scattering and fission matrices, and
D and M are angular restriction and prolongation opera-
tors. In the current study, we consider a discrete ordinates
discretization in angle, a multigroup discretization in en-
ergy, and an arbitrary linear discretization in space, though
the underlying strategy is not limited to these choices. A
corresponding integral equation in terms of the scalar flux
ϕ is obtained by multiplying Eqn. (1) by DL−1:

(I−DL−1MS)ϕ =
1

k
DL−1MFϕ. (2)

Mathematically, this equation is a generalized eigenvalue
problem. Standard techniques (e.g. power method and
Arnoldi’s method) approach this problem by first convert-
ing it to the standard eigenvalue problem(

I−DL−1MS
)−1

DL−1MFϕ = kϕ. (3)

The drawback to these approaches is that each iteration re-
quires applying the inverse of (in practice, solving a linear
system with) the matrix (I−DL−1MS), which is equiva-
lent to solving a full fixed point multigroup transport prob-
lem. This problem would generally be solved using either
a block Gauss-Seidel iteration or with a Krylov subspace
method applied to the full problem2;6.

As an alternative, we apply a generalized Davidson
method1 (for brevity we simply call it a Davidson method)
directly to Eqn. (2). The Davidson method is a subspace
approach which proceeds by projecting the full eigenprob-
lem onto a low dimensional subspace as

VTAVy = µVTBVy, (4)

where, for our purposes, A = (I−DL−1MS) and
B = DL−1MF. Forming this projected problem requires
multiplying by transport matrices but does not involve solv-
ing any linear systems. Full space quantities can then
be approximated using the solution to this small problem
(ϕ ≈ Vy and k ≈ 1

µ ). In the Davidson method, the sub-
space V is expanded at each iteration by applying a pre-
conditioner to the eigenvalue residual, i.e.

vk+1 = M−1rk, (5)

where rk = Axk − µkBxk and vk+1 is the vector to be
added to the current subspace. It is important to note that
although the rate of convergence of the Davidson solver
will depend on the quality of the preconditioner, the accu-
racy of computed eigenvalues and eigenvectors is entirely
independent of M. This is in contrast to Arnoldi’s method,
where inaccuracies in applying the operator can result in
inaccurate final solutions despite apparent convergence. In
the present study, we use a multigrid in energy precondi-
tioning strategy with a damped Richardson iteration as the
smoother.



There is a cost associated with the use of the Davidson
method for the k-eigenvalue problem. Because the problem
is being treated as a generalized eigenproblem and the sub-
space that is formed has no particular structure (in contrast
to the Krylov subspace formed in, for instance, Arnoldi’s
method which has a very rich structure), it is generally
necessary to store three sets of vectors (with each set con-
taining as many as 20 vectors) that are the length of the
eigenvector. For large problems, this memory cost may po-
tentially be prohibitive, although restarting strategies can
significantly alleviate such issues with only a modest re-
duction in the overall effectiveness of the solver5.

RESULTS AND CONCLUSION

In order to demonstrate the effectiveness of the pro-
posed strategy, we compare a variety of eigensolvers for
two test problems within the NEWT radiation transport
code which uses a step characteristics spatial discretization.
The first test problem is modeling a single fuel block of the
HTTR research reactor. The geometry, shown in Fig. 1,
consists of a hexagonal array of 6.3% enriched UO2 fuel
rods inside a graphite block with an instrumentation tube at
the center and burnable poison rods at three corners. The
spatial mesh is formed by overlaying a 108 × 96 Carte-
sian grid over the problem. White boundary conditions are
applied on all external boundaries. The second test prob-
lem is a slightly modified version of the 2D C5G7-MOX
benchmark problem4. The only change from the original
specification is that 16-group cross sections produced by
the SCALE package are used rather than the particular 7-
group cross sections specified in the original benchmark.
The geometry consists of two UO2 and two MOX PWR
assemblies surrounded by a water reflector on two sides.
Reflecting boundaries are applied along the boundaries that
don’t have a reflector. A 102× 102 Cartesian mesh is used
to discretize the problem in space (a finer mesh is produced
within the fuel pins). For both problems an S8 level sym-
metric quadrature is used in angle and P1 scattering is used
for all materials.

Several eigensolvers were used to solve this problem.
The pre-existing eigensolver in NEWT is the power method
with optional coarse mesh finite difference (CMFD) accel-
eration (the power method implementation uses a block
Gauss-Seidel iteration in energy with source iteration for
the within-group problems). Implementations of Arnoldi’s
method, Rayleigh quotient iteration (RQI), and the David-
son method with multigrid in energy preconditioning
(Dav/MGE) have been added to the code. The Arnoldi and
RQI implementations use GMRES with the multigrid in en-
ergy preconditioner for solving the necessary multigroup
transport problems.

The convergence results for all of the solvers for the
two test problems are shown in Table 1. As expected,

Figure 1: Geometry for HTTR Problem

Table 1: Eigensolver convergence and timings (seconds)
for test problems.

HTTR C5G7

Solver Iters Time (s) Iters Time (s)

Power 103 1752 320 4494
CMFD 14 184 11 248
Arnoldi 5 640 10 1375

RQI 2 244 4 675
Dav/MGE 14 157 16 236

power iteration with no acceleration performs very poorly
for these problems. CMFD acceleration greatly improves
the performance, although it should be noted that these re-
sults depend very strongly on problem parameters (such as
the size of the coarse mesh) that have been manually se-
lected in these cases to achieve optimal performance. Such
selections would generally not be available to the user a
priori. The remaining three methods all offer improved
performance relative to power method, with the Davidson
method even outperforming CMFD for both problems. It is
interesting to note that, although RQI converges extremely
rapidly in terms of the number of outer iterations, the cost
of each iteration is so large that the Davidson method dis-
plays a much lower computational cost.

In this study it has been shown that the Davidson
eigensolver is a potentially viable alternative to standard
approaches that have typically been used to solve the k-
eigenvalue problem. In particular, because the David-
son method avoids first converting the problem to a stan-
dard eigenvalue problem, the nested iteration structure that
plagues other solvers can be avoided. The performance of
the Davidson method is competitive with (and frequently
better than) nonlinear acceleration schemes; because its
convergence does not depend strongly on discretization pa-
rameters, it is a much more robust solver.
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