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ABSTRACT 
There is a rapidly growing need to evaluate sensor 
network functionality and performance in the context of 
the larger environment of infrastructure and 
applications in which the sensor network is organically 
embedded. This need, which is motivated by complex 
applications related to national security operations, 
leads to a paradigm fundamentally different from that of 
traditional data networks.  In the sensor networks of 
interest to us, the network dynamics depend strongly on 
sensor activity, which in turn is triggered by events in 
the environment.  Because the behavior of sensor 
networks is sensitive to these driving phenomena, the 
integrity of the sensed observations, measurements and 
resource usage by the network can widely vary.  It is 
therefore imperative to accurately capture the 
environmental phenomena, and drive the simulation of 
the sensor network operation by accounting fully for the 
environment effects.  In this paper, we illustrate the 
strong, intimate coupling between the sensor network 
operation and the driving phenomena in their 
applications with an example sensor network designed 
to detect and track gaseous plumes. 

INTRODUCTION 
Sensor networks are being designed for use in a variety 
of applications.  Some of the applications of interest to 
us belong in the areas of border surveillance, 
chemical/biological agent monitoring, homeland 
security concerns in critical infrastructures and 
public/government assets.  Design and development in 
these and other areas have been advancing the 
scalability and effectiveness of the sensor networks.  As 
the complexity and scale of sensors networks increase, 
so does the need for their effective design and analysis.  
The complexity of overall sensor network operation is 
increased with the growing sophistication of data fusion 
techniques, tracking algorithms, sensor device 
capabilities, network device characteristics and amount 
of relevant detail in the phenomena being tracked. 

The competing concerns of improved fidelity and 
performance abound in sensor network operations.  
While frequent sensor readings can help deliver better 
accuracy, they can strain the network and also compete 
with other sensors for network bandwidth.  Increasing 
the wireless radio range of sensor nodes can help 
decrease the number of hops to a basestation and reduce 
latency, but it introduces greater interference and/or 
collisions in radio transmissions among neighbors.  Ad-
hoc packet routing, via a dynamically established mesh, 
can help alleviate set up efforts, but can also introduce 
complex delay and loss patterns into the sensor reading 
transmissions.  Data fusion algorithms [1] can help 
alleviate bandwidth requirements, but they are subject 
to various types of assumptions including those about 
both the sensed phenomena and the inter-sensor 
connectivity arrangements. 

Critical sensor networks deployments often need an 
accurate a priori understanding of the expected 
performance of the deployment.  Depending on the type 
of the network, an estimate of the “average case” may 
be sufficient.  In other contexts,  it may be necessary to 
plan for the unanticipated “worst case.”  It becomes 
critical to take into account the spectrum of possible 
scenarios under which the sensor network deployment 
will have to operate.  Limiting the testing to only a few 
scenarios could expose the application to unexpected 
operation, sometimes incurring a large amount of risk 
and very severe consequences. Our central contribution 
is demonstrating the specific need for higher-fidelity 
joint simulations of both the sensor network and the 
wider-area driving scenarios. We show in our 
simulation results that this exposes behaviors that 
traditional approaches (e.g., those that assume point 
processes for arrival rates, or  those that assume non-
global effects)  may not capture.  

Example: Sensor Networks For Plume Detection 
Here, we focus on a type of sensor network that exhibits 
a critical type of operation and hence requires careful 
analysis of the range of relevant scenarios.  Specifically, 
we consider sensor networks that are designed to sense 
air-borne chemical/biological agents and rapidly send 
the sensed observations to basestations/control centers 
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[2].  Clearly, reliable operation of such networks can be 
critical, especially if deployed for detecting lethal 
agents.   

Although there has been much effort to track 
entities using sensor networks [3-5], another important 
application is the use of such networks for fast and 
accurate inverse tracking of the location of bombs upon 
explosion [6].  Speed and accuracy of detection/tracking 
of the sources is obviously of critical interest.  
Unfortunately, the problem is characterized with 
numerous dimensions and includes a composition of 
many non-linear processes.  Simulation-based 
evaluation of the design is often the only method for 
analyzing and estimating the overall performance of the 
network.  Moreover, due to the tight dependencies 
among the elements, it is necessary to capture their 
intertwined operation within the same simulation, rather 
than as a composition of results from simulation of 
independent elements.  For example, the intensity and 
frequency of wireless radio communication by sensor 
nodes is directly dependent on the phenomenon being 
observed, and activated by threshold-crossing sensor 
readings.  Consequently, separating the simulation of 
the phenomenon from the simulation of the sensor 
network devices is not warranted and may yield 
misleading results. 

EVALUATION PLATFORM 
In order to satisfactorily evaluate the range of scenarios 
to which the plume detection sensor networks would be 
subjected, we adopt a high-fidelity simulation approach.  
A high resolution plume generation and dispersion 
model is used to simulate the phenomenon being sensed 
and tracked.  The sensors are modeled in full detail at 
the level of analog-to-digital (A/D) conversion.  The 
sensor network nodes connected to the sensors are 
simulated at the highest resolution possible, namely, by 
emulation of actual operating system and program 
execution.  Wireless communication is simulated at bit 
level, and wireless signals are simulated using detailed 
interference, collision and loss models.  Network 
operation is simulated with actual ad-hoc routing 
protocols executing on all sensor nodes. 

 
Figure 1: Experimental Infrastructure 

The experimental platform illustrated in Figure 1 is 
composed of two high-fidelity simulators that a central 
SimDriver module brings together: (a) a detailed plume 
generation and dispersion simulator, and (b) a detailed 
sensor network simulator.  The output generated by the 
plume dispersion model is fed into the sensor network 
simulator to drive the sensors and sensor network 

operation.  The high fidelity atmospheric dispersion 
simulation model generates concentration levels at 
sensor locations.  These values are used to feed the 
sensor A/D interfaces at the sensor nodes positioned at 
the corresponding locations. 

Second-order Closure Integrated Puff (SCIPUFF) 
The high-fidelity plume dispersion simulator that we 
employ is the Second-order Closure Integrated Puff 
modeling tool [7, 8].  SCIPUFF is a Lagrangian puff 
dispersion model where “the turbulent diffusion 
parameterization is based on second-order turbulence 
closure theory, which relates the dispersion rate to 
velocity fluctuation statistics.”  SCIPUFF is capable of 
modeling three-dimensional, time-dependent 
concentration fields, in terms of “puffs” that are split 
and/or merged over time as necessary.  Details such as 
wind shear effects are taken into account.  These and 
several other modeled mechanisms allow the SCIPUFF 
to describe complex flow effects on dispersion, 
including circulation affected by terrain. 

The SCIPUFF model has been widely used across 
many different domains and organizations.  The U.S. 
Defense Threat Reduction Agency (DTRA) has 
incorporated the SCIPUFF model into the U.S. 
government-controlled Hazard Prediction and 
Assessment Capability (HPAC) software.  Aside from 
its use by the U.S. Army for military evaluations, 
SCIPUFF has also been recommended by the U.S. 
Environmental Protection Agency (EPA) as an 
alternative model for some regulatory applications on a 
case-by-case basis. 

TOSSIM and Tython 
The TinyOS Simulator (TOSSIM) is a sensor network 
simulator based on the TinyOS operating system  for 
wireless embedded sensor devices called motes [9, 10].  
Motes typically have constrained communication 
bandwidth, limited computational power, and finite 
energy resources, but have relatively low power 
requirements.  TOSSIM is unique compared to other 
sensor network simulators such as GTSNetS [11], J-Sim 
[12], SENSE [13], SensorSim [14], and TOSSF [15] in 
that the simulation code is built directly from the same 
code that can be deployed to real motes.  This allows 
application developers the expanded capability of 
testing unmodified application implementations in 
simulation.  Similar frameworks include EmStar [16] 
and EmTOS [17].  TOSSIM includes a high fidelity bit-
level simulation of the radio stack which allows 
modeling of collisions at the bit-level and accurately 
capturing the hidden-terminal phenomena. 
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Tython [18] provides control of TOSSIM 
simulations via a scripting interface.  Tython is built on 
Jython, a Java implementation of the Python language, 
allowing users to exploit the full expressive power of 
Python to access the entire TinyOS Java tool chain.  
This allows powerful runtime manipulation of TOSSIM 
simulations such as dynamically adding external 

 



stimuli.  We use this interface to incorporate SCIPUFF 
readings as input to simulated sensors attached to 
TOSSIM motes. 

For the following experiments, we gathered 
concentration values and time information from 
SCIPUFF and directed it to a proxy in Tython, as 
shown in Figure 1.  We inject this data with interrupts 
into TOSSIM buffered accordingly in Tython for 
processing as future discrete events. 

 
Figure 2: Plume Propagation with No Winds 

 
Figure 3: Plume Propagation with (Moderate) Winds 

 
Figure 4: Plume Propagation with Turbulent Weather 

Sensor Application and Network Routing 
The TinyOS NesC application used in the study is one 
that activates a generic sensor and samples these values 
from the A/D Converter (ADC) periodically.  Each 
sensor employs data fusion by sending average sample 
values over time to the base station node.  We 
configured an ad-hoc multi-hop routing implementation 
using shortest-path-first and activate two-way link 
estimation to set up ad-hoc routes and route packets 
from source nodes to the base station node [19].  Due to 
limited wireless bandwidth, sensors sample from the 

ADC every 250 milliseconds and store the sampled 
value into a circular buffer of length 8.  Once the 
circular buffer is filled, a packet is emitted containing 
the average value of all readings in the buffer.  This 
translates into one packet sent every two seconds, as to 
not exceed the bandwidth available for both the 
application and the multi-hop ad-hoc routing protocol. 

EXPERIMENTAL STUDY 
The plume detection and tracking application is a fairly 
complex one, with many dimensions and parameters.  
Here we focus our study on a subset of the dimensions, 
to highlight the amount of variability of sensor network 
performance with varying set of scenarios and the need 
for careful and methodical evaluation of scenarios in a 
real-life deployment. 

Scenario Parameters 

Weather and Dispersion Effects 
In our experiments, the weather model in SCIPUFF was 
varied with three representative scenarios: no winds, 
some winds, and turbulent weather conditions, whose 
snapshots are illustrated in Figure 2, Figure 3 and 
Figure 4 respectively.  The weather model scenarios 
respectively exhibit no precipitation and no winds, no 
precipitation with variable light to moderate winds up to 
8 mph, and heavy rain with variable winds up to 40 
mph respectively.  Temperatures for all cases fell 
between 70 to 77 oF.  The no winds case is used to 
represent a base model as shown in Figure 2 due to  
near uniform spread of the gas in all directions 
indicating a simple dispersion model which is sufficient 
for comparing to more complex scenarios. 

The SCIPUFF model generates concentration 
values for a single source release with a duration of 300 
seconds in the middle of the area modeled, with a 
release time at 300 seconds.  The initial 300 seconds 
allow the network routing protocol to build routes to the 
base station. 

Sensor Node Layout 
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Figure 5: A 5×5 Sensor Network Layout 
Two flat geographic areas were modeled: a dense area 
measuring 131.23ft2 and a sparse area measuring 
196.85ft2.  For each of these areas, the sensors were 
arranged as a 5×5 grid of sensor motes at ground level 

 



as shown in Figure 5.  Motes are numbered 
contiguously, with zero as the base station, one on left-
top corner, 5 on left-bottom corner, 21 in right-top 
corner and 25 at right-bottom corner (mote 13 is at the 
source). 

Wireless Communication Effects 
The radio propagation model was varied for each case 
using either a binary disc model or an empirical lossy 
model.  In the binary disc model, any pair of nodes 
within 50 feet of each other would be guaranteed to 
receive packets from each other (assuming no collisions 
during the packet transmission).  In the empirical lossy 
model, two-way loss rates are assigned from observed 
values as assigned by TOSSIM’s LossyBuilder 
program. 

Simulation Results 

Sensor Reading Variation due to Weather 
In the sparsely populated sensor node grid configuration 
(sparse 5×5), a maximum of one other node can hear 
packet transmissions from the sender in each direction.  
This configuration allows analysis of weather effects as 
perceived by the base station with minimal impacts 
from the wireless network due to packet loss from 
collisions. 

 
Figure 6: Sensor Readings at Release Source 

 
Figure 7: Sensor Readings 32.81ft from Source in the 

General Wind Direction 

One of the clear observations from the experiments 
is the significant effect of weather on the phenomenon 
sensed at the base station.  The weather is varied, as 
mentioned before, into three categories roughly 
representing calm, moderate and turbulent weather.  
Figure 6 shows mean concentration readings for the gas 
of interest for each of the three weather conditions, 
corresponding to the values sent by the mote closest to 
the plume source.  The sensor readings as received by 
the base station are plotted over time. 

 
Figure 8: Sensor Readings 65.61ft from Source in the 

General Wind Direction 

 
Figure 9: Sensor Readings 65.61ft from Source in 

Opposite Wind Direction 
As expected, the no winds case shows a gradual 

rise in observed readings due to plume release and then 
a steady decline due to plume dispersion.  In the winds 
case, the concentration of the gas rises faster with 
greater variability in the readings.  However, after the 
gas release stops at 600 seconds, the readings decline 
towards zero faster than the no winds case due to 
dispersion of the gas aided by winds.  The mean 
concentration rises sharply with high fluctuation for the 
duration of the release in the turbulent case due to high 
winds and heavy downpour dispersing the gas quickly.  
Upon end of the release, mean concentration values for 
the gas decline rapidly, again due to the high winds, 
reaching undetectable levels far quicker than the no 
winds or the winds cases. 

 



Figure 7 and Figure 8 show concentration values 
directly to the west of the sensor at the release source 
and further west, respectively.  The wind in this 
scenario is blowing west for both the winds and the 
turbulent cases.  These figures show the spread of the 
gas to these sensors in a similar pattern to the sensor at 
the release source, however slightly time-delayed.  
Figure 7 shows higher concentration values in the 
turbulent case due to the high winds dispersing the gas 
of interest from the source to mote 8. 

 
Figure 10: Sensor Readings at Release Source 

Figure 9 shows sensor readings for the mote 
situated furthest east of the source, opposite of the 
general wind direction.  Mean concentration values are 
lower for the winds case and significantly lower for the 
turbulent case than observed at the source release and at 
mote locations which fall in the general wind direction. 

From these observations, it is clear that weather has 
a pronounced effect, and hence, accurate evaluation of 
the sensor network requires one to evaluate the network 
under a range of weather conditions via detailed 
simulation. 

 
Figure 11: Sensor Readings 21.87ft from Source in the 

General Wind Direction 

Network Performance Variation due to Node Density 
In the densely packed sensor grid (dense 5×5), sensor 
nodes can be in range of up to two other sensor nodes in 
its broadcast radius.  Although this can reduce the 
number of hops a packet must traverse to the base 
station node, the probability of bit collisions increases.  

This scenario provides some insight into network 
effects on readings received by the base station as 
compared to the sparsely connected sensor network. 

 
Figure 12: Sensor Readings 43.74ft from Source in the 

General Wind Direction 

 
Figure 13: Sensor Readings 43.74ft from Source in 

Opposite Wind Direction 

 
Figure 14: Sensor Readings showing the Effect of 

Packet Loss 
The sensor readings of the dense network show 

similar patterns to the sparse sensor network grid 
configuration although with higher concentration values 
due to reduced inter-sensor distance to the source than 
the sparse case as shown in Figure 10, Figure 11, 
Figure 12, and Figure 13.  In each of these cases, we 
can observe small anomalies in the readings received by 

 



the base station.  There are small to large gaps of in 
sensor readings due to packet losses from bit collisions 
that were not present in the previous sparse 5×5 
scenarios.  However, observations indicate small 
anomalies in the readings received by the base station. 

Figure 14 shows the source release time in more 
detail, illustrating large periods of time where no data 
for mote 23 was received by the base station.  In the 
winds case, no sensor readings were received for 
approximately 60 seconds, a significant portion of the 
release time.  If any fluctuations in sensor reading had 
occurred during this time frame, they would not have 
been perceived by the base station.  These gaps in 
sensor readings are due to packet losses from bit 
collisions that were not present in the sparse scenarios. 

 
Figure 15: Sensor Readings at Release Source 

 
Figure 16: Sensor Readings 32.81ft from Source in the 

General Wind Direction 

Wireless Communication and Network Effects 
Binary Disc Radio Propagation Model: Under the best-
case network operation where packets can be received 
by other nodes if within 50 feet assuming no bit-
collisions occur during packet transmission, weather 
effects on sensor readings can be analyzed with minimal 
impact from network effects by using the binary disc 
model as illustrated in the previous scenarios.   
Empirical Lossy Radio Propagation Model: The 
following scenarios evaluate the impact of a lossy radio 
model exhibiting bit-error rates with some probability 
mirroring real-world observations.  This is achieved by 

sampling by distance from a Gaussian packet loss 
probability distribution matching observed data [10]. 

Figure 15, Figure 16, Figure 17, and Figure 18 
show dramatically different results than what was 
observed in the binary disc model.  Although the rough 
outline of trends can be determined from the figures, 
many critical points are missing from each sensor node 
location.  For instance, at the source release mote 13, 
there is no indication of a rise in concentration, or a 
rapid decrease in concentration for the turbulent case as 
was observed in Figure 6.  In the no winds and winds 
cases for mote 13, no data is received until 100 seconds 
after the source release begins. 

 
Figure 17: Sensor Readings 65.61ft from Source in the 

General Wind Direction 

 
Figure 18: Sensor Readings 65.61ft from Source in 

Opposite Wind Direction 
Figure 18 shows no discernable trends for the 

winds and turbulent cases as the data received by the 
base station is too sparse except for the no winds case.  
The low number of received packets is due to the 
distance that mote 23 is away from the base station node 
requiring a minimum of five hops in the sparse grid.  
Each hop incurs a probability of transmission failure 
either due to collisions or corruption at the bit-level.  
The relationship between distance and number of 
packets received is observed in Figure 15, Figure 16, 
Figure 17, and Figure 18 with the base station receiving 
more packets from closer nodes such as motes 3 and 8 
than nodes further away such as 13 and 23. 

 



 
Figure 19: Sensor Readings at Release Source 

 
Figure 20: Sensor Readings 21.87ft from Source in the 

General Wind Direction 

 
Figure 21: Sensor Readings 43.74ft from Source in the 

General Wind Direction 
With the decrease in distances between motes in 

the dense scenarios, the bit-error rate decreases 
resulting in higher reception rates across all motes as 
illustrated in Figure 19, Figure 20, Figure 21, and 
Figure 22.  Although this improves the rate at which 
packets are received by the base station from all sensor 
nodes, there are deficiencies still present such as in the 
no winds case in Figure 19 where the first data point is 
received near the end release time and thus no 
noticeable pattern of concentration increase is observed 
and in Figure 22 where no noticeable pattern of 

concentration increase then decrease is observed in the 
no winds case. 

 
Figure 22: Sensor Readings 43.74ft from Source in 

Opposite Wind Direction 
A high fidelity sensor network simulator with 

realistic radio propagation models can reveal 
phenomena such as low packet reception as seen in the 
empirical lossy cases.  These effects combined with 
different weather models from the environmental 
simulator produces highly variable results as perceived 
by the base station. 

Effects of Sensor Network Application Implementation 
We have observed the effect of weather, inter-sensor 
distance, and radio propagation models have had on 
perceived concentration activity.  It is also of interest to 
examine the side-effects of how the data is modeled by 
the sensor network simulator due to the design of the 
sensor application. 

 
Figure 23: SCIPUFF Readings at Release Source for 

Sparse 5×5 Grid 
Figure 23 shows the corresponding concentration 

levels for mote 13 in the sparse 5×5 scenarios (Figure 
6) as reported by SCIPUFF and unfiltered by the sensor 
network simulator.  The general mean concentration rise 
and subsequent drop off is represented correctly in the 
sensor readings reported by mote 13 to the base station.  
The initial concentration spike seen in Figure 23 for the 
turbulent case is not seen in Figure 6 due to the data 
fusion employed on the sensor nodes.  Actual sensor 
values are not reported, instead every 8 concentration 

 



readings are averaged, and this value is sent back to the 
base station. 

 
Figure 24: SCIPUFF Readings at Release Source for 

Dense 5×5 Grid 
Figure 24 displays readings from the environmental 

simulator for the dense 5×5 scenarios.  It is interesting 
to see much less variability, and hence, lower maximum 
values in the concentration values than when the data is 
filtered through the sensor network simulator as seen in 
Figure 10.  By utilizing a high-fidelity realistic sensor 
network simulator which allows application 
implementation simulation (e.g., TOSSIM), we can 
examine the effects such as data fusion techniques on 
sensor information received by the base station. 

 
Figure 25: Binary Disc Model for Sparse 5×5 Grid 

Aggregate Network Performance 
Although some of the network effects were observed 
when visualizing concentration values for various cases, 
analysis of the interplay and effects of network layout, 
sensor node promixity, and constrained bandwidth is of 
interest to evaluate the cumulative impact of the 
simulation results. 

For the binary disc radio propagation models, 
Figure 25 and Figure 26 show an expected inverse 
relationship in packets received as the absolute distance 
between the base station and the sensor location 
increases.  Moreover, the observed average end-to-end 
delay increases as distance increases between the base 
station and mote.  Figure 27 and Figure 28 illustrate a 
rapid decline in packet reception rates as the distance 

between sensor location and base station increases for 
the empirical lossy radio propagation models.  This is 
due to the added bit-error rates which can cause packets 
to be corrupted and dropped in addition to normal 
packet loss due to collisions. 

 
Figure 26: Binary Disc Model for Dense 5×5 Grid 

 
Figure 27: Empirical Lossy Model for Sparse 5×5 Grid 

 
Figure 28: Empirical Lossy Model for Dense 5×5 Grid 

An interesting phenomenon that only occurs in the 
sparse 5×5 binary disc radio propagation model is the 
set of observations with 1.5 second average end-to-end 
delays (Figure 25).  This pattern is observed due to 
100% accurate packet reception for nodes at the edge of 
radio range assuming no collisions, while in the 
empirical lossy models, many of these packets would be 
lost due to bit errors as shown in Figure 27.  Using 

 



models that compromise accuracy, such as the binary 
disc model, can display anomalies such as receiving 
packets which would, in reality, have very small 
probability of successful reception. 

  From these observations, sensor network 
application implementations could incorporate a 
sophisticated packet acknowledgement and re-
transmission scheme to improve network performance 
and ultimately more accurate sensor readings. 

ATMOSPHERIC TRANSPORT AND 
DISPERSION MODELS 
Currently, there are many different atmospheric 
transport and dispersion models being developed and 
used for plume propagation modeling.  The following is 
a brief overview of three of the many categories of such 
models being employed today. 

Gaussian Plume Models 
The Gaussian plume model [20] is a widely used 
computational approach to calculating concentration 
levels of a compound of interest (e.g., gas, aerosol, 
etc.).  This model assumes that the horizontal and 
vertical dispersion is modeled as a normal Gaussian 
distribution with the center of the plume being the 
maximum concentration.  Constant meterological 
conditions are also assumed producing straight-line 
trajectories, however, recent improvements in Gaussian 
plume models have the ability to incorporate mixing, 
convection, and terrain effects.  Examples of 
atmospheric transport and dispersion models utilizing 
Gaussian plume techniques include AERMOD [21], 
CAMEO/ALOHA [22], and ISC3 [23]. 

Lagrangian Puff Models 
Instantaneous sources are modeled as puffs for 
atmospheric transport and dispersion models leveraging 
Lagrangian techniques.  These models are not 
exclusively restricted to instanteous sources as a 
sequence of puffs can be modeled achieving the same 
release over time as a continuous source.  Puffs can 
expand at their center due to wind effects and stability.  
Additionally, puffs can be split or merged as necessary 
over time.  Lagrangian puff models are usually best 
suited for region-scale areas with timescales of hours to 
days.  Examples of Lagrangian puff models include 
SCIPUFF/HPAC [7, 8], HYSPLIT [24], CALPUFF 
[25], and HOTMAC/RAPTAD [26]. 

Computational Fluid Dynamics and Large Eddy 
Simulations 
Atmospheric transport and dispersion models utilizing 
Large Eddy Simulation (LES) [27] and Computational 
Fluid Dynamics (CFD) techniques are especially useful 
for environmental simulations with small temporal and 
spatial scales.  These models perform exceptionally well 
for relatively smaller areas (than areas modeled by 
Lagrangian plume models) with buildings, street 
canyons, and noisy dispersion (e.g., dispersion affected 

by traffic and HVAC systems) as found in urban 
environments.  Examples of models using these 
approaches include FEM3C [28] and FEFLO-URBAN 
[29]. 
 

One can envision the ability to interchange 
different atmospheric transport and dispersion models 
in the experimental framework (Figure 1) to achieve 
varying levels of fidelity and accuracy depending upon 
the temporal and spatial resolution as required by the 
scenario.  Different atmospheric models may be more 
suitable for a particular scenario such as a simulation 
model specifically tailored for small-scale urban 
environments with tall buildings and a complex road 
network. 

SUMMARY AND FUTURE WORK 
The experimental results provide clear evidence 

that environmental models that ignore broader-scope 
effects such as weather and orientation may not suffice 
to provide realistic plume propagation data.  Detailed 
weather models, in conjunction with high fidelity 
atmospheric modeling, drive accurate simulation results 
for evaluating complex interactions between the 
environment and the sensor network.  

Careful consideration of node placement in sensor 
network deployment is also required, as shown by 
simulation.  Intelligent organization of sensor nodes 
providing adequate coverage while maintaining 
balanced node density in an area of interest can 
minimize side effects such as loss of information due to 
packet collisions.  Moreover, these results emphasize 
the importance of utilizing a high fidelity sensor 
network simulator with accurate radio propagation 
models.  Less realistic models can compromise the 
overall accuracy of the simulation by including 
unrealistic packet transmissions and receptions which, 
in turn, could affect other packets through collisions or 
dropped packets due to bandwidth limitations. 
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Figure 29: Generalized chemical/biological sensor 
network testbed framework 

In general, although existing simulations of distinct 
but interdependent systems exist, it is our contention 
that a scenario-informed approach to simulation at high-
fidelity will expose unexpected behaviors that simpler 
assumptions  will not capture.  Our high-fidelity 
simulation-based evaluation approach can be 
generalized into an integrated environment of a rich 
variety of models, simulations and live equipment in a 
framework to configure, simulate/emulate, test and 
evaluate sensor-based designs, as shown in Figure 29.  
A unified, flexible Testing and Evaluation (T&E) 

 



framework for chemical/biological (CB) sensors is 
envisioned which can be built on top of existing 
standards to the extent possible.  Within this T&E 
framework, the Department of Defense High Level 
Architecture (HLA) can be leveraged as a component 
for runtime integration to facilitate incorporation of 
existing simulators. 

The interplay of CB dispersion, weather effects and 
sensor communications can be evaluated together 
ultimately in the context of actual operations.  To this 
end, it is important to integrate them with operations 
simulators such as semi-automated forces (SAF) 
simulators, facilitating end-to-end, mission-specific 
evaluations.  A similar need also exists in T&E of live 
devices with respect to their operational response and 
effectiveness in the larger context.  Due to the multitude 
and complexity of the sub-components, it is challenging 
to evolve a unified view of the 
interactions/dependencies among the components in the 
large CB sensor T&E scenarios.  Interaction between 
simulated and live components is challenging due to 
virtual/real conversion issues, especially for 
chemical/biological interactions, which need to be 
resolved.  Proper identification of relevant interaction 
units is important for maximum flexibility. 

Design of such a comprehensive framework 
enables a wide range of T&E possibilities.  Scenarios of 
operation can be effectively simulated and measures of 
performance can be obtained for individual subsystems 
or for the entire operation as a whole.  Alternatively, 
any of the components can be evaluated against the 
others.  For example, the performance of devices of 
interest can be evaluated in the larger context of 
operations, stimulated by CB dispersion according to 
plume models and its effects on operations simulated at 
the entity level (e.g. infantry).  The environment can 
help uncover possible realms of operation that are 
otherwise hard to capture with small, isolated testing.  
Moreover, the backplane-based testbed environment not 
only permits flexible T&E scenarios, but also helps 
control the levels of fidelity and scalability required for 
a given testing scenario. 
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