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Abstract—Information system security risk, defined as the 
product of the monetary losses associated with security incidents 
and the probability that they occur, is a suitable decision 
criterion when considering different information system 
architectures. Risk assessment is the widely accepted process 
used to understand, quantify, and document the effects of 
undesirable events on organizational objectives so that risk 
management, continuity of operations planning, and contingency 
planning can be performed. One technique, the Cyberspace 
Security Econometrics System (CSES), is a methodology for 
estimating security costs to stakeholders as a function of possible 
risk postures. In earlier works, we presented a computational 
infrastructure that allows an analyst to estimate the security of a 
system in terms of the loss that each stakeholder stands to 
sustain, as a result of security breakdowns. Additional work has 
applied CSES to specific business cases. The current state-of-the-
art of CSES addresses independent events. In typical usage, 
analysts create matrices that capture their expert opinion, and 
then use those matrices to quantify costs to stakeholders. This 
expansion generalizes CSES to the common real-world case 
where events may be dependent. 

Keywords-Information Security, Cybersecurity Metrics, Risk 
Analysis, Risk Management, Stakeholder Value, Information 
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I. INTRODUCTION 
Title 44 of the U.S. Code [1] defines Information security 

as a means of protecting information and information systems 
from unauthorized access, use, disclosure, disruption, 
modification, or destruction in order to provide: 

• integrity, which means guarding against improper 
information modification or destruction, and includes 
ensuring information nonrepudiation and authenticity;  

• confidentiality, which means preserving authorized 
restrictions on access and disclosure, including means 

for protecting personal privacy and proprietary 
information; and  

• availability, which means ensuring timely and reliable 
access to and use of information. 

Risk is formally defined as “the effect of uncertainty on 
objectives” (ISO 73 2009 [2]). Risk is often characterized by a 
probabilistic analysis involving both the likelihood of potential 
events and their consequences on the organizational objectives. 
Risk management involves “coordinated activities to direct and 
control an organization with regard to risk” (ISO 73 2009 [2]). 
Historically, risk management is a highly introspective 
knowledge acquisition process that yields benefits not only in 
the ability to reduce uncertainty in the outcomes of objectives, 
but also provides the prerequisite knowledge necessary to 
proactively develop contingency plans which can be placed 
into action should a risk materialize. 

Organizations typically use a risk management process to 
identify and mitigate risks to assure their organizational 
mission [3]. Risk management provides a documented, 
structured, and transparent process to identify critical 
resources, estimate threats, and vulnerabilities. The intersected 
set of threats and vulnerabilities cause harm (risks) to those 
identified resources. Moreover, the process estimates the 
likelihood of risk occurrence and evaluates tradeoffs among 
control measures used to mitigate the risks, and periodically 
revisits the analyses as needed. However, the value of the 
analysis is a strong function of the accuracy of the inputs to the 
process. 

In this paper, we first review, in Section 2, related works 
applicable to this investigation, of generalizing and thus 
expanding Cyberspace Security Econometrics Risk 
Management tools, techniques, and methodologies to include 
dependent events. In Section 3, the motivation for the current 
investigation is discussed as it relates to cyberspace security 
econometrics risk management. In this section, the concept of 
dependence is introduced. In Section 4, the foundations of the 
Cyberspace Security Econometrics System (CSES) are 
articulated. In Section 6, the expansion of the CSES 
foundations, explained in Section 5, is developed with an 
additional explanation of dependency and introducing two 
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assumptions (Assumption One – the probabilities of different 
matrices are independent; and Assumption Two – Entities in 
each class (other than Stakeholders) must correspond to disjoint 
events). In Section 7, the expansion is further generalized by 
addressing Assumption Two, resulting in accommodating the 
fact that dependencies between events naturally exist or will 
occur. Finally, in Section 8, we summarize the paper and 
discuss where future research is warranted and should proceed. 

II. RELATED WORK APPLICABLE TO INVESTIGATION 
Organizations typically implement an IT focused risk 

management process to identify and mitigate IT related risks in 
order to assure their organizational mission [4-6]. These 
enterprises span industries and infrastructures listed in the next 
several paragraphs. 

The European Network and Information Security Agency 
(ENISA) has generated an inventory of risk management and 
risk assessment methods [7]. A total of 13 methods were 
considered. Each method in the inventory has been described 
through a template. The template used consists of 21 attributes 
that describe characteristics of a method. The inventory website 
also provides for the comparison of the risk management 
methods and also the risk management tools [8]. 

In the context of applying these techniques to an application 
space, a critical infrastructure is, “an infrastructure so vital that 
it incapacity or destruction would have a debilitating impact on 
our defense and national security” [9, 10]. With respect to 
various subject domains, the associated critical infrastructure 
consisting of 11 sectors (agriculture and food, water, public 
health, emergency services, defense industrial base, 
telecommunications, energy, transportation, banking and 
finance, chemical and hazardous material, and postal and 
shipping), and 5 key assets (national monuments and icons, 
nuclear power plants, dams, government facilities, and 
commercial key assets) have been identified. Vulnerability 
analysis of these critical infrastructures is well documented, 
using traditional techniques [11]. Recently this list is expanding 
and the electric power industry is applying similar techniques 
to SCADA (supervisory control and data acquisition) 
equipment [11], cyber threats [12], cyber security [12], the 
Internet, and the Smart Grid. The oil and gas industry in 
particular and the chemical process industry in general store 
and transport hazardous and energetic chemicals, and operate 
processes under extreme conditions of temperature and 
pressure. Terrorists or disgruntled employees may exploit these 
conditions, which may then lead to toxic release, fire and 
explosion resulting in mass casualties, property damage, and 
economic and environmental impacts [13]. 

Newer approaches are emerging that apply information 
security techniques of easing the complexity of creating tree 
and graph structures and deriving probabilistic defense graphs 
from network architectural models [14].  Further refinements 
have recently been documented [15] and additional 
methodologies have been applied dealing with enhanced 
dynamic decision making [16]. 

III. CYBER SECURITY ECONOMETRICS SYSTEM (CSES) 
MOTIVATION FOR CURRENT INVESTIGATION 

The Roadmap for Cybersecurity Research articulates that 
information technology has become pervasive in every way — 
from our phones and other small devices to our enterprise 
networks to the infrastructure that supports our economy [12]. 
Improvements to the security of this information technology 
are essential for our future. As the critical infrastructures of the 
United States have become more and more dependent on public 
and private networks, the potential for widespread national 
impact resulting from disruption or failure of these networks 
has also increased. Securing the nation’s critical infrastructures 
requires protecting not only their physical systems but, just as 
important, the cyber portions of the systems on which they rely. 

The motivation for this work, is highlighted by existing and 
emerging technologies that complement the Roadmap [12] in 
the context of the survivability of time-critical systems. The 
President’s Comprehensive National Cybersecurity Initiative 
[17] also emphasizes the need for leap-ahead improvements in 
security of cyber physical systems. A failure is inclusive of 
random events, design flaws, and instabilities caused by cyber 
(and/or physical) attack. One such domain, optimizing 
investments in critical infrastructure protection, is applicable to 
the use of the Cyber Security Econometrics System (CSES). 
We discuss the workings of such a system in this context of the 
need for optimizing investments, the CSES mathematical 
foundations, the linear cascading of linear models, and the 
implications of this computing architecture, in particular, with 
respect to our nation’s critical cyber infrastructure and key 
resources. 

Combining the subject domains of information security, 
and risk management, CSES is a methodology for estimating 
security costs to stakeholders as a function of possible risk 
postures. In earlier works, we presented a computational 
infrastructure that allows an analyst to estimate the security of a 
system in terms of the loss that each stakeholder stands to 
sustain as a result of security breakdowns [18-20]. More 
recently, we presented how this infrastructure can be used in 
the subject domain of mission assurance [21].  Additional work 
has applied CSES to specific business cases [20, 22]. 

The current state-of-the-art of CSES addresses independent 
events. In typical usage, analysts create matrices that capture 
their expert opinion, and then use those matrices to quantify 
costs to stakeholders. In situations where the underlying events 
exhibit significant dependencies, the current approach is not 
appropriate. Unfortunately, significant dependencies are likely 
to arise with any detailed modeling of a complex system of 
components, such as an enterprise network. 

A. The Introduction of Dependence 
There are, in fact, two similar concepts that need to be 

distinguished. The first is dependence. Two events are 
dependent if the probability of one event is altered by knowing 
whether the second event occurred. This is the issue that needs 
to be dealt with directly to make CSES as generally applicable 
as possible. The second concept is disjointness. Two events are 
disjoint if they cannot both occur simultaneously. Inevitably, 
disjoint events are dependent and independent events cannot be 
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Figure 1. Independent versus disjoint events. 

disjoint (see Figure 1). However, while dependence needs to be 
addressed, the mathematics of CSES exploits the disjointness 
of the underlying events. In particular, matrix products are used 
to compute probabilities; this is a computational application of 
the Law of Total Probability [23] provided that the events are 
disjoint. Our new improvement to CSES continues to use 
matrix products as an efficient way to compute outcome 
probabilities, but directly 
addresses dependence 
among events by 
enumerating all possible 
combinations. Although 
this yields a potentially 
intractable number of 
event combinations to 
consider, we argue that 
the dependency structure 
among these events will 
generally greatly 
simplify the manual 
work required. 

IV. CYBERSPACE SECURITY ECONOMETRICS SYSTEM 
(CSES) FOUNDATIONS 

CSES provides many advantages over other known 
measurement or analysis systems or methodologies such as: (1) 
it reflects variances existing between different users or 
stakeholders of the system [18]. Different stakeholders may 
attach different stakes to the same requirement or service (e.g., 
a service may be provided by an information technology 
system, cyber, enterprise or process control system, etc.). (2) 
For a given stakeholder, CSES can highlight variances that 
may exist among the stakes attached to satisfying each 
requirement. For example, a stakeholder may attach or identify 
different stakes to satisfying different requirements within the 
overall system. (3) For a given compound specification (e.g., 
combination(s) of commercial off the shelf software and/or 
hardware), CSES can identify variances that may exist amongst 
the levels of verification and validation that are performed on 
components of the system (or specification). The verification 
activity may produce higher levels of assurance in satisfying 
some components of the specification more than others. 

The CSES follows a defined process [18, 19, 24, 25]. The 
initial inputs (1) organizational mission (and components 
thereof), (2) value of its objectives and assets if uninterrupted, 
and (3) the components of the enterprise system that support 
each mission component, are determined by stakeholders. 

The stakeholders, with assistance from Subject Matter 
Experts (SMEs), define the criteria of a quantitative value of an 
asset. For example, the criteria may include: 

• Financial basis (e.g., operational cost of downtime per 
unit of time defined by hardware/software costs, 
facilities and staffing versus profit); which is the 
quantitative measurement to be used within the CSES. 

• Federal Information Security Management Act 
(FISMA) of 2002 [26], stakeholder derived value of 

assets per NIST 800-60 [27], and/or FIPS 199/200 
[28, 29] dictated requirements. 

• Stakeholder defined requirements; acceptable and 
unacceptable impact levels against the value related to 
IA tenets of confidentiality, availability and integrity 
may also be examined. 

The CSES process proceeds in three steps (generation of 
stakes matrix, dependency matrix, and threat matrix) to derive 
the mitigation costs matrix [18]. CSES accounts for failure 
costs and verification (i.e., mitigation costs). CSES provides a:  

• Framework for measuring the appropriate attributes 
that support the decisions necessary to (1) design 
security countermeasures, (2) choose between 
alternative security architectures, (3) respond to events 
such as intrusions or attacks, and (4) improve security 
(including reliability and safety) during both design 
and operational phases. 

• Comprehensive basis for choosing courses of action 
that have the highest risk reduction return on 
investment, i.e., reduce the most risks for the lowest 
cost. 

The basis of CSES stems from and is consistent with the 
spirit of Value Based Software Engineering [30, 31]. 

CSES comprehends the different organizational mission 
needs for all stakeholders, including reliability and safety [20]. 
CSES identifies information assurance controls and mitigation 
costs as an investment toward assuring mission success [21]. 

V. CSES - A CASCADE OF LINEAR MODELS 
In this section, we present the composition of the CSES 

model and motivate its application. 

A. The Stakes Matrix 
We consider a system S and we let H1, H2, H3, …, Hk be 

stakeholders of the system, i.e., parties that have a stake in its 
operation. We let R1, R2, R3, …, Rn, be security requirements 
that we wish to impose on the system, and we let  STi,j, for 
1 i k and 1 j n be the stake that stakeholder Hi has in meeting 
requirement Rj.. We let PRj, for 1 j n, be the probability that 
the system fails to meet security requirement Rj, and we let 
MFCi, (Mean Failure Cost), for 1 i k, be the random variable 
that represents the cost to stakeholder Hi that may result from a 
security failure.  

We quantify this random variable in terms of financial loss 
per unit of operation time (e.g. $/hour); it represents the loss of 
service that the stakeholder may experience as a result of a 
security failure. Under some assumptions of statistical 
independence, we find that the computed expected value of the 
Mean Failure Cost for stakeholder Ti can be written as: 

.
1

, j
nj

jii PRSTMFC
≤≤

=
 

If we let MFC be the column-vector of length k that 
represents mean failure costs, let ST be the k×n matrix that 
represents stakes, and let PR be the column-vector of length n 
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that represents probabilities of failing security requirements, 
then this can be written using the matrix product ( ): 

MFC = ST  PR. 

The Stakes matrix is filled, row-by-row, by the 
corresponding stakeholders. As for PR, we discuss below how 
to generate it. 

B. The Dependency Matrix 
We consider the architecture of system S, and let C1, C2, C3, 

…, Ch, be the components of system S. Whether a particular 
security requirement is met or not may conceivably depend on 
which component of the system architecture is operational. 
Lets we assume that no more than one component of the 
architecture may fail at any time. We define the following 
events: 

• Ei, 1 i h, is the event:  the operation of component Ci 
is affected due to a security breakdown. 

• Eh+1:  No component is affected. 

 
Given a set of complementary events E1, E2, E3, …, Eh, 

Eh+1, we know that the probability of an event F can be written 
in terms of conditional probabilities as: 

+

=

=
1

1
).()|()(

h

k
kk EPEFPFP  

We instantiate this formula with F being the event:  the 
system fails with respect to some security requirement. 
Expanding on this effect, we let Fj denote the event that the 
system fails with respect to requirement Rj and we write (given 
that the probability of failure with respect to Rj is denoted by 
PRj): 

+

=

=
1

1
).()|(

h

k
kkjj EPEFPPR  

If  
 

• we introduce the DP (Dependency) matrix, which has 
n rows and h+1 columns, and where the entry at row 
j and column k is the probability that the system fails 
with respect to security requirement j given that 
component k has failed (or, for k=h+1, that no 
component has failed),  

• we introduce vector PE of size h+1, such that PEk is 
the probability of event Ek, then we can write 

PR = DP  PE. 

Matrix DP can be derived by the system’s architect, in light 
of the role that each component of the architecture plays to 
achieve each security goal. As for deriving vector PE, we 
discuss this matter in the next section. 

C. The Impact Matrix 
Components of the architecture may fail to operate properly 

as a result of security breakdowns brought about by malicious 
activity. In order to continue the analysis, we must specify the 
catalog of threats that we are dealing with, in the same way that 
analysts of a system’s reliability define a fault model. To this 
effect, we catalog the set of security threats that we are facing, 
and we let  T1, T2, T3, …, Tp, represent the event that a 
cataloged threat has materialized, and we let  Tp+1, be the event 
that no threat has materialized. Also, we let PT be the vector of 
size p+1 such that 

• PTq, for 1 q p, is the probability that threat Tq has 
materialized during a unitary period of operation 
(say, 1 hour). 

• PTp+1 is the probability that no threat has materialized 
during a unitary period of operation time. 

 
Then, by virtue of the probabilistic identity cited above, we 

can write: 

+

=

=
1

1
.)|(

p

q
qqkk PTTEPPE  

If  
 

• we introduce the IM (Impact) matrix, which has h+1 
rows and p+1 columns, and where the entry at row k 
and column q is the probability that component Ck 
fails given that threat q has materialized (or, for 
q=p+1, that no threat has materialized),  

• we introduce vector PT of size p+1, such that PTq is 
the probability of event Tq, then we can write 

PE = IM  PT. 

Matrix IM can be derived by analyzing which threats affect 
which components, and assessing the likelihood of success of 
each threat, in light of perpetrator behavior and possible 
countermeasures. Vector PT can be derived from known 
perpetrator behavior, perpetrator models, known system 
vulnerabilities, etc. We refer to this vector as the Threat 
Configuration Vector or simply as the Threat Vector. 

VI. EXPANSION OF METHOD 
The current state-of-the-art of CSES addresses independent 

events. This involves analysts creating matrices that capture 
their expert opinion, and then using those matrices to quantify 
costs to stakeholders. This section describes how to expand this 
to include dependent events. 

A. Expert Matrices 
Analysts create several matrices that relate various types of 

entities: 

1. A stakeholder-requirement matrix gives the cost (in a 
common unit, such as USD) of having that requirement 
fail (for that stakeholder). 
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2. A requirement-component matrix gives the conditional 
probability of the requirement failing given that the 
component fails. 

3. A component-threat matrix gives the conditional 
probability of the component failing given that a 
particular threat exists. 

4. A threat-mitigation matrix gives the probability of a 
threat existing given that a particular mitigation (or set 
of mitigations, a.k.a. a risk posture) is in place. 

B. Matrix Products 
The resulting product of matrices will give a threat-

mitigation matrix with rows indexed by stakeholders and 
columns indexed by mitigations. The entries are the expected 
costs to each stakeholder for that mitigation. This follows from 
the nature of the conditional probabilities, but refers  to the next 
subsection for underlying assumptions. This allows decision-
makers to determine which mitigation to use.  

Other matrix products may also be relevant. In particular, 
suppose an analyst is interested in knowing the dependence of 
the results on a particular entry of the component-threat matrix. 
The effect of that entry on the stakeholder mitigation product 
matrix can be computed by replacing the component-threat 
matrix with a matrix of all zeros except for a single one at the 
entry of interest. The resulting product gives the matrix of 
derivatives of each matrix product entry with respect to the 
component-threat entry of interest. This linearity can be used:  

1. for sensitivity analysis (to the expert opinions),  

2. to search for areas of weakness (e.g., a component that 
could be hardened against a threat and would yield 
considerable cost reductions), and  

3. to determine non-critical entities (e.g., a component 
whose security against threats has little or no 
implications for the cost to stakeholders). 

C. Underlying Assumptions 
The matrix product makes sense as a product of conditional 

probabilities. In general, 

 

( ) ( ) ( ) )( nnnn AAAAPAAPAAPAAP |||| 12113221 −− =  

 

provided that the events are conditionally independent. That is, 
An depends on A1 only through the influence of An 1. This gives 
the first CSES assumption: 

Assumption One: The probabilities of different matrices 
are independent.  

For example, the probability of a component failing given 
the presence of a threat does not depend on which requirement 
that component is serving, or on the mitigation that is in place 
(since the threat is already assumed to be present). 

We believe this assumption to be fundamentally sound, 
provided that the components and threats are defined 
reasonably. 

A second assumption involves the summation of terms 
within a matrix product. 

Generally, 

( ) )(
−

−− ====
132 ,...,

11332211 |,...,,,|
naaa

nnnn AaAaAaAAPAAP  

as long as the joint events, each one described by the set of 
values a2, a3, . . ., an 1, are disjoint. (This is one version of the 
Law of Total Probability.) Otherwise, the equation requires 
correction factors for intersections of events. (See Stanley’s 
standard combinatorics texts for more details on principles of 
inclusion-exclusion [32].) This leads to the second CSES 
assumption: 

Assumption Two: Entities in each class (other than 
stakeholders) must correspond to disjoint events.  

For example, if two components can fail independently 
(i.e., neither, either one, or both can fail) then the two 
component failures are not disjoint (i.e., both can fail because 
they are not mutually exclusive). Refer to Figure 1. 

As a first iteration of CSES, we can suppose that the 
component failures are rare and relatively independent events. 
In that case, the probability of multiple component failures is 
considered negligible. In such applications, Assumption Two is 
appropriate. However, a general solution for the issue of 
dependence among events is needed to broaden the field of 
legitimate applications of CSES. This is a standing issue with 
the state-of-the-art. The next section describes our general 
solution that directly addresses dependence. Our method covers 
the generic case, but specializes to the current CSES when 
independence and rarity hold. 

VII. ENUMERATING DISJOINT EVENTS 
We propose to address the lack of generality of Assumption 

Two by enumerating a finite set of disjoint events. This will 
make CSES applicable even without Assumption Two. In this 
section, we first describe the enumeration of all combinations 
of interest in Subsection A. Next, Subsection B shows that this 
can quickly lead to manually intractable requirements. 
However, it is expected that structural relationships and 
quantitative comparisons between events can be used to greatly 
simplify the demands on domain experts with respect to 
interpreting (Subsection C) and populating (Subsection D) the 
model parameters. 

A. The Enumeration 
If a system contains components A, B, and C, then there are 

eight possible component failure states (one of which 
represents no failures) based on the eight subsets of (A, B, C) 
that fail. (In general, we have 2k states for k entities.) We 
propose that the original sets of requirements, components, 
threats, and mitigations be replaced by all of their possible 
combinations. The resulting matrices, while being 
exponentially larger, will (by definition) satisfy Assumption 
Two, thereby making the calculations relevant. 

These larger expert matrices potentially introduce new 
challenges to the CSES methodology with respect to 
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1. calculating the product matrix,  

2. interpreting the product matrix, and  

3. populating the expert matrices.  

We discuss these in the next three subsections, respectively. 

B. Calcuation 
The n1 × n3 product of an n1 × n2 matrix with an n2 × n3 

matrix can be computed in work O(n1n2n3). For a product of 
four matrices, the work becomes O(n1n2n3 + n1n3n4) or 
O(n2n3n4 + n1n2n4), depending on the order of operations. (A 
subfield of combinatorial optimization has addressed how to 
best order the computations for efficiency [33].) Since we only 
have a small number of matrices, we can reasonably handle 
1000×1000 matrices; significantly larger matrices may pose a 
problem. In the near term, we propose limiting the analysis to 
these relatively small matrices. (This allows for up to 10 
independent factors prior to the combinatorial enumeration.) 
With additional improvements in efficiency that exploit 
structural properties and sparsity, we expect to be able to 
extend the practical matrix size limits. In particular, since we 
will be using the dependency structure among the events to 
populate the matrices (see Subsection D), we should be able to 
use the same structure to computationally simplify the product 
calculation. We leave this as future work. 

C. Interpretation 
The size of the resulting matrix will still only have as many 

rows as stakeholders originally considered. The number of 
mitigations may now have increased exponentially. Comparing 
the resulting mitigations may be a considerable and human-
intensive challenge. 

We propose a triage process for reducing the number of 
mitigations that need to be considered. First, if the mitigation 
costs can be estimated, we can eliminate all mitigations that are 
too costly. These mitigations are the enumerated combinations 
of the original set of mitigations. While no original mitigation 
would be included if it was cost-prohibitive, it is likely (since 
CSES is being used to support security decisions) that there are 
combinations of these that are too expensive. 

Second, if there are unacceptably high costs to certain 
stakeholders, we can eliminate the mitigations resulting in 
those high costs. The use of stakeholder utilities allows for a 
highly expressive means of accounting for arbitrary stakeholder 
concerns. 

Third, if two mitigations are such that one is both cheaper 
to implement and costs less to the stakeholders (this is many 
simultaneous conditions), then the other mitigation can be 
dropped. These notions should help to reduce even a large set 
of mitigations to a small set of “best” candidates for analysis by 
a human. 

D. Populating 
If each of the four expert matrices is about 1000 × 1000 in 

size, then there are 4 million entries that need to be assigned. In 
practice, assigning them individually is inadvisable since  

1. it would take far too long, 

2. the resulting entries are bound to be inconsistently 
derived, and 

3. any structural relations between the entries must be 
enforced manually. 

We propose explicitly outlining the relationships between 
the components. For this, we suggest using a Bayesian belief 
network to capture structural (conditional) dependencies. A 
Bayesian belief network is a probability model that efficiently 
captures the potentially highly complex relationships between 
variables by “factoring” them as conditional dependencies. A 
collection of variables X1, X2, …, Xk are given together with 
dependencies of the form Xi  Xj. This is interpreted as saying 
that the variable Xj depends directly on all Xi such that Xi  Xj. 
These dependencies define a directed acyclic graph. 

The model must also specify the distribution of Xj given all 
the Xi on which it directly depends. Since, for our purposes, it 
suffices to consider only categorical variables, these 
distributions can be thought of as look-up tables. The rows of 
the table are indexed by all combinations of values of the input 
variables (i.e., the Xi), and the value in the table is the 
probability  

( )....,,| 11 ikikiijj xXxXxXP ===  

Additional dependencies do exist in a Bayesian belief 
network in cases where, say, Xi  Xj and Xj  Xk. However, 
these can be accounted for with the tables already described by 
factoring through other variables as needed. The fundamental 
underlying hypothesis is conditional independence, a 
generalization of the Markovity assumption for Markov chains. 
Conditional independence means that the probability of Xj is 
independent of all Xi that it is not directly dependent on, given 
the values of the Xi that it is dependent on. This one elegant 
assumption means that a relatively small number of parameters 
can be used to fully describe the joint probability distribution of 
all of the variables. This efficiency is especially pronounced 
when the dependencies Xi  Xj are a sparse set among the set 
of all variables. Given the joint distribution, it is then possible 
to perform various types of inference, to learn the tables from 
data (called training), to compute the probability of various 
types of events, to synthesize (i.e., simulate) data, and to 
compare multiple hypotheses for the same data. 

Our general scheme for efficiently populating the matrices 
is to devise a Bayesian belief network for the events and to 
have experts create the conditional probabilities. In these 
networks, the original events (prior to the combinatorial 
enumeration) are the variables. These will include the security 
requirements, the component failures, and threats. Some 
dependencies between the events will naturally exist (e.g., 
tightly coupled components, sub-component to super-
component relationships, threats on particular components, 
mutually exclusive threats), but personal experience with CSES 
suggests that most pairs of events will be fundamentally 
independent. The users of CSES are required to establish the 
dependencies in the network, as well as to populate its 
conditional probability distributions (i.e., the look-up tables). 
There is, as there always is in modeling real world situations, a 
fundamental trade-off between the fidelity of the model and its 
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simplicity. This corresponds to including more dependencies in 
the former and fewer in the latter.  

Given the model, it is routine to compute the probability for 
any given combination of events, thereby populating the 
matrices. This method has a significant advantage over directly 
populating a large matrix with probabilities because it enforces 
a high degree of consistency. Where multiple entries in the 
matrix may take into account a single conditional probability 
(since a single simple event will occur in half of the 
enumerated combinations), a manual approach would demand 
that the user account for this probability in a consistent way in 
all cases. The Bayesian belief network makes this accounting 
explicit and, therefore, consistent. Furthermore, it is far more 
efficient, especially for sparse Bayesian belief networks, which 
have relatively few dependencies. 

We claimed above that our method generalizes the current 
CSES approach when the events are independent and rare. In 
this case there are no dependencies Xi  Xj in the network. 
Here, the computation of a combination of events is the product 
of the component events: 

( ) .)(∏ == ii xXPXP  

When the events are assumed to be rare, the probability of 
two simultaneous failures becomes negligible. Hence the only 
effectively non-zero probabilities are the original set of events. 
The non-zero component of the matrix product is then the same 
as the original matrix product outlined in Section III. This 
shows that the original need for 2k probabilities to specify the 
matrix entries (for column corresponding to that threat) is 
reduced to just k probabilities. 

As a second example, we consider a slightly more complex 
situation. Suppose we have two components, a gate and a pump 
(stored behind the gate). Consider a physical threat against the 
pump that must first defeat the gate. The probability of 
defeating the gate can be estimated by experts. Then, experts 
can estimate the conditional probability distribution of 
sabotaging the pump given that 

1. the gate was defeated, or 

2. the gate was not defeated.  

The efficiency here is that the four cases can be computed 
given only three numbers. (These are the probability of success 
against the gate and the two conditional probabilities against 
the pump given the result of the gate action.) In larger, more 
complex cases the reduction in expert values needed is far more 
dramatic. For example, if there were a sequence of k gates, we 
would need one probability for the first gate, and two 
probabilities for each subsequent gate and the pump. The 
original requirement for 2(k+1) probabilities is therefore reduced 
to 2k+1 probabilities. 

VIII. SUMMARY AND FUTURE WORK 
We have described the state-of-the-art of CSES and the 

fundamental shortcoming, which we referred to as Assumption 
Two – Entities in each class (other than Stakeholders) must 
correspond to disjoint events. We then proposed a method for 
addressing that assumption in a general setting via the use of 

combinatorial enumeration. The resulting issues from the 
combinatorial explosion can be addressed by an application of 
Bayesian belief networks (to incorporate expert opinion) and 
basic exploratory heuristics (to analyze the results). 

Future work should include (1) additional implementations 
of this method, and (2) exploration of computational 
enhancements for particular structured matrices, which would 
lead to (3) validation via real-world examples. Further 
investigation is warranted in merging our method with a hybrid 
analytic dynamic forecasting (HADF) methodology that 
combines the techniques of analytic hierarchy processes, factor 
analysis, and spanning trees to the problem of selecting among 
a set of contingency measures following events which place the 
organizational mission at risk [16]. The HADF methodology 
makes use of qualitative subjective assessments by subject 
matter experts at multiple levels of the organization and uses 
historical event occurrences (when available) to provide the 
decision maker with an ongoing recommendation of the best 
contingency measures to employ to assure the organizational 
mission objectives. The method is novel because it augments 
the decision maker’s experiential knowledge with a 
probabilistic forecast of the best contingency measure to take in 
response to events based upon SME knowledge, historical 
evidence, and the real-time status critical resources. The 
methodology provides a structured approach to mitigate 
operational risk in complex environments and decreases the 
time required to make decisions under conditions of 
uncertainty. 

In addition to better supporting off-line cyber security 
decisions, handling of dependencies in CSES improves its 
support of on-line cyber security analysis. In particular, it could 
be used to construct utility functions for multi-party cyber 
conflict simulations, improving the fidelity of the game 
theoretic analyses in related work  [34].  
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