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Abstract.
We have implemented a new multilevel parallel decomposition in the Denovo discrete

ordinates radiation transport code. In concert with Krylov subspace iterative solvers, the
multilevel decomposition allows concurrency over energy in addition to space-angle. The original
space-angle partitioning in Denovo placed an effective limit on the scalability of the transport
solver that was highly dependent on the problem size. The added phase-space concurrency
combined with the high-performance Krylov solvers has enabled weak scaling to O(100K) cores
on the Jaguar XT5 supercomputer. Furthermore, the multilevel decomposition provides enough
concurrency to scale to exascale computing and beyond.

1. Introduction
Predictive nuclear energy simulations will involve the coupled-modeling of many physical
regimes, including Boltzmann transport, and will require tremendous computational resources.
Experience in the DOE Advanced Simulation and Computing (ASC) program, astrophysics,
and nuclear energy have demonstrated that, in coupled-physics calculations, a 3-D Boltzmann
transport solver will generally require the vast majority of computational resources, in terms
of both memory and operations, because of the 7-dimensional phase-space (location, velocity
[energy+angle], and time). For a nuclear reactor simulation, the scale of the problem is large: 5
orders of magnitude in space and 10 in neutron energy. A transport solver that incorporates a
resolved discretization for all scales using current discrete models would require 1017−21 degrees of
freedom (DOF) for a single time-step, which is beyond even exascale computational resources.
This problem size precludes, for the time being, a single, integrated ab initio computational
approach. Instead, variations of current multilevel techniques will continue with the new
objective being to make the process more consistent and subsequentially, more predictive.

Present reactor transport methods use an inconsistent three-level homogenization approach,
often utilizing distinct simulation codes, in modeling radiation transport in the core of a nuclear
reactor. Figure 1 shows the spatial and energy domains, respectively, of this multiscale challenge:
(α) use of a fine-mesh in 1-D cylindrical geometry of an approximate small subset (pincell) of the
reactor core with a first-principles representation of the energy spectrum; (β) use of a coarser-
mesh with a two-dimensional transport solution in a larger subset (lattice) of the core with
grouped representation of the energy spectrum, provided by the previous step; and (γ) use of a



(a) α = pincell (b) α energy spectrum

(c) β = lattice (d) β energy spectrum

(e) γ = core (f) γ energy spectrum

Figure 1. Three levels of reactor geometric and energy structure.

very coarse mesh in a three-dimensional diffusive transport of neutrons in the full homogenized
core of the reactor with a very coarse representation of the energy spectrum provided by the
previous step. The first two steps (α, β) require 107−8 DOF with 102−3 independent calculations
each on single processor machines. Recent work at Oak Ridge National Laboratory (ORNL)
has demonstrated that, with moderate computational resources, this can be reduced to an
inconsistent two-step approach, where step (A) utilizes the energy-fidelity of (α) with the spatial
domain of (β) and step (B) uses the energy-fidelity of (β) and the spatial domain of (γ) [1, 2]. In



this approach, each step would require 1011−13 DOF per step with 102 independent high-order
(A) calculations for every timestep.

The solution of the first-order form of the Boltzmann transport equation requires multiple
wavefront solutions over each discrete angle. The wavefront solver imposes a fundamental
limitation on the scalability of the algorithm because of the upstream dependencies of
downstream regions. Various approaches to this problem over the last decade have yielded
mixed results. The Koch-Baker-Alcouffe (KBA) [3] algorithm for structured 3-D grids is very
efficient in that the transport operator can be inverted in a single solve, but the scalability
is limited by communication latency such that this algorithm is limited by problem size and
generally will not scale to O(100K) cores. Parallel-Block-Jacobi methods have been applied
to both structured and unstructured grids yielding excellent weak-scaling results [4]. However,
they are less efficient in terms of memory and iteration count when compared to direct wavefront
algorithms. Graph-based direct methods have been investigated on unstructured grids, but these
have significant scaling limitations [5].

In order to reduce today’s three-level approach to consistent single or two-level schemes,
the orders-of-magnitude increase in fidelity of each of the steps will require substantially
more computational resources than present algorithms utilize. Therefore, novel approaches to
parallelize the transport equation must be developed that can overcome the wavefront limitation
and take full advantage of the complete computational resources.

A parallel decomposition over energy groups and an Arnoldi-based k-eigenvalue solver have
been developed for the Denovo code. Denovo is a three-dimensional, discrete ordinates (SN )
multigroup radiation transport code for radiation shielding and reactor physics applications
under active development at ORNL [6, 7]. The new energy decomposition is in addition to
the KBA-based spatial domain decomposition already present in Denovo. This multilevel
decomposition allows parallel scaling up to hundreds of thousands of cores. Additionally, the
new Arnoldi solver can solve k-eigenvalue problems with many fewer mesh sweeps than the
traditional power iteration method.

In this paper we will describe Denovo’s multilevel parallel decomposition and the solver
technologies that complement it. Solvers for the multigroup SN equation are described in § 2.
In § 3 we show the limitations of KBA space-angle parallelism on leadership class platforms.
Finally, we describe a multilevel parallel decomposition that overcomes these shortcomings in
§ 4, and in § 5 we summarize the complete set of solver options available in Denovo. Results
that show the efficiency of these methods are shown in § 6.

2. Multigroup Solvers
In order to see how a multilevel energy decomposition can be beneficial and how it will be
implemented, we briefly review the fundamental solver strategies in Denovo; Ref. [6] can be
consulted for full details. The multigroup SN equations can be written in operator form as

Lψ = MSφ+ qe , (fixed-source) (1)

Lψ = MSφ+
1

k
MχfTφ . (eigenvalue) (2)

The state of these equations is defined in angular flux moments, φ, that are related to the
discrete angular flux through

φ = Dψ , (3)

where D is the discrete-to-moment operator that integrates discrete angles into angular flux
moments using quadrature rules. L is the first-order, linear, differential transport operator, M
is the moment-to-discrete operator that projects angular flux moments into discrete angle space,
and S is the group-to-group scattering matrix. In the eigenvalue form of the equation, fT is



the row-vector of fission cross sections, χ is the fission spectrum vector, and k is the largest
eigenvalue.

Operating by DL−1, defining T = DL−1, and rearranging terms, the fixed-source problem is

(I−TMS)φ = q , (4)

where q = Tqe. Similarly, the eigenvalue problem becomes

(I−TMS)φ =
1

k
TMFφ , (5)

where F = χfT is the full rank fission matrix. The operator L−1 can be formed into a lower-
triangular system if one sweeps the space-angle grid in the direction of neutron travel. The
resulting transport sweep is the operation that is parallelized using the KBA algorithm. This
matrix is never formed in practice, only the action of the operator on a vector, y = L−1v, is
required.

The traditional method for solving Eq. (4) is Gauss-Seidel iteration,

(I−TMSgg)φk+1
g = qg + TM

( g−1∑
g′=0

Sgg′φ
k+1
g′ +

G∑
g′=g+1

Sgg′φ
k
g′

)
, (6)

which is the same as solving G one-group, space-angle problems per Gauss-Seidel iteration. We
refer to these one-group problems as within-group equations and they have the following form,

(I−TMSgg)φg = q̄g , (7)

where q̄g is an effective group source that includes all in-scattering, fission, and/or external
sources for the group. When using Gauss-Seidel iteration over energy, the within-group solves
represent a set of inner iterations. Denovo provides several solvers (Krylov, source-iteration)
for the within-group equations, and Diffusion Synthetic Acceleration (DSA) is available as
a preconditioner for the Krylov options. Obviously, when S is lower-triangular (indicating
downscattering only) the solution converges in 1 Gauss-Seidel iteration. However, when S is
energy-dense the solution can converge very slowly. This structure occurs in the low energy
region of the spectrum where neutrons undergo Maxwellian upscattering. A typical S for a 27
group set of common reactor materials is illustrated in Fig. 2.

The standard way to solve Eq. (5) is power iteration. We start by defining an energy-
independent eigenvalue,

Γ = fTφ . (8)

Then, Eq. (5) can be written,
AΓ = kΓ , (9)

with
A = fT (I−TMS)−1TMχ . (10)

Solving by power iteration proceeds as follows

Γk+1 =
1

k
AΓk . (11)

The operation AΓk necessarily involves solving multigroup problems with the same form as
Eq. (4),

(I−TMS)yk = TMχΓk . (12)



Figure 2. Sparsity plot of the scattering matrix for a problem containing iron, graphite, and
heavy water. The data has 27 energy groups, and the matrix is lower-triangular through group
14. The full matrix is dimensioned over energy-space-angle with angle represented by Legendre
moment expansion.

Both Gauss-Seidel iteration for fixed-source problems and power iteration (with Gauss-Seidel
inners) are provided in the current version of Denovo. While the implementation in Denovo is
enhanced by applying Transport Two-Grid (TTG) acceleration to the Gauss-Seidel iterations
[6] and using GMRES(m) on the inner, one-group solves, a fundamental limitation of these
solvers is that they are only parallelizable over space-angle variables. The recursive nature of
Gauss-Seidel prevents effective parallelization over energy. One could use parallel block-Jacobi
iteration, but this option results in solvers that are too inefficient to be of practical use on most
problems.

Instead, the Krylov solver framework in Denovo that is currently used in the inner, one-group
space-angle solves has been expanded to include energy. Including energy in the Krylov vectors
enables the following benefits:

• the energy variable is decoupled allowing groups to be solved independently,

• Krylov subspace iteration is more efficient and robust than Gauss-Seidel iteration,

• preconditioning a Krylov iteration is generally more robust and stable than Gauss-Seidel
acceleration.

Furthermore, including energy in the Krylov vector does not invalidate any of the existing sweep
mechanics that are already implemented in Denovo.

For multigroup, fixed-source problems in the form of Eq. (4), application of a Krylov method
requires the following two steps:

(i) A full energy-space-angle sweep of the right-hand side source,

q = Tq̂ , (13)

where q̂ is an effective source that could be an external source (qe) in the case of true fixed-
source problems, or it could be a fission source iterate when nested inside power iteration.

(ii) A full energy-space-angle sweep each Krylov iteration to calculate the action of the operator
on the latest iterate,

yk = (I−TMS)vk , (14)



where vk is the Krylov vector in iteration k. We note that this vector is dimensioned
vk ≡ {vkg,c,n,l,m} where g is the energy group, c is cell index, n is the spatial unknown index

in the cell, and (l,m) are the spherical harmonic moment indices.

For eigenvalue problems we have implemented an Arnoldi Krylov subspace solver using the
Trilinos Anasazi package [8] that can (a) take full advantage of the energy parallelism, and (b)
be more efficient than power iteration. Arnoldi iteration requires the eigenproblem to be written
in standard form,

Ax = λx . (15)

Arnoldi iteration can implemented with either an energy-dependent or energy-independent
eigenvector as follows:

Aφ = kφ , A = (I−TMS)−1TMF , (energy-dependent) (16)

AΓ = kΓ , A = fT (I−TMS)−1TMχ . (energy-independent) (17)

In either case, the implementation of Arnoldi iteration requires a matrix-vector multiply at each
Krylov iteration of the form

yk = Avk . (18)

For the energy-dependent case we have

zk = TMFvk , matrix-vector multiply and sweep (19)

(I−TMS)yk = zk . fixed-source solve (20)

Similarly, for the energy-independent eigenvector the steps are

zk = TMχvk , matrix-vector multiply and sweep (21)

(I−TMS)yk = zk , fixed-source solve (22)

yk ← fT yk . dot-product (23)

Both methods require a fixed-source solve each iteration. We consider both the energy-dependent
and independent approaches because we are uncertain a priori which method will be optimal for
a given problem. The energy-dependent approach allows parallelization of the eigenvalue solve
across energy at the expense of a much larger eigenvector. The energy-independent approach
only allows energy-domain parallelization over the fixed-source solve, and the eigenvalue solve is
only parallel over space-angle. However, this decomposition may be more efficient because the
eigenvector is smaller, especially when work is dominated by the inner, multigroup fixed-source
solve.

3. Sweep-Based Parallelism
Denovo [6] uses the KBA wavefront algorithm to parallelize the space-angle transport sweeps
shown in Eqs. (4) and (5). Unfortunately, KBA alone provides insufficient parallelism on
very large systems. The following analysis will demonstrate its shortcomings. The theoretical
efficiency of KBA, ignoring machine latency, is

εmax =
2MK

2MK +Kb(I/Ib + J/Jb − 2)
=

2MBK

2MBK + PI + PJ − 2
, (24)

where (I, J,K) are the number of cells in (x, y, z), respectively. The number of cells per domain
in (x, y) is given by (Ib, Jb), and Kb is the number of cells per on-processor block in the z



dimension. Then, (PI , PJ) are the number of processors in the x and y directions, BK is the
number of blocks in the z direction on each domain, and M is the number of angles per octant.

We have done strong scaling studies on Jaguar1 with a 400 × 400 × 400 cell mesh. The
results are shown in Fig. 3. Examining Fig. 3a shows that while a very high (> 90%) maximum
theoretical parallel efficiency is estimated, this value is impossible to achieve in practice. In order
to get high theoretical efficiencies, the number of cells per block (Ib×Jb×Kb) becomes very small.
This makes sense in the abstract because work is passed to subsequent blocks more rapidly.
However, in reality the latency per message quickly overwhelmes the theoretical prediction.
When the number of cells per block becomes very small, data spends more time waiting in MPI
message queues than it spends working to solve the block. This effect is illustrated in Fig. 3b.
The deviation between the theoretical prediction and the measured efficiency becomes small as
the block-size grows. In summary, high theoretical efficiencies requiring small numbers of cells
per block cannot be achieved, but theoretical efficiencies that result from larger block sizes can
be realized.

The repercussions resulting from this analysis are obvious; namely, the full extent of
computational resources available on Jaguar cannot be effectively utilized. The best efficiencies
are obtained when the block size can be set greater than ∼ 1500. Thus, for any given problem,
the maximum number of cores is predetermined by the minimum block size. Even a 500M cell
problem will be limited to 15,000–20,000 cores under these restrictions. In order to utilize the
full resources of Jaguar we must find additional variables to parallelize. Using the advanced
solvers in Denovo, a multilevel decomposition over energy will provide the necessary parallelism.

4. Multilevel Parallel Decompositions
Having described the multigroup solvers in § 2 and discussed the limitations of parallelizing
only the space-angle sweep, we now explain the parallel implementation of Denovo’s energy-
space-angle decomposition. The multilevel energy-space decomposition is illustrated in Fig. 4.
In this decomposition, space is partitioned into blocks. Energy is partitioned in sets. Each set
contains the full mesh (all of the blocks) such that KBA sweeps never cross set boundaries. Every
(block, set) combination is termed a domain. The total number of domains is currently the same
as the number of MPI processes in a parallel job. The old Denovo space-angle decomposition
can be thought of as a single-set energy decomposition over PI × PJ blocks. A benefit of the of
this energy-space partitioning is that all of the solvers described in § 2 can be implemented in
the new decomposition using Denovo’s existing space-angle sweep machinery.

In order to solve the multigroup equations, Eq. (14) implies a matrix-vector multiply of the
form

sg = Sg0v0 + Sg1v1 + . . .+ SgGvG . (25)

Instead of communicating all of the groups to each set so that the matrix-vector multiply can
be completed locally, we replicate the source vector s. Then, each set performs its part of the
matrix-vector multiply followed by a global reduction. The global reduction is performed using a
communicator that relates all blocks with the same index across sets. After the global reduction,
each set has the complete source vector s, even though it will only utilize the components of s
that are local to the set.

After calculating the sweep source s, the sweeps for each local group on a set can be performed
without any inter-set communication. The sweeps only require communication between blocks
within a set. The only exception to this rule is when the energy-independent version of Arnoldi
is applied. In this case, the eigenvector must be summed across all sets in a manner analogous
to that described above for calculating the sweep source.

1 Jaguar XT5 supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)
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Figure 3. Denovo strong-scaling results on Jaguar; (a) strong-scaling with BK = 40 blocks
(blue) and BK = 5 blocks (red) and (b) the deviation from the theoretical maximum as a
function of number of cells per block.

5. Denovo Solver Taxonomy
Having reviewed the new solvers and parallel decompositions in Denovo, we will now summarize
the complete set of solver options that are available in the code. We have separated the taxonomy
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Figure 4. Multilevel energy-space decomposition in Denovo. This example has 3 sets, each
containing 16 blocks, resulting in 48 total domains. The block (blue), set (green), and domain
(red) ids are indicated by b, s, and d, respectively.

into Within-Group Solvers, Multigroup Solvers and Eigenvalue Solvers. These are arranged in
levels according to

Arnoldi

(Shifted Power Iteration)

Eigenvalue Solvers

Residual Krylov

Gauss-Seidel + Krylov

Gauss-Seidel

Multigroup Solvers

Residual Krylov

Source Iteration

Krylov

Within-Group Solvers

Power Iteration

Fixed-source problems are solved using multigroup solvers.

5.1. Within-Group Solvers
The within-group solvers are used to solve Eq. (7). All of the within-group solvers are parallelized
over space because, by definition, they require no coupling between energy groups. Thus, they
operate only within a set, not across sets.



Solver Preconditioning Parallelization

Direct Krylov DSA inter-block KBA
Residual Krylov DSA inter-block KBA
Source Iteration inter-block KBA

5.2. Multigroup Solvers
The multigroup solvers are used to Solve Eq. (4). They can be used independently to solve
fixed-source problems, or they can be used in the inner iterations of eigenvalue problems. The
multigroup solvers are parallelized over space-angle (blocks) and energy (sets), although not all
solvers support energy parallelization. For example, the Gauss-Seidel solver does not support
parallelization over energy.

Solver Preconditioning Parallelization

Gauss-Seidel TTG single-set energy partitioning
Gauss-Seidel/Krylov Gauss-Seidel over downscatter groups repli-

cated on each set, Krylov iteration over up-
scatter groups using multi-set energy parti-
tioning

Krylov Multigrid Energy, LU† multi-set energy partitioning

†in development.

5.3. Eigenvalue Solvers
The eigenvalue solvers solve Eq. (5). The parallelization is largely determined by the choice
of multigroup solver. Some eigenvalue solvers can solve both energy-dependent and energy-
independent eigenvectors, and this choice dictates the parallelization strategy.

Solver Eigenvector Multigroup Solvers

Power Iteration energy-independent Gauss-Seidel, Krylov, and Gauss-
Seidel/Krylov

Arnoldi energy-independent/ Krylov and Gauss-Seidel/Krylov
energy-dependent

Rayleigh Quotient Iteration energy-dependent Krylov

6. Results
Each of the solvers and parallel algorithms have been independently verified through the Denovo
test suite. In order to test the performance on leadership-class computing hardware, we have
choosen a generic, whole-core pressurized water reactor (PWR) model as a test problem. This
model was originally developed as a whole-core, pin-homogenized, 2-group benchmark problem
by Électricité de France (EDF) working with the University of Florida [9]. Although the ultimate
objective is to perform whole-core, pin-resolved, 3D transport simulations, a pin-homogenized
problem serves as a useful and realistic benchmark problem. Denovo is used to solve Eq. (5)
in order to calculate the k-eigenvalue and the scalar flux throughout the core. Using the
scalar flux, the pin power distribution, fission source, and group-wise power distributions can
be analyzed. The ability to solve pin-homogenized, whole-core problems with transport, as
opposed to diffusion or other low-order approximations, is the first step towards fully predictive
reactor core modeling and simulation. To achieve first-principal predictive capability, each pin
would be fully resolved in the three-dimensional, whole-core model. This objective cannot be



approached until we have demonstrated the ability to solve pin-homogenized, three-dimensional
reactor problems with full transport.

The model is a generalization of a Westinghouse PWR-900 core that has a core height of
4.2 m, an assembly height of 3.6 m, and a lattice pitch of 1.26 cm. The core features 289
assemblies of which 157 are fuel and 132 are in the reflector. Each assembly contains a 17× 17
array of homogenized fuel pins that are arranged with 1/4 lattice symmetry as shown in Fig. 5a.
Three different fuel enrichments ranging from 1.5% to 3.25% are used in the assemblies. We

(a) (b)

Figure 5. (a) PWR-900 17 × 17 pin fuel assembly. The pins have been homogenized into 45
unique materials in each assembly. All assembly enrichments have the same 1/4 symmetry
pattern. (b) 2-D radial cut of the reactor core. The low enrichment assemblies are light
blue, the medium enrichment assemblies are red/blue, and the high enrichment assemblies are
yellow/orange.

implemented this model in the TRITON sequence of SCALE [10] to generate 44-group, pin-
homogenized cross sections to supplement the 2-group set defined in the benchmark. Each set of
pin-homogenized cross sections contains 135 unique materials (45 pins at 3 levels of enrichment).
The 2-D radial view of the core is shown in Fig. 5b.

For Denovo, the model was discretized into 2× 2× 700 spatial cells per homogenized fuel pin
resulting in a total mesh size of 233,858,800 cells. An angular quadrature containing 168 angles,
P0 scattering (one angular moment), and step-characteristics spatial differencing was used for all
calculations. These parameters yielded 39,288,278,400 DOF per energy group. All calculations
were performed on the Jaguar XT5 computer at the OLCF.

Table 1 shows a comparison of the different solvers for the 2 group version of the PWR-
900 benchmark. The 17,424 spatial domains used for the standard Gauss-Seidel (GS) solver
represents the maximum number of cores that could be effectively used for this problem. In
order to use more computing resource the multilevel decomposition is required. These results
show that the multigroup Krylov solvers are very effective, and they allow an efficient multilevel
decomposition. However, because this is a coarse energy benchmark, we cannot make dramatic
conclusions about the performance of the solvers on real problems of interest.

In order to show the validity of this approach for fully resolved reactor problems, we must
investigate the performance of the parallel algorithm and solvers on problems with more groups.



Table 1. Solver comparisons for 2 group version of the PWR-900 benchmark problem. In each
case the eigenvalue was converged to 1× 10−3. Each problem had 78,576,556,800 DOF.

Solver Blocks Sets Domains Solver Time
(min)

PI/GS + TTG 17,424 1 17,424 11.00
PI/GMRES 10,200 2 20,400 3.03
Arnoldi/GMRES 10,200 2 20,400 2.05

We have run the same PWR-900 problem with 44 groups resulting in 1,728,684,249,600 DOF.
Four versions of the problem are executed: power iteration (PI) with GS plus GMRES, PI with
GMRES, Arnoldi with GS plus GMRES, and Arnoldi with GMRES. With the multigroup GS
plus GMRES option, multilevel partitioning is only performed over the upscattering region of
the scattering matrix. For this option, the lower-triangular downscatter region is replicated on
each set. With the multigroup GMRES option, multilevel partitioning is performed over the
whole scattering matrix, regardless of its structure. Each problem was run with 10,200 blocks
and 11 sets resulting in 112,200 domains.

The results of these runs are given in terms of the weak scaling parallel efficiency that is
defined,

ε =
τref
τP

(
DOFP

DOFref

)
, τ = t×Np . (26)

Here, t is the wall-clock time and Np is the number of processors (cores). The “ref” subscript
refers to a reference problem run, and the “P” subscript refers to the target problem. Weak
scaling curves for the four multilevel solvers are shown using the PI/GS plus TTG problem
as the reference in Fig. 6. These results show that (a) the multilevel parallel decomposition

(a) (b)

Figure 6. (a) Weak scaling efficiencies for the 44-group version of the PWR-900 benchmark,
and (b) peak machine efficiencies on Jaguar XT5.

allows scaling up to O(100K) cores and (b) the solvers combined with the multilevel parallel



decomposition are generally more efficient than standard PI/GS based schemes (even with
acceleration). In particular, the Arnoldi eigenvalue solver is significantly more efficient than
PI, and we expect this efficiency difference to become larger as tighter eigenvalue tolerances are
required. In general, reactor design calculations require eigenvalue tolerances of approximately
1 × 10−5, two orders of magnitude tighter than our current 1 × 10−3 tolerance. Early test
problems indicate that the efficiency of the Arnoldi solver approaches six times the efficiency of
PI at these tighter tolerances.

7. Conclusions
We have implemented a new suite of eigenvalue and multigroup solvers in the Denovo radiation
transport code that utilize a multilevel energy decomposition. Using these solvers in concert
with the multilevel parallel decomposition allows Denovo to scale to O(100K) processors on
leadership class hardware. Original space-angle parallel methods were fundamentally limited in
how much machine resource could be used for a given problem size. The multilevel decomposition
overcomes this barrier and should allow scaling to exascale-level platforms and beyond.

Acknowledgments
The authors wish to thank Kevin Clarno and Brenden Mervin, ORNL for help in generating
the multigroup cross section sets. Work for this paper was supported by Oak Ridge National
Laboratory, which is managed and operated by UT-Batelle, LLC, for the U.S. Department of
Energy under Contract No. DEAC05-00OR22725.

References
[1] Clarno K 2007 ORNL LDRD Report Tech. Rep. D06–087 Oak Ridge National Laboratory
[2] Zhong Z, Downar T, Xu Y, Williams M and DeHart M 2006 Nuclear Science and Engineering 154
[3] Baker R and Koch K 1998 Nuclear Science and Engineering 128 312–320
[4] Clarno K 2007 Transactions of the American Nuclear Society 97
[5] Pautz S 2002 Nuclear Science and Engineering 140 111–136
[6] Evans T, Stafford A, Slaybaugh R and Clarno K 2010 Nuclear Technology 171 171–200
[7] Evans T, Clarno K and Morel J 2010 Nuclear Science and Engineering 165 292–304
[8] Baker C, Hetmaniuk U, Lehoucq R and Thornquist H 2009 ACM Transactions on Mathematical Software

36
[9] Courau T 2009 Specifications of a 3D PWR core benchmark for neutron transport Technical Note CR-

128/2009/014 EDF-SA
[10] Oak Ridge National Laboratory 2009 SCALE: A Modular Codes System for Performing Standardized

Computer Analyses for Licensing Evaluation Version 6


