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ABSTRACT 

This report presents a novel method for removing scattering effects from Nuclear Materials 
Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images 
of the internal structure of objects nonintrusively. If the correct attenuation through the object is 
measured, the positions and macroscopic cross sections of features inside the object can be 
determined. The cross sections can then be used to identify the materials, and a 3D map of the interior 
of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low 
because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove 
the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are 
misidentified as directly transmitted by electronically collimating and time tagging the source 
neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an 
entirely new direction by using Monte Carlo simulations to estimate the point scatter functions 
(PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering 
successfully in other applications, but only with simple 2D detector models. This work represents the 
first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. 
By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a 
given problem can be removed without the need for rerunning the simulations each time. In order to 
model the PScFs, an entirely new method for simulating NMIS measurements was developed for this 
work. The development of the new models and the codes required to simulate them are presented in 
detail. The PSRA was used on several simulated and experimental measurements, and chi-squared 
goodness of fit tests were used to compare the corrected values to the ideal values that would be 
expected with no scattering. Using the PSRA resulted in an improvement of the chi-squared test by a 
factor of 60 or more when applied to simple homogeneous objects.  
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1. INTRODUCTION 

Neutron radiography is a powerful nondestructive technique that can be used to analyze the 
internal structure of an object. The technique consists of passing neutrons through an object and onto 
a position-sensitive detector or series of detectors. The relative number of neutrons reaching each 
position on the detector creates a “shadow” of the object on the detector, which can then be used to 
generate a 2D image of the internal structure of the object. The basic layout of a neutron-imaging 
measurement is shown in Fig. 1.1. 

If a reference measurement of the detector response without an object in place is available, a 2D 
attenuation map of the object can be generated using the relation 
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where x and y represent the coordinates on the detector plane, τ is the attenuation of the radiation, I is 
the intensity with the object present, and I0 is the reference intensity. I0 is also referred to as the 
“void” intensity since the object present is nothing (i.e., a void). The attenuation is measured in mean 
free paths (MFP), where one MFP is the average distance traveled by a neutron before undergoing an 
interaction.1 The MFP is dependent on the energy of the neutron and the material it is traveling 
through. 

The exponential attenuation formula given in Eq. (1.1) assumes that once a neutron suffers an 
interaction, it ceases to contribute to the measurement. This assumption is only valid if the neutron 
beam is thin and the object-to-detector distance is much greater than the size of the object.2 

 

Collimated Neutron Beam Detector Screen

Object Being Imaged

Resulting
Image 
on the 
Detector

 
Fig. 1.1  A basic neutron radiography layout. Neutrons passing through the object are 

attenuated, projecting a “shadow” of the object onto the detector screen. 
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If these conditions are not met, nonabsorption events such as scattering can significantly alter the 
measured attenuation. In addition, neutron scattering from other objects in the room (room return) and 
background radiation can both contribute to the measured intensities. Taking these factors into 
account, the measured attenuation, τmeas, can be expressed as 
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where ISO, ISR, and IBG are the contributions to the intensity at the detector caused by scattering in the 
object, scattering in other objects in the room, and background radiation, respectively. These three 
contaminant terms cause the measured value of attenuation to be lower than the true attenuation in the 
object. 

The Nuclear Materials Identification System (NMIS) uses fast neutron radiography to 
nonintrusively image the contents of a container. One possible application of NMIS imaging would 
be to verify the stated contents of a container for treaty verification purposes. Another possible 
application is the examination a suspicious container suspected of holding fissile material. By 
correctly measuring the attenuation map of the object, the macroscopic cross-section values of 
materials inside can be determined. These cross-section values can be used to help identify the 
materials in question. 

NMIS uses an associated-particle sealed-tube neutron generator (APSTNG) as a neutron source 
for most imaging measurements. The neutron generator produces neutrons via the 2H(3H,n)4He 
reaction. The resulting neutrons are monoenergetic and travel away from the reaction site back-to-
back with the alpha particle (4He ion) in the center of mass (COM) coordinate system. A pixelated 
alpha particle detector built into the neutron generator detects the alpha particles produced by the 
reaction. The alpha particle detector is used to time tag the neutrons and electronically collimate them 
into a series of small cones opposite the alpha particle detector. Because the neutrons are 
monoenergetic, the measurement of I and I0 can be limited to a small time window consistent with the 
time-of-flight of the neutrons from the reaction site to the detectors.  

A diagram of the major components of the NMIS imaging array is presented in Fig. 1.2. The 
object being imaged is placed on a turntable between the deuterium-tritium (DT) generator and the 
imaging detector array. Three motors allow for the movement of the detector array, the DT generator, 
and the object in order to produce a full 3D tomographic image of the internal structure of the object 
if desired.  

The first motor rotates the turntable to allow for taking multiple projections through the object at 
different rotational angles. The second motor moves the entire imaging array and the DT generator up 
and down synchronously in order to produce images at multiple heights. The third motor rotates the 
entire detector array laterally. This motion is used to generate multiple images with the detectors in a 
slightly different position each time. All the images can be interlaced together to improve the 
horizontal angular resolution. For example, on the 110 cm radius arm, the angular separation between 
detectors is 1.67°. By making an image with the detectors in one position and then rotating the array 
by 0.835° and making another, the two images can be combined to halve the angular resolution. This 
procedure is known as subsampling the detectors. The detector positions are typically subsampled 
four to ten times at each height. 

A typical time-of-flight curve for DT neutrons is shown in Fig. 1.3. This curve is a time 
correlation between the alpha particle detector and an imaging detector 110 cm away. The fusion 
reaction occurs at t = 0 on the graph. The large peak (note the logarithmic scale) at approximately 
22 ns is produced by the directly transmitted neutrons, which travel at approximately 5.2 cm/ns. 
Because of the finite detector size and uncertainty of the electronic timing (~ ±1 ns), a 5 ns wide 
correlation window is used to identify directly transmitted neutrons.  
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Fig. 1.2  The major components of the NMIS imaging subsystem. 

Neutrons are produced by the DT generator, where the pixelated alpha particle 
detector time tags and electronically collimates them. The detector array then 
measures the transmission of neutrons through the object being imaged as a 
function of detector angle. The scanner can be moved up and down for 2D 
radiography, and the object can be rotated by the turntable for full 3D 
tomographic imaging. The detector array can be rotated laterally for 
subsampling. 
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Fig. 1.3  A time correlation curve between the alpha detector and a detector 110 cm 

away. The fusion reaction occurs at t = 0 ns on the graph. Note the logarithmic scale. 
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In order for scattered neutrons or background radiation to be mistaken for directly transmitted 
neutrons, they must arrive during one of the 5 ns correlation windows corresponding to an alpha 
particle.  

By keeping the rate of neutron production low enough that the average time between alpha counts 
is much greater than the width of the correlation window, the magnitude of the three contaminant 
terms in Eq. (1.2) is greatly reduced. Because the background radiation is random, its effect on the 
measurement will be reduced by a factor of 

 

 window
util

N tf
T

∆
=   , (1.3) 

 
where futil is the utilization factor, N is the total alpha rate in all pixels, Δtwindow is the width of the 
correlation window, and T is the total measurement time. Utilization factors of <10–3 are typical with 
the neutron generator used for NMIS measurements. This reduction applies to both the passive 
background and the active background produced by uncorrelated neutrons falling outside the pixel 
cones. Correlated neutrons scattering from objects other than the one being imaged typically arrive at 
times larger than the maximum of the correlation window with the exception of scattering from 
objects near the detector array. This contribution can be kept to a minimum by removing unnecessary 
objects from around the detector array. 

Another technique used to prevent scattered neutrons from contributing to NMIS measurements is 
an anticoincidence technique designed to eliminate multiple detector counts in the same transmission 
time window. For imaging measurements, multiple counts in the same window are typically caused 
by cross talk between detectors. In order to eliminate this cross talk, the anticoincidence correction 
keeps only the first count in an imaging detector for each neutron transmission window. Other counts 
are rejected as cross talk and ignored. An example of a single neutron generating multiple counts in 
the same directly transmitted neutron time window is shown in Fig. 1.4. 
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Fig. 1.4  An example of a neutron producing multiple counts 

during the same neutron transmission window. Collision times are 
measured from the time of the associated alpha particle count. All three 
counts lie within the 5 ns time window. Only count 1 would be used for 
measuring attenuation in this example. Counts 2 and 3 would be treated as 
cross talk and ignored. 
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The final contaminant is scattering in the object being imaged. The removal of this term is the 
greatest technological challenge to NMIS imaging today, and it will be the focus of this work. In a 
thick object, only a small portion of the DT neutrons are directly transmitted to the detector array. For 
example, if an object is 5 MFP thick, only 0.7% of source neutrons are directly transmitted to the 
detectors. If even a small fraction of the 99.3% of neutrons that interact scatter and reach the array 
during the correlation window, the measured attenuation will be significantly lower than the true 
value. This effect is accentuated when the object being imaged is close to the detector array or if it is 
composed of high atomic mass (high Z) materials. Neutrons scattering off high Z isotopes are 
preferentially forward scattered and lose only a small fraction of their energy in an elastic scattering 
event, so a large fraction of them will arrive in the 5 ns transmission window. 

An object designed to produce a large object scattering effect is presented in Fig. 1.5. A simulated 
1D attenuation map resulting from a single horizontal slice through the object is shown in Fig. 1.6. 
The “Ideal” curve was calculated using the known geometry, material composition, and 14 MeV 
cross sections of the object using the exponential attenuation formula given in Eq. (1.1). The other 
curves show the measured values produced by various alpha detector geometries. From Fig. 1.6, it is 
clear that subdividing the alpha detector signal reduces the effect of the object scattering, but even 
with 16 pixels, the measured attenuation is more than 1 MFP lower than the true value at the highest 
attenuation levels. 

In this work, the scattering produced by objects composed of various types and thicknesses of 
materials at different object-to-detector distances from the NMIS detector array will be characterized. 
This will be accomplished by using Monte Carlo N-Particle (MCNP) simulations to measure the 
additional response per source neutron in each detector of the array as a function of the angle of 
scattering. This type of function is known as a point scatter function (PScF) and has been used 
successfully to reduce object scattering in other neutron radiography applications (see Chap. 2). Once 
the PScFs are measured, the resulting curves will be parameterized and the parameters will be fit 
using the scattering material, thickness, and object-to-detector distance as input variables. 

 

 
Fig. 1.5  Overhead view of an object designed to accentuate the effects of forward 

scattering. The object is composed primarily of high Z materials. 
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Fig. 1.6  Attenuation curves of the object shown in Fig. 1.4 using different levels of 

alpha detector pixelization. The “Ideal” curve assumes pure exponential attenuation using 
Eq. (1.1). 

 
These multivariate fit equations will be referred to as PScF Generating Equations (PScFGEs), and 

they will be used to determine the appropriate PScF based on inputs from the operator. The PScFGEs 
will be the primary component of the parameterized scatter removal algorithm (PSRA), which will 
remove the object scattering from the measured values and return the corrected attenuation values. 

This work will be significantly different from any application of PScFs to remove scattering that 
have been done before. In order to develop PScFs for NMIS imaging, the differences in source 
geometry, detector geometry must be accounted for. Previous work used a parallel beam source and a 
flat detector screen. By contrast, NMIS uses multiple pixelelated neutron cones and an array of 
scintillators. In addition, time-of-flight techniques are used to limit the number of scattered and 
background neutrons that contribute to the measured values. Therefore, the PScFs must consist only 
of scattering that arrives during the directly transmitted neutron windows. In order to simulate NMIS 
imaging and compute the value of these PScFs, new techniques had to be developed. The 
methodology used for simulating the measurements is presented in detail. 

In the following chapters, this methodology will be explained in detail and the results will be 
presented. The history of NMIS imaging and previous attempts to remove scattering from 
radiography measurements are reviewed in Chap. 2. In Chap. 3, calculations designed to characterize 
the alpha detector pixels and provide a first order estimate of the object scattering effect on NMIS 
imaging is presented. The simulation methodology and each of the codes written in order to properly 
simulate an imaging measurement are discussed in Chap. 4. In Chap. 5, the simulations used to 
generate the PScFs are presented and the resulting scattering curves and their parameters are 
discussed. The resulting values of the PScF parameters are presented and used to develop the 
PScFGEs in Chap. 6. The development of the PSRA and its coding into a program to remove the 
scatter from measurements is also presented in Chap. 6. In Chap. 7, the PSRA is tested using both 
simulated and laboratory measurements. Finally, the conclusions of the work are presented and future 
work that might improve this technique is discussed in Chap. 8. 
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2. REVIEW OF PREVIOUS WORK 

2.1 THE NUCLEAR MATERIALS IDENTIFICATION SYSTEM 

The Nuclear Materials Identification System (NMIS) uses a fast processor to compute time 
correlations between detector signals.3 The current processor acquires data from 10 input channels at 
a rate of 1 GHz.4 When first developed and fielded in the mid- to late-90s, the NMIS was used to 
verify weapons components or determine the quantity of fissile material inside a sealed container.5,6 
Although some measurements were conducted passively,7 most used active interrogation to induce 
fissions in the fissile material. A 252Cf spontaneous fission source mounted inside an ionization 
chamber allowed the processor to record the time of (time tag) each spontaneous fission.3 One 
common measurements made was the time correlation between the 252Cf source and a detector on the 
opposite side of the object.5 Because of their different speeds, gamma rays and neutrons of various 
energies arrive at the detectors at different times after the spontaneous fission. If the source-detector 
separation is known, a specific window of time lags between the source and detector can limit the 
measurement to either gamma rays or a certain energy range of fission neutrons.3 By comparing the 
number of correlations in the region of interest with and without a sample between the source and 
detector, the average attenuation for gammas and neutrons can be measured simultaneously. 

In 2003, imaging capabilities were added to NMIS by adding multiple small-area detectors.8 By 
measuring the transmission of radiation through the object as a function of position, a 2D attenuation 
map can be generated.9 With a tagged 252Cf source, both gamma and neutron radiography can be 
conducted simultaneously by using multiple time windows of each source-detector time correlation.8 
These radiographs can subsequently be converted to 3D tomographs by taking multiple projections 
through the object at different angles or by assuming cylindrical symmetry.8  

The next improvement to NMIS radiography capabilities came in the form of an improved 
source. A sealed-tube DT neutron generator produces monoenergetic 14.1 MeV neutrons.9 An 
integral alpha particle detector electronically collimates and time tags each neutron produced within a 
desired solid angle. This is referred to as the associated-particle technique (APT).10 Because the 
neutrons are approximately monoenergetic, most scattered neutrons and induced radiation can be 
eliminated by limiting transmission measurements to a small time window corresponding to the 
neutron time-of-flight from the generator to the detector.  

The neutron generator currently used with NMIS is an API-120 produced by Thermo Scientific.11 
The target and alpha detector geometry define a cone approximately 45° wide. The imaging detectors 
consist of a horizontal array of 32 fast plastic scintillators. As many as 64 detector signals can be 
sampled simultaneously with the NMIS processor by combining signals with a fan-in module. 
Initially, a light opaque plastic mask was placed between the alpha detector and the photomultiplier 
tube. Various mask shapes were used to further collimate the neutrons into smaller cones or fan 
beams directed towards the detector array.5,12 More recently, a pixelated photomultiplier tube (PMT) 
has been coupled to the alpha detector to subdivide the alpha detector response into an 8 × 8 or a 
16 × 16 array of pixels.13 The NMIS uses a horizontal array of imaging detectors, so only a single row 
of 8 or 16 horizontal pixels are used. This row of pixels is aligned so that the center of each is in line 
with the plane of the imaging detectors. 
 
2.2 PREVIOUS SCATTERING CORRECTIONS IN THERMAL NEUTRON 

RADIOGRAPHY 

The field of radiography began in 1895 with the first X-ray radiogram of Anna Bertha Roentgen’s 
hand.14 Neutron radiography got off to a much later start. The first neutron radiographs were made by 
Kallmann and Kuhn in Berlin beginning in 1938.15 Another facility in Berlin under O. Peter began 
making radiographs in 1944.15 These facilities were destroyed by the Allies at the end of the Second 
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World War and nuclear research in Germany did not restart until 1955.15 Serious study of neutron 
radiography did not resume until about 1960,16 and the technique was not standardized until the 
publication of the Neutron Radiography Handbook in 1981.17 

Heller and Brenizer give a description of conventional neutron radiography.16 Neutrons are first 
produced using an accelerator, radioisotope, or reactor source. In these previous studies, the neutrons 
are thermalized to the thermal/epithermal range (0.025 eV–10 keV) using a moderator and then 
collimated into a beam. The beam is passed through a sample and into a detector where the 
radiograph will be formed. Because of their low energy, these neutrons require a converter material to 
produce easily detectable radiation. The converter typically contains a material such as gadolinium 
which produces light through a capture reaction. This light is then recorded on film, a video camera, 
or a charge-coupled device (CCD) to produce the radiograph. 

Segal et al. made one of the first nonanalytical attempts to correct scatter in thermal neutron 
radiography (TNR) in 1982.18 They used a point spread function (PSF) to quantify the contribution of 
scattered flux to each point in the imaging plane from each point on the surface of the sample. 
Although the PSF accounts for other factors such as imaging geometry and scatter from sources other 
than the sample, Segal et al. focused only on the scatter occurring in the sample. Traditionally, the 
PSF was solved directly using a Fourier transform, but this required the use of a general statistical 
operator, which the authors found unsatisfactory. A Monte Carlo code (Morse-CG) was used to 
simulate a monoenergetic, infinitely thin beam of neutrons impinging on infinite slabs of different 
materials and thicknesses. Two separate sample-to-detector separations were simulated. The scatter of 
neutrons away from the beam axis was tallied as a function of distance from the projected point on 
the detector. The PScF for each material and geometry was computed by fitting the fraction of 
scattered neutrons versus radial scattering distance using an exponential of the form S(r) = Ae–βr 
A and β were the fitting parameters measured by the simulation and they were presented in tabulated 
form for the various scenarios modeled. 

In 1990, Hrdlicka and Peterka published a paper describing an experimental method for 
measuring and subtracting scatter from a thermal neutron radiograph.19 By moving the sample far 
enough away from the imaging plane, they found that the scatter was spread uniformly across the 
detector. This scatter could then be determined by comparing the flux at a point on the detector 
outside the shadow of the sample with and without the sample in place. This difference could then be 
subtracted from both the transmitted (I) and direct (I0) fluxes to remove the scatter. Hrdlicka and 
Peterka stated that while the minimum source-to-detector distance for using their method could be 
estimated mathematically, it was best verified experimentally. 

In 1992, Kobayashi et al. suggested that the scatter could be estimated by using a strip of 
cadmium between the source and the sample.20 Because cadmium is opaque to thermal neutrons, no 
directly transmitted neutrons would reach the umbra behind the cadmium strip and the scattering 
contribution could be measured directly there and then subtracted. Using this technique, they were 
able to estimate the effective total macroscopic cross section of homogenous samples to within ±20% 
for most materials. 

Two years later, Murata et al. used the technique of Kobayashi et al. for imaging.21 A series 
of cadmium strips was laid across a concentric stack of disks. The neutron flux in the umbra shadows 
was measured and subtracted from the direct and uncollided fluxes to subtract the scatter from the 
radiograph. The areas lost to the cadmium strips were then reconstructed by interpolation. This was 
the first experimental scatter subtraction from a 2D thermal neutron radiographic image.22  

In 1996, Tamaki et al. focused on the performance of several collimator designs for the 
qualitative removal of neutron scatter.23 They designed a new gadolinium honeycomb collimator to 
obtain quantitative attenuation coefficients in slabs of sample material. 

In 1999, Pleinert et al. used a Monte Carlo code to estimate the scatter in various samples.24 They 
started by deriving a signal transfer function that mathematically transformed the detector response 
without a sample (I0) into the response with a sample present (I). The signal transfer function used a 
discrete point attenuation function, point spread function, and an energy dependent detector response 
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function to map the response at each detector pixel due to the attenuation and scatter of neutrons in 
each 2D pixel of the sample. The MCNP-4A code was used to determine the PSFs and PScFs and 
then a continuous signal transfer function was determined.25 The authors’ motivation was the 
unknown moisture content in samples of known composition. Simulations showed that the signal 
transfer method measured the moisture content to within 3% of the true value, compared to 10% 
using a calibration curve and approximately 100% using uncorrected values. 

Kardjilov et al. extended on the method of Pleinert et al. by determining the scattered response at 
each discretized point on the detector due to each discrete point on the source.26 They described the 
portion of the detector response due to scattering in the sample as a point scatter function (PScF). The 
group used the MCNP-4B code27 to simulate the imaging of objects at the Neutron Transmission 
Radiography (NEUTRA) facility28 at the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The 
simulated objects included a slab and a step-wedge made of Plexiglas. The PScF was computed for 
each simulation and then an identical experimental measurement was conducted. The PScFs were 
applied to the measurements and the resulting attenuation curves were within a few percent of the true 
values.  

Hassanein et al. expanded on the work of Kardjilov et al. to account for the differing path lengths 
of scattered neutrons as a function of angle.29 The angle affects both the intensity of scattered 
neutrons and the detector response due to an increased angle of incidence. The MCNPX 2.4.0 code30 

was used to derive the PScF for different sample configurations. The PScFs were then mathematically 
weighted to account for the angular dependence of the detector response. The authors noted that the 
PScF depended on the sample material and geometry, energy spectrum, detector, and sample-to-
detector distance. They recommended that a library for the PScFs of various materials should be 
constructed for use in future experiments. 

De Beer et al. used the methods of Kardjilov et al. and Hassanein et al. to parameterize the PScFs 
due to the thickness of a water sample and sample to detector distances.22 They used the MCNP-4C 
code31 to determine the PScF for each configuration and then used a Gaussian function to fit it. The 
full width at half maximum (FWHM) and maximum of the Gaussians were fit versus thickness and 
object-to-detector distances. These curve fits could then be used to generate the PScF and subtract it 
from measurements for a given sample thickness and object-to-detector distance without the need to 
rerun Monte Carlo simulations. 
 
2.3 PREVIOUS SCATTERING CORRECTIONS IN FAST NEUTRON RADIOGRAPHY 

While thermal neutron radiography has achieved a degree of relative maturity, fast neutron 
radiography (FNR) is still not a commonly used procedure.32 This is largely because of the initial 
difficulty in capturing the fast neutron response using thermal radiography techniques. E. Tochilin 
tested fast neutron radiography with traditional film techniques in 1965 and wrote that the poor 
response of photographic films to neutrons with energies >10 keV presented serious technical 
difficulties and the buildup of scattered neutrons and induced gammas limit the technique to objects 
less than a few inches thick.33 Tochilin suggested that organic scintillators offered a better response 
by acting as image intensifiers.33 In 1970, H. Berger examined several techniques including direct 
film, film coupled with image intensifying screens, track-etch detectors, and scintillator screens 
coupled with film.34 Berger concluded that the scintillator-film method produced the best contrast and 
was less sensitive to secondary radiation than other techniques.34 

J. S. Brzosko et al. wrote in 1992 that the previous problems of fast neutron source strength and 
detection systems “have now been overcome.”35 The authors used a Monte Carlo code (3D-MCSC-
RWR36) to simulate neutron radiographs on a scintillator fiber detector with fast and thermal neutrons 
and compared the results. They concluded that FNR was the only viable option for slabs >5 cm thick 
and that FNR offered an advantage in portable source strength because neutrons are not lost in the 
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thermalization process.*

In 1994, Rhodes et al. described a rudimentary 1D radiograph that they constructed using an 
associated-particle DT neutron generator and a single imaging detector.

 Brzosko et al. reduced the problem of neutron scatter and gamma ray 
contamination in their FNR simulations by using a 7 MeV threshold for their scintillators. 

37 Two hollow lead spheres 
were placed in sand between the imaging detector and the APSTNG. The counts in the detector 
corresponding to the DT neutron time-of-flight were recorded as a function of the horizontal position 
of the detector to generate an attenuation map. The authors reported that because the imaging detector 
was sufficiently far from the sample, scattering was negligible.  

One of the first attempts to quantify the scattering in FNR was made by Yoshii and Kobayashi in 
1996.38 Their work sought to apply the method of Hrdlicka and Peterka19 to FNR. The authors tested 
the detector response in the center of the neutron shadow produced by cylindrical iron samples of 
various thicknesses and sample-to-detector distances. They concluded that the scattered neutron 
intensity at the center of the shadow produced by a 3 cm thick sample dropped to a negligible level if 
it were located a distance of twice the radius plus 1 cm from the detector screen. 

Two papers published in 2002 by Rahmanian et al.39 and Ambrosi and Watterson40 in 2004 used 
ray tracing and the MCNP-4A code25 to study the effects of source geometry and neutron scatter on 
FNR. These papers focused primarily on the effects of source and detector geometry, but they 
concluded that while scattering lowered the overall contrast of a feature in the sample, it did not affect 
the resolution. 

In 2009, Hassan used Monte Carlo simulations to estimate the PScF of various samples using 
252Cf, deuterium-deuterium (DD), and DT sources.41 His work was based off the methodology 
developed for thermal neutron radiography by Kardjilov et al.,26 Hassanein et. al.,29 and de Beer 
et al.22 Unlike the previous TNR work that focused mainly on hydrogenous materials, Hassan used 
primarily metallic objects. He showed that various parameters, such as the shape of the sample, 
material, source type, sample-to-detector distance, and beam divergence could be used as fitting 
parameters for the FWHM and maximum of the Gaussian PScF. Hassan examined each of these 
effects separately and suggested that future work could be used to determine the correct PScF using 
sample parameters without the need for a simulation. 

One fast neutron imaging application that bears a strong resemblance to the NMIS detector layout 
is the fast neutron/gamma-ray radiography scanner developed by The Commonwealth Scientific & 
Industrial Research Organisation [sic] (CSIRO).42–44 The CSIRO scanner uses a high intensity pulsed 
DT neutron source and 60Co gamma ray source to image cargo containers at the Brisbane 
International Airport. The neutron and gamma images are formed separately, and material 
compositions are determined by measuring the ratio of the measured neutron and gamma 
attenuations.42 The neutron detector array consists of 192 2 cm × 2 cm plastic scintillators in a 2D 
array.42 Liu et al. reported that they observed a deviation of approximately 10% from narrow-beam 
geometry due to scattering.44 They further stated the scattering was “highly local, between 
neighbouring [sic] pixels and can be corrected rather accurately.”44 No details of the methodology 
used were given. Unlike NMIS the associated particle technique is not used to time tag the neutrons, 
but the neutrons are physically collimated by a steel collimator.42 
 
 

                                                      
*Fixed, thermal reactor-based radiography systems do not suffer from this limitation because they have a ready supply 

of high flux thermalized neutrons.16 
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3. INITIAL CALCULATIONS 

Before proceeding to the development of the parameterized scattering removal algorithm (PSRA), 
it is necessary to perform some initial calculations. The results of these calculations will prove 
invaluable for modeling NMIS imaging measurements and understanding the physics behind the 
scattering. In Sect. 3.1, the DT neutron pixels will be examined in detail in order to develop a high 
fidelity MCNP model. In Sect. 3.2, a first order approximation of the PScFs for simple cases will be 
derived using basic physics principles. These calculations will serve to validate the more robust 
models that will be developed using MCNP simulations and to help provide insights that may be 
useful for developing those simulations. 
 
3.1 DETERMINING THE PROFILE OF THE API-120 PIXELS 

In order to accurately simulate NMIS imaging, the distribution of the DT neutron pixels needs to 
be accurately characterized. This will be accomplished by combining the kinematics of the 
3H(2H,n)4He reaction with the geometry and operational characteristics of the API-120 neutron 
generator and the H8500 PMT. This information will be used to develop a Monte Carlo code to 
simulate the neutron cones corresponding to each alpha pixel. Once these pixel profiles are 
calculated, they will be validated against experimental results and then coded into MCNP-PoliMi 
decks to simulate imaging measurements. 
 
3.1.1 The Kinematics of the DT Reaction 

The Thermo Scientific API-120 neutron generator produces neutrons via the reaction 
 

 D  Tα n Q+ → + +   , (3.1) 
 
where D is a deuterium (2H) atom, T is a tritium (3H) atom, α is an alpha (4He) particle, n is a neutron, 
and Q is the mass difference between the reactants and the products. The API-120 generator produces 
this reaction by accelerating ions from a DT plasma source into a fixed target with embedded 
deuterium and tritium atoms. For this reaction, the Q-value is 17.5893 MeV.45 The masses of the 
alpha particle and neutron are 4.00260 and 1.00866 AMU, respectively.46 In the COM coordinate 
system, the kinetic energies of the products are  
 

 0.201279 3.54035 MeVn

n

mT Q Q
m mα

α
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α
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+

  . (3.3) 

 
Because there are only two products, the neutron and alpha particle leave the reaction site back-

to-back in the COM coordinate system. The momentum of the incoming deuteron or triton is 
transferred to the products causing the angle between them to be folded forward so that it is less than 
180° in the LAB coordinate system. This effect also causes the kinetic energy of the outgoing 
particles to have an angular dependence with particles in the forward direction (<90° from the 
direction of the incoming deuteron or triton) having greater energy than shown in Eqs. 3.2 and 3.3 
and particles in the backward direction having less.  
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A diagram of the DT reaction is presented in Fig. 3.1. A deuteron or triton comes in traveling in 
the –y direction and fuses with a deuterium or tritium atom. In the COM system, the alpha particle 
and neutron move away from the fusion site back-to-back at an angle θ with respect to the x-axis in 
the x-y plane. The COM velocity vectors are converted to the LAB frame by adding the velocity of 
the center of mass of the deuteron and triton to the velocity vectors of the alpha particle and neutron. 
This folds the resulting velocity vectors forward and the alpha particle and neutron now form angles 
of φ and ψ, respectively, with the x-axis. 

For the scenario shown in Fig. 3.1, the COM velocity can be computed using the equation47 
 

 1 1

1 2
CM

m vV
m m

=
+

  , (3.4) 

 
where m1 is the mass of the incoming particle moving at a velocity of v1, and m2 is the mass of the 
stationary particle. Using classical dynamics, the speed of the incoming particle can be calculated 
using the equation 
 

 2Ev
m

=   , (3.5) 

 
where E is the kinetic energy of the particle and m is its rest mass. For example, a deuteron with a 
kinetic energy of 90 keV has a speed of 0.009795c, where c is the speed of light in a vacuum. Using 
the same equation, the speeds of the neutron and alpha particle are 0.173015c and 0.043564c, 
respectively. The neutron speed calculated using classical dynamics differs from the relativistic result 
by only 1%. The deuteron and alpha particle results are even closer because of their lower speed.  
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Fig. 3.1  A diagram of the DT reaction and its products. A particle traveling in the –y direction initiates 

a DT fusion resulting in an outgoing alpha and neutron. In the COM system, these particles move away from 
each other back-to-back at an angle of θ with respect to the x-axis. The momentum of the deuteron or triton, 
which triggered the DT reaction, causes the alpha and neutron angles to be folded forward to angles φ and ψ in 
the LAB coordinate system.  



 

3-3 

These results indicate that classical dynamics can produce sufficiently accurate results for the 
problem here. For the 90 keV deuteron incident on a triton, the velocity of the COM would then be 

 

 2.014 0.009795 0.003922
2.014 3.016CMV c c= =

+
  . (3.6) 

 
From Fig. 3.1, it can be seen that the angle of the alpha particle in the LAB coordinate system can 

be related to its angle in the COM system via the relation47 
 

 sintan
cos

y CM CM

x

V V V V
V V

θϕ
θ

+ +
= =   . (3.7) 

 
Because V and VCM are known, Eq. (3.7) can easily be solved for φ if θ is known. This relation will be 
used in Sect. 3.1.4 to calculate the LAB angles of the neutron and alpha particle given the COM 
angle. 
 
3.1.2 Determining the Mean Center of Mass Velocity 

The API-120 generator produces neutrons by accelerating a plasma consisting of deuterium and 
tritium ions onto a titanium target that has adsorbed a DT gas. Because the mass of the incoming 
particle will differ depending on whether an incoming triton or deuteron initiates fusion, the COM 
velocity will also be different. Because both the incoming plasma and the gas in the target are mixed, 
the DT reaction competes with the DD and TT reactions. However, at low energies, the DT cross 
section is approximately two orders of magnitude greater than these competing reactions. For this 
reason, the API-120 operates with a maximum voltage of 90 kV, which accelerates deuterons and 
tritons to energies near the peak of the DT cross section. The data in Fig. 3.2 shows the relative cross 
sections of the three reactions.45 
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Fig. 3.2  The DD, DT, and TT fusion cross sections from 10 keV to 1 MeV. The DT 

reaction dominates over most of this region. The vertical line shows the maximum accelerator 
voltage (90 keV) produced by the API-120 generator. 
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According to the manufacturer, the majority of excited plasma consists of molecular (DD+, DT+, 
TT+) rather than atomic ions.10 These singly ionized molecules have a greater mass and thus a lower 
velocity than the atomic ones. In addition, when one of the atoms in the molecule fuses, the second 
one will continue on and not contribute its momentum to the resulting neutron and alpha particle. This 
also results in a lowering of the cross section because the energy of the fusing particle is only its mass 
fraction of the total molecular energy. If the titanium atoms are much more numerous than the 
deuterium and tritium atoms, the incoming ions are equally likely to have any energy between 0 and 
the initial beam energy when they encounter a deuterium or tritium atom. The average energy of the 
ion when it initiates a DT fusion can be calculated using the equation 
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∫
  , (3.8) 

 
where Emax is the incident energy of the ion and σ(E) is the DT reaction cross section. Using this 
equation, a deuteron with an incident energy of 90 keV would have an average energy of 70.5 keV 
when initiating DT fusion. Using Eqs. 3.5 and 3.6, the resulting center of mass velocity is 0.003471c, 
which is only 89% that of the incoming deuteron is at its initial beam velocity. 
 

 
In order to calculate an average COM velocity, the following assumptions were made. First, the 

accelerating voltage was assumed to be 90 keV, which is the typical operating voltage of the 
API-120. All ions in the accelerated beam were assumed to have a kinetic energy exactly equal to the 
accelerating voltage. The composition of ions in the beam was assumed to be 10% atomic and 90% 
molecular. The atomic portion consists of an equal quantity of deuterium and tritium ions. The 
molecular ions consist of 25% DD+, 25% TT+, and 50% DT+. Another assumption was that the 
slowing of the incoming ions did not change their direction vector significantly. Using the 
SRIM-2008.04 code,48 the average range of 90 keV deuterons in titanium is 680 nm and the range of 
60 keV deuterons is 500 nm. The penetration depth of a beam of 90 keV deuterons incident on a 
180 nm (680 nm–100 nm) titanium slab is depicted in Fig. 3.3.  

The deuteron beam shows only a small divergence from the initial direction, even at the back side 
where the average energy has been slowed to approximately 60 keV. 

One final assumption is that the magnitude and direction of the outgoing alpha particle velocity 
will not be significantly changed exiting the titanium target. Using the SRIM code, the average depth 
of interaction for a 70.5 keV deuteron (average energy at interaction for an incoming 90 keV 
deuteron) is 110 nm. The average energy loss of a 3.54 MeV neutron through 110 nm of titanium is 
approximately 30 keV, less than 1% of the initial energy. The plot in Fig. 3.4 shows that these alpha 
particles suffer almost no angular divergence crossing this thickness of material. Thus, the assumption 
that the alpha particles velocities are not significantly altered exiting the target is quite reasonable. 

In order to determine the average COM velocity for all DT fusions initiated by the beam 
described in the preceding paragraphs, a weighted average of COM velocities from all of the possible 
reactions was used. All of the possible reactions are given in Table 3.1. The beam fraction is the 
fraction of that ion in the beam. The DT+ ion is divided into two equal rows because it can interact 
with either a deuteron or a triton. Emax is the mass fraction of the interacting atom in the molecular ion 
multiplied by 90 keV. E is the average interaction energy calculated using Emax in Eq. (3.8). The 
COM velocity and cross section at that energy were then multiplied together and normalized to give 
the fraction of reactions due to each interaction. Finally, a weighted sum was calculated by 
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Fig. 3.3  Results from a SRIM simulation of 90 keV deuterons incident on a 

180 nm thick titanium target. This thickness approximates the depth required to slow a 
deuteron from 90 keV to 60 keV. The plot shows only a relatively small divergence of 
the deuterons as they travel through this distance. 

 

 
Fig. 3.4  Results from a SRIM simulation of 3.54 MeV alpha particles incident on 

a 110 nm thick titanium slab. This thickness is the average interaction depth of a 90 keV 
deuteron. The beam of alpha particles shows almost no divergence traveling through this 
thickness of material. 
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Table 3.1  The possible DT reactions. The average DT cross section of each possible reaction was calculated 
and weighted by the fraction of that ion in the beam to calculate the weighted average COM velocity. 

Projectile Target Beam 
frac 

Emax 
(keV) 

Ε  
(keV) 

VCM(Ε ) 
(fraction of c) 

σ(Ε ) 
(b) Rx frac VCM × Rx 

(fraction of c) 
D+ T 0.05 90 70.5 0.003471 3.1 0.1897 0.000659 
T+ D 0.05 90 70.5 0.004248 3.1 0.1897 0.000806 
DD+ T 0.225 45 36.3 0.002491 0.50 0.1373 0.000342 
DT+ D 0.225 54 44 0.003356 1.0 0.2746 0.000921 
DT+ T 0.225 36 29.1 0.002230 0.26 0.0714 0.000159 
TT+ D 0.225 45 36.3 0.003048 0.50 0.1373 0.000418 

Weighted average COM velocity: 0.003306 
 
multiplying VCM by the reaction fraction. The sum of the last column yields the weighted average for 
the COM velocity of 0.003306c. This value will be used in Sect. 3.1.4 to calculate the resulting 
neutron angle distribution. 
 
3.1.3 The API-120 Target and PMT Geometry 

The geometry of the DT target spot, alpha particle detector, and photomultiplier tube in the API-
120 DT neutron generator is pictured in Fig. 3.5. The target consists of a titanium metal that has 
adsorbed a DT gas. The target is mounted at a 45° angle with respect to both the incoming ion beam 
and the alpha detector. In order to create smaller cones, the target spot was limited to a 5 mm 
diameter circle on the target by placing a mask over the target to stop incoming ions outside of that 
range.49 The alpha particle scintillator crystal is located 57 mm from the center of the target spot 
perpendicular to the direction of the incoming ion beam. A thin layer of aluminum in front of the 
scintillator stops light and any deuterium or tritium ions that are scattered from the target from 
reaching the scintillator crystal. The scintillator is an inorganic YAP:Ce crystal. Alpha particles 
interacting in the scintillator generate photons, which are transmitted through a fiber optic faceplate.  
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Fig. 3.5  The geometry of the API-120 target spot, alpha particle detector, and pixelated 

Hamamatsu H8500 photomultiplier tube. 
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A segmented light guide then spreads the light evenly onto the face of one of the PMT pixels. 
This light guide makes the response of the pixels less sensitive to the relative position of the incoming 
photons on the pixel. The PMT shown is a Hamamatsu H8500 PMT13 with 8 rows of 8 pixels. Each 
pixel is a 6.08 × 6.08 mm square except for pixels 1 and 8, which are 6.26 mm wide. For NMIS 
imaging, only a single row of pixels centered vertically on the target spot is used. 
 
3.1.4 A Monte Carlo Simulation to Determine Neutron Cones 

In order to calculate the effective neutron cones, a Monte Carlo code named MCPixelGeom was 
written using the Fortran-90 programming language.50 The code uses the API-120 geometry and the 
kinematics derived in the previous sections to simulate DT reactions. The program begins by 
randomly sampling a point on the DT target spot and the outgoing alpha particle (and neutron) angle 
in the COM coordinate system. The alpha angle is then converted to the LAB frame using Eq. (3.7) 
and the location where the alpha particle intersects the plane of the scintillator is calculated. No light 
transfer from the scintillator to the PMT pixels is simulated. Instead, each (x,z) point on the 
scintillator plane is assumed to correspond directly to the same (x,z) point at the pixel plane. If this 
location corresponds to one of the alpha pixels, the LAB angle of the outgoing neutron is calculated 
using Eq. (3.7). For each neutron, the horizontal (x-y) and vertical (y-z) components of the LAB 
angle are calculated to the nearest 0.1°.  

This process is repeated over and over again. For each pixel, a two-dimensional array is used to 
tally the direction of the outgoing neutrons correlated to it by adding 1 to a bin corresponding to the 
(x-y) and (x-z) angles of the outgoing neutron. After all of the iterations are complete, the array is 
normalized by dividing each bin by the average number of alpha particles in each pixel. An additional 
array stores the total number of correlations occurring in a 2.54 × 2.54 cm detector centered vertically 
(θxz = 0) at a given neutron angle (θxy). These values are calculated using the equation 

 

 ( ) ( )
detdet

det det

det ,
xy

xy

xy xy xz xy xzR R d d
θ θθ

θ θ θ

θ θ θ θ θ
+

− −

= ∫ ∫   , (3.9) 

 
where R(θxy, θxz) is the number of neutrons per source alpha in a given horizontal and angular bin; θdet 
is the half angle subtended by the detector face; and Rdet(θxy) is the neutrons per source alpha entering 
the detector face. For a 2.54 × 2.54 cm detector located 110 cm from the DT target spot, θdet ≈ 0.6°. 
The resulting arrays are output to a text file for further analysis and processing. The source code for 
the MCPixelGeom program is shown in Appendix A. 
 
3.1.5 Results of the Monte Carlo Pixel Simulation 

A 3-D view of the simulated pixel profiles is presented in Fig. 3.6. Note that the pixel on the left 
(pixel 1) shows a rounded top and a square base. This effect is caused by the convolution of shape of 
the pixel (square) with the target spot (round). Progressing from left to right, each successive pixel 
becomes more and more rectangular. This effect occurs because the angle of incidence to the target is 
increasing, which causes the apparent size of the target spot to be smaller. The variation in neutron 
angle is then dominated by the position of the alpha particle on the square pixel face. If the target spot 
was infinitesimally small, the neutron profiles would be perfect rectangles. 

The total neutron correlation profile is shown in Fig. 3.7. This figure was generated by summing 
the correlations for all pixels in each angle bin. Although the individual pixel shapes varied 
somewhat, the shape of the total profile is uniform with the exception of the ends. The right end 
shows a steeper drop off than the left because of the angle of the target spot. 

 



 

3-8 

 
Fig. 3.6  Profile of the alpha pixels produced by the MCPixelGeom simulation for an 

8-pixel row of the H8500 PMT.  
 
 
 
 

 
Fig. 3.7  The total correlation profile produced by summing all 8 pixels. Although the 

individual pixel shapes varied considerably, the overall shape is nearly uniform with the 
exception of the ends. 
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The detector response versus horizontal angle at a vertical angle of 0° generated using Eq. (3.9) 
and assuming 100% detector efficiency is given in Fig. 3.8. Integrating the angular bins over the 
angles incident on the detector face tends to soften the corners of the square pixels a bit, but the flat 
tops are still visible on the higher numbered pixels. The center of the pixels is shifted 
approximately—5.5° due to the momentum of the incoming deuterons and tritons. 
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Fig. 3.8  The detector profiles produced by each pixel and the total detector response. 

 
The data plotted in Fig. 3.8 represents an idealized version of the alpha-neutron correlation curves 

assuming a perfect, uniform response across the entire range of pixels. In the laboratory, the light 
transmission from the scintillator crystal, through the fiber optic face plate and light guide, and the 
response across the face of the detectors all serve to alter the shape and size of the pixel profiles. In 
particular, light near the edge of a pixel boundary tends to produce a smaller number of photons 
and/or bleed across pixels and generate cross talk. This has the effect of rounding out the tops of the 
pixels and widening the tails at the base. In addition, the MCPixelGeom simulations were conducted 
using the average COM velocity for incoming ions. In practice, there will be a distribution of COM 
velocities that will tend to spread the pixel distributions. 

The change in the pixel shapes alters the overall neutron profile as well. This results in an overall 
profile, which is not flat. This can have a deleterious effect on imaging measurements. Because the 
exact form of the alterations is a function of many factors such as PMT voltage and constant fraction 
discriminator settings, they can change from measurement to measurement and would be difficult to 
model. In addition, the absolute position of the peaks (and thus the fluctuations) can change slightly 
each time the generator is removed from and replaced on its mount. In order to produce the most 
widely useful model, a combination of the idealized pixels of Fig. 3.8 and those seen in the laboratory 
will be used.  

A cosine squared (COS2) function has a rounded top similar to that seen in the laboratory pixels 
and a short tail like the pixels generated in the model. This function also has the benefit that two 
curves separated by exactly one FWHM sum to a horizontal line between the peaks. This creates a 
smooth, flat profile like that seen in Fig. 3.8. Because the API-120 is mounted at an angle to correct 
for the forward shift in the neutrons, the approximate peak locations were determined from 
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experimental data. Although these may change slightly from measurement to measurement, the 
simulations should still follow the data well except at the edges of the total pixel profile. 
 
3.1.6 Validation of the Pixel Model with Experimental Data  

The modeled pixels and an experimental pixel profile are compared in Fig. 3.9. In general, the 
modeled pixels match the peak locations and the shape of the top of the experimental pixels well. The 
experimental pixel profiles widen at the base as a result of detector and pixel cross talk.  

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-30 -20 -10 0 10 20 30

Detector Angle (Degrees)

Pixel 1E
Pixel 2E
Pixel 3E
Pixel 4E
Pixel 5E
Pixel 6E
Pixel 7E
Pixel 8E
Pixel 1MC
Pixel 2MC
Pixel 3MC
Pixel 4MC
Pixel 5MC
Pixel 6MC
Pixel 7MC
Pixel 8MC

Pi
xe

l-D
et

ec
to

r C
or

re
la

tio
ns

 (N
or

m
al

iz
ed

)

 
Fig. 3.9  A comparison of simulated and experimental pixel profiles. The simulated pixels 

generally match the experimental ones with the exception of the tails of the pixels. An E stands for 
experimental and an MC stands for Monte Carlo in the legend. 

 
 

The center of the modeled pixels has been matched to the center of the experimental pixels at  
–1.5°. This offset is considerably smaller than the calculated value of –5.5° because the generator was 
mounted at an angle in an attempt to correct for the forward momentum of the neutrons and alpha 
particles. 

In order to validate the pixel model, a test object was constructed and a 1D attenuation profile 
was measured in both the laboratory and simulations. The object used is pictured in Fig. 1.4. In the 
laboratory measurement, the detectors were subsampled six times in order to improve angular 
resolution. Each subsample was measured for 15 minutes, resulting in a total measurement time of 
90 minutes. For the simulations, each subsample was modeled separately. For each pixel, a total of 
2.5 × 107 neutrons was used, which is approximately the number of alpha counts per pixel detected 
during the laboratory measurements. The simulation procedure will be explained in greater detail in 
Chap. 4.  
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A comparison of the simulated and measured attenuation curves is presented in Fig. 3.10. The 
center of the simulated curve was shifted two detector positions (~0.4°). This discrepancy was likely 
due to the object being slightly off center in the laboratory measurement. Otherwise, the experimental 
and simulation measurements show excellent agreement indicating that the modeled pixel curves are 
suitable for simulating NMIS imaging measurements. 

 

 
Fig. 3.10  A comparison of simulated and experimental attenuation curves of the object 

shown in Fig. 1.4. The simulated curve was shifted two detector positions to align the two curves. 
 
3.2 A FIRST ORDER APPROXIMATION OF ELASTIC SCATTERING  

Before conducting simulations to measure scattering, it is desirable to perform a simple 
calculation of the scattering effect.  

This will be a first order calculation that only takes into account single elastic scattering in a thin 
object. As the thickness of the intervening target increases, multiple scatterings will contribute a 
greater portion of the scattering component. The scattering calculation here will take into account the 
fact that the neutrons are time tagged, so scattered neutrons add to the signal only if they arrive during 
the time window used to define directly transmitted neutrons. 
 
3.2.1  Scattering Geometry 

The geometry used in these scattering calculations is shown in Fig. 3.11. A thin beam of DT 
neutrons is incident on a horizontal detector array. The front faces of the detectors are aligned so that 
each is a distance, R, from the neutron source. The depth of the detector crystals from the front to the 
back faces is L. A thin slab of material is placed in the beam at a distance, D, from the point where the 
neutron beam crosses the front face of the detector array. Neutrons scattering in the slab scatter 
through an angle, φ, before arriving at the detector array. The path length of the neutrons from the 
scattering site in the slab to the front of the array is D′. The detector angle, θ, defines the angle 
between the initial neutron beam direction and the location where the scattered neutron arrives at the 
front of the array relative to the DT target spot. 
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Fig. 3.11  The geometry used for the elastic scattering 

calculations. Neutrons interacting in the sample scatter through an angle 
φ. When measured in reference to the DT target spot, the neutrons are 
scattered through a detector angle θ. 

 
Using the law of cosines, the relationship between the length of D′ and the detector angle can be 

written 
 
 ( ) ( )( )22 2 cosD' R R D R D R θ= + − − −   . (3.10) 
 

The scattering angle, φ, can then be related to the detector angle, θ, by the relation 
 

 sin sinD' Rϕ θ=   . (3.11) 
 
3.2.2 The Derivation of the Scattering Function 

In order for a scattered neutron to be mistaken for a directly transmitted one, it must reach the 
detector array during the time window assigned for DT neutrons and generate a pulse in a detector. 
The total scattered response in a detector at angle θ is the product of the incoming neutron flux, Φ; the 
probability of scattering towards the detector; and the probability that the incoming neutron generates 
a pulse that is mistaken for a directly transmitted neutron. Mathematically, this can be written 
 
 ( ) 0 ( ) ( )scatterR P Effθ Φ θ θ=   . (3.12) 
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The next several paragraphs will detail how this response function is calculated. 
For the purpose of these calculations, the electronic timing resolution of events will be assumed 

to be perfect. This limits the fast neutron window to the time between when a directly transmitted 
neutron arrives at the front of the detector crystal and when it leaves the back face. For an unscattered 
neutron travelling at speed v, the time window is limited to the range 
 

 R R Lt
v v

+
≤ ≤   . (3.13) 

 
The fraction on the left side of Eq. (3.13) will be referred to tmin and the fraction on the right as 

tmax. 
When a neutron scatters, its energy decreases and its path length to the detector array increases. 

Each of these two factors increases the arrival time at the front of the detector. The new arrival time is 
now 
 

 R D D't'
v v'
−

= +   , (3.14) 

 
where v' is the neutron speed after scattering. Because t′ – tmin < tmax – tmin, the maximum depth the 
scattered neutron can penetrate into the detector decreases.  

In order to calculate v′, the scattered neutron energy must be known. Fortunately, there is an exact 
relationship between the angle of scattering and the outgoing energy. From Duderstadt and 
Hamilton,47 the outgoing energy is 
 

 ( ) ( )1 1 cos
2

C
f iE E

α α ϕ + + − 
=  
 

  , (3.15) 

 
where Ei and Ef are the neutron energy before and after scattering, φc is the scattering angle in the 
COM coordinate system, and α is the minimum possible neutron energy after the collision. α is 
calculated using the equation 
 

 
21

1
A
A

α − =  + 
  , (3.16) 

 
where A is the atomic mass number of the scattering nuclide. The COM scattering angle, φc, is related 
to the LAB scattering angle φ via the equation47 
 

 sintan 1 cos
C

CA

ϕϕ
ϕ

=
+

  . (3.17) 

 
Solving for φc, this equation is transcendental; however, it can be solved easily by using an 

iterative method. Once the outgoing neutron energy is known, its speed can be calculated using 
Eq. (3.5). 

With the velocity of the scattered neutron calculated, the new effective detector depth can be 
calculated using the equation 
 
 ( )maxL' t t' v'= −   . (3.18) 



 

3-14 

For the purposes of this calculation, all neutrons will be assumed to enter perpendicular to the 
detector face. Although this assumption is rather poor for large scattering angles, the complex 
detector geometry makes it extremely difficult to define the actual detector interacted with as a 
function of scattering angle at large angles. The PScF simulations in Chap. 5 will model the detector 
cells explicitly, thereby eliminating this problem. 

A scintillator detects neutrons primarily through elastic scattering of neutrons on the hydrogen in 
the detector. The intrinsic efficiency of a scintillator to fast neutrons (ε) can be written51 
 

 ( ){ }1 exp 'H H
H H C C

H H C C

N N N L
N N

σε σ σ
σ σ

= − − +  +
  , (3.19) 

 
where NH and NC are the atom densities of hydrogen and carbon and σH and σC are the microscopic 
scattering cross sections for hydrogen and carbon. The cross sections are energy dependent, so they 
will also be affected by the resulting energy of the scattered neutron. In order to use these cross 
sections analytically, their tabulated values were fit using the JMP 7 statistical package.52 The 
resulting fits are 
 

 
( )2 3

2 3

exp 1 6431845 0 324906 0 021717 0 000632

4.4929537 0.906192  + 0.0718101 0.001809
H

C

σ (E) . . E + . E . E

σ (E) E E E

= − −

= − −
  , (3.20) 

 
where the cross sections are in barns. The hydrogen cross section fit gives good results for energies 
1 MeV < E < 14.1 MeV. Because of resonances, the carbon cross-section fit is only accurate in the 
range 9 MeV < E < 14.1 MeV. As will be shown in Sect. 3.2.3, neutrons at energies below 9 MeV 
have little impact on the PScF.  

The efficiency calculation in Eq. (3.19) assumes that any neutron elastically scattering off a 
hydrogen atom will generate a pulse in the detector. In practice, scintillators are operated with a pulse 
height threshold. The NMIS imaging detectors typically use a detector threshold of approximately 
1 MeV for neutrons. When a neutron scatters off a hydrogen atom, it can transfer any amount of 
energy between 0 and its total kinetic energy to the proton. The distribution of these energies is 
uniform.47 Neglecting the small contribution from neutrons that scatter more than once, the 
probability a neutron with an energy of E′ scattering off a hydrogen atom generates a pulse is 
 

 ( )
E

threshE' EPH E'
'

−
=   . (3.21) 

 
Because the neutron energy and effective detector depth can be expressed as explicit functions of 
energy, the total probability a scattered neutron generates a pulse in a detector can be written 
 
 ( ) ( )( )Eff PHθ ε θ θ=   . (3.22) 
 

The probability that a neutron first scatters while passing through an infinitesimal layer, dx, of a 
slab of material composed of a single isotope can be written 
 
 ( )( ) exp ( )s sP scatter in dx N N E xσ σ= −   , (3.23) 
 
where N is the atomic number density, σs is the microscopic scattering cross section, and x is the 
distance the neutron has penetrated into the slab before the first scattering. In order for the scattered 
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neutron to reach the detector array, it must then escape the back side of the slab. The total probability 
of scattering in a layer at a distance x into the slab and then escaping can be written 
 
 ( ) ( )( )( ) exp ( ) exp ( )s s tP scatter and escape N N E x N E T xσ σ σ= − − −   , (3.24) 
 
where T is the total thickness of the slab and σt is the total microscopic scattering cross section. 
Equation (3.24) assumes that all further interactions will prevent the neutron from reaching the back 
side of the slab (i.e., it is a first order scattering approximation). The equation also neglects the 
increased distance between the initial scattering location and the back of the slab due to the scattering 
angle; however, for small scattering angles, this difference should be relatively small. Integrating 
Eq. (3.24) from x = 0 to x = T yields 
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  . (3.25) 

 
Rather than describing the slab thickness in units of length that will change for each material, it is 

desirable to use attenuation lengths. One attenuation length (MFP) is the thickness, which attenuates 
the beam by a factor of 1/e. The thickness of the slab in attenuation lengths, τ, can be written 
 
 tN Tσ τ=   . (3.26) 
 
Using Eq. (3.26), Eq. (3.25) can be rewritten 

 

 ( )( )( ) exp exp
( )

s s

t s t

EP scatter and escape
E

σ σ τ τ
σ σ σ

  
= − − −  −   

  . (3.27) 

 
The probability of scattering to a detector at angle θ can then be written 
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where ( )sd
d
σ θ
Ω

 is the differential scattering cross section and Ωdet (θ) is the solid angle subtended by 

the detector at angle, θ. 
The differential scattering cross sections are available online in tabulated form from the National 

Nuclear Data Center.53 The cross sections are given in terms of COM scattering angle, which can then 
be converted to the LAB frame using Eq. (3.17). As with the intrinsic efficiency calculation, 
calculating the Ωdet explicitly as a function of angle would be extremely difficult at large scattering 
angles because of the complex detector geometry. Instead, the solid angle subtended by the detector 
will be approximated using the relation 

 

 
2
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D'
Ω =   , (3.29) 

 
where the solid angle Ωdet is in units of steradians and l is the dimension of square detector face. 
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Combining all of the terms from the previous paragraphs, Eq. (3.12) can be rewritten 
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  . (3.30) 

 
The PScF into a detector at angle, θ, is the ratio of the scattering response divided by the response of 
the detector at θ = 0 to the beam with no slab in place. The equation for the PScF is then  
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3.2.3 Elastic Scattering Calculation Results 

The scattering calculations were performed using a Fortran-90 program named Elastic written for 
this purpose. This program first reads a text file containing the atomic mass number and cross 
sections into memory and then performs the calculations shown in the previous sections. The 
parameters of the detector and target geometry were R = 110 cm, D = 40 or 70 cm, L = 10.16 cm, 
l = 2.54 cm, τ = 3 MFP, and Ethresh = 1 MeV. Four different scattering isotopes were modeled to 
sample across a wide range of atomic masses. The isotopes were 1H, 12C, 56Fe, and 208Pb. The results 
of each calculation were output to a text file for analysis. The source code used for the Elastic 
program is shown in Appendix B. 

The calculated results for some of the important components of the PScF for the four scattering 
nuclei at 40 cm from the detector array are shown in Figs. 3.12 through 3.15. The x-axis of all of 
these figures is the detector angle, θ, through which the neutron was scattered in degrees.  

The outgoing energy of the scattered neutron, Ef, computed using Eq. (3.15) is shown in 
Fig. 3.12. Neutrons scattering from heavy nuclides such as iron and lead lose almost no energy even 
at large scattering angles, while lighter nuclei lose a considerable fraction of their energy. The 
differential scattering cross sections are plotted in Fig. 3.13. The hydrogen cross section is almost 
completely flat and featureless, indicating nearly isotropic scattering. As the atomic mass increases, 
the cross sections become increasingly forward peaked. In addition, heavy nuclei, particularly lead, 
show a pronounced diffraction pattern. The detector solid angle computed using Eq. (3.29) is 
presented in Fig. 3.14. Because the solid angle is independent of the scattering isotope, only a single 
curve is shown. The probability a scattered neutron generates a pulse, Eff(θ), calculated using 
Eq. (3.22), is shown in Fig. 3.15. Because the energy of the scattered neutron is the most important 
component of Eff(θ), the efficiency of neutrons scattered from heavy nuclei drops more slowly than 
those scattering off light nuclei. The efficiency rapidly drops to zero at the point when a scattering 
results in the neutron arriving after the end of the correlation window. In the laboratory, where there 
is some uncertainty in the timing, the final drops would be more gradual and extend out farther.  

The calculated values of the point scatter functions for the four scattering nuclei are shown in 
Fig. 3.16. The curves follow the general shape of the differential scattering cross sections 
superimposed with the drop off in detector efficiency at larger scattering angles. With the exception 
of lead, the PScFs are generally well behaved and monotonically decreasing. 
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Fig. 3.12  A plot of the outgoing energy of neutrons scattered off four different isotopes as 

a function of the detector angle the neutron scatters through in degrees. 
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Fig. 3.13  The differential scattering cross sections of four nuclides as a function of the 

detector angle the neutron scatters through in degrees. 
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Fig. 3.14  The solid angle subtended by the detector face as a function of the detector 

scattering angle in degrees. 
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Fig. 3.15  The probability of each of the five nuclides generating a pulse as a function of 

detector scattering angle in degrees. 
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Fig. 3.16  The point scatter functions for each of the four nuclides at a 40 cm object-to-

detector distance. 
 
 

The diffraction pattern of the lead PScF will result in some inaccuracy in the tail region of the 
Gaussian functions used for fitting the scattering in Chap. 5. In a real slab of scattering material with 
a finite thickness, scattering will occur along the entire thickness, which should blur the features of 
the diffraction pattern to some extent. 

The PScFs of lead and carbon, respectively, at 40 and 70 cm from the detector array are 
compared in Figs. 3.17 and 3.18. As the slab moves farther from the array, the point scatter functions 
widen and the maximums decrease. The shapes of the functions remain nearly constant. As the slab 
moves farther from the array, the PScFs widen because the scattering angle, φ, corresponding to a 
given detector angle θ decreases. With a slab of finite thickness, some of the scattering will occur 
farther from the array and the PScF curve will widen.  

The PScF curves developed in this chapter will be compared to the ones measured using MCNP 
simulations after the PScFs are developed in Chap. 5. 
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Fig. 3.17  A comparison of the PScFs for 208Pb at 40 and 70 cm from the array. 
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Fig. 3.18  A comparison of the PScFs for 12C at 40 and 70 cm from the array. 
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4. SIMULATION CODE DEVELOPMENT 

4.1 THE MCNP-POLIMI CODE 

For this work, the MCNP-PoliMi code54 was used for simulating all NMIS imaging 
measurements. MCNP-PoliMi is a modification of the MCNP-4C code 31 designed to model each 
neutron-nucleus interaction as accurately as possible. Unlike newer versions of MCNP, MCNP-
PoliMi can only utilize a single processor for running simulations. The version of MCNP-PoliMi 
(1.22) used for these simulations is a slightly modified version of the standard version (1.0) available 
from the Radiation Safety Information Computational Center (RSICC).55 The memory dynamically 
allocated storage variable in all modules was changed to “mdas=500000000” to allow for more 
complex models. In addition, the format of the output files was altered slightly in order to more easily 
identify events corresponding to directly transmitted neutrons or cross talk between detectors. The 
modules were compiled for the Linux operating system with the Portland Group56 compiler. The 
modules were compiled with the “–Mlfs” flag, which allows the program to produce output files in 
excess of 2 gigabytes.  

The latest versions of MCNP, MCNP-5 57 and MCNPX ,58 make some approximations that 
generally produce accurate results when averaged over a large number of particles. However, when 
the quantity of interest is the behavior of a single particle, these approximations can generate 
unsatisfactory results.59 One example is the production of neutrons and gamma rays from fission 
events. MCNP-PoliMi samples the number of neutrons and gammas produced by each fission event 
from a probability distribution function, whereas the other codes use average values.*

Another area where standard MCNP codes do not accurately model each collision is the 
production of gamma rays. These codes sample the gamma ray production of each interaction from a 
single table without regard to the type of neutron interaction. This table gives the average number and 
energy of gamma rays produced by all possible interactions, which speeds simulation times at the cost 
of the fidelity of individual interactions. By sampling gamma ray production separately for each 
different type of reaction, MCNP-PoliMi produces accurate results for each history. 

 When 
calculating source-triggered multiplicities or detector-detector correlations, these approximations can 
yield incorrect results because the relatively rare fission events that produce a large number of 
particles simultaneously are not accounted for.  

MCNP-PoliMi was selected for NMIS modeling because the more accurate modeling of 
interactions produces more accurate results for multiplicities and detector-detector correlations. 
Although these features are not generally important for the simulation of imaging measurements, 
another important feature of MCNP-PoliMi is that it produces an ASCII text file containing 
information about all interactions in detector cells specified by the user. This information includes the 
type of projectile, nucleus interacted with, type of interaction, energy imparted by the interaction, 
time of the interaction (relative to the start of the history), position of the interaction, and the number 
of previous interactions. A small section of one of these output files with headers identifying each 
column is shown in Fig. 4.1. 

This text file, typically referred to as a .dat file because of its standard extension, is then analyzed 
with a post-processing code. The post-processor explicitly simulates the response function, energy 
threshold, and dead time of a specific detector type to calculate time correlations and multiplicities. 
For simulated imaging measurements, the post-processor also calculates the number of correlations 
falling in the relevant time windows and sums them up for each detector. Specific details of the post-
processor, PoliMiPP, used for this work are provided in Sect. 4.3.2. 

  

                                                      
*The latest version of MCNPX (2.6.0) now samples the fission neutron multiplicity distribution correctly, but still uses 

average values for the gamma ray production.60 
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Fig 4.1  A section of a .dat file with column headings. The MCNP-PoliMi User’s Guide54 

provides a detailed explanation of each column. 
 
 
4.2 THE METHODOLOGY OF SIMULATING AN NMIS IMAGING MEASUREMENT 

The process of running a single MCNP-PoliMi simulation is fairly simple. First, an input deck is 
created with the desired source, detector cells, and other geometry such as the object being 
interrogated or imaged. The MCNP-PoliMi program is then executed and produces a .dat file with all 
of the collision information in the detector cells. The .dat file is post-processed to calculate 
correlations, multiplicities, and a file with the extension .peaks, which contains the number of 
correlations falling in the desired time window for each detector. 

Simulating an imaging measurement requires considerably more work. Even a single 1D slice 
through an object requires many simulations. Each of the pixels has a different angular distribution of 
source neutrons. A separate simulation is required for each. In addition an NMIS imaging 
measurement typically subsamples the detector locations in order to increase the angular resolution of 
the image. This is done by repeating the measurement multiple times, and rotating the entire detector 
array slightly with each subsample. Because MCNP-PoliMi explicitly records the interactions in each 
detector volume, each subsample requires a separate simulation with the appropriate angular 
transform of the detector array. If there are m pixels and n subsamples, a total of m × n MCNP-PoliMi 
runs are required to simulate the measurement. 

In order to minimize the tedious work (and the likely errors) involved with building, executing, 
post-processing, and recombining each of the m × n MCNP-PoliMi runs manually, a series of codes 
were written to make the process largely automated. A flowchart of the programs used to simulate an 
NMIS imaging measurement is presented in Fig. 4.2. The MakeInp program reads a single PoliMi 
input deck containing the geometry of the object being imaged and (if desired) other objects in the 
room. Using information about the detector array and source distribution contained in another file, it 
produces MCNP-PoliMi input decks for each pixel-subsample combination and places them in 
appropriate directories. The MakeInp program also produces two batch files. The first batch file starts  
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Fig. 4.2  A flow chart showing the procedure used to simulate an NMIS imaging measurement with 

MCNP-PoliMi. 
 

all of the MCNP-PoliMi runs (two different versions are created—one for Windows systems and one 
for Linux servers). Once all of the runs are complete, the second batch file post-processes the 
resulting .dat files and then combines all of the resulting .peaks files into a single file. The 
ScatterSubtract code will then read the final output and, using the output from a void measurement as 
well, apply the scatter subtraction methodology developed in this work to produce the corrected 
attenuation values. With the exception of MCNP-PoliMi, all of the programs shown in Fig. 4.2 were 
written specifically for the purpose of simulating NMIS measurements. A detailed description of each 
of these codes is presented in Sect. 4.3.  

 
4.3 FORTRAN CODES FOR SIMULATING IMAGING MEASUREMENTS 

4.3.1 The MakeInp Code 

The MakeInp program takes a single base input deck containing information about the object 
being imaged and produces a series of MCNP-PoliMi input decks with the proper detector array 
configuration and pixel source distribution. The program is launched from an MS-DOS command 
prompt or batch file using the syntax 
 
 MakeInp <Parameter File>  . 
 

The parameter file contains information specified by the user about the detector array and the DT 
pixels as well as the name of the base input file. The information about the detector array includes the 
number and size of detectors, their separation, the source-to-detector distance and the detector cell 
numbers. The information about the pixels includes the number of pixels, FWHM of the pixels, 
angular offset, and the number of angular bins to be used for simulating the neutron distribution of the 
pixels. The parameter file also specifies the number of times each detector is to be subsampled, the 
number of source neutrons to be used for each simulation, and the file name of the base input deck. If 
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the parameter file name is not specified at the command prompt, the program prompts the user to 
input the name. An example of a parameter input file is presented in Appendix C. 

Once the parameter file name is input, the program reads the value of each parameter from the 
file and then closes it. Each value is specified with a keyword, just as in an MCNP deck. Using this 
information, MakeInp calculates the values needed to generate the surfaces for each of the detectors 
in the array. These values are computed for an array with no angular rotation (i.e., the center of the 
detector array lies on the x-z plane). These detector surface values are computed using the source-to-
detector distance, number of detectors, and detector-to-detector separation values read in from the 
parameter file and saved in an array for later use. 

Once the detector positions are computed, the base input deck is opened and read into memory. 
The base deck is a standard MCNP-PoliMi deck containing information about the object being 
imaged and other objects in the room, such as the turntable used for rotating the object. The base 
input deck does not contain an “NPS” card since the number of source particles is specified in the 
parameter file. It also contains three special comments of the form “c 111111,” “c 222222,” or 
“c 333333” to indicate the location where the MakeInp program should add the detector cell cards, 
detector surface cards, and data cards in each of the resulting output decks. An example of a base 
input deck is given in Appendix C. 

The program then creates a directory structure that will be used to hold the resulting PoliMi decks 
it creates. The directory name is the first four characters of the base input file. Once the directory is 
created, the program loops over the pixel numbers. For each pixel, a subdirectory is created to hold all 
of the input decks relating to that pixel. The program then loops over the subsample number and 
creates a blank file that will hold the input deck for the specific pixel-subsample combination. The 
filename given to this new input deck is the first two characters of the base file name plus the pixel 
number plus the subsample number followed by the extension “.i.” For example, if the base input file 
is named “void.inp,” the input deck for pixel 5, subsample 1 would be “vo51.i.” This naming scheme 
is necessitated by the fact that MCNP-PoliMi file names must contain eight or fewer total characters. 
Up to 99 pixels and 99 subsamples can be utilized with this naming scheme while maintaining a file 
name of eight characters or less. 

Next, the program writes the MCNP-PoliMi cards to this new input file. This is accomplished by 
looping over each line read in from the base input deck. The output depends on the contents of the 
line from the input file. 

• If the input line = “c 111111,” the detector cell cards are written. Each cell card contains the 
appropriate detector cell number, material number, density, and surfaces for the detector. Cell 
numbers are assigned so that they increase sequentially with angle and each detector position 
is given a unique cell number. If there are four subsamples and the starting detector number is 
401, subsample one would have detector cells 401, 405, 409, …; subsample two would have 
detector cells 402, 406, 410, …; etc. 

• If the input line = “c 222222,” the detector surface cards are written. The detector surfaces are 
specified using a BOX macrobody card. The BOX card specifies a starting point and three 
perpendicular vectors for the detector crystal. It also specifies an angular transform specific to 
the subsample. Each detector surface card is given the same number as its corresponding cell 
card. 

• If the input line = “c 333333,” the detector transform (TR), source definition (SDEF), number 
of source particles (NPS), random number (DBCN), physics (PHYS), problem cutoff (CUT), 
and PoliMi-specific (IDUM, RDUM) cards are written.  

 The detector transform cards rotate the entire detector array by up to ±½ the angle 
between detector centers for subsampling and translates the position of the array if the 
source location is not at the origin of the MCNP coordinate system.  

 The SDEF card specifies the location of the DT neutron source, the direction of the center 
of the current pixel, and a probability distribution function, which defines the shape of the 
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pixel. The source particles are monoenergetic neutrons. No deuterons or alphas are 
simulated and all neutrons emerge from a point source. The FWHM parameter from the 
parameter file determines both the width of the pixel PDF and the distance from the 
center of one pixel to the next. The absolute angle of each pixel includes an offset that 
specifies how many degrees the center of the pixels lies from the y-axis.  

 The number of source particles is taken directly from the parameter file. All simulations 
created by MakeInp use the same number of source particles. 

 For each simulation, the same random number seed and stride is specified with the 
DBCN card. Within a given pixel, the starting history for each subsequent subsample is 
incremented by the total number of histories in previous subsamples. This prevents any 
pattern in the random numbers from repeating across subsamples. 

 The PHYS:n and PHYS:p cards specify how the program is to handle the physics 
parameters. MCNP-PoliMi requires analog operation, so these cards specify the proper 
values. 

 The CUT:n and CUT:p cards specify when a history should be ended. A maximum time 
window is specified in the parameter file, and this value is written into the cut cards. The 
time window represents the maximum time difference the post-processor will use when 
computing source-detector and detector-detector correlations. 

 The IDUM and RDUM cards provide MCNP-PoliMi-specific information. The IDUM 
card can be used to specify one of the built in PoliMi sources such as 252Cf spontaneous 
fission. This card is also where the number of detectors and cell number of each is 
specified. Only detectors listed on the IDUM card have their collision information written 
into the .dat file. The RDUM card specifies the minimum energy that must be transferred 
by an interaction in a detector cell for it to be recorded in the .dat file. 

• All other lines from the base input deck are written directly into the output deck with no 
changes. 

 
Once the output deck is written, it is copied into the appropriate directory form where it will be 

executed. The command for executing that deck is written into the execution batch file, and the 
command for post-processing it is written into the post-processor batch file. At the end of each 
subsample, a command calling the JoinSS program is written into the post-processor batch file. A call 
for the JoinPixels is added to the very end. Once the batch files are completed, they are moved into 
the correct directory and the MakeInp program terminates. An example of an input deck produced by 
MakeInp is shown in Appendix C. 
 
4.3.2 The PoliMiPP Post-Processor 

After the MCNP-PoliMi simulations are complete, the PoliMiPP code is used to post-process the 
resulting .dat files. Although the RSICC release of the MCNP-PoliMi code includes a post-processor, 
it was found to be unsatisfactory for some aspects of NMIS simulations. The RSICC post-processor is 
written in the MATLAB61 programming language. This code can only process small .dat files of less 
than ~100 MB. Larger files have to be separated into multiple pieces smaller than this limit before 
post-processing. The MATLAB code processes the files at a considerably slower rate than a 
comparable Fortran code. The MATLAB code also lacks some features, such as an adjustable 
detector dead time. The PoliMiPP code was written to provide all of the necessary features and the 
ability to process large .dat files of up to 4 GB without the need for splitting. The source code for 
PoliMiPP is shown in Appendix D. 
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PoliMiPP is executed from an MS-DOS command line with the syntax 
 
 PoliMiPP <.dat file> <start detector> <NPS> <Correlation Window>  
  <dead time> <detector threshold>  . 

 
All of the input values are optional with the exception of the .dat file name. The start detector 

specifies which detector should be used as the start detector when computing cross-correlations. For 
imaging measurements, this value is set to “0,” which tells the post-processor not to calculate cross-
correlations. The NPS value should be the same one specified in the MCNP-PoliMi input deck for 
proper normalization. The correlation window specifies the maximum time difference that should be 
used when computing source-detector correlations and detector-detector cross-correlations. The 
correlation window time is in nanoseconds. By default, the PoliMiPP output will be binned in 1 ns 
intervals, but if a window size of greater than 2048 ns is entered, bins of 1 μs will be used instead. 
The detector dead time is also specified in ns. Once a pulse is generated in a detector, any other 
events in that detector will be ignored until the dead time expires. The detector threshold specifies the 
minimum neutron energy that can generate a pulse if it transfers its full energy in a collision. The 
energy threshold is in MeV. If only the .dat file name is entered at the command line, the other values 
will assume default values. These values are the equivalent of launching PoliMiPP with the values 

 
 PoliMiPP <.dat file>  0  1  256  35  1.0  . 
 

The PoliMiPP code begins by opening the .dat file and reading through it to determine the 
number of source histories it contains. In order to minimize the total amount of random access 
memory (RAM) used by the program, the entire .dat file is not read into memory. Instead, each 
history is read into memory individually. For a given history, each event is sorted by the detector 
number and then by interaction time. For each event, the light output is computed using an algorithm 
based on the detector type. For a plastic scintillator, the light output (pulse height) produced by an 
energy transfer, Ein, is62 

• Photon on hydrogen or carbon: PH = Ein. 
• Neutron scattering off hydrogen: PH = 0.125*Ein + 0.0364*Ein

2. 
• Neutron scattering off carbon: PH = 0.02*Ein. 

 
Once the light output for each event in the history is computed, the detector threshold is applied 

to see which events produce an electronic pulse. Multiple events that occur within the pulse 
generation time can combine to produce an electronic pulse if their sum is greater than the threshold. 
Once a pulse is triggered, any events occurring in that detector during the specified dead time after 
the pulse are ignored. Each pulse produced is written into an array for further processing. While 
recording the pulses, each pulse is checked to determine if it was produced by a directly transmitted 
neutron. 

Once the list of pulses is calculated, the PoliMiPP code calculates the multiplet for each history. 
The multiplet is the total number of pulses (from all detectors) produced in a given history within the 
total time window specified in the program. In addition to the total multiplet, the total number of 
pulses produced only by neutrons is computed. The total number of times each multiplet (single, 
double, triple, etc.) occurs is recorded and then output into a multiplicity file with a “.multip” 
extension. 

After the multiplicities are computed, the post-processor calculates the source-detector correlation 
for each detector. This is accomplished by recording the number of times a pulse occurs in a given 
1 ns time bin from the beginning of each history in a given detector. The correlations are divided into 
total, neutron, and gamma pulses. For an event in which more than one pulse occurs, cross-
correlations are also computed if one of the pulses occurs in the start detector. These cross-
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correlations are computed by recording the time difference between each pulse in the start detector 
and all other pulses for that history in 1 ns bins. The cross-correlations are broken down into total, 
neutron-neutron (nn), photon-photon (pp), neutron-photon (np), and photon-neutron (pn) subsets. 
Each subset of correlations and cross-correlations is then output to text files. 

Once the correlations are calculated, the location of the neutron peak is calculated by determining 
the time bin of the total correlation that contains the largest number of pulses. The time limits of the 
peak time window are then set at ±2 ns from the peak. For each detector, the total number of counts 
within the peak window is recorded. In addition to the total number of counts in the peak, the counts 
produced by directly transmitted neutrons are recorded. 

Once the peak correlation window is determined, PoliMiPP applies an algorithm to eliminate 
counts in the total peak values produced by cross talk between detectors. This method follows the one 
applied in the NMIS data acquisition software. If a single history produces more than one count in the 
peak correlation time window, only the one with the smallest interaction time is counted. All others 
are considered to be produced by cross talk between detectors. In the unlikely event that two events 
occur simultaneously (because of rounding of the interaction time in the .dat file) the one in the 
higher numbered detector cell is discarded. Once these computations are completed, the number of 
total, direct, and no cross talk counts in the fast time correlation window are written out into a .peaks 
file. The total NPS value is also written into the .peaks file for normalization purposes.  

For neutron radiography, the .peaks file is the final product of the post-processor program. The 
.peaks file consists of seven columns. The first column lists the detector cell numbers in ascending 
order. The next two columns give the number of total correlations in the peak correlation window and 
the mean correlation time of the window. The fourth and fifth columns present the same information 
for directly transmitted neutrons, and the sixth and seventh give the no cross talk peak correlations 
and means. The first row of the output is a header row with labels for all columns except for the 
detector cell number column. Instead of a label, the number of source histories is written above the 
detector column. This value will be used for normalization in the ScatterSubtract code. The .peaks 
file is used for reconstructing the attenuation maps using the JoinSS, JoinPixels, and ScatterSubtract 
programs. The data in the .peaks file will be used for extracting the PScFs in Chap. 5. An example of 
a .peaks file is shown in Appendix D. 
 
4.3.3 The JoinSS and JoinPixels Codes 

Once all of the .dat files for a given pixel have been post-processed, the JoinSS program 
combines them into a single .peaks file that contains the entire transmission profile for that pixel 
across all subsamples. The JoinSS code is launched from the command line with the syntax 

 
JoinSS <File Base> <# SS> <# Detectors> <First Detector #>  
 <Source to Detector Distance> <Detector to Detector Distance>  . 

 
The File Base consists of the first two characters of the base input file name (from the MakeInp 

code) and the pixel number (e.g., vo4). The next two values specify the number of subsamples and the 
number of detectors in the array. The first detector number is the cell number of the lowest numbered 
detector cell in subsample 1, which will be the lowest for all subsamples. This detector will have the 
most negative detector angle. The source-to-detector distance and detector-to-detector distance are 
used to calculate the detector angles. Detector-to-detector distance is the distance between the centers 
of adjacent detectors in the array. 

JoinSS opens the .peaks files for each subsample and reads the detector call numbers, total 
correlations, direct correlations, and no cross talk correlations from each into an array. 
Simultaneously, the angle of each detector position is computed. The subsamples are interleaved in 
such a way that the detector positions are sorted by detector angle. Then, this interleaved array is 
written into a single .peaks file that contains all of the values for the pixel. This .peaks file contains 



 

4-8 

five columns. The first is the detector angle in degrees. The second is the detector cell number. The 
third, fourth, and fifth columns contain the number of total, direct, and no cross talk correlations in 
the fast neutron peak. The first row is a header row and, as with the original .peaks files, the NPS 
value is included in the first column of the header row. 

Once the JoinSS program has rejoined all of the subsamples for each pixel, the JoinPixels 
program combines the output into a single file. The JoinPixels program requires that all of the JoinSS 
files are in a single directory. The post-processing batch file produced by the MakeInp code copies 
those files into the root directory of the simulation before launching the JoinPixels program. The 
JoinPixels program is launched from a command line with the syntax  

 
 JoinPixels <base file name> <number of pixels>  . 
 
The base file name is the first two characters of the original MakeInp base input deck. 

When the JoinPixels program is launched, it opens each of the pixel .peaks files and reads them 
into an array in memory. It then writes the output into a single .peaks file for the simulation. The 
output in the final .peaks file is divided into three groups of columns representing the total, direct, and 
no cross talk values. Each group consists of a column with the detector angles, a column with the 
detector cell numbers, a column for each pixel, and a column with a total value, which is the sum of 
all pixels. One additional value contains the uncertainty of the total column. The uncertainty is 
calculated assuming standard counting statistics by taking the square root of the total correlations. 
The final output file contains a header row with labels for each column except for the first, which 
gives the NPS value for normalization. This final .peaks file will be used in combination with one 
from a void measurement to calculate the attenuation profile using the ScatterSubtract code. The 
source code for the JoinSS and JoinPixels programs is shown in Appendix E. 
 
4.3.4 The ScatterSubtract Code 

Once the final .peaks file for the simulation has been finished, the ScatterSubtract program 
implements the point scatter removal algorithm in order to remove the scattered component from the 
measured values. The function of this program will be discussed in detail in Sect. 6.2 where the 
implementation of the PSRA is presented. 
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5. MODELING AND POINT SCATTER FUNCTION EXTRACTION 

The PScFs will be discussed in detail in this chapter. In the first section the definition and 
mathematical description of the PScFs as used in this work will be discussed. A definition from 
earlier work was provided in Chap. 2, but the function will be modified slightly to account for the 
geometry of the NMIS detector array. In the second section, the models used to measure the PScFs 
and the scenarios that were modeled are described. In the third section, the procedure for extracting 
the PScF parameters for each simulation is presented. The parameterized PScFs will be compared to 
the elastic scattering calculations from Chap. 3 in the final section of this chapter.  
 
5.1 DESCRIPTION OF THE POINT SCATTER FUNCTIONS 

Some previous work with PScFs was described in Chap. 2. Those authors described the PScF in 
terms of the probability a neutron would arrive a given distance from its projected point on a 2D 
detector screen. This work requires a somewhat modified definition of the PScF in order to account 
for the more complicated detector geometry and the finite detector volumes. The definition of the 
PScF used here will be the number of additional fast neutron correlations due to scattering in the 
object being imaged recorded in a detector whose center is an angle, θ, away from the original 
detector the neutron was directed towards per uncollided neutron detected by the original 
detector in a void measurement. Mathematically, this relation can be represented 
 

 
0

( )( ) SOIPScF
I
θθ =   , (5.1) 

 
where ISO(θ) is the number of additional counts in the detector an angle θ away from the original 
detector as measured from the DT target spot and I0 is the number of DT neutrons detected in the 
original detector in the void measurement. The PScF accounts for neutrons scattered at any position 
in the object along the original neutron path. The PScF geometry is depicted in Fig. 5.1. 

Each detector will have its own PScF that describes the scattering contribution to all detectors 
(including itself) in the array produced by neutrons directed towards it. The total scattering 
contribution into each detector in the array would then be superposition of the PScFs from all 
detectors in the array. The total object scattering contribution into a given detector can be written as a 
discrete summation of the contribution from all detectors. This summation can be written 
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where i represents the position of the detector being scattered into, j represents the detector whose 
neutrons are contributing additional scattering, I0(j) is the directly transmitted neutrons directed 
towards detector j, n is the number of detectors in the array, and ω is the separation angle between 
adjacent detectors. If the contributions from background and room return are negligible, the true 
attenuation measured by detector i can be written 
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Fig. 5.1  The geometry of the NMIS PScF. A total of I0 neutrons 

directed towards detector j would be detected in a void measurement. 
Of those neutrons, ISO(θ) scatter in the object being imaged and are 
detected in detector i whose center is an angle, θ, away from the 
original detector. Although a thin sample is shown for clarity, the 
PScF includes scattering from any position along the neutron track 
through the object, even if it is several MFP thick. 

 
Because the I0 and ISO values cover an entire detector, the PScFs must be applied to each 

subsample individually. Otherwise, the attenuation values will be overcorrected and the resulting 
attenuation values will be too high. 

If all of the PScFs are known, the object scattering can be removed from the object measurement 
and the true attenuation profile of the object can be calculated. Unfortunately, the PScFs depend on 
the geometry and materials of the object so they will change each time a new object is imaged. 
Calculating the exact PScFs each time would require an MCNP calculation using the correct object 
geometry and materials. Since the goal of radiography is to measure those values, this approach is 
impractical.  

A more reasonable approach is to develop a library of generalized PScFs and apply the one that is 
the most applicable to a particular measurement. The remainder of this work will focus on this 
technique. The scattering calculations in Chap. 3 showed that the neutron scattering function changed 
with the scattering material and also with the distance between the object and the detector array. In 
addition, the thickness of the object will play a large role in the size and shape of the PScFs. In the 
remaining sections of this chapter, the focus will be on developing a library of PScFs that cover a 
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broad range of object characteristics, and parameterizing them. In Chap. 6, a method for selecting the 
best available PScFs for each detector position in a given object will be developed. 
 
5.2 MODELING AND SIMULATION OF THE POINT SCATTER FUNCTIONS 

MCNP-PoliMi simulations will be used to estimate the PScFs for a wide range of scenarios in 
order to build a library. Because the post-processor reports the number of correlations in the DT 
neutron peak for both directly transmitted and no cross talk values (which approximate measurements 
in the laboratory) the values of both the I0 and ISO can be calculated directly using the values in the 
.peaks files. In order to measure these values, the source term needs to approximate the geometry 
shown in Fig. 5.1. In order to accomplish this, a pixel was centered on one of the detectors at the 
center of the array and then collimated horizontally through the use of a zero importance cell 
surrounding the neutron source. The collimating cell had a slit in it that had the same horizontal 
angular width as the detector. No vertical collimation was performed so that the section of the pixel 
had its full vertical extent. This allows the simulations to account for neutrons directed directly above 
or below the scattering detector when computing the scattering. The resulting neutron profile is a 
vertical fan that falls off as a COS2 (cosine squared) shape toward the top and bottom edges. Because 
the fan is at the center of the pixel, it matches the vertical profile of the overall fan (the sum of all 
pixels—see Sect. 3.1.5) very well. This feature means that the PScFs derived here can translated to 
any detector in the array as the scattering detector. 

Although the possible object configurations and materials are infinite, the NMIS operator will 
have only a limited amount of information available to be used for computing the correct PScFs to 
use for a given image. The exterior geometry of the object will be known. This is typically the 
dimensions of the drum or canister whose contents are being imaged. The location of the exterior with 
respect to the imaging array and source can easily be measured when setting up the measurement.  

To a certain degree, the composition of the outer layer of material in the object is also available to 
the NMIS operator. Its composition can be estimated by looking at a source-detector correlation curve 
for a detector located perpendicular to a pixel’s neutron cone passing tangentially through the outside 
of the drum. Some specific nuclides, most notably hydrogen and low Z isotopes with widely spaced 
energy levels, can be identified by looking for peaks due to elastic and inelastic scattering. The 
operator might also have knowledge of what the shielding is supposed to be based on the declared 
contents of the object being imaged. For the purposes of this work, it will be assumed that only the 
composition of the outer layer of shielding can be determined and the PScF used will be based on this 
information. In order to be as widely applicable as possible, the PScFs will be calculated using a 
homogenous layer of shielding. During the validation phase, some work will be devoted to checking 
how well PScFs based on only the outer layer of material work with objects composed of more than 
one material. 

A final piece of information that is easily available from an NMIS measurement in the laboratory 
is the measured attenuation curve. For each detector position, the best PScF can be selected based on 
the measured attenuation at that location and inputs from the operator about the shielding material and 
the object-to-detector distance. The resulting PScFs can then be subtracted to produce the corrected 
curve and new PScF values can be selected based on the corrected attenuation values. This iteration 
will be continued until the attenuation values converge at, ideally, the true attenuation curve.  

Taking the available information about the object being imaged into consideration, the three 
variables selected for generating the PScFs are the object-to-detector distance, object material, and 
material thickness in attenuation lengths. The object used is a homogenous cylindrical shell of 
material oriented vertically with its radius centered on the DT target spot. This configuration gives the 
object a consistent object-to-detector distance across the entire array removing possible variations in 
the profile of the resulting PScF created by the shape of the object. The configuration of the source 
and target that will be used for these simulations is shown in Fig. 5.2. 
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Fig. 5.2  The configuration used for calculating the NMIS 

PScFs using MCNP-PoliMi simulations.  
 

Four different materials will be used for measuring the PScFs. These are polyethylene, carbon 
(graphite), iron, and lead. These materials cover a wide range of atomic masses and they are materials 
frequently used in shielding and structural applications. Fourteen thicknesses of materials will be used 
ranging from 0.5 to 7.0 MFP by half-integer values. Seven object-to-detector distances (measured 
from the outer surface of the object) ranging from 30 to 90 cm in 10 cm increments will be used for 
each material. Because the source-to-detector distance is 110 cm and the DT generator tube has a 
radius of approximately 4 cm, some combinations of material, object-to-detector distance, and 
thickness were physically impossible and were omitted from these simulations. In total, there are 
300 allowable material, object-to-detector distance, and thickness combinations. All of the 
configurations used in these simulations are presented in Table 5.1.  
 

Table 5.1  The configurations simulated for the purpose of developing an NMIS PScF library 

Object-to-
detector distance 

Allowable thicknesses by material 
Polyethylene Carbon Iron Lead 

30 cm 0.5–7.0 MFP 0.5–7.0 MFP 0.5–7.0 MFP 0.5–7.0 MFP 
40 cm 0.5–7.0 MFP 0.5–7.0 MFP 0.5–7.0 MFP 0.5–7.0 MFP 
50 cm 0.5–6.0 MFP 0.5–6.0 MFP 0.5–7.0 MFP 0.5–7.0 MFP 
60 cm 0.5–5.0 MFP 0.5–5.0 MFP 0.5–7.0 MFP 0.5–7.0 MFP 
70 cm 0.5–3.5 MFP 0.5–4.0 MFP 0.5–7.0 MFP 0.5–6.0 MFP 
80 cm 0.5–2.5 MFP 0.5–2.5 MFP 0.5–5.5 MFP 0.5–4.5 MFP 
90 cm 0.5–1.5 MFP 0.5–1.5 MFP 0.5–3.0 MFP 0.5–2.5 MFP 
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Each of these simulations was given a unique identifier that consists of the first four letters of the 
material with a number appended to the end. The number is the sum of the object-to-detector distance 
and the nominal thickness in MFP. For example, 3 MFP of polyethylene at 50 cm from the detector is 
given the identifier Poly53. 

The total number of source particles used for each scenario was determined by making short runs 
and extrapolating the number needed to generate a sufficiently large .dat file to get good statistics on 
the number of scattered counts in each detector.  

The smallest .dat file size was just under 100 MB, and many .dat files exceeded 1 GB. The 
number of source neutrons used for each combination of material and thickness are given in 
Table 5.2. The same values were used for all object-to-detector distances for a given material. Note 
that the neutron source strength is for the entire pixel, including the parts that were cut off by the zero 
importance collimating sphere. The actual number of neutrons projected towards the object comprises 
only the portion of the pixel that passes through the slit in the collimator, but because this value scales 
linearly with the total source term, knowledge of its exact value is not required. 

In addition to these simulations, a void simulation was run. The void simulation had a source 
strength of 4 × 107 neutrons. It used the same geometry shown in Fig. 5.2 except that no object was 
present. The void simulation will provide the I0 value that will be used to compute the PScF for each 
of the other simulations shown above. 
 
 

Table 5.2  The source strength used for each  
of the PScF simulations 

Thickness 
(MFP) 

Number of Source Neutrons (×107) 
Polyethylene Carbon Iron Lead 

1 4 4 4 4 
2 4 4 4 4 
3 10 4 4 4 
4 10 10 4 4 
5 10 10 4 4 
6 20 10 4 4 
7 20 10 4 4 

 
 
5.3 PARAMETERIZATION OF THE NMIS POINT SCATTER FUNCTIONS 

5.3.1 The Void Simulation 

The first task involved in parameterizing the PScFs was to run the void simulation and extract the 
results. The .peaks file generated from the void simulation is shown in Fig. 5.3. The neutron fan was 
directed onto detector cell 461 in the center of the array. The Direct column of the .peaks files 
confirms that the only detector cell, which recorded directly transmitted neutron correlations, was 
detector 461. The Total and No XTalk results for detector 461 are almost identical to the Direct value 
because the only possible source of additional counts would be a neutron that scattered off detector 
461 into another detector cell and back into 461.  

Unlike the Direct column, the Total and No XTalk columns show a sizable number of correlations 
in the detectors surrounding 461. Although this is expected for the Total column, it is somewhat 
surprising for the No XTalk one, because the only way for a neutron to reach a detector other than 461 
in the void simulation is for it to scatter from 461.  
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Fig. 5.3  The contents of the Void.peaks file. 

 
 

If a neutron created a pulse in 461 and then scattered into another detector cell and created a 
pulse, the second pulse would be discarded as cross talk. 

The source of the scattering can be found by examining the equations for detector efficiency 
[Eq. (3.19)] and the Pulse Height Factor [Eq. (3.21)] in Sect. 3.2.2. In order to generate a detector 
pulse, an incoming neutron needs to generate enough light in the detector to overcome the threshold. 
The results in Fig. 5.3 were generated using the default neutron threshold of 1 MeV. With that setting, 
only neutrons imparting more than 1 MeV to a hydrogen atom in the detector cell generated a pulse. 
Neutrons scattering off a carbon atom or imparting less than 1 MeV to a hydrogen atom will not 
generate a pulse. Since no pulse is generated in detector 461 by these types of scattering, if the 
neutron is subsequently detected in another cell, that pulse is not considered cross talk.  

In order to verify that the threshold is the cause of the scattering in the No XTalk column of 
Fig. 5.3, the Void.peaks file was post-processed again using a detector threshold of 0.001 MeV. 
The.peaks file generated using the 0.001 MeV detector threshold is shown in Fig. 5.4. At this low 
threshold value, the only counts in the No XTalk column outside of cell 461 are a small number of 
counts in cell 457. These counts are a result of the logic the PoliMiPP code uses to determine which 
pulse is cross talk. If two pulses for a given history have the same interaction time, the one in the 
higher numbered cell is discarded. Because the time resolution in the .dat file is limited to 100 ps, 
some small number of pulses will be misidentified in this manner.  
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Fig. 5.4  The Void.peaks file post-processed using a detector threshold of 0.001 MeV. 

 
This problem cannot be corrected without modifying the MCNP-PoliMi source code; however, 
because the time resolution means the two events large enough to generate a pulse must occur very 
close together, the effect will be exceedingly small at more realistic detector thresholds. 

The No XTalk values in Fig. 5.3 indicate that even after the cross talk correction is made, there is 
a good deal of interarray scattering that is not accounted for. Before the object scatter can be 
calculated, this scatter needs to be addressed. If not, its presence will reduce the measured attenuation 
values. This phenomenon will also present itself in the object simulations, creating a scattering effect 
caused by the directly transmitted neutrons in addition to that caused by scattering in the object. 
Unless corrected, the interarray scattering of directly transmitted neutrons will change the shape of 
the fitted PScFs. 

In order to address this problem, the scatter in the No XTalk column of Fig. 5.3 was used to define 
an interarray scatter function (ISF). The ISF is defined exactly the same way as the PScF except that 
the object scatter (ISO) in Eq. (5.1) is replaced with the interarray scatter (ISA). The mathematical 
expression for the ISF is 
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The first attempt to fit the ISF was made using a Gaussian of the form 
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where ISFfit(θ) is the number of scattered counts at angle, θ, per directly transmitted neutron, A is the 
maximum of the Gaussian fit, S is the standard deviation of the fit, and I0 is the number of directly 
transmitted neutrons detected in cell 461. An iterative algorithm was used to find the best values of A 
and SSA, which minimized the χ2 value between the fit and the data. The χ2

 value is computed using the 
formula 
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The method used to find the fit is nearly identical to the one that will be used to fit the PScFs, 

which will be described in the next section. Because self scatter is almost nonexistent in the interarray 
scatter, the detector at which the source neutrons were directed (cell 461) was not used to generate the 
fit. That point will also be ignored when subtracting the interarray scatter from measured values of I0. 
Unfortunately, the actual ISF function proved to be too tail-heavy (high kurtosis) to be accurately 
represented by a Gaussian fit. Although the Gaussian fit data within a few degrees of the detector 
very well, it fell far below the actual ISF values farther away. Because the ISF contributions from 
each detector will be superimposed, this effect will be greatly magnified and will result in an 
undercorrection of the interarray scattering. A plot of the Gaussian fit of the interarray scatter 
function along with the no cross talk values is given in Fig. 5.5. The total scattering is also shown for 
reference.  
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Fig. 5.5  A comparison of the no cross talk interarray scattering and the 

fitted ISF generated using a single Gaussian. The single Gaussian fits the data 
poorly at scattering angles of greater than ~4°. The Total scattering is shown for 
reference. The center point of the fit curve is not used for removing the interarray 
scattering and is shown only for reference. 
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Using an exponential to fit the ISF resulted in the opposite problem—fit values in the tail region 
were too large. A good fit in both the peak and the tails regions was developed using a combination of 
a Gaussian and an Exponential function. This fit takes the form 
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where A and B are the magnitude of the Gaussian and the Exponential respectively, and S and T are 
the standard deviations of the Gaussian and the Exponential. This dual fit lowered the χ2 value of the 
fit by more than an order of magnitude. A plot of the new fit as well as the No XTalk and Total 
scattering values is presented in Fig. 5.6. The best fit parameters for the ISF are 

 
A = 0.029698; B = 0.004047; S = 1.420884°; and T = 2.911001°  . 
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Fig 5.6  A comparison of the interarray scatter values to the combination 

Gaussian-Exponential Fit. The Total scattering is shown for reference. The center 
point of the fit curve is not used for removing the interarray scattering and is shown 
only for reference. 

 
 
5.3.2 Extracting the Point Scatter Functions 

The PScF for each of the scenarios described in Sect. 5.2 was extracted using a program called 
GaussFit, which was written for this purpose. The source code for the program is shown in Appendix 
F. The procedure this program uses to extract the PScFs will be described in this section. 
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The GaussFit is launched from an MS-DOS command prompt using the syntax 
 

GaussFit <Object .peaks file> <Void .peaks file> <Object-to-detector Distance>  
 <Attenuation>  . 

 
The attenuation entered on the command line is the nominal attenuation of the object used when 

creating the PScF simulation. The value is only used for assigning a name to the scenario. The 
program then opens each of the .peaks files and reads them into an array. The source term (NPS 
value) for each is read in so that it can be used for normalization purposes. The angle of each detector 
position is calculated in terms of the angle between its center and the center of the detector (cell 461) 
into which the source neutrons were directed. For the simulation geometry, the angle between 
adjacent detector centers was approximately 1.67°.  

While reading the correlation peak values in, the total number of scattered counts in each detector 
is determined by subtracting the number of correlations in the Direct column from the number in the 
No XTalk column. 

Once the .peaks files are read in, the program calculates the true attenuation of the directly 
transmitted neutrons using the formula 
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where NPSV and NPSO are the source values for the void and object simulations. Because the 
neutrons were only directed at a single detector, there is only a single attenuation value for each 
object simulation. Initial guesses for the maximum and standard deviation of the PScF fits are then 
taken from the object data. The initial guess for the maximum is the largest number of scattered 
counts in the array. The initial guess for the standard deviation is the standard deviation of the 
scattering angle of the data, which is computed via the formula 

 

 
( )

( )

2

1

1

n

i
scatter n

i

C

C

θ θ
σ

θ

=

=

=
∑

∑
  . (5.9) 

 
These initial guesses are then passed into a subroutine that uses them along with the NPS values, the 
attenuation, and the data from the .peaks files to find the best fit for the PScF. 

The fitting routine begins by subtracting the portion of the scattering attributable to interarray 
scattering from the total scattering to determine the scattering that is due only to scattering in the 
object. The form [Eq. (5.7)] and best fit values for the ISF were shown in Sect. 5.3.1. Because by 
definition, the ISF is generated by unattenuated neutrons reaching the detector array, its magnitude 
must, by definition, follow the exponential attenuation shown in Eq. (5.8). Thus, for the object 
measurement, the number of counts due to scattering in the array, CSA, at angle, θ, is 

 

 ( ) ( )( ) 0 ( ) expSA direct
NPSVC C ISF
NPSO

θ θ τ= −   . (5.10) 

 
After subtracting the interarray scattering values, the object scattering values are ready to be fit. 

The fitting is accomplished by means of an iterative, mesh-based algorithm. The procedure begins by 
assigning a range of possible maximum values between 0 and twice the initial guess; and a range or 
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standard deviations between 0 and five times the initial standard deviation guess. Each of these ranges 
is divided into 201 equally spaced values. The algorithm then computes a fit of the form 

 

 ( )
2

, 2exp
2SO fitC M
U
θθ

 
= − 

 
  , (5.10) 

 
where CSO is the object scattering, M is the maximum value of the Gaussian fit function, and U is the 
standard deviation. The χ2 goodness of fit is computed for each combination of M and U values. The 
M and U values that result in the smallest χ2 are selected. The range of possible maximums and 
standard deviations is then divided by 5 and the procedure is repeated. The procedure is iterated 
10 times to determine the best fitting parameters very accurately. In order to prevent physically 
unrealistic scenarios, negative values of the maximum or standard deviation are rejected 
automatically.  

At the conclusion of the fitting algorithm, the resulting maximum is normalized to a per source 
neutron basis by dividing it by the number of direct correlations in the void measurement. The 
normalized parameters are then output to a file along with the χ2 value of the fit. The fit values of the 
object scattering and interarray scattering are also normalized and output to a file as is the total 
(interarray + object) scattering and the actual object scattering data. The data written to the output 
files is appended each time the GaussFit program is run, so that after running the code with each of 
the simulations shown in Sect. 5.2, all of the PScF parameters are in a single file. This data will be 
used in Chap. 6 to develop fits for the PScF parameters, which will become the point scatter function 
generating equations (PScFGEs). The fit parameters for each simulation are listed in Appendix G. 
 
5.3.3 The Point Scatter Function Fits 

In this section the goodness of the Gaussian PScF fits will be examined and compared with the 
actual scattering values. The distribution of the χ2 values for the PScF fits is shown in Fig. 5.7. This is 
an extremely skewed distribution with the majority of the values lying close to zero and a few vary 
large values. The distribution has a mean χ2 of 3771 and a median value of 564.  
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Fig. 5.7  The distribution of the χ2 goodness of fit tests resulting from the Gaussian fits of the 

PScF functions. 
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A plot the χ2 values organized by material, then by the object-to-detector distance, and then by the 
attenuation is presented in Fig. 5.8. Organized in this manner, a clear cyclical pattern can be seen. The 
worst fits (largest χ2 values) occur at the lowest attenuation value at each object-to-detector distance. 
The fits are also worst at the smallest object-to-detector distances. This is not unexpected because the 
χ2 tests weights each point by the inverse of the variance at each point, which is simply the number of 
scattered correlations at that location.  
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Fig. 5.8  A line graph of the results of the χ2

 goodness of test results for the PScF Gaussian 
functions. The values are sorted by material, then by the object-to-detector distance, and finally by 
the object thickness. 

 
Scenarios with lower attenuation values and those closer to the detector array tend to have more 

scattered counts and thus a lower variance. This causes even very small deviations of the fit from the 
data to contribute a very large value to the goodness of fit test. 

The data in Fig. 5.8 also shows a large isotopic variation of magnitude of the goodness of fit 
results. Lead produced the largest χ2 values by far. All of the fits with χ2 values above 10,000 were 
from scenarios with a lead object. Iron showed the next worst results, followed by polyethylene. All 
carbon scenarios produced a very good fit. The remainder of this section will focus on examining 
individual PScF fits. 

The fit of the Carb61 scenario is presented in Fig. 5.9. The original scattering data is shown as 
well as the PScF, ISF, and total (PScF+ISF) fit for the scenario. This scenario represents one of the 
best fits with a χ2 value of only 70. The total fit follows the data extremely well and almost no 
divergence between the fitted scattering and the data is visible. This behavior can most likely be 
attributed to the fact that the carbon is composed of a single element whose scattering cross section is 
not heavily forward peaked and shows no significant diffraction pattern. Thus, the scattering in the 
object follows a Gaussian distribution. 

The fit for one of the worst fitting scenarios, lead32, is shown in Fig. 5.10. The χ2 value of the fit 
is 47,600. The locations of the largest relative errors are at the center of the scattering function and 
the tails. The source of this discrepancy is the diffraction pattern visible in the tails of the scattering 
data.  
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Fig. 5.9  A comparison of the fit scattering functions to the scattering data for the 

Carb61 scenario. 
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Fig. 5.10  A comparison of the fit scattering functions to the scattering data for the 

Lead32 scenario. 
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These tails cause the fit function to be wider and, as a result, to underestimate the scattering in the 
center of the data. The diffraction patterns are non-Gaussian, so even the wider Gaussian function 
falls below them.  

Another scenario with a lead object, lead45, is shown in Fig. 5.11. This scenario has a much 
lower χ2 value, 5050, than the previous one; however, this can be attributed to the smaller number of 
scattered counts. The relative errors of the fit scattering function are larger. Although the diffraction 
pattern peaks are not visible, the non-Gaussian tails can be seen clearly. These tails pull the Gaussian 
fit wider, resulting in an underestimate of the scattering in the center of the function. 

The fit for a polyethylene scenario, Poly63, is shown in Fig. 5.12. The fit of this scenario has a χ2 
value of 692. The fit generally follows the data very well. There is some evidence of non-Gaussian 
behavior visible in two humps in the data near ±15°. The source of these humps is likely the presence 
of both hydrogen and carbon in the polyethylene. As shown in Sect. 3.2, these elements have different 
scattering functions and the resulting superposition is likely responsible for the humps. The 
magnitude of the discrepancy is very small compared to the data, so it should have very little impact 
when applying the PSRA. 

The fit of the Iron31 scenario is illustrated in Fig. 5.13. The χ2 value of the fit is 9020, which is 
one of the largest values for any iron scenario. Despite this large χ2 value, the fit follows the data very 
well. The iron cross section is somewhat forward peaked, which slightly widens and lowers the center 
of the fit. The effect is very small compared to that caused by lead, so the fit remains very good.  

These scenarios show a representative sample of the fits across the range of materials, object 
thicknesses, and object-to-detector distances modeled. The carbon scenarios in particular are 
extremely well represented by a Gaussian fit. The polyethylene and iron scenarios show a noticeable 
divergence from a Gaussian, but are still well characterized by the fit. The lead data shows a fairly 
strong degree of non-Gaussian behavior, which results in a fairly large underestimation of the 
scattering in some scenarios.  
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Fig. 5.11  A comparison of the fit scattering functions to the scattering data for the 

Lead45 scenario. 
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Fig. 5.12  A comparison of the fit scattering functions to the scattering data for the 

Poly63 scenario. 
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Fig. 5.13  A comparison of the fit scattering functions to the scattering data for the 

Iron31 scenario. 
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The behavior of the lead scattering would be better represented by a combination of functions (as 
with the ISF) or even Legendre polynomials. However, the use of such functions might result in an 
overfitting of the data. If the shape of the scattering function is altered markedly by the presence of 
geometric features in the object, the resulting fits might produce larger errors than the Gaussian one. 
The shape would also be isotope dependent, which could again create a larger error than the Gaussian 
if the lead data values were used for another heavy material, such as tungsten or depleted uranium. In 
addition, one parameter that will be considered while developing the PScFGEs is the level of 
knowledge of the operator. In cases where the operator is unsure of the exact shielding material, an 
approximation of the PScF using a combination of either the lead and iron, or lead, iron, and carbon 
results will be used.  

This type of approximation is possible only if all of these materials use the same 
parameterization. Therefore, this work will employ the Gaussian fits for lead, because even though 
they are not the ideal solution for that particular material they offer the best solution across the entire 
range of materials used here.  
 
5.4 COMPARISON OF POINT SCATTER FUNCTIONS TO ELASTIC SCATTERING 

CALCULATIONS 

This section will compare the results of the elastic scattering calculations from Sect. 3.2.3 to the 
results of the PScF simulations. The elastic scattering calculations were performed assuming a thin 
slab of material 3 MFP thick located at either 40 or 70 cm from the detector array. Those 
combinations of values were chosen because they are also used in the PScF calculations for the ease 
of comparison. The materials used in the PScF simulations were also identical to the ones from the 
elastic scattering calculations with the exception hydrogen. Polyethylene (CH2) was used instead of 
pure hydrogen, which is a gas at room temperature. 

While the PScF simulations explicitly modeled the random walk of particles through the 
shielding material and into the detector cells using the Monte Carlo method, the elastic scattering 
calculations focused on the differences between scattering isotopes by removing the physical 
geometry of the slab. Thus, scatterings in the elastic model were all treated as if they occurred at the 
back edge (closest to the detector array) of the object while in the PScF simulations they were 
distributed throughout the material. The elastic scattering calculations also assumed that all scattered 
neutrons approached the detectors perpendicular to their front face regardless of the scattering angle. 
The elastic scattering calculations considered only one channel – single elastic scattering—
contributing to the additional counts in the array. In reality, many other possible channels exist 
including multiple elastic scattering, inelastic scattering, (n, 2n) reactions, and possibly even (n, γ) 
capture. The relative size of these other contributions to the “scattered” signal, which the PScF 
simulations modeled explicitly, are nuclide specific. Finally, the elastic scattering calculations 
ignored the uncertainty in the arrival time of the neutrons to the detectors. Accounting for this 
uncertainty requires the use of a wider correlation time bin to define directly transmitted neutrons, 
which allows a larger fraction of the scattered counts to be misidentified as directly transmitted. Thus, 
while the elastic scattering calculations should be fairly similar to the MCNP PScFs, these factors will 
cause some divergence between the results.  

The elastic scattering calculation results for hydrogen and carbon are plotted with the simulation 
results for polyethylene at a 40 cm object-to-detector distance in Fig. 5.14. The object scattering data 
was produced by subtracting the ISF values from the measured data. The PScF fit is shown as well. 
Because polyethylene is composed of two parts hydrogen and one part carbon, its elastic scattering 
value would be expected to lie somewhere between the values of those two pure isotopes.  
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Fig. 5.14  A comparison of the PScF simulation results for polyethylene to the elastic 

scattering calculations for hydrogen and carbon. The object-to-detector distance is 40 cm. The fit 
of the object scattering data is also shown for reference. Note that the sharp peak in the center of the 
carbon elastic curve is due to interpolation of the differential scattering cross-section file. 

 
 

The simulation curves are wider and less peaked because of the finite shield thickness, multiple 
scatterings, a larger correlation window, and other factors discussed in the previous paragraph. 

The comparison of the carbon, iron, and lead simulations to their respective elastic scattering 
calculations are presented in Figs. 5.15 through 5.17. The maximum scattering value of the carbon 
simulation matches the elastic scattering result almost perfectly. With iron and particularly with lead, 
the elastic calculations resulted in a larger peak than the simulation values. In the MCNP data, 
multiple scatterings in the shield material tended to spread out the peaks and reduce the forward 
scattering effect to some degree.  

The diffraction pattern maxima visible in the tail region of the elastic scattering calculation are 
visible in the simulation data, but they are more widely spread due to the superposition of scatterings 
from all parts of the object. 

At a 70 cm object-to-detector distance, the width of the elastic scattering calculations more 
closely matches that of the simulation results because the widening due to the object thickness is not 
as pronounced at this larger distance. As a result, the maximum values of the elastic calculations are 
also lower relative to the corresponding simulation results. The comparisons of the elastic scattering 
calculations and the simulation results are shown in Figs. 5.18 through 5.21. 

The comparisons in this section show relatively good agreement between the simulation results 
and the elastic scattering calculations. This provides validation that the elastic scattering calculations 
were performed correctly.  
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Fig. 5.15  A comparison of the PScF simulation results for carbon to the elastic scattering 

calculations. The object-to-detector distance is 40 cm. The fit of the object scattering data is also 
shown for reference. Note that the sharp peak in the center of the elastic curve is due to 
interpolation of the differential scattering cross-section file. 
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Fig. 5.16  A comparison of the PScF simulation results for iron to the elastic scattering 

calculations. The object-to-detector distance is 40 cm. The fit of the object scattering data is also 
shown for reference. Note that the sharp peak in the center of the elastic curve is due to 
interpolation of the differential scattering cross-section file. 
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Fig. 5.17  A comparison of the PScF simulation results for lead to the elastic scattering 

calculations. The object-to-detector distance is 40 cm. The fit of the object scattering data is also 
shown for reference. 
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Fig. 5.18  A comparison of the PScF simulation results for polyethylene to the elastic 

scattering calculations for hydrogen and carbon. The object-to-detector distance is 70 cm. The 
fit of the object scattering data is also shown for reference. Note that the sharp peak in the center of 
the carbon elastic curve is due to interpolation of the differential scattering cross-section file. 
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Fig. 5.19  A comparison of the PScF simulation results for carbon to the elastic 

scattering calculations. The object-to-detector distance is 70 cm. The fit of the object scattering 
data is also shown for reference. Note that the sharp peak in the center of the elastic curve is due 
to interpolation of the differential scattering cross-section file. 
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Fig. 5.20  A comparison of the PScF simulation results for iron to the elastic scattering 

calculations. The object-to-detector distance is 70 cm. The fit of the object scattering data is 
also shown for reference. Note that the sharp peak in the center of the elastic curve is due to 
interpolation of the differential scattering cross-section file. 
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Fig. 5.21  A comparison of the PScF simulation results for lead to the elastic scattering 

calculations. The object-to-detector distance is 70 cm. The fit of the object scattering data is also 
shown for reference. 

 
They also show the same general trends as the simulation data indicating that the underlying 

physics of the scattering process is well understood. Despite this, the divergence of the elastic 
scattering results from the simulation is still large enough that their use as PScFs would produce 
unsatisfactory results. The sources of this divergence were discussed at the beginning of this section. 
While some improvements could be made in the elastic scattering calculations to produce more 
accurate results, they would largely require knowledge of the internal geometry of the scattering 
object, which is generally unknown. Thus, the choice to measure the PScFs with simulations rather 
than calculate them analytically is justified. 
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6. FINAL FORM OF THE PARAMETERIZED SCATTER REMOVAL ALGORITHM 

With the PScFs extracted and fit with Gaussian functions, the next goal is to develop an algorithm 
that will automatically remove the scattering from a measurement using operator inputs and the 
measured attenuation values. Because the library of materials, thicknesses, and distances from the 
detector array are necessarily limited, most real measurements will not correspond exactly to one of 
the cases modeled in the previous chapter. This situation requires either choosing the PScF values that 
are most similar to the measurement from a library or fitting the parameters using multivariate 
methods. The latter option is likely to produce better results if good fits can be developed. In this 
chapter, these fits will be developed using the JMP 7 statistical software package52 and then 
incorporated into the ScatterSubtract code, which will subtract the scattering from measured 
attenuation values. The methodology used to remove the scatter from the measurements will be 
discussed in detail. 

 
6.1 FITTING THE POINT SCATTER FUNCTION PARAMETERS 

6.1.1 Univariate PScF Parameter Fits 

As discussed in the previous chapter, the information available to the NMIS operator during a 
measurement typically consists of the distance between the object and the array, the measured 
attenuation, and to a certain extent, the material composition of the object. The cases selected for 
developing the library of PScF fit parameters modeled a large sample of possible values. Thus, the 
fits for the Gaussian parameters will be based on these three input variables.  

Before attempting to generate a multivariate fit of the Gaussian PScF parameters using these 
variables, an analysis of the PScF parameter response to each individual variable is warranted. This 
analysis will help determine the maximum order of the input variables to be used in the PScFGEs. 
The individual fits will also help determine if any linearizing transforms of either the input variables 
or the parameter response are required. 

A simple line graph of the maximum of the PScF function [M in Eq. (5.10)] for each of the 
scenarios modeled in Sect. 5.2 is shown in Fig. 6.1. The regions corresponding to each of the 
materials are indicated on the graph. Moving from left to right within each material, the first scenarios 
have the smallest object-to-detector separation and within each separation value, the first objects have 
the smallest attenuation. Thus, the scenarios are ordered Poly30.5, Poly31, Poly31.5, …, Poly40.5, 
Poly41, etc. The data in Fig. 6.1 shows the clear cyclical nature of the maximum. Scenarios with the 
object closer to the detectors produce a larger maximum and within each object-to-detector distance 
for a given material, the maximum peaks at an attenuation value of 1 MFP and then falls off. Heavier 
isotopes also have larger maximum values than lighter ones. 

A line graph of the Gaussian standard deviation for each scenario is shown in Fig. 6.2. The 
cyclical pattern is evident on this plot as well. In general, higher attenuations and larger object-to-
detector distances produce larger fit standard deviations. Polyethylene and carbon produce 
approximately the same standard deviations. Iron and lead have smaller standard deviations due to 
their increasingly forward peaked scattering cross sections.  

The dashed lines surrounding the values for each material are an attempt to line up similar object 
thicknesses. The divergence of the line from the data points indicates some degree of nonlinearity in 
the standard deviation values with respect to the object-to-detector distances. Within each object-to-
detector distance, some degree of nonlinearity is also visible, particularly in lead. This will be 
examined in more detail later in this section. 
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Fig. 6.1  A line graph of the maximum of the PScF Gaussian fit for each of the modeled 

scenarios. The scenarios are ordered first by material, then by object-to-detector distance (D) from 
lowest to highest, and then by material thickness (τ). 
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Fig. 6.2  A line graph of the standard deviation (in degrees) of the PScF Gaussian fit for 

each of the modeled scenarios. The scenarios are ordered first by material, then by object-to-detector 
distance (D) from lowest to highest, and then by material thickness (τ). 
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Oneway plots of the maximum and standard deviation parameters for each material are presented 
in Fig. 6.3. The primary information that can be gleaned from this figure is that each material has a 
different distribution of Gaussian fitting parameters, confirming the need to account for each material 
separately in the multivariate fits. 
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Fig. 6.3  Oneway plots of the maximum (top) and standard deviation (bottom) of 

the PScF Gaussian fits grouped by material. 
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The maximum versus object-to-detector distance (D) for 1.5 MFP of carbon is plotted in Fig. 6.4. 
The shape of the data suggests exponential decay. Other combinations of material and thickness show 
a similar shape. Direct polynomial fits of these data points produce poor results and diverge wildly 
from the exponential decay trend outside of the data region even at orders as high as 6. In order to 
address this problem, a logarithmic transform is warranted. A plot of ln(Max) versus D is presented in 
Fig. 6.5. Even after the transform, there is some degree of nonlinearity. A third order polynomial fits 
the data almost perfectly (R2 = 0.999994) and maintains the same trend outside of the data region. 
Higher order polynomial terms have p-values of greater than 0.1 when used to fit the data and are not 
useful for predicting the variation of ln(Max). Thus, D will be allowed to enter the multivariate fit of 
ln(Max) up to an order of 3. 

The maximum versus thickness for carbon at D = 50 cm is plotted in Fig. 6.6. Other combinations 
of material and object-to-detector distance generate a similar shape. In order to show the trend at low 
material thicknesses, additional PScF simulations were performed in increments of 0.1 between 0.1 
and 1.0 MFP for carbon at D = 50. The maximum increases with the material thickness up to 1 MFP 
and then begins to drop off in an exponential fashion beyond that. This behavior is expected since the 
average interaction depth in a material is 1 MFP. At smaller thicknesses, fewer neutrons scatter in the 
object and at larger thicknesses, many of the neutrons that do scatter are absorbed or scattered away 
from the detectors before exiting. 
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Fig. 6.4  A plot of the maximum of the PScF Gaussian fit by object-to-

detector distance (D) in cm for 1.5 MFP of carbon. 
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Fig. 6.5  A graph of ln(Max) of the PScF fit vs object-to-detector distance (D) in cm for 

1.5 MFP of carbon. A linear and 3rd order polynomial fit of the data is shown. Asterisks in the 
“Prob>|t|” column indicate statistical significance at the p = 0.05 level. Other asterisks indicate 
multiplication. The “^” symbol indicates exponentiation.  

 
 
 
 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

M
ax

0 1 2 3 4 5 6 7

Tau

Bivariate Fit of Max By Tau

 
Fig. 6.6  A plot of the maximum of the PScF Gaussian fit vs thickness (τ) for carbon at 

D = 50 cm. 
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The shape of the data in Fig. 6.6 corresponds with that of the function τEXP(–τ). A fit of the 
maximum versus τEXP(–τ) is shown in Fig. 6.7. A linear fit shows an excellent correlation with an R2 
value of 0.999925. Thus, the use of τEXP(–τ) rather than τ is called for in the multivariate model. 
However, since D required a logarithmic transform of the maximum, the same transform needs to be 
applied to the attenuation. In order to accomplish this, the variable β is defined, where  

 
 ( ) ( )ln exp lnβ τ τ τ τ=  −  = −    . (6.1) 
 

Two fits of ln(Max) versus β are shown in Fig. 6.8. A linear fit has an R2 value of 0.999499. 
There is also a slight nonlinearity, and a second order fit (not shown) produces a slightly higher R2 of 
0.999859. Third and higher order terms have p-values greater than 0.1 and will not be considered in 
the multivariate fits.  

The standard deviation of the PScF fit versus thickness for carbon at D = 50 is plotted in Fig. 6.9. 
Except in the very low attenuation range, a second order polynomial fit follows the data points 
extremely well (R2 = 0.999082). 

Even at the lowest attenuation value (τ = 0.1 MFP), the divergence of the data from the fit is less 
than 0.25°. Thus, the second order polynomial explains the behavior of the model adequately, and the 
variable, τ, will be allowed to enter the multivariate model for the standard deviation fit up to a 
polynomial order of two. 

A plot of the PScF standard deviation versus D for 1.5 MFP of carbon is presented in Fig. 6.10. 
Other combinations of material and thickness produce a similar shape. As with the fit in Fig. 6.9, a 
second order polynomial fit follows the data points extremely well (R2 = 0.999951). Thus, D will be 
allowed to enter the multivariate model for the standard deviation fit up to a polynomial order of two. 
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Fig. 6.7  A plot of the maximum of the Gaussian PScF fit vs τEXP(-τ) for carbon at  

D = 50 cm. A linear fit of the data is shown. Asterisks in the “Prob>|t|” column indicate statistical 
significance at the p = 0.05 level. Other asterisks indicate multiplication. The “^” symbol indicates 
exponentiation. 
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Fig. 6.8  A plot of ln(Max) of the PScF Gaussian fit vs β for carbon at D = 50 cm. A linear fit 

of the data is shown. Eq. (6.1) defines the variable β. Asterisks in the “Prob>|t|” column indicate 
statistical significance at the p = 0.05 level. Other asterisks indicate multiplication. 
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Fig. 6.9  A plot of the standard deviation of the PScF Gaussian fit vs thickness for carbon at 

D = 50 cm. A second order polynomial fit is shown. Asterisks in the “Prob>|t|” column indicate 
statistical significance at the p = 0.05 level. Other asterisks indicate multiplication. The “^” symbol 
indicates exponentiation. 
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Fig. 6.10  A plot of the standard deviation of the PScF Gaussian fit vs object-to-detector distance (D) 

for 1.5 MFP of carbon. A second order polynomial fit is shown. Asterisks in the “Prob>|t|” column indicate 
statistical significance at the p = 0.05 level. Other asterisks indicate multiplication. The “^” symbol indicates 
exponentiation. 
 
 
6.1.2 Multivariate PScF Fits 

Now that the univariate relationships between the input variables and the PScF parameters are 
determined, a multivariate model can be constructed. Before this can proceed, one final issue needs to 
be addressed. As discussed in the previous section, the distribution of Gaussian standard deviations 
and maximums are different for each material. Because the material is a categorical variable, it is 
more difficult to use in a model than the continuous variables D and τ.  

In order to use the material variable in the multivariate model, a series of Boolean variables (e.g., 
Iron = 0 or 1) would have to be used separately and crossed with each of the continuous terms. With n 
materials, this would multiply the number of (potential) terms in the model by n-1, resulting in a 
much more complicated fit equation. With a large material library, the fit equations could become 
unmanageably large and statistical software like JMP 7 would have difficulty converging the solution.  

Instead, in this work each material will be fit separately. This will give each material a unique set 
of coefficients. The total number of coefficients will be approximately the same using this method, 
but the resulting fit equations (the PScFGEs) will be much simpler.  

Using this technique also allows for the averaging of materials (such as iron and lead) to provide 
for circumstances where the exact material composition of the object is unknown. In addition to the 
four materials modeled in Sect. 5.2 (polyethylene, carbon, iron, and lead), two averaged fits will be 
developed to reflect a less than perfect level of operator knowledge. In the first case, the PScF 
parameters of iron and lead will be averaged. This average will be referred to as “material 5.” In the 
second case, the PScF parameters of carbon, iron, and lead will be averaged and designated 
“material 6.” 

The allowable input variables for each model were determined based on the univariate models in 
the previous section. In addition, each of the terms was allowed to cross with the other terms up to 
one order less than the highest significant polynomial term in the univariate models. For example, in 
the univariate fits of the PScF maximum, β was significant up to the second order and D was 
significant up to third order. The allowable cross terms are βD and βD2. The allowable terms for the 
fits of the PScF maximums and standard deviations are given in Table 6.1.  
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Table 6.1  A list of the terms allowed in the multivariate models  
for the maximum and standard deviation of the PScF fits 

Gaussian Parameter LN(Maximum) Standard Deviation 
Allowable terms D 

D2 
D3 
β 
β2 
βD 
βD2 

D 
D2 
τ 
τ2 
τD 

 
 

The multivariate fitting of PScFGEs for each of the materials was performed using a mixed 
stepwise model. This method steps through the allowable terms and adds the one with the highest 
significance (lowest p-value) to the model as long as its p-value is below a preset threshold. This 
process is continued and one term is added to the model with each iteration until there are no more 
with p-values below the threshold. The process of adding terms to the model sequentially is known as 
a forward stepwise method. In addition to this, the mixed stepwise method checks for the significance 
of the terms entered in the model after each iteration. If the significance of one or more of them rises 
above a second preset threshold, the one with the highest p-value is removed. For all models 
considered here, the thresholds for entry and removal from the model were set at p = 0.10.  

Once all of the significant terms are entered into the model, the PScF parameter was fit using a 
standard least squares method. 

The results of the ln(Max) fit for carbon are given in Fig. 6.11. All of the possible terms in 
Table 6.1 were significant for this model except for βD2. Carbon will have a coefficient of 0 for that 
term in the PScFGEs. The resulting model has an extremely high R2 value of 0.999599. This R2 value 
is inflated because of the logarithmic transform of the Gaussian maximum. Nevertheless, it indicates 
that the model can predict the value of the maximum with a high degree of accuracy. The predicted 
values of the maximum versus the actual values for each of the carbon scenarios are plotted in  
Fig. 6.12. A point lying on a line with a slope of 1 and an intercept of 0 indicates that the model has 
predicted its value exactly. All of the points in Fig. 6.12 lie very close to the line, confirming that the 
model predicts the behavior of the maximum very well. Fits of the other three materials produced 
similar results.  

The results of a fit of the Gaussian standard deviation for carbon are presented in Fig. 6.13. All of 
the allowable terms shown in Table 6.1 are significant in this model. The R2 value of 0.998776 shows 
that the model predicts the behavior of the PScF standard deviation very well. Unlike the fit of 
ln(Max), this R2 value is not inflated. A plot of the predicted standard deviation versus the actual one 
is shown in Fig. 6.14. All of the data points lie very close to the line, confirming the model’s 
predictive ability. 

The predicted maximum values and predicted standard deviations versus the actual values for all 
four of the object materials are plotted in Fig. 6.15. Each of the predicted values is using the material-
specific coefficients and terms determined by the stepwise fitting procedure.  
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Fig. 6.11  The resulting multivariate model of ln(Max) for 

carbon. Asterisks in the “Prob>|t|” and “Prob > F” columns indicate 
statistical significance at the p = 0.05 level. All other asterisks 
indicate multiplication. 
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Fig. 6.12  A graph of the predicted PScF maximum values vs the actual values for 

carbon. Points lying on the line correspond to predicted values, which match the actual 
ones. 

 
 

 
Fig. 6.13  The resulting multivariate model for the PScF standard 

deviation for carbon. Asterisks in the “Prob>|t|” and “Prob > F” columns 
indicate statistical significance at the p = 0.05 level. Other asterisks indicate 
multiplication. 
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Fig. 6.14  A graph of the predicted PScF standard deviation values vs the actual values for 

carbon. Points lying on the line correspond to predicted values, which match the actual ones. 
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Fig. 6.15  Plots of the predicted values of the PScF maximum vs the actual 

values (top) and the predicted values of the PScF standard deviation vs the 
actual values (bottom). These plots show the values for polyethylene, carbon, iron, 
and lead using their individual fits. 

 
 

All of the data points lie very close to the slope 1 line for both the maximum and standard 
deviation of the Gaussian PScF fits, indicating the model is predicting the parameters very well for all 
nuclides. 

The results of the ln(Max) fits for materials 5 (average of iron and lead) and 6 (average of carbon, 
iron, and lead) are presented in Fig. 6.16. The R2 values for these fits (0.960758 for 5 and 0.893104 
for 6) are quite a bit lower than they were for the fits of individual materials. The predicted values of 
the Gaussian maximum versus the actual ones are plotted in Fig. 6.17. A clear grouping of the values 
by material can be seen in both plots. The averaging tends to under predict the maximum for the 
heavier materials being averaged and over predict it for lighter materials. The divergence tends to 
increase with increasing values of the PScF maximum. The only material that follows the slope 1 line 
closely is iron in material 6. 
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Fig. 6.16  The resulting multivariate models for the natural logarithm of the maximum of the 

PScF Gaussian fits for material 5 (left) and material 6 (right). Asterisks in the “Prob>|t|” and 
“Prob > F” columns indicate statistical significance at the p = 0.05 level. Other asterisks indicate 
multiplication. 



 

6-15 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Pr
ed

. M
ax

0 0.005 0.01 0.015 0.02
Max

Linear Fit

Pred. Max = 0 + 1*Max

Linear Fit

Bivariate Fit of Pred. Max By Max

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01
0.011
0.012

Pr
ed

. M
ax

0 0.01 0.02
Max

Linear Fit

Pred. Max = 0 + 1*Max

Linear Fit

Bivariate Fit of Pred. Max By Max

 
Fig. 6.17  Graphs of the predicted PScF maximum values vs the actual values for 

material 5 (top) and material 6 (bottom). Points lying on the line correspond to 
predicted values, which match the actual ones. Note the grouping of points that correspond 
to the individual materials, which are being averaged in the definition of these two 
materials. 

 
 
The results for the model of the PScF standard deviation for materials 5 and 6 are shown in 

Fig. 6.18. As with the fits of ln(Max), these fits show much lower R2 values than the individual 
materials. The predicted values versus the actual ones are plotted in Fig. 6.19. As with the maximum, 
the averaged materials tend to group together and there is a significant deviation from the slope 1 line 
in most cases. These results indicate that the averaged values may not produce acceptable results 
when subtracting the scattering from measured values. These fits will be tested in the next chapter to 
determine their usefulness. 
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Fig. 6.18  The resulting multivariate models for the standard deviation of the PScF Gaussian 

fits for material 5 (left) and material 6 (right). Asterisks in the “Prob>|t|” and “Prob > F” columns 
indicate statistical significance at the p = 0.05 level. 
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Fig. 6.19  Graphs of the predicted PScF standard deviation values vs the actual values for 

material 5 (top) and material 6 (bottom). Points lying on the line correspond to predicted values, 
which match the actual ones. Note the grouping of points that correspond to the individual materials, 
which are being averaged in the definition of these two materials. 

 
 
6.1.3 The Point Scatter Function Generating Equations 

With the multivariate fits completed, the final form of the PScFGEs can be developed. The 
PScFGEs will allow the ScatterSubtract program (detailed in the next section) to determine the 
Gaussian maximum (Max) and standard deviation (SD) for the PScF fits 
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for any combination of material, object-to-detector distance (D), and attenuation (τ). The forms of the 
PScFGEs are based on the terms used in the multivariate fits, which are listed in Table 6.1. At least 
one material used all of the possible terms in the model. Therefore, the PScFGEs are 
 

 
( )2 3 2 2
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2 2
0 1 2 3 4 5

Max EXP a a D a D a D a a a D a D

SD b b D b D b b b D

β β β β

τ τ τ

= + + + + + + +

= + + + + +
  . (6.3) 

 
The coefficients of the two PScFGEs are dependent on the material of the object. The values of 

the maximum and standard deviation coefficients for each of the six materials (and averaged 
materials) are listed in Tables 6.2 and 6.3. 

 
Table 6.2  Material-specific coefficients for the maximum PScF generating equation [Eq. (6.3), top] 

Material a0 a1 a2 a3 a4 a5 a6 a7 
Poly –2.015225E+00 –7.679420E-02 5.112759E-04 –1.711049E-06 1.288199E+00 2.053442E-02 –2.418549E-03 0 
Carb –2.028606E+00 –7.184288E-02 4.461472E-04 –1.348499E-06 1.131994E+00 1.638951E-02 –1.976645E-03 0 
Iron –1.582257E+00 –8.241122E-02 6.540168E-04 –2.353720E-06 1.037106E+00 8.299626E-03 –2.858238E-03 1.541697E-05 
Lead –1.128685E+00 –6.752032E-02 4.280224E-04 –1.315156E-06 1.214529E+00 2.257471E-02 –2.402139E-03 0 
Mat. 5 –2.112510E+00 –4.644079E-02 1.537551E-04 0 9.314129E-01 0 0 0 
Mat. 6 –1.647906E+00 –7.204015E-02 3.299292E-04 0 1.077152E+00 0 –3.809334E-03 0 

 
 

Table 6.3  Material-specific coefficients for the standard deviation PScF generating  
equation [Eq. (6.3), bottom] 

Material b0 b1 b2 b3 b4 b5 
Poly 3.954940E+00 4.910408E-02 1.018272E-03 3.312332E-01 1.360807E-02 7.200204E-03 
Carb 2.199167E+00 1.227376E-01 4.967885E-04 6.212162E-01 3.649710E-02 4.528034E-03 
Iron 1.120331E+00 1.216453E-01 0 5.337523E-01 1.092541E-02 3.126423E-03 
Lead –5.296592E-01 1.124436E-01 –2.060663E-04 6.195354E-01 4.911718E-02 0 
Mat. 5 –1.590860E-01 1.125601E-01 0 9.099116E-01 0 0 
Mat. 6 1.889415E+00 1.123858E-01 0 7.124436E-01 0 0 
 
 
6.2 IMPLEMENTATION OF THE PARAMETERIZED SCATTER REMOVAL 

ALGORITHM 

The PSRA is implemented in the ScatterSubtract code. As discussed briefly in Sect. 4.3.4, the 
ScatterSubtract program calculates the corrected attenuation values for the correlation data in the void 
and object peaks files. The program first uses an iterative routine to remove the interarray scatter from 
the void measurement.  

It then uses the PScFGEs to remove the object scatter from the object measurement and find the 
corrected attenuation values using a second iterative routine. The source code for the ScatterSubtract 
program can be found in Appendix H. The remainder of this section will present the details of how 
the PSRA is implemented by ScatterSubtract. 

ScatterSubtract is launched from an MS-DOS command line using the syntax 
 

ScatterSubtract <Object .peaks file> <Void .peaks file> <Number of subsamples>  
 <Number of detectors in the array> <Object-to-detector distance> 
  <Material> <Level of Knowledge>  . 
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Acceptable entries for the material are Polyethylene, CH2, Carbon, C12, Iron, Fe, Lead, or Pb. 
Only the first two letters are used by the program, so abbreviations such as Poly or even Po are also 
acceptable. The level of knowledge (LOK) represents the operator’s knowledge about the shielding 
material. This information is entered into the program using the number 1, 2, or 3. The LOK value 
has no effect if the material is polyethylene. If the material is iron or lead and the LOK value is 2, the 
PScFGE coefficients for material 5 (average iron/lead values) are used. Similarly, if the LOK value is 
3 and the material is carbon, iron, or lead, the PScFGE coefficients for material 6 (average 
carbon/iron/lead values) are used. 

Once the input from the command line is read, the program opens the two .peaks files and begins 
reading them into memory. First, the NPS values are read and stored for normalization purposes. 
Then, the correlation peak values are read into the ObjPeaks and VoidPeaks arrays. The dimensions 
of these two arrays are NumDets+1 rows by 6 columns by NumSS panes where NumDets is the 
number of detectors in the array and NumSS is the number of subsamples. These arrays are divided 
into subsamples because the ISF and PScF is applied to each subsample separately. The detector 
angle, total correlations, direct correlations, and no cross talk correlations are read into the first four 
columns of these arrays. The no cross talk values are also written into the fifth column as the initial 
guess for the corrected values. The sixth column is initially left empty, but it will be used later in the 
program. The major arrays used in the ScatterSubtract program along with their dimensions and 
purposes are listed in Table 6.4. All arrays are of the REAL (floating point) data type. 

Once the two peaks arrays have been filled, the program finds the corrected value of C0 by 
subtracting the ISFs from the measured values. The purpose is to solve the equation 
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for each detector position where C0,corr is the corrected peak correlation value, C0,meas is the measured 
correlation value, C0, direct is the direct (true) neutron correlation value, and ISF(j → i) is the number of 
additional correlations in detector i per directly transmitted neutron correlation in detector j. This 
equation is applied separately to each subsample and the index n is the number of detectors in the 
array. The ISF values are computed using Eq. (5.7) and the best fit ISF parameters are given in 
Sect. 5.3.1. The angle, θ, is the difference between the detector angles of i and j. These values are 
stored in the ISF array. The rows of the array represent the detector being scattered into (i) and the 
columns represent the detector, j, which is the source of the scatter. 

Although the value of C0,direct is known for simulations, the PSRA is intended to be applied to 
laboratory measurements. Therefore, the direct values will be assumed to be unknown. 
ScatterSubtract will use those values only for checking the accuracy of the corrected values. Without 
the direct values, the corrected void correlation values must be solved iteratively. For each iteration, 
the equation 
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is solved, where the superscript l represents the iteration number. When l = 1, the no cross talk 
correlation values are used as the initial guess. With each iteration, the value of the summation in 
Eq. (6.5) is calculated for each detector position and stored in the last column of the ISF array. That 
value is then subtracted from the no cross talk value to generate the new corrected value, which is 
stored in the sixth column of the VoidPeaks array. In the event that a correction results in a value less  
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Table 6.4  The main data arrays used in the ScatterSubtract program  
(All arrays use the REAL data type)  

Array Name Array Dimensions Array Contents Column Contents 
ObjPeaks NumDets*+1 Rows 

× 6 Columns 
× NumSS† Panes 

Fast neutron peak 
correlation values for 
the object 
measurement. 

1 – Detector Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
6‡ – Fractional Error of 
Corrected Value 

VoidPeaks NumDets+1 Rows 
× 6 Columns 
× NumSS Panes 

Fast neutron peak 
correlation values for 
the void measurement. 

1 – Detector Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
6‡ – Fractional Error of 
Corrected Value 

Attenuation NumDets+1 Rows 
× 6 Columns 
× NumSS Panes 

Neutron attenuation 
values for each 
measurement. 

1 – Detector Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
6‡ – Fractional Error of 
Corrected Value 

ISF NumDets Rows 
× NumDets+1 Columns 
× NumSS Panes 

The number of 
additional counts in 
detector i (rows) per 
directly transmitted 
counts in detector j 
(columns) due to 
interarray scattering. 

ISF of detector j 

PScF NumDets Rows 
× NumDets+1 Columns 
× NumSS Panes 

The number of 
additional counts in 
detector i (rows) per 
directly transmitted 
counts in detector j 
(columns) due to 
object scattering. 

PScF of detector j 

Uncertainty NumDets* Rows 
× 5 Columns 
× NumSS† Panes 

Holds the uncertainty 
(1 σ) of the calculated 
attenuation values. 

1 – Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 

Scatter NumDets Rows 
× 5 Columns 
× NumSS Panes 

Holds the fraction of 
each correlation value, 
which was due to 
scattering rather than 
directly transmitted 
neutrons. 

1 – Angle 
2 – Total 
3 – Direct 
4 – No Cross Talk 
5 – Corrected 
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Table 6.4 (continued) 
Array Name Array Dimensions Array Contents Column Contents 
ChiSq 3 Columns Hold the result of the 

χ2 goodness of fit test 
comparing the 
attenuation curve to 
the Direct (true) 
attenuation. 

1 – Total 
2 – No Cross Talk 
3 – Corrected 
 

*NumDets is the number of detectors in the array. 
†NumSS is the number of subsamples in the measurement. 
‡This is the final value stored in this array. It is used for other purposes during the course of the program. 

 
 
than 0, the corrected value is set to 0. After each iteration, the sum of the corrected values is stored in 
the last row/pane of the array. That value is compared to the sum of the previous iteration to check for 
convergence. The convergence equation is 
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The corrected values are considered to be converged when ε ≤ 0.00001. Once the corrected C0 values 
are found, they are stored in the fifth column of the VoidPeaks array. The fractional errors of the 
corrected values are calculated using the equation 
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and stored in the sixth column of the VoidPeaks array. 

ScatterSubtract then solves for the corrected correlation peak values for the object measurement. 
The purpose is to solve the equation 
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The ratios of the NPS values in this equation are for converting the C0 values to the object source 
strength. Similar to Eq. (6.4), this equation contains a value, τ, which depends on the corrected 
correlation value. Therefore, the corrected object values must also be solved iteratively. The iterative 
equation is 
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Before the iteration begins, the angles of the detectors are written into the first column of the 
Attenuation array. The total, direct, and no cross talk attenuation values are calculated using the 
exponential attenuation formula [Eq. (5.8)] and stored in the second through fourth columns of the 
attenuation array. The fifth column is used as the initial guess for the iterative procedure. It is 
calculated using the measured (no cross talk) value of C and the corrected value of C0 found earlier. 

At the start of each iteration, the material, object-to-detector distance, difference between 
scattering and receiving detector angles, and the attenuation value of the previous iteration for each 
detector position are submitted to the PScFGE subroutine. This subroutine determines the appropriate 
PScF parameters using the PScFGEs and coefficients from Sect. 6.1.3 and returns the appropriate 
PScF value using Eq. (5.10). The structure of the PScF array is identical to that of the ISF array—
rows represent the detector being scattered into and the columns represent the detector whose 
neutrons are responsible for the scattering. Unlike the ISF values which are strictly a function of the 
detector geometry and materials, the PScF values must be recalculated with each iteration. 

After the individual PScF values are computed, the sum of object scattering to each detector [the 
last summation in Eq. (6.9)] is calculated and stored in the last column of the PScF array. 
Simultaneously, the total interarray scattering [the first summation in Eq. (6.9)] is calculated and 
stored in the last column of the ISF array. The corrected object correlation values are then computed 
by subtracting the scattering sums from the measured values. The corrected values are then stored in 
the sixth column of the ObjPeaks array. Using this value, the new attenuation values are calculated 
and stored in the sixth column of the Attenuation array.  

One possible problem that can occur during the first few PScF iterations is an overcorrection of 
the peaks value. The overcorrection occurs because the measured attenuation values are lower than 
the true values. If the measured attenuation is greater than 1, the resulting PScF maximum will be 
larger than the true value and the object peaks value will be overcorrected. In most circumstances, 
this does not present a problem. If the peaks value is overcorrected in one iteration, the resulting 
attenuation will be too high and it will be undercorrected on the next iteration. In this case, the 
attenuation values should continue to oscillate around the true value, getting closer and closer with 
each pass until they finally converge. However, if the data is somewhat noisy an overcorrection could 
be larger than the total counts at one or more detector positions. If this occurs, the final results can 
converge to values far from the true ones. In order to prevent this from occurring, the ScatterSubtract 
program under corrects the scattering for the first seven iterations. This is accomplished by 
multiplying the PScF by a constant, which increases gradually during the first few iterations. The 
values of the constant for iterations one through seven are 0.2, 0.4, 0.6, 0.8, 0.85, 0.9, and 0.95. 
Iterations eight and higher receive no adjustment. 

Another potential problem is values that fail to converge and cycle through a series of under and 
overcorrections about the true values. This is especially likely to happen with noisy data. In order to 
force convergence in this scenario, the corrected peaks values for each iteration after the tenth are 
averaged with the old ones. This is accomplished by using a weighted sum of the form 
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The sum of the corrected correlation values is written in the last row/pane of the ObjPeaks array. 

It is used for checking convergence via the equation 
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The values are considered to be converged when ε ≤ 0.00001. Once the corrected values are 
converged, they are stored in the fifth column of the VoidPeaks array. The corrected attenuation 
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values are stored in the fifth column of the Attenuation arrays. The sixth column of these arrays is 
used to store the fractional errors that are computed in the same manner as Eq. (6.7). 

ScatterSubtract then calculates the uncertainty of the total, direct, no cross talk, and corrected 
attenuation values. These values are stored in the second through fifth columns, respectively, of the 
Uncertainty array. The detector angles are copied into the first column from the Attenuation array. 
The attenuation uncertainties are calculated using the formula 
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which is derived by propagating the uncertainty of the exponential attenuation equation. 

Next, the program calculates the fraction of scattering in the total, no cross talk, and corrected 
object correlation values. These values are stored in the Scatter array. Because scattering is the only 
source of error, the equation used to find them is identical to Eq. (6.11), with the exception that either 
the total or no cross talk values are substituted for the corrected ones where appropriate. 

The last series of calculations performed in ScatterSubtract are χ2 goodness of fit tests on the 
total, no cross talk, and corrected attenuation values. The form of the χ2 equation is given in Eq. (5.6). 
The attenuation values are compared to the direct attenuation values. The uncertainty for each 
detector position is the uncertainty of the direct attenuation, which is stored in the Uncertainty array. 

Once all of the calculations are completed, the results are written out to text files. These text files 
can then be imported into a suitable analysis program such as Microsoft Excel for further analysis and 
plotting as desired. The program output files and their contents are listed in Table 6.5. 
 
 

Table 6.5  The ScatterSubtract output files and their contents 

File name Contents 
Void.iter Records the corrected void peak values after each iteration. Primarily used for 

troubleshooting in the event of a convergence failure. 
Obj.iter Records the corrected object peak values after each PScF iteration. Primarily used for 

troubleshooting in the event of a convergence failure. 
Atten.iter Records the corrected attenuation values after each iteration. Primarily used for 

troubleshooting in the event of a convergence failure. 
Void.out Records the final values of the void correlation peaks at each detector position. 

Columns include detector angle, total correlations, direct correlations, no cross talk 
correlations, corrected correlations, and the fractional error of the corrected values. 

Object.out Records the final values of the object correlation peaks at each detector position. 
Columns include detector angle, total correlations, direct correlations, no cross talk 
correlations, corrected correlations, and the fractional error of the corrected values. 

Attenuation.out Records the final attenuation values at each detector position. Columns include 
detector angle, total attenuation, direct attenuation, no cross talk attenuation, corrected 
attenuation, and the fractional error of the corrected values. 

Scatter.out Records the fraction of scatter in the total, no cross talk, and corrected object 
correlation values. 

ChiSq.out Records the results of the χ2 goodness of fit tests for the total, no cross talk, and 
corrected attenuation curves. 
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7. TESTING OF THE PARAMETERIZED SCATTER REMOVAL ALGORITHM 

With the PSRA completed, the final step is to test it and modify it if necessary. This will be done 
using a large number of simulated and experimental NMIS imaging scenarios. The PSRA will be 
applied to each of these measurements, and the resulting values will be compared to the true ones. For 
simulated measurements, these values are computed by the PoliMiPP post-processor. The values are 
recorded in the Direct column of the .peaks file. The ScatterSubtract output includes these values for 
ease of comparing the corrected values to the true ones. For experimental measurements, the true 
attenuation values will be calculated using MCNP-PoliMi simulations of the scenario. In addition to 
the testing, the final section of this chapter will discuss a method for integrating a generalized form of 
the PSRA into future NMIS imaging measurements. 
 
7.1 SIMULATION TESTING AND RESULTS 

The first series of tests conducted was a large number of MCNP-PoliMi simulations. The 
methodology for simulating NMIS imaging measurements was presented in detail in Sect. 4.2 and the 
codes used were discussed in Sections 4.3 and 6.2. Unless noted otherwise, each simulated 
measurement consists of four subsamples and each subsample uses 2.5 × 107 source neutrons. This 
value corresponds approximately to a measurement time of 15 minutes per subsample (60 minutes 
total) in the laboratory using the API-120 DT neutron generator running at an output of 
4 × 107 neutrons per second produced isotropically. All simulations use a source-to-detector distance 
of 110 cm and an array of 32 2.54 × 2.54 × 10.16 cm plastic scintillators with a center-to-center 
angular separation of approximately 1.67°. 

Only a small portion of the simulation results are presented in this section. Additional simulation 
results are shown in Appendix I. A summary of the results for all simulations are presented in 
Sect. 7.1.3. 
 
7.1.1  Initial PSRA Testing 

The first series of test simulations uses the same cylindrically symmetric geometry used to 
calculate the PScFs in Sect. 5.2. This geometry is useful for validating the PSRA methodology itself 
without any effects that might be caused by a different object geometry. A total of four scenarios 
were chosen for testing. Each scenario was based on one of the ones used for computing the 
PScFGEs. Each uses a different material so that all four of the materials in the library are tested. The 
scenarios also cover a wide range of χ2 values on the PScF fits. Because these simulations use the 
PScF geometry, they will be used to adjust the PSRA algorithm if necessary. These adjustments will 
be tested using other simulation geometries. 

The only change from the PScF modeling geometry is that the objects are complete cylinders 
instead of cylindrical arcs of material. This change was necessitated by a bug in the simulation 
software. In simulations run without the vertical collimator, no neutron collisions occurred while 
passing through the object initially. The source of the bug is undetermined, but it is likely related to 
the fact that the planes used to define the arc in the PScF geometry passed through the source 
location. Since the arcs used in the PScF simulations extended far beyond the angular borders of the 
detector arrays, the use of a full cylinder will not produce any substantive changes and the problem 
was not pursued further. An example of the modeled geometry is depicted in Fig. 7.1.  

The first step of the PSRA corrects the interarray scatter in the void measurement. Since the same 
void output file is used with all other simulations for determining the attenuation curves, any error in 
the correction of these values will result in incorrect answers for all other simulations. Thus, it is 
critical to ensure that the interarray scattering is being removed from the void simulation properly 
before testing the correction of attenuation values. 
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Fig. 7.1  The geometry used to simulate an NMIS imaging measurement of a 

cylindrically symmetric object. The source-to-detector distance in all simulations is 
110 cm. 

 
 

The ScatterSubtract program outputs the corrected values for the void measurement in the 
Void.out file. In addition, the corrected values after each iteration of the ISF correction are written 
into the Void.iter file.  

The measured void correlation values and the values resulting from directly transmitted neutrons 
are shown in Fig. 7.2. The summation of the 8 pixels produces a flat neutron profile, as expected from 
the calculations in Sect. 3.1. Because the center of the pixels is offset –1.5°, the neutron correlations 
drop to zero at large positive detector angles while at large negative angles, the correlations drop to 
only 40% of the maximum value. This fact will have some bearing on the calculated attenuation 
curves and will be discussed further in later sections. For the uncorrected values, interarray scatter 
produces extra counts that result in a neutron correlation profile that is larger than the Direct values. 
For this detector array geometry and the 1 MeV neutron energy threshold used during post-
processing, the measured values are approximately 5% larger than the Direct ones. 

The void correlation curves after each iteration of the ISF subtraction are plotted in Fig. 7.3. Note 
the scale on the vertical axis, which zooms in on the flat top of the neutron correlation profile. The 
Iteration 0 curve is the uncorrected value taken directly from the .peaks file. The Iteration 1 curve 
falls just below the direct values. Iterations 2–5 all overlap and are indistinguishable even with this 
vertical scaling. The Iteration 5 curve follows the Direct correlation curve extremely well and only 
very slight deviations of the two curves are visible. The fractional errors of the corrected values [see 
Eq. (6.6)] range between approximately 1 × 10–4 and 1 × 10–3. These values are less than or equal to 
the fractional uncertainty of the correlation values. Thus, the corrected correlation values are 
statistically identical to the Direct values. 

The first object simulation modeled was the Poly63 scenario. The neutron correlation curve for 
each of the PScF subtraction iterations is plotted in Fig. 7.4. As discussed in Sect. 6.2, it is desirable 
to under correct the object scattering initially in order to prevent the possibility of the correlation 
curve converging to a value far from the true values. This is evident in Iterations 1–3, which 
progressively drop closer to the Direct correlation curve as scattering is removed. Note that the 
uncorrected value has a convex top resulting from the fact that the center detectors are receiving more 
scattering than those near the ends of the array. In addition to the corrected values becoming smaller  
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Fig. 7.2  A plot of the Void simulation neutron correlation as a function of detector 

angle. The Direct curve consists of only the directly transmitted DT neutron response while the 
Uncorrected curve includes neutrons scattered from one detector in the array to another. 
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Fig. 7.3  A plot of the Void neutron correlation curve for each of the ISF subtraction 

iterations and the Direct curve. Note the vertical scale, which is zoomed in on the top of the 
correlation profile. 
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Fig. 7.4  The neutron correlation curves for the Poly63 scenario. The curve resulting from 

each iteration of the PScF correction is shown along with the Direct value, which includes only 
correlations due to uncollided 14 MeV neutrons. Iterations 8–12 are omitted for clarity. 

 
 
with each iteration, the curve loses the domed top and takes on the correct flat shape. Iterations 8–12 
were omitted for clarity. Iteration 13 is the converged result, and thus, its value represents the final 
corrected value. 

The Poly63 correlation curves are plotted on a much narrower vertical scale in Fig. 7.5. Only the 
seventh and thirteenth (final) iterations are shown for clarity. Although the correlation curve of 
Iteration 13 generally falls within the statistical fluctuations of the Direct curve, it appears to be 
systematically lower, indicating a slight overcorrection. The curve for Iteration 7 follows the Direct 
value much more closely and does not appear to be systematically biased in either direction. The 
carbon PScF scenario, Carb61, shows the same result with Iteration 7 being very close to the Direct 
value and the final iteration being a slight overcorrection. 

The attenuation curves for the Poly63 scenario after each of the PScF subtraction iterations are 
shown in Figs. 7.6 and 7.7. These curves are the results of using the exponential attenuation equation 
[Eq. (1.1)] with the corrected object correlation values after each iteration and the corrected void 
iteration values shown in Fig. 7.3. As the object correlation values fall with each successive iteration, 
the resulting attenuation values rise. The convex shapes visible in the first few iterations of Fig. 7.4 
result in a concave attenuation curve in Fig. 7.6. Again, the Iteration 7 values appear to be very close 
to the Direct ones, while the final iteration (Iteration 13) appears to be a slight overcorrection. 
Iteration 7 corresponds to a PScF correction of 95% of the value calculated using the PScFGEs. This 
discrepancy is likely due to a slight non-Normality in the tails of the object scattering function. 
Although the deviation is very small for any given detector, the superposition of many PScFs 
produces a small but noticeable overcorrection. In order to account for this overcorrection, the 
ScatterSubtract code was modified to remove a maximum of 95% of the PScF maximum value from 
polyethylene or carbon objects.  
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Fig. 7.5  The neutron correlation curves for the Poly63 scenario plotted on a narrower 

vertical scale.  The Iteration 7 curve represents a correction of 95% of the PScF maximum, and 
Iteration 13 is the final converged value. Note that the Iteration 7 curve generally follows the Direct 
curve better. 
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Fig. 7.6  A plot of the attenuation curves for the Poly63 scenario. The Direct attenuation 

curve is shown along with the values after several of the scatter subtraction iterations. Iterations 6 
and 8–12 are omitted for clarity. The large peak in the circled region is caused by poor statistics in 
that region due to a small number of source neutrons. 

 



 

7-6 

2.95

2.96

2.97

2.98

2.99

3.00

3.01

3.02

3.03

3.04

3.05

-30 -20 -10 0 10 20 30

Iteration 7
Iteration 13
Direct

Detector Angle (Degrees)

A
tte

nu
at

io
n 

(M
FP

)

 
Fig. 7.7  A plot of the Poly63 attenuation curves on a narrower vertical scale. As with the 

object correlation values, Iteration 7 matches the Direct values better than the final converged 
values corresponding to Iteration 13. 

 
 

Another feature visible in Fig. 7.6 is the presence of a large peak in the attenuation curve at a 
detector angle of approximately +25°. The peak corresponds to the region of the neutron correlation 
curve (see Fig. 7.2) where the number of correlations has diminished to almost zero. Because of the 
small number of counts and corresponding large statistical uncertainty in this region, the scatter 
correction can result in an extremely high corrected attenuation value. Because of the small number 
of source neutrons, the peak has very little effect on the PSRA. In general, this area should be avoided 
when placing an object to be imaged. 

The attenuation curves for the Iron76 and Lead32 scenarios, respectively, are shown in Figs. 7.8 
and 7.9.  

For each, the Direct attenuation curve is shown along with the corrected attenuation values after 
Iteration 7 and the final iteration. Because of the 6 MFP thickness, the Iron76 scenario used 1 × 108 
source neutrons per simulation in order to reduce the statistical fluctuations in the results. For the 
Iron76 attenuation curve, the Iteration 7 curve appears to be a slight undercorrection while the final 
corrected curve (Iteration 21) appears to be a slight overcorrection. With the lead32 attenuation curve, 
even the final corrected curve (Iteration 15) is a slight undercorrection. This increasing 
undercorrection with the heavier scattering nuclei is likely caused by the forward peaking of the 
elastic scattering cross section. For lead in particular, the diffraction patterns in the elastic scattering 
cross section caused the Gaussian PScFs to fit somewhat poorly in the tail regions. Although the 
discrepancy is fairly small for any single PScF, the superposition of many similar PScFs causes an 
undercorrection in the lead attenuation curve.  

To account for these results, iterations greater than 7 will subtract 97% of the PScF maximum for 
iron and 105% of the PScF maximum for lead. The likely cause of these deviations is the forward 
peaking of the elastic scattering cross sections for these heavier nuclei. As stated previously, the 
Gaussian PScF fits are not particularly good in the tails regions because of the diffraction patterns 
produced by higher order (p-wave and above) scattering. In order to account for these features, a 
much more complex model using Legendre polynomials would be required. Such a model would be 
much more computationally intensive than the Gaussian model and will not be explored in this work. 
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Fig. 7.8  A plot of the attenuation curves for the Iron76 scenario. Note that the Iteration 7 

curve is a slight undercorrection and the final converged values represented by the Iteration 21 
curve are a slight overcorrection. 

 
 
 
 
 
 

1.90

1.95

2.00

2.05

2.10

-30 -20 -10 0 10 20 30

Iteration 7
Iteration 15
Direct

Detector Angle (Degrees)

A
tte

nu
at

io
n 

(M
FP

)

 
Fig. 7.9  A plot of the attenuation curves for the Lead32 scenario. Note that even the final 

converged values represented by the Iteration 15 curve are a slight undercorrection. 
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7.1.2 Other Simulation Results 

Now that the initial testing of the PSRA is complete, some additional simulation results will be 
presented in this section. These simulations will test the PSRA algorithm and also the modifications 
made based on the results in the previous section.  

The first simulation used two different shell thicknesses of material in order to test the how well 
the PSRA performs when applied to multiple thicknesses of material. The geometry used for this first 
simulation, titled C2C4, is depicted in Fig. 7.10. It consists of half shells of graphite 2 and 4 MFP 
thick. The outer edge of the cylinder is located 40 cm from the detector array. The attenuation curves 
produced by the ScatterSubtract code are plotted in Fig. 7.11. The corrected attenuation values show 
that the scatter subtraction yields near-perfect results. The corrected curve shows the proper 
horizontal profile in the two plateau regions and is indistinguishable from the Direct curve in most 
places. The scatter correction also results in a much higher contrast between the two plateau regions. 
The improved contrast will allow for the more accurate identification of features within the object 
being imaged. 

The next scenario use slabs of two different thicknesses joined vertically along the plane 
connecting the source location and the horizontal center of the detector array. The two slabs have 
perpendicular thicknesses of 1 and 3 MFP. The slabs used in this scenario are composed of carbon. 
Fig. 7.12 shows the geometry used for this scenario. The resulting attenuation curves for the C13S 
scenario are shown in Fig. 7.13. The corrected attenuation curves for this simulation follow the Direct 
attenuation curves very well and only small deviations are visible. The scatter correction also 
increases the contrast between the two slabs. 

Another scenario used for testing the PSRA on a slab geometry employs a step wedge design. 
The step wedge is a slab that increases its thickness in finite steps from one end to the other. The step 
wedge modeled here has six thicknesses of iron ranging between 1 and 3.5 MFP in steps of 0.5 MFP. 
Each step is 8 cm wide except for the first and last, which are 34 cm wide. These wide outer steps 
extend the step wedge well beyond the horizontal extent of the DT pixels. The flat edge of the step is 
located 40 cm from the angular center of the detector array. The geometry of the step wedge scenario 
is depicted in Fig. 7.14. 

 

Source 
Location

2 MFP Carbon

4 MFP Carbon

Detector
Array

 
Fig. 7.10  The geometry used to simulate two different thicknesses of 

object material. The object consists of two half shells of different thicknesses 
joined at the 0° and 180° positions. The source-to-detector distance in all 
simulations is 110 cm. 
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Fig. 7.11  The attenuation curves for the C2C4 scenario. 
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Fig. 7.12  The geometry used for simulating 

measurements of slabs composed of two thicknesses of 
material. The configuration shown is the C13S scenario. 
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Fig. 7.13  The attenuation curves for the C13S scenario. 
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Fig. 7.14  The geometry of the step wedge scenario. The source-

to-detector distance is 110 cm. 
 
 

The attenuation curves for the step wedge scenario are plotted in Fig. 7.15. The corrected 
attenuation values show excellent agreement with the Direct values except for a slight divergence at 
the two thickest steps.  
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Fig. 7.15  The attenuation curves for the step wedge scenario. 

 
This scenario and the others presented in this section show that the PSRA can successfully correct 

the attenuation values for a slab geometry with a minor modification to account for the changing 
object-to-detector distance. 

The next object geometry to test is cylindrical geometry. Unlike the PScF geometry, these 
cylindrical objects are not symmetric about the source location. This geometry is frequently 
encountered in NMIS imaging in the form of a drum or barrel. A barrel filled with steel beads, two 
iron pipes, a depleted uranium casting, and a polyethylene rod was modeled to simulate such an 
object. The object in this scenario is a based on the object shown in Fig. 1.5. The barrel is located so 
that its center is exactly half way (55 cm) between the neutron source location and the center of the 
detector array. The barrel has thin steel walls approximately 1 mm thick and an outer radius of 
17.88 cm. The geometry of the object and the detector array is presented in Fig. 7.16. The dimensions 
and cross sections of the materials inside the barrel are listed in Table 7.1.  

The attenuation curves for the barrel simulation are plotted in Fig. 7.17. The PSRA does an 
excellent job of removing the scatter from the measured values. There is a slight deviation between 
the measured and Direct attenuation curves, but in general, the two follow each other very well. The 
scatter correction also greatly increases the contrast between the two iron pipes (the double humped 
regions at approximately ±10°) and between the DU casting (large peaks at approximately ±5°) and 
the surrounding regions of air. The presence of uranium and polyethylene in the object does not seem 
to negatively affect the results because they occupy a relatively small portion of the object. 

Because the barrel and the objects inside are cylindrically symmetric, the 1D attenuation curve 
can be converted to a 2D attenuation map. For NMIS imaging, the FBPGUI program performs this 
task using a filtered back projection (FBP). For general object geometries, the program requires a 
series of projections taken at different angles through the object. For a cylindrically symmetric object, 
the FBPGUI code uses a single projection and assumes that the same values are recorded all around 
the object. In order to use this program, the void.out and object.out files produced by ScatterSubtract 
were converted to the custom comma separated variable (.csv) files used by FBPGUI using a small 
piece of Fortran-90 code. This code extracts the Direct, corrected, and No XTalk (uncorrected) values 
and creates an FBPGUI input file for each.  

 



 

7-12 

 
 

Source
Location

Detector
Array

Steel
Shot

Iron
Pipes

Poly
Rod

DU Casting

 
Fig. 7.16  The geometry used for simulating the barrel 

measurement. Dimensions for the barrel contents are listed in  
Table 7.1. The source-to-detector distance is 110 cm. 

 
 
 
 
 
 

Table7.1  The dimensions and cross sections of the materials inside of the barrel 

Shell Material Inside diameter 
(cm) 

Outside diameter 
(cm) 

Cross section 
(cm–1) 

1 Polyethylene 0 2.54 0.11 
2 Air 2.54 8.89 0 
3 Depleted Uranium 8.89 12.70 0.28 
4 Air 12.70 15.24 0 
5 Iron Pipe 15.24 16.83 0.22 
6 Steel Beads 16.83 20.32 0.13 
7 Iron Pipe 20.32 21.91 0.22 
8 Steel Beads 21.91 35.56 0.13 
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Fig. 7.17  The attenuation curves for the barrel scenario. 

 
The 2D reconstructions of the uncorrected (left) and corrected (right) values for the barrel 

simulation are shown in Fig. 7.18. 
The input files contain the location of the center of the object so the reconstruction shows the x 

and y positions of the various centers, in cm, relative to the center of the object. The colors show the 
macroscopic cross section of the various regions in units of cm–1. The corrected image shows a much 
higher contrast between the steel beads, the iron pipes, and the depleted uranium casting. The 
cross-section values for the iron pipes and uranium in the corrected plot are much closer to their true 
values of 0.22 and 0.29 than in the imaged produced by the uncorrected data. Since the goals of 
NMIS imaging measurements are to identify the shape and composition of the internal structure of the 
object, the closer the reconstructed cross-section values match the real ones the more likely it is that 
the materials will be correctly identified. 

 

 
Fig. 7.18  2D Reconstructions of the barrel using uncorrected (left) and corrected (right) 

attenuation data. 
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The reconstructions of the measured and corrected data on 3D axes are presented in Figs. 7.19 
and 7.20. Here, the cross-section values are represented by both the color and the height of the 
various regions.  
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Fig. 7.19  A 3D plot of the barrel reconstruction using the uncorrected attenuation values. The 

z-axis and color mapping show the macroscopic cross section in each region. 
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Fig. 7.20  A 3D plot of the barrel reconstruction using the corrected attenuation values. The 

z-axis and color mapping show the macroscopic cross section in each region. 
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The positions of the DU casting, the two iron pipes, and the steel shot in the image are noted in 
Fig. 7.19. In the uncorrected data, the cross section of the inner pipe shows a much lower value than 
the outer ones. The apparent cross section of the DU casting shows up at about the same level as the 
outer pipe. There is also a distinct concavity in the outer layer of steel beads as the cross section in 
that region drops as it nears the outer iron pipe. The reconstruction in Fig. 7.20 shows that these errors 
are almost entirely corrected by the PSRA. The steel shot appears nearly flat from inside to out, the 
inner and outer pipes display approximately the same cross section, and the casting has a much higher 
value than any of the other materials.  

This scenario shows that the PSRA can accurately remove the scattering from a cylindrical 
object. The corrected data produces a much more accurate mapping of the internal cross sections than 
the uncorrected data. The corrected data also shows a much higher contrast between the different 
materials. This will minimize the probability that regions of materials will mistakenly be combined 
into a single cell. 

In Chap. 6, two averaged materials were defined and PScFGE coefficients for these materials 
were coded into the ScatterSubtract program. These two averaged materials were designated 
“material 5” (an average of iron and lead) and “material 6” (an average of carbon, iron, and lead). The 
purpose of these two averaged materials is to test how well the PSRA can perform when the 
knowledge of the material composition of the object is less than perfect. The attenuation curves using 
the material 5 coefficients in the ScatterSubtract program to correct the iron76 and lead32 scenarios 
are shown in Figs. 7.21 and 7.22. The use of the averaged material values overcorrects the scenario 
with iron and undercorrects the one with lead.  

The corrected values diverge fairly significantly from the Direct values; however, the divergence 
of the scatter corrected values is much smaller than that of the uncorrected values and the overall 
shape is much more accurate. 

The simulated measurement scenarios presented thus far have all consisted of only a single 
material in order to test the function of the PSRA. While this may accurately represent some real 
world scenarios (e.g., a radioactive source surrounded by a large quantity of homogeneous shielding 
material) most objects will be composed of more than one material. The measurement of cylindrically  
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Fig. 7.21  The attenuation curves for the Iron76 scenario. The PSRA used material 5 

(average of iron and lead) PScF values to correct the scatter. 
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Fig. 7.22  The attenuation curves for the Lead32 scenario. The PSRA used material 5 

(average of iron and lead) PScF values to correct the scatter. 
 
 
symmetric shells consisting of two materials was simulated in order to test how well the PSRA 
performs when the scatter correction for a single material is applied. Figure 7.23 shows the geometry 
used for one of this scenarios, the PbPo scenario, which consists of a 2 MFP layer of lead inside of a 
2 MFP layer of polyethylene. 
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Fig. 7.23  The geometry used for simulating measurements of cylindrically symmetric 

shells consisting of more than one material. The configuration shown here is the PbPo scenario. 
The source-to-detector distance in all simulations is 110 cm. 
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The attenuation curves for the PbPo scenario generated by using the lead and polyethylene PScF 
values, respectively, to remove the scatter are plotted in Figs. 7.24 and 7.25. Using the lead 
coefficients results in a significant overcorrection of the attenuation values and using polyethylene 
results in a significant undercorrection. The shapes of the corrected attenuation curves also differ 
markedly from the horizontal shape of the Direct curve. Overall, the use of the PScF values for a 
single material produces poor results for this scenario. In order to make the PSRA useful for a wide 
range of possible scenarios, this problem needs to be addressed. Section 7.3 will revisit this issue for 
the purpose of developing a method that can use the coefficients for multiple materials when applying 
the PSRA. 
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Fig. 7.24  The attenuation curves for the PbPo scenario. The PSRA used lead PScF values to 

correct the scatter. 
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Fig. 7.25  The attenuation curves for the PbPo scenario. The PSRA used polyethylene PScF 

values to correct the scatter. 
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7.1.3 A Summary of the PSRA Performance with Simulated Measurements 

With a couple of exceptions (multiple materials and averaged materials), the scatter removal 
algorithm produced excellent results when applied to simulated scenarios. In Sect. 7.1.1, the PSRA 
produced near perfect results when removing the interarray scatter from the void measurement. Since 
all of the simulation scenarios used the same void simulation, the performance of the PSRA when 
removing scatter from the object measurement translates directly into the attenuation profile. For this 
reason, the goodness of the scatter correction has been tested to this point by comparing the corrected 
and uncorrected attenuation curves to the Direct attenuation curve, which is computed using only 
directly transmitted neutrons. 

In this final section reporting on the simulated results, the corrected and uncorrected attenuation 
values will be compared to the Direct data using a more quantitative methodology. As mentioned in 
Sect. 6.2, the ScatterSubtract program performs a χ2 goodness of fit test comparing the corrected and 
uncorrected attenuation curves to the Direct one. These values are recorded in the ChiSq.out text file. 
The χ2 values for each of the scenarios tested are listed in Table 7.2. The final column shows the ratio 
of the uncorrected value to the corrected value as a quantitative measure of the improvement realized 
by the scatter subtraction algorithm.  

The results in Table 7.2 show that with the exception of a single scenario (L1P3 corrected as 
lead), the PSRA produced a more accurate attenuation curve than the uncorrected values. The χ2 
values represent the total number of variances (uncertainty squared) between the two curves being 
compared. Since both the corrected and uncorrected tests used the variance of the direct data in the 
denominator, the ratio of the two is the ratio of the sums of their squared errors. The square root of 
the ratio is, therefore, the ratio of the average deviation (e.g., a ratio of 100 indicates that the corrected 
values deviate from the Direct values 10 times less on average than the uncorrected values). 

The scenarios using objects composed of a single material, whose attenuation was corrected 
using the material-specific PScFGE coefficients, all resulted in ratios of greater than 60, which 
corresponds to a decrease in the average deviation by a factor of 7.75 or greater. This indicates that 
the PSRA methodology is sound and that its use can greatly improves the accuracy of the attenuation 
values. The use of the material-averaged PScFGE coefficients produced ratios that mostly lay in the 
20 to 40 range. These values still represent a fairly significant improvement in the accuracy of the 
attenuation curve, but the degree of accuracy depends on the actual material of the object.  

Finally, most of the objects composed of multiple materials resulted in ratios below 10. While all 
but one of these scenarios did produce slightly better attenuation curves, they might not produce 
better results when determining the material composition of an object. Because the uncorrected 
attenuation values are systematically low, they provide a lower bound to material cross sections when 
the object is reconstructed. If, for example, the uncorrected cross-section values indicate a region with 
a cross section of 0.13 cm–1, polyethylene (0.11 cm–1) could almost certainly be ruled out. If the 
scatter correction produces a modest overcorrection of the attenuation values, polyethylene might be 
incorrectly ruled out. Section 7.3 will examine ways in which the scatter correction might be modified 
to improve its accuracy in a wider range of scenarios. 
 
7.2 EXPERIMENTAL TESTING AND RESULTS 

Now that the PSRA methodology has been tested using simulated imaging measurements, the 
next step is to test it with experimental data. One problematic aspect of NMIS measurements is that 
due to the constant research and development aimed at improving its performance, the configuration 
is in a constant state of change. These configuration changes include items such as the radius of the 
detector arm, the alpha detector PMT and light guide, the configuration of the electronics, and 
updates to the NMIS software packages. Because the PSRA is based on a given configuration, it is 
only applicable to measurements made with approximately the same setup. Because of this restriction, 
only three measurements are available for testing. While a greater number would be preferred, taking  
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Table 7.2  The χ2 goodness of fit results of the uncorrected and 
corrected attenuation curves for the simulation scenarios. The ratio 

column is the ratio of the uncorrected value to the corrected value. 

Scenario Uncorrected χ2 Corrected χ2 Ratio 

Simple cylindrically symmetric objects 

Poly63 6.579E+04 7.778E+01 845.8 
Carb61 8.382E+04 1.347E+03 62.20 
Iron76 2.076E+05 2.995E+02 693.1 
Lead32 1.032E+06 1.108E+03 931.5 

Cylindrically symmetric objects with more than one material thickness 

C2C4 2.980E+05 2.366E+02 1259 
L2L4 6.055E+05 1.939E+03 312.2 

Objects corrected using material averaged PScF values 

Iron76 (Mat. 5) 2.076E+05 1.438E+03 144.3 
Lead32 (Mat. 5) 1.032E+06 2.935E+04 35.19 
Carb61 (Mat. 6) 8.382E+04 7.182E+03 11.67 
Iron76 (Mat. 6) 2.076E+05 1.200E+04 17.29 
Lead32 (Mat. 6) 1.032E+06 1.704E+04 60.59 
C2C4 (Mat. 6) 2.980E+05 4.111E+04 7.250 
L2L4 (Mat. 6) 6.055E+05 2.024E+04 29.91 

Objects composed of multiple materials 

PbPo (as lead) 1.571E+05 7.682E+04 2.045 
PbPo (as poly) 1.571E+05 2.942E+04 5.339 
PoPb (as lead) 1.842E+05 8.432E+04 2.186 
PoPb (as poly) 1.842E+05 4.257E+04 4.328 
LPoL (as lead) 6.453E+05 2.527E+05 2.554 
LPoL (as poly) 6.453E+05 1.348E+05 4.784 
L1P3 (as lead) 9.917E+04 1.470E+05 0.6744 
L1P3 (as poly) 9.917E+04 6.876E+03 14.42 
L3P1 (as lead) 2.373E+05 3.074E+04 7.721 
L3P1 (as poly) 2.373E+05 7.289E+04 3.256 

Objects with a slab geometry 

CaSl 2.180E+05 3.071E+03 70.99 
LeSl 5.125E+05 2.423E+03 211.5 
C13S 2.125E+05 6.337E+02 335.4 
L13S 4.559E+05 8.530E+02 534.5 
Step wedge 4.512E+05 8.661E+02 521.0 

Objects with a cylindrical geometry 

PoCy 7.338E+04 7.816E+02 93.89 
FeCy 8.307E+04 7.304E+02 113.7 
Barrel 1.782E+05 9.586E+02 185.9 
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new data with this configuration is not feasible in the short term because of a planned series of 
measurements that have made the 110 cm radius detector arm unavailable. Despite this, the three 
measurements available should be sufficient to test the PSRA on measured data and determine if it is 
a viable option for removing the scatter from experimental imaging data. 

All experimental measurements were made were made using the 110 cm radius detector arm. The 
arm has 32 2.54 × 2.54 × 10.16 cm plastic scintillators with an angular separation between adjacent 
detector centers of approximately 1.67°. The API-120 was operated with an accelerator voltage of 
87 kV and a current of 60 μA. At these settings, the total neutron output is approximately 
4 × 107 neutrons per second produced isotropically. A bias of 1100 V was applied to the H8500 PMT 
attached to the alpha detector. At this setting, each of the 8 pixels counted approximately 
30,000 alpha particles per second. 
 
7.2.1 Imaging Detector Efficiency 

Before any imaging measurements were performed, the neutron energy threshold of the imaging 
detectors was tested using a 252Cf spontaneous fission source. The 252Cf source is mounted in an ion 
chamber, which detects the heavy nuclides produced by each fission. This signal is used to measure 
the time-of-flight of the fission neutrons to the imaging detectors. Because the time-of-flight is a 
direct function of energy and the energy spectrum of 252Cf is well documented, this information can 
be used to determine the detector efficiency at various neutron energy levels. The efficiency is 
reported as a percentage of neutrons that hit the front face of the detector, which generate a count. 
The lower energy limit where the neutron efficiency falls to zero is the detector neutron energy 
threshold.  

The fitted efficiency curves for the 32 imaging detectors produced by the Integrated Sata and 
Analysis Software (IDAS) are plotted in Fig. 7.26. This data in this plot shows that the detector 
thresholds are all approximately 1.5 MeV. Because the PScF and the ISF fits were calculated 
assuming a threshold of 1.0 MeV, an attempt was made to lower the detector thresholds to this level 
by increasing the PMT voltage and lowering the constant fraction discriminator (CFD) threshold. 
However, due to the fact that the 32 detectors share a single four channel high voltage power supply, 
this failed. Either the maximum allowable PMT voltage or the minimum threshold was reached 
before the detector thresholds reached 1.0 MeV. 
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Fig. 7.26  The fitted detector efficiency curves for the 32 NMIS imaging 

detectors generated using a 252Cf spontaneous fission source. 
In order to proceed, the experiments were conducted using a detector threshold of 1.5 MeV. In 

order to make the PSRA applicable to these measurements, it was necessary to calculate new PScF 
and ISF parameters for this threshold. This was relatively easy to change using the results of the PScF 
simulations. The .dat files were post-processed using a 1.5 MeV threshold, and the PScF and ISF 
coefficients were calculated using the method described in Chapters 5 and 6. The resulting ISF 
coefficients for 1.5 MeV are 

 
A = 0.03117959;   B = 0.004329379;   S = 1.434710°;   and   T = 2.981670°  . 

 
The PScF coefficients for polyethylene, carbon, iron, and lead are listed in Tables 7.3 and 7.4. 

Because the averaged material coefficients were not tested with the experimental data, they were not 
calculated for 1.5 MeV. These coefficients were entered into the ScatterSubtract code and the 
program was recompiled for use with the experimental data. 
 

Table 7.3  The 1.5 MeV Coefficients for the maximum PScFGE 

Material a0 a1 a2 a3 a4 a5 a6 a7 
Poly –1.970022E+00 –7.738703E-02 5.142299E-04 –1.708127E-06 1.281804E+00 1.982459E-02 –2.419642E-03 0 
Carb –2.032200E+00 –7.164776E-02 4.372984E-04 –1.288139E-06 1.113186E+00 1.389208E-02 –1.996984E-03 0 
Iron –1.579900E+00 –8.245448E-02 6.539626E-04 –2.349230E-06 1.034258E+00 7.107147E-03 –2.915926E-03 1.579430E-05 
Lead –1.147211E+00 –6.694131E-02 4.203523E-04 –1.279453E-06 1.204600E+00 2.094446E-02 –2.373614E-03 0 
 
 

Table 7.4  The 1.5 MeV Coefficients for the standard deviation PScFGE 

Material b0 b1 b2 b3 b4 b5 
Poly 3.993199E+00 4.843557E-02 1.056716E-03 3.282769E-01 1.245424E-02 7.561633E-03 
Carb 1.928307E+00 1.338948E-01 4.388464E-04 6.694405E-01 2.914982E-02 4.600967E-03 
Iron 1.128059E+00 1.220379E-01 0 5.138568E-01 9.921068E-03 3.294349E-03 
Lead –3.270967E-01 1.076363E-01 –1.807323E-04 5.710022E-01 5.119608E-02 6.383550E-04 
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7.2.2 Homogeneous Slabs 

The first two imaging measurements available are homogeneous slabs of material similar to those 
simulated in Sect. 7.1.6. The first slab measurement used a polyethylene slab with dimensions 
81.3 cm wide × 50.8 cm high × 11.8 cm thick. The slab was composed of three identical sheets of 
polyethylene. The second measurement used a slab of graphite measuring 45.7 cm wide × 45.7 cm 
high × 7.62 cm thick. Both slabs were placed perpendicular to the line between the DT source 
location and the center of the imaging detector array with an object-to-detector distance of 60 cm. 
Each measurement consisted of four subsamples. Each subsample was measured for 10 minutes, 
resulting in a total measurement time of 40 minutes. The void measurement used for computing 
attenuation values consisted of four subsamples of five minutes each. 

The attenuation curves for the polyethylene slab measurement are plotted in Fig. 7.27. The Direct 
curve was calculated by simulating the scenario with MCNP-PoliMi. A quick calculation using the 
14.1 MeV cross-section value for polyethylene predicts a thickness of 1.30 MFP through the center of 
the slab, which agrees well with the Direct attenuation curve. The scatter correction produces an 
attenuation curve that is significantly closer to the Direct values than the measured data; however, the 
corrected values are still substantially under corrected. 
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Fig. 7.27  The attenuation curves for the polyethylene slab measurement. The Direct curve 

was generated by modeling the measurement with MCNP-PoliMi. 
 
The attenuation curves for the graphite slab measurement are shown in Fig. 7.28. As with the 

previous measurement, the scatter correction produces a more accurate attenuation curve, but the 
corrected values still fall well below the Direct curve. 
 
7.2.3 The Barrel Measurement 

The final experimental imaging measurement uses the barrel configuration that was modeled in 
Sect. 7.1.2. The geometry of this measurement is identical to that simulation with the exception of the 
location of the barrel center. The barrel center was located at 58.3 cm from the center of the detector 
array. 
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Fig. 7.28  The attenuation curves for the graphite slab measurement. The Direct curve was 

generated by modeling the measurement with MCNP-PoliMi. 



 

7-24 

The barrel measurement consisted of four subsamples of 20 minutes each and the void 
measurement consisted of four subsamples of 5 minutes each. The attenuation curves for the barrel 
measurement are plotted in Fig. 7.29. As with the two slab measurements, the corrected values are 
much closer to the Direct curve than the measured values, but they still represent a substantial 
undercorrection. This systematic undercorrection, which was observed in all three experimental 
measurements, will be discussed in Sect. 7.2.4. 

2D image reconstructions of the uncorrected and corrected attenuation data, respectively, are 
shown in Figs. 7.30 and 7.31. Both figures show the reconstruction using the Direct data (right) for 
reference. All plots use the same color mapping for comparison purposes. The uncorrected data 
shows almost no contrast between the steel beads and the iron pipes. With the exception of the two 
regions of air, there is no contrast between different materials. In the plot of the reconstructed data, 
the outer iron pipe is clearly visible and there is good contrast between it and the surrounding beads. 
The DU casting shows a higher cross-section value than either the beads or the iron pipe, which 
increases the likelihood that its material would be identified correctly. Due to its position, the inner 
pipe is difficult to detect and is not visible in either the corrected or uncorrected reconstruction. 

A 3D view of the image reconstruction for the uncorrected data is shown in Fig. 7.32 where the 
z-axis represents the cross section of each region. The color map scale has been changed from that in 
Fig. 7.30 to enhance the contrast between materials. This plot shows that the reconstructed attenuation 
value for the uranium is slightly lower than that of the outer pipe or the outer layer of steel beads. The 
outer layer of beads also shows a distinct concavity and the inner pipe is not visible at all.  

A 3D view of the reconstruction using the corrected data is shown in Fig. 7.33. Several 
improvements over the uncorrected view are visible. First, the DU casting now shows a higher cross 
section than the rest of the material. The outer pipe is higher than any of the surrounding beads, and 
the profile of the beads is almost flat. In this view, the inner pipe is just visible as a slight rise at the 
inner edge of the inner layer of beads. 
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Fig. 7.29  The attenuation curves for the barrel slab measurement. The Direct curve was 

generated by modeling the measurement with MCNP-PoliMi. 
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Fig. 7.30  Filtered back projections of the barrel measurement generated using the measured 

(left) and Direct (right) data. 
 
 
 
 
 

 
Fig. 7.31  Filtered back projections of the barrel measurement generated using the 

corrected (left) and Direct (right) data. 
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Fig. 7.32  A 3D view of the barrel measurement generated using the measured data. The 

z-axis and color mapping indicate the estimated material cross sections. 
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Fig. 7.33  A 3D view of the barrel measurement generated using the corrected data. The z-axis 

and color mapping indicate the estimated material cross sections. 
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The last step in the NMIS object reconstruction process is the fitting of shapes to the various 
regions in the 2D image reconstruction. This procedure is performed by a MATLAB code named 
Fitting for NMIS measurements. The code begins with an initial guess of the number of shells and the 
cross section of each using the FBP, such as the ones shown in Fig. 7.31. The new attenuation curve 
is compared to the old one and the difference between the two curves is used to adjust the initial 
guesses. The new guesses are then entered into TAKE again. This process continues until the new and 
old attenuation curves converge. The final dimensions and cross-section values are then returned to 
the operator. 

In order to test how much the PSRA correction improves the measurement results, the measured, 
corrected, and Direct filtered back projections were processed using the Fitting program. Although 
the program can generate the initial guesses for the number and locations of the initial shells 
automatically, it has a strong tendency to over fit the data and produce too many shells. Therefore, the 
standard procedure is for the user to enter the dimensions and cross-section of each shell manually 
using the values seen on the FBP. For this test, the true dimensions of the shells were entered as the 
initial guesses in order to maximize the accuracy of the fitted cross-section values. These fitted values 
can then be compared to the true values. 

The fitted cross-section values for the measured, corrected, and Direct curves are listed in 
Table 7.5. The fitted dimensions were all very close to the true values and were omitted for clarity. 
The measured data produces very poor results. In particular, the beads, the iron pipes, and the 
uranium all have approximately the same fitted cross-section values, indicating very little contrast 
between these regions. 

The two layers of beads actually have higher fitted cross-section values than the pipes inside 
them. The corrected cross-section fits show a greatly increased contrast between the outer iron pipe 
and the surrounding beads. The DU casting value is also greatly increased and the cross section for 
the outer shell of air is greatly decreased. The Direct cross-section fit values represent a best case 
scenario. In order to achieve better results, either the counting time or the angular resolution of the 
measurement would need to be increased. The uranium value is almost perfect. The two regions of 
beads and the inner iron pipe are very close to the true values and the cross section in the air regions 
is nearly zero. Interestingly, the fit value for the outer iron pipe is slightly high. 

 
Table 7.5  Fitted cross-section values for each of the eight regions of the barrel generated using  

the Fitting program. The fitted values using measured, corrected, and Direct data are shown. 

Shell Name 
True values Fitted cross-section values  

(cm–1) 
I.D. (cm) O.D. (cm) Σ (cm–1) Measured Corrected Direct 

1 Poly 0 2.54 0.11 0.089 0.097 0.061 
2 Air 2.54 8.89 0 0.050 0.043 0.002 
3 DU 8.89 12.70 0.28 0.106 0.171 0.281 
4 Air 12.70 15.24 0 0.039 0.017 0.000 
5 Iron pipe 15.24 16.83 0.22 0.098 0.134 0.212 
6 Iron beads 16.83 20.32 0.13 0.108 0.130 0.130 
7 Iron pipe 20.32 21.91 0.22 0.111 0.190 0.243 
8 Iron beads 21.91 35.56 0.13 0.117 0.130 0.132 

 
 
7.2.4 Examination of the PSRA Performance 

While the PSRA did produce a significant improvement over the measured attenuation values, it 
significantly undercorrected the data in all three scenarios. All three experimental measurements were 
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very similar to simulations where the scatter correction performed very well. This leads to the 
conclusion that the source of the undercorrection lies in an underestimation of the scatter in the 
experimental measurements rather than a failure of the PSRA itself. The most likely source of this 
error is additional scattering produced by structures near the detector crystals such as the 
photomultiplier tubes, the detector mounting frame, the support arm, and the motor that controls the 
angular rotation of the arm. 

In the interest of developing a short-term solution to the undercorrection problem, an empirical 
correction is the best solution until a more rigorous solution can be developed. As a first order 
approximation, both the ISF and PScF amplitudes were multiplied by a common factor greater than 
one. This correction was predicated on the assumption that undercorrection was produced by an 
underestimation of the point scatter and interarray scatter functions. A multiplicative factor of 1.55 
produced the best results for all three experimental measurements. This would seem to indicate that 
the actual scattering fractions are 55% higher than the current PScF (and ISF) values taken from 
simulations.  

The attenuation curves for the three measurements after the empirical correction are plotted in 
Figs. 7.34 through 7.36. The previous values without the correction are also shown for reference. The 
new corrected values show a much better agreement with the Direct attenuation curve than the old 
ones. For the polyethylene slab, the ratio of the corrected χ2 value and the measured χ2 value 
increased from 6.65 to 59.7. For the carbon slab, the value increased from 4.91 to 59.9. The values for 
the barrel measurement increased more modestly from 4.32 to 7.19. 

The filtered back projection of the new corrected data (left) is shown in Fig. 7.37 along with the 
filtered back projection of the Direct data (right) for reference.  

The cross sections for the outer iron pipe and the uranium casting show up significantly higher in 
this image than they did with the old corrected values (Fig. 7.31). Also, the inner pipe is barely 
discernible in this image while it was completely invisible before. A 3D view of the data with the 
cross-section values on the z-axis is plotted in Fig. 7.38. 
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Fig. 7.34  Attenuation curves for the polyethylene slab measurement. Both the old and new (with 

empirical correction factor) corrected curves are shown for comparison. 
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Fig. 7.35  Attenuation curves for the graphite slab measurement. Both the old and new (with 

empirical correction factor) corrected curves are shown for comparison. 
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Fig. 7.36  Attenuation curves for the barrel measurement. Both the old and new (with 

empirical correction factor) corrected curves are shown for comparison. 
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Fig. 7.37  Filtered back projection using the new corrected data with the empirical correction 

(left) for the barrel measurement. The Direct filtered back projection (right) using simulated data is 
shown for comparison. 
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Fig. 7.38  A 3D view of the new corrected filtered back projection. Both the z-axis and color 

mapping indicate the cross-section values. 
 

The results for the Fitting routine are presented in Table 7.6. Both the old and new corrected 
cross-section values are shown along with the measured values. The cross-section values for the air 
regions in the new corrected values are now very close to zero, and the cross section for the DU 
casting is much closer to its true value. The values for the inner shell of beads and the outer pipe are 
slightly inflated. While more work is required to produce a more exacting correction for experimental 
measurements, the PSRA with empirical correction factor produces very good results with 
experimental NMIS imaging measurements. 
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Table 7.6  Fit results showing the cross-section values calculated using the measured  

data and both the old and new corrected values 

Shell Name 
True values Fitted cross-section values  

(cm–1) 
I.D. (cm) O.D. (cm) Σ (cm–1) Measured Old New 

1 Poly 0 2.54 0.11 0.080 0.081 0.098 
2 Air 2.54 8.89 0 0.056 0.055 0.019 
3 DU 8.89 12.70 0.28 0.118 0.180 0.231 
4 Air 12.70 15.24 0 0.058 0.035 0.000 
5 Iron pipe 15.24 16.83 0.22 0.107 0.167 0.169 
6 Iron beads 16.83 20.32 0.13 0.104 0.132 0.152 
7 Iron pipe 20.32 21.91 0.22 0.117 0.174 0.241 
8 Iron beads 21.91 35.56 0.13 0.116 0.131 0.138 

 
7.3 A METHOD FOR INTEGRATING A GENERALIZED PSRA INTO NMIS IMAGING 

In Sect. 7.1, the parameterized scatter removal algorithm produced excellent results when 
correcting scatter for objects consisting of a single known material. Its performance was marginal if 
the material was unknown and averaged PScF coefficient values were used. When objects consisting 
of multiple materials were imaged, the use of a single material’s PScF coefficients produced poor 
results that tended to strongly under or overcorrect the attenuation values. In order to make the PSRA 
more useful, it needs to be modified to be able to deal with these scenarios properly. 

The first task is to devise a methodology for calculating the scatter produced by neutrons 
traversing multiple materials. The current PSRA calculates the additional fraction of scattered 
neutrons that leave the outer surface of the object and reach the detectors. This value is determined by 
the thickness of the object measured in attenuation lengths, the material, and the distance from the 
outer surface to the detector array. For objects composed of multiple materials, each is generating its 
own scattering.  

An example of a simple case where a beam of neutrons is being transmitted through multiple 
shells of material is depicted in Fig. 7.39.  

The inner layer of material is lead with a thickness of τ1, so the neutrons passing through it will be 
attenuated by a factor of EXP(-τ1). If there are no other layers present, those attenuated neutrons will 
produce a PScF for τ1 MFP of lead located a distance D1 from the detector array, PScF(Lead, τ1, D1). 
There is, however, a layer of polyethylene behind the lead, which will further attenuate the scattered 
neutrons. If all of the attenuated neutrons are either absorbed or scattered in a way so that they do not 
produce additional fast neutron correlations in the peak region, the lead layer will contribute a 
scattering of EXP(-τ2)PScF(Lead, τ1, D1) to the detectors. Simultaneously, the source neutrons were 
attenuated by a factor of EXP(-τ1) while passing through the lead layer will produce a scatter function 
in the polyethylene of EXP(-τ1)PScF(Poly, τ2, D2). Thus, the total PScF for the two shells will be 
EXP(-τ2)PScF(Lead, τ1, D1) + EXP(-τ1)PScF(Poly, τ2, D2). For an object consisting of n shells with a 
total thickness τ, the total PScF can be written as a superposition of the PScFs for each layer 
attenuated by all other layers, 

 

 
1

( ) ( , , )
n

i i i i
i

PScF EXP PScF material Dτ τ τ
=

= −∑   . (7.1) 
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Fig. 7.39  The geometry of neutrons scattering in multiple layers of 

material. Neutrons scattering in the first layer produce a characteristic PScF, 
which is then further attenuated in the second layer. Simultaneously, source 
neutrons attenuated in the first layer go on to produce a different PScF in the 
second layer. 

 
This method for applying the PScF was tested using the lead and polyethylene scenarios from 

Sect. 7.1.2. These scenarios present the simplest possible case for testing. Unfortunately, there is no 
way to determine the relative thickness of each layer from the measurement data. Therefore, the 
actual thickness of each layer was used when calculating the PScF values. However, this was 
sufficient to test Eq. (7.1). Initial tests resulted in an undercorrection of the data using this method. 
This undercorrection is undoubtedly due to the fact that some attenuated neutrons scatter back into the 
detectors. Modifying the thicknesses by a factor of 0.9 seems to correct for this result. Thus, the final 
equation entered into the ScatterSubtract program was 
 

  [ ]
1

0.9( ) ( ,0.9 , )
n

i i i i
i

PScF EXP PScF material Dτ τ τ
=

= −∑   . (7.2) 

 
The attenuation curves for the PbPo, LPoL, and L1P3 scenarios using the superposition of PScFs 

are plotted in Figs. 7.32–7.42. These scenarios represent a case where two layers are equally thick (in 
MFP), a case where two layers are different thicknesses, and a case where there are three layers of 
material. In all three cases, the corrected attenuation curves show the proper horizontal shape and lie 
very close to the Direct values. 

The χ2 goodness of fit results for the corrected and uncorrected attenuation curves and the ratio 
between the two for the six scenarios are listed in Table 7.7. All of these were tested previously 
except for the PoLP scenario.  
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Fig. 7.40  The attenuation curves for the PbPo scenario using the superposition of 

polyethylene and lead PScFs. 
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Fig. 7.41  The attenuation curves for the LPoL scenario using the superposition of 

polyethylene and lead PScFs. 
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Fig. 7.42  The attenuation curves for the L1P3 scenario using the superposition of 

polyethylene and lead PScFs. 
 
 
 

Table7.7  The χ2 goodness of fit results of the uncorrected and  
corrected attenuation curves for the lead and polyethylene  

scenarios using the superposition of PScFs 

Scenario Uncorrected χ2 Corrected χ2 Ratio 
PbPo 1.571E+05 6.317E+02 248.7 
PoPb 1.842E+05 4.412E+02 417.7 
LPoL 6.453E+05 3.601E+03 179.2 
PoLP 6.423E+05 1.439E+03 446.2 
L1P3 9.917E+04 3.341E+02 296.8 
L3P1 2.373E+05 6.374E+02 372.4 

 
 
It consists of two 1 MFP layers of polyethylene surrounding a 2 MFP layer of lead. These results 

show that the superposition of PScFs produces excellent results with all six scenarios. The ratios lie 
between 179 and 446, indicating that the corrected attenuation curves lie between approximately 13 
and 21 times closer to the Direct values than the uncorrected curves. While this is not a true test 
because the thickness of each material was selected a priori, it indicates that if a good estimation of 
the relative thickness of each layer can be determined, the PSRA can remove the scatter from the 
measured values and return an accurate estimate of the true values. 
 
7.4 RECOMMENDATIONS FOR FUTURE WORK 

While this work has shown that the PSRA methodology is sound, there are still some situations in 
which it performs poorly. In order to apply the superposition of PScFs to a more generalized object 
where the scattering is not necessarily symmetric about the neutron path or where the object is 
composed of multiple materials, a more sophisticated method needs to be developed. If an object is 
cylindrically symmetric, or if several different projections of the object are taken at different angles, 
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the FBPGUI program can reconstruct a filtered back projection of the internal structure of the object 
using the attenuation curves. These values could be used to develop first order PScFs that could then 
be applied to the measured values to produce a correction. The new values could then be used to 
generate another filtered back projection, from which new PScF values could be developed. This 
process could be iterated until the filtered back projections converge to a final solution, which will 
mirror the true internal structure of the object. In order to accomplish this integration, some additional 
work is required. Therefore, this section will recommend the direction in which future research efforts 
should proceed in order to create a general NMIS imaging solution that incorporates the PSRA. 

The first area that should be investigated is the detector model used for simulating the NMIS 
PScFs. Experimental testing strongly suggests that the simulated PScFs presented in this work 
underestimated the scatter in laboratory measurements by a factor of approximately 55%. While an 
empirical correction factor produced results comparable to those from simulations, this is not an ideal 
solution. Therefore future work should focus on developing a PScF simulation that produces 
scattering similar to that encountered by experimental measurements. The first area of focus should 
be the creation of a high fidelity model of the NMIS detector array since neutrons scattering in that 
region have a large impact on the total scattering signal received.  

Once the new PScF models are completed and the simulated PScFs match the experimental ones, 
the PScF scenarios can be rerun to generate new PScFGE coefficients for ScatterSubtract. While 
these simulations are being rerun, additional materials may be added to the library. The initial library 
was kept fairly limited since its purpose was to validate the PSRA methodology. Ideally, the final 
library will include all materials that NMIS imaging measurements will likely encounter. 

In addition to the PScF simulations with homogeneous shells of material, simulations with 
multiple layers materials need to be conducted. These simulations should use the same source 
geometry as the ones used for extracting PScF parameters, but change the object geometry. The 
purpose of these simulations will be to determine how the PScFs from multiple materials are 
superimposed to form a single PScF in an object composed of multiple layers. Equation (7.3) 
produced good results when used for solving this problem, but a more thorough study is desirable. In 
addition, these tests should examine scenarios where the object (or the material regions inside the 
object) is asymmetric. Those simulations will test how the PScF contribution to individual detectors 
is modified as the scattered neutrons pass through different thicknesses of material. A robust method 
for modifying the PScFs in these scenarios is needed before the PSRA can be fully integrated into 
NMIS imaging. 

The next area of research should focus on integrating the PSRA with the FBPGUI program. The 
FBPGUI generates a filtered back projection of the object being imaged. The FBP creates a matrix of 
x and y pixels and assigns a cross-section value to each. ScatterSubtract could then read these values 
in order to determine the best PScF to use for each detector position and the modifications that should 
be performed based on the neutron path to other detectors in the array. Since FBPGUI is a GUI-based 
program and ScatterSubtract is executed from the command line, the most logical integration method 
would be for the FBPGUI code to write the FBP data to a file and call ScatterSubtract to read it each 
time it is needed. 

In order for the scattering subtraction to work properly, the correct PScFs need to be selected. 
Integrating ScatterSubtract into FBPGUI allows for the possibility that the operator can explicitly 
specify the material of each region based on prior knowledge, if available. Even if a priori knowledge 
of the materials is not available, the FBP will give clues, which can be used to select the best PScFs. 
If the materials list is coupled with the nominal cross section of each material, then certain materials 
can be excluded if the FBP value is significantly greater the material cross section. Based on the 
results of this comparison, the PScF parameters can be selected by choosing the one that produces the 
smallest correction to the data to avoid an overcorrection. This correction will increase the FBP 
cross-section values in the next iteration, which can eliminate more materials from consideration. So 
long as these values are carefully chosen to avoid overcorrecting the data, the process should 
eventually converge. Once the iterations converge to a final value, FBPGUI could tentatively identify 
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each material based on the final PScF parameters that were used. By assigning a material to each 
pixel, this procedure will have successfully completed its ultimate goal of NMIS imaging, which is to 
properly identify the material composition and geometry of the internal structure of the object. 
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8. CONCLUSIONS 

This work has presented the development of a parameterized scatter removal algorithm (PSRA) 
from initial theory all the way to its application to experimental measurements. The PSRA is a 
completely new approach to removing the scattering component from NMIS imaging. Earlier 
methods focused primarily on minimizing the number of scattered neutrons that were incorrectly 
identified as being directly transmitted. The PSRA approaches the problem from a different direction 
by using Monte Carlo simulations to estimate how large the scattering contribution will be so that it 
can be subtracted from the measured values directly. By parameterizing the scattering based on the 
location, thickness, and material of the object being imaged, the scatter correction can be applied to a 
much wider range of scenarios than those which were used for developing the PScFs. 

The PSRA performed extremely well when correcting the scatter in simulations of simple 
homogeneous targets of known material. The PSRA reduced the value of the χ2 goodness of fit test of 
the attenuation curve versus ideal values by a factor of 60 or more over the uncorrected results. These 
results confirm that the methodology works and strongly suggest that it will be a powerful tool for 
improving the quality of imaging measurements when integrated into the NMIS software package.  

The simulation-derived PScFs initially underestimated the scatter in experimental measurements; 
however, an empirical correction factor improved the results significantly and χ2 values were reduced 
by a factor of 7 to 60. These results strongly indicate that once the PScF simulations are improved to 
more accurately simulate the scattering in the NMIS detector array, the PSRA will produce excellent 
results removing scatter from experimental measurements.  

By increasing the accuracy of the measured attenuation profile, these improvements promise to 
increase the contrast between regions of dissimilar materials and more accurately determine the cross 
section of each region. More accurately measuring the cross sections will increase the likelihood that 
the materials can be correctly identified. This will obviate the need for a more obtrusive method (such 
as opening the container), which can be expensive and hazardous. 

In addition to the PSRA, this work also led to the design of a completely new technique for 
simulating NMIS imaging measurements with a pixelated DT neutron beam. While previous 
simulations used a uniform fan beam, the new models used individual pixel shapes that are based on 
both analytical calculations and experimental measurements. In order to simulate measurements using 
these pixel models, a series of custom codes was written to automate the process. These codes include 
programs to generate multiple MCNP-PoliMi input decks, a post-processor for extracting the 
correlation information from the output files, and a program for applying the scattering correction to 
the results. Other codes were developed for converting NMIS measurement data into the format of 
simulation data and vice versa. These codes will allow for a closer integration of simulations and 
experiments in the future. 

While this work has shown that the PSRA methodology can make substantial improvements in 
NMIS imaging measurements, some additional work is required before it can be integrated into the 
current NMIS software suite as a generalized imaging solution. Recommendations for future research 
directed towards this goal were presented at the end of the previous chapter. 
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APPENDIX A.  —THE MCPIXELGEOM CODE 

PROGRAM MCPixelGeom 
IMPLICIT NONE 
 
REAL :: ThetaXY, ThetaXZ, x0, y0, z0, v, w, x1, y1, z1, r1, Omega, TargetRad 
REAL :: PhiXY, PhiXZ, PsiXY, PsiXZ, PixelDim, x2, y2, z2, x3, y3, z3 
REAL :: DetectorRad, DelPhiMax, Vn, Vcm, Valpha, Weight 
REAL :: PhiAvg, ThetaAvg, PsiAvg 
REAL, PARAMETER :: TwoPi = 6.2831853 
REAL, PARAMETER :: Pi = 3.1415927 
REAL, ALLOCATABLE :: Results(:,:,:), Results1D(:,:,:) 
INTEGER (KIND=4) :: I, J, K, M, N 
INTEGER :: NumPixels, HLimit, VLimit, MinHoriz, MaxHoriz 
INTEGER (KIND=4) :: NumSamples 
INTEGER (KIND=4), ALLOCATABLE :: PixelCounts(:) 
 
!Initialize the random seed 
CALL init_random_seed() 
 
! Define input variables 
! Positions are measured in cm from the target center 
DetectorRad = 110. 
TargetRad = 0.250 
PixelDim = 0.608 
NumPixels = 8 
NumSamples = 1000000000 
!Velocities, fraction of c 
Vn = 0.173015 
Vcm = 0.003306 
Valpha = 0.043564 
HLimit = 400 
VLimit = 80 
 
ALLOCATE(PixelCounts(NumPixels+1)) 
 
!Allocate Results matrix, which will hold the results. Rows are bins for the 
horizontal 
!angle (*10) of the neutron, Columns are vertical angle, and Panes are the pixels. 
The  
!penultimate pane will contain the sum of all pixels and the last contains the 
maximum 
!pixel value for that angle. 
ALLOCATE(Results(-HLimit:HLimit,-VLimit:VLimit,NumPixels+2)) 
 
! The 1D results matrix is similar, but contains the sum of +/- 0.6 degrees in 
! the vertical direction, which is ~ the detector height. 
ALLOCATE(Results1D(-HLimit:HLimit,NumPixels+1,2)) 
Results = 0. 
Results1D = 0. 
PixelCounts = 0 
 
PhiAvg = 0. 
ThetaAvg = 0. 
PsiAvg = 0. 
 
DO I = 1, NumSamples 
 ! v, w are relative position on the pixel face (-0.5 < v,w < 0.5) 
 ! Omega, r1 are radial coordinates on target face. 
 CALL RandomSample(v,w,Omega,r1) 
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 ThetaXY = v 
 ThetaXZ = W 
 
 !Convert Omega, r1 to cartesian coordinates relative to target center 
 x2 = 0. 
 y2 = r1*SIN(Omega) 
 z2 = r1*COS(Omega) 
 
 !Now account for the 45 degree (xy) tilt of the target and convert 
 !x,y2 to absolute coordinates. No change in z2. 
 x2 = y2*SIN(TwoPi/8.) 
 y2 = y2*SIN(TwoPi/8.)  
 
 !Calculate the Phi angles, alpha angle in the LAB CS. 
 PhiXY = ATAN((VAlpha*SIN(ThetaXY)+Vcm)/(VAlpha*COS(ThetaXY))) 
 PhiXZ = ThetaXZ 
 
 ! Find x1, y1, z1 where the alpha reaches the alpha detector plane 
 x1 = -5.7 
 y1 = y2 + ABS(x2-x1)*TAN(-PhiXY) 
 z1 = z2 + ABS(x2-x1)*TAN(-PhiXZ) 
 
 ! Determine which pixel (if any) the alpha strikes. 
 IF (ABS(z1) < PixelDim / 2.) THEN 
 K = INT(REAL(NumPixels) / 2. - y1/PixelDim + 1) 
 IF (K < 1 .OR. K > NumPixels) CYCLE 
 PixelCounts(K) = PixelCounts(K) + 1 
 PixelCounts(NumPixels+1) = PixelCounts(NumPixels+1) + 1 
 ELSE 
 CYCLE 
 END IF 
 
 !Now calculate neutron angle in the LAB coordinate system. 
 PsiXY = ATAN((Vn*SIN(ThetaXY)-Vcm)/(Vn*COS(ThetaXY))) 
 PsiXZ = PhiXZ 
 
 M = NINT(10.*PsiXY*360./TwoPi) 
 N = NINT(10.*PsiXZ*360./TwoPi) 
 
 IF (ABS(M) > HLimit .OR. ABS(N) > VLimit) THEN 
 PRINT *, "Array Bounds Exceeded" 
 CYCLE 
 END IF 
 
 Results(M,N,K) = Results(M,N,K) + 1 
 
 PhiAvg = PhiAvg + PhiXY 
 ThetaAvg = ThetaAvg + ThetaXY 
 PsiAvg = PsiAvg + PsiXY 
 
END DO 
 
PhiAvg = PhiAvg / REAL(NumSamples)*360./TwoPi 
ThetaAvg = ThetaAvg / REAL(NumSamples)*360./TwoPi 
PsiAvg = PsiAvg / REAL(NumSamples)*360./TwoPi 
 
 
DO I = -HLimit, HLimit, 1 
 DO J = -VLimit, VLimit, 1 
 DO K = 1, NumPixels 
 Results(I,J,K) = Results(I,J,K) * NumPixels / PixelCounts(NumPixels+1) 
 END DO 
 END DO 
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END DO 
 
DO K = 1, NumPixels+1 
 PRINT *, K, PixelCounts(K) 
END DO 
 
DO I = -HLimit, HLimit, 1 
 DO J = -VLimit, VLimit, 1 
 DO K = 1, NumPixels 
 Results(I,J,NumPixels+1) = Results(I,J,NumPixels+1) + Results(I,J,K) 
 IF(Results(I,J,K) > Results(I,J,NumPixels+2)) THEN 
 Results(I,J,NumPixels+2) = Results(I,J,K) 
 END IF 
 IF(ABS(J) <= 6) THEN 
 Results1D(I,K,1) = Results1D(I,K,1) + Results(I,J,K) 
 Results1D(I,NumPixels+1,1) = Results1D(I,NumPixels+1,1) + Results(I,J,K) 
 END IF 
 END DO 
 END DO 
END DO 
 
DO I = 1, NumPixels+1 
 DO J = -HLimit, HLimit, 1 
 MinHoriz = MAX(-HLimit,J-6) 
 MaxHoriz = MIN(HLimit,J+6) 
 DO K = MinHoriz, MaxHoriz 
 Results1D(J,I,2) = Results1D(J,I,2) + Results1D(K,I,1) 
 END DO 
 END DO 
END DO 
 
!Write results array to a file 
OPEN (UNIT=1, FILE="Results.txt", ACTION="WRITE", STATUS="REPLACE") 
DO I = 1,NumPixels+2 
 WRITE(1,'(A5,I3)') "Pixel", I 
 WRITE (1,'(A6)', ADVANCE="NO") " " 
 DO K = -VLimit,VLimit,1 
 WRITE (1,'(F10.1)', ADVANCE="NO") REAL(K)/10. 
 END DO 
 WRITE (1,*) 
 DO J = -HLimit,HLimit,1 
 WRITE (1,'(F6.1)', ADVANCE="NO") REAL(J)/10. 
 DO K = -VLimit,VLimit,1 
 WRITE (1,'(F10.6)', ADVANCE="NO") Results(J,K,I) 
 END DO 
 WRITE (1,*) 
 END DO 
 WRITE (1,*) 
 WRITE (1,*) 
END DO 
 
CLOSE(UNIT=1) 
DEALLOCATE(Results) 
 
!Write 1D results array to a file 
OPEN (UNIT=2, FILE="Results1D.txt", ACTION="WRITE", STATUS="REPLACE") 
OPEN (UNIT=3, FILE="ResultsDet.txt", ACTION="WRITE", STATUS="REPLACE") 
 
WRITE (2,'(A6)', ADVANCE="NO") " " 
WRITE (3,'(A6)', ADVANCE="NO") " " 
 
DO I = 1,NumPixels 
 WRITE(2,'(A7,I3)', ADVANCE="NO") " Pixel", I 
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 WRITE(3,'(A7,I3)', ADVANCE="NO") " Pixel", I 
END DO 
 
WRITE(2,'(A10)') "Total" 
WRITE(3,'(A10)') "Total" 
 
DO I = -HLimit,HLimit,1 
 WRITE (2,'(F6.1)', ADVANCE="NO") REAL(I)/10. 
 WRITE (3,'(F6.1)', ADVANCE="NO") REAL(I)/10. 
 DO J = 1, NumPixels+1 
 WRITE (2,'(F10.6)', ADVANCE="NO") Results1D(I,J,1) 
 WRITE (3,'(F10.6)', ADVANCE="NO") Results1D(I,J,2) 
 END DO 
 WRITE (2,*) 
 WRITE (3,*) 
END DO 
 
CLOSE(UNIT=2) 
CLOSE(UNIT=3) 
DEALLOCATE(Results1D) 
 
CONTAINS 
 
! This subroutine generates the seed for the random number generator from the 
system clock. 
SUBROUTINE init_random_seed()  
INTEGER :: i, n, clock  
INTEGER, DIMENSION(:), ALLOCATABLE :: seed  
CALL RANDOM_SEED(size = n)  
ALLOCATE(seed(n))  
CALL SYSTEM_CLOCK(COUNT=clock)  
seed = clock + 37 * (/ (i - 1, i = 1, n) /)  
CALL RANDOM_SEED(PUT = seed)  
DEALLOCATE(seed)  
END SUBROUTINE  
 
! This subroutine generates pseudorandom numbers for the position on the alpha 
pixel and 
! the position on the target. 
SUBROUTINE RandomSample(zv,zw,zOmega,zr1) 
REAL, INTENT(OUT) :: zv, zw, zOmega, zr1 
REAL :: zzz 
 
CALL RANDOM_NUMBER(zzz) 
zv = (zzz - 0.5)*TwoPi/4. 
CALL RANDOM_NUMBER(zzz) 
zw = (zzz - 0.5)*16.*TwoPi/360. 
CALL RANDOM_NUMBER(zzz) 
zOmega = TwoPi*zzz 
CALL RANDOM_NUMBER(zzz) 
zr1 = TargetRad*SQRT(zzz) 
END SUBROUTINE 
 
END PROGRAM 
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APPENDIX B.  —THE ELASTIC CODE 

PROGRAM Elastic 
!------------------------------------------------------------ 
! Written by Brandon R. Grogan 
! at the Oak Ridge National Laboratory 
! Last Modified 19 November 2009 
!------------------------------------------------------------ 
IMPLICIT NONE 
 
INTEGER :: A, I, J, K, ErrCode, NumLines, Angles, NumColumns 
! Distance Variables 
REAL(KIND=4) :: R, D, L, Dout, Lmax, DetFace 
! Energy and speed variables 
REAL(KIND=4) :: Ein, Eout, Ethresh, Vin, Vout, Alpha 
! Angle variables 
REAL(KIND=4) :: Theta, PhiLab, PhiCM, MaxTheta, Omega 
! Time variables 
REAL(KIND=4) :: tmin, tmax, tprime 
! Detector efficiency, pulse height factor, Response, and PScF 
REAL(KIND=4) :: DetEff, PHF, Response, PScF 
! Cross section variables 
REAL(KIND = 4) :: xs, SigmaS, SigmaT, MFP 
! Diff. Scattering Cross-Section Array 
REAL(KIND=4), ALLOCATABLE :: DiffXS(:,:) 
! Speed of Light (cm/ns) 
REAL(KIND = 4), PARAMETER :: c = 29.97925 
! Main OutPut Data Array 
REAL(KIND=4), ALLOCATABLE :: Output(:,:) 
REAL, PARAMETER :: TwoPi = 6.2831853 
! Text variables 
CHARACTER :: InpFile*80, DummyChar*1, OutFile*80 
 
! Initialize variables here 
R = 110. 
D = 40. 
L = 10.16 
DetFace = 2.54 
MaxTheta = 45. 
NumColumns = 11 
Ein = 14.051 
Ethresh = 1.0 
MFP = 3.0 
 
Vin = NeutronSpeed(Ein) 
tmin = R / (Vin * c) 
tmax = (R + L) / (Vin * c) 
 
 
 
!------------------------------------------------------------ 
! Get xs file name from the command prompt 
!------------------------------------------------------------ 
CALL GETARG(1, InpFile) 
 
!------------------------------------------------------------ 
! Open input file, read in A, and read in the xs data 
!------------------------------------------------------------ 
OPEN(UNIT=1, FILE=TRIM(InpFile), ACTION="READ", STATUS="OLD") 
 
DO I = 1, 1000 
 READ(1, '(A)', IOSTAT=ErrCode) DummyChar 
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 IF (ErrCode < 0) EXIT 
END DO 
 
NumLines = I - 2 
REWIND 1 
 
! First column = angle (degrees), second column = xs (b/Sr) 
ALLOCATE(DiffXS(NumLines,2)) 
 
READ(1, *) A, SigmaT 
WRITE(*,*) A, SigmaT 
DO I = 1, NumLines 
 READ(1, *) DiffXS(I,1), DiffXS(I,2) 
END DO 
 
CLOSE(UNIT=1) 
 
! Calculate the Alpha value using the atomic mass 
Alpha = (REAL(A-1)/REAL(A+1))**2 
 
Angles = 10*INT(MaxTheta) 
ALLOCATE(OutPut(0:Angles,NumColumns)) 
OutPut = 0. 
 
!------------------------------------------------------------ 
! Main Program Loop - Loops over Detector Angle 
!------------------------------------------------------------ 
DO I = 0, Angles 
 Theta = REAL(I)/10. 
 OutPut(I,1) = Theta 
 ! Convert Theta to Radians 
 Theta = Theta * TwoPi / 360. 
 ! Calculate D' 
 Dout = SQRT(R**2 + (R-D)**2 - 2.*R*(R-D)*COS(Theta)) 
 
 ! With D', can now compute PhiLAB and Omega, the detector solid angle 
 Omega = DetFace**2 / Dout**2 
 OutPut(I, 8) = Omega 
 PhiLab = ASIN(R * SIN(Theta) / Dout) 
 OutPut(I, 2) = PhiLab * 360. / TwoPi 
 
 ! Converts PhiLab to CM coordinates 
 CALL FindCM(PhiLab, PhiCM, A) 
 OutPut(I, 3) = PhiCM * 360. / TwoPi 
 
 ! Find Diff. Scattering Cross-Section 
 CALL FindDiffXS(PhiCM, DiffXS, xs) 
 OutPut(I,4) = xs 
 
 ! Now that the differential scattering cross-section and solid angle 
 ! are known, the total probability of scattering to angle theta can be 
 ! computed 
 SigmaS = xs * Omega 
 OutPut(I,9) = SigmaS / (SigmaT - SigmaS) * (EXP(-MFP*SigmaS/SigmaT)-EXP(-MFP)) 
 
 ! Find (LAB) energy of the outgoing neutron 
 CALL NeutronEnergy(Ein, PhiCM, Alpha, Eout) 
 OutPut(I,5) = Eout 
 
 ! Calculate the Pulse Height Factor 
 PHF = (Eout - Ethresh) / Ein 
 OutPut(I,7) = PHF 
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 ! Find the time when the neutron arrives at the front face of the detector 
 Vout = NeutronSpeed(Eout) 
 tprime = (R - D) / (Vin * c) + Dout / (Vout * c) 
  
 ! Check to see if t' > tmax, and if so, end the loop 
 ! Might get bad results (e.g., negative efficiencies) otherwise. 
 IF (tprime > tmax) CYCLE 
 
 ! Find the maximum depth the neutron can penetrate into the detector 
 ! before the end of the correlation time window. 
 Lmax = Vout * c * (tmax - tprime)  
 
 ! Calculate detector efficiency 
 CALL DetectorEfficiency(Eout, Lmax, DetEff) 
 OutPut(I,6) = DetEff 
 
 
 ! Calculate the response function of theta - this is normalized to 
 ! per source neutron since flux is not included. 
 Response = OutPut(I,6) * OutPut(I,7) * OutPut(I,9) 
 OutPut(I,10) = Response 
 
 ! Lastly, find the Point Scatter Function 
 PScF = Response / (OutPut(0,6) * OutPut(0,7)) 
 OutPut(I,11) = PScF 
 
END DO ! Main I Loop 
 
!------------------------------------------------------------ 
! Write Output array to a file 
!------------------------------------------------------------ 
OutFile = InpFile(1:2) // ".out" 
OPEN(UNIT=2, FILE=TRIM(OutFile), ACTION="WRITE", STATUS="REPLACE") 
 
DO I = 0, Angles 
 DO J = 1, NumColumns 
 WRITE(2, '(ES14.6)', ADVANCE="NO") OutPut(I,J) 
 END DO 
 WRITE(2,*) 
END DO 
 
CLOSE(UNIT=2) 
 
 
CONTAINS 
 
!------------------------------------------------------------ 
! This function returns the neutron speed (as a fraction of 
! c) given the input energy (in MeV). 
!------------------------------------------------------------ 
FUNCTION NeutronSpeed(ZEin) 
REAL :: NeutronSpeed 
REAL(KIND=4), INTENT(IN) :: ZEin 
NeutronSpeed = SQRT(2. * ZEin / 939.5656) 
 
END FUNCTION 
 
!------------------------------------------------------------ 
! This subroutine returns the neutron energy (in the LAB system) 
! after a collision, given the CM scattering angle and alpha. 
!------------------------------------------------------------ 
SubRoutine NeutronEnergy(ZEin, ZPhiCM, ZAlpha, ZEout) 
REAL(KIND=4), INTENT(IN) :: ZEin, ZPhiCM, ZAlpha 
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REAL(KIND=4), INTENT(OUT) :: ZEout 
 
ZEout = ((1 + ZAlpha) + (1 - ZAlpha)*COS(ZPhiCM))*ZEin / 2. 
 
END SUBROUTINE 
 
 
!------------------------------------------------------------ 
! This subroutine converts the lab scattering angle to the COM 
! scattering angle through a brute force iteration. 
!------------------------------------------------------------ 
SUBROUTINE FindCM(ZLab, ZCM, ZA) 
REAL(KIND=4), INTENT(IN) :: ZLab 
REAL(KIND=4), INTENT(OUT) :: ZCM 
INTEGER, INTENT(IN) :: ZA 
REAL(KIND = 4) :: ZRange, ZMin, Z, ZTest, Delta, DeltaMin, ZBest 
 
ZRange = 2. * ZLab 
ZBest = ZLab 
ZMin = ZBest - ZRange 
 
DO J = 1, 12 
 DeltaMin = 10. 
 DO K = 0, 20 
 Z = ZMin + REAL(K)*ZRange/20. 
 ZTest = ATAN(SIN(Z) / (1/REAL(ZA) + COS(Z))) 
 Delta = ABS(ZLab - ZTest) 
 IF (Delta < DeltaMin) THEN 
 DeltaMin = Delta 
 ZBest = Z 
 END IF 
 END DO 
 
ZRange = ZRange / 5. 
ZMin = ZBest - ZRange/2. 
 
END DO 
 
ZCM = ZBest 
 
END SUBROUTINE 
 
!------------------------------------------------------------ 
! This Subroutine determines the differential scattering cross-section by 
! interpolating the values from the input file. 
!------------------------------------------------------------ 
SUBROUTINE FindDiffXS(ZPhiCM, ZDiffXS, Zxs) 
REAL(KIND=4), INTENT(IN) :: ZPhiCM, ZDiffXS(:,:) 
REAL(KIND=4), INTENT(OUT) :: Zxs 
REAL(KIND=4) :: ZAngle, ZAngleMin, ZAngleMax, ZxsMin, ZxsMax 
REAL(KIND=4) :: ZAngleDiff, ZxsDiff 
 
ZAngle = ZPhiCM * 360. / TwoPi 
 
DO J = 1, NumLines 
 IF (ZDiffXS(J,1) > ZAngle) THEN 
 ZAngleMin = ZDiffXS(J-1,1) 
 ZAngleMax = ZDiffXS(J,1) 
 ZxsMin = ZDiffXS(J-1,2) 
 ZxsMax = ZDiffXS(J,2) 
 EXIT 
 END IF 
END DO 
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ZAngleDiff = ZAngleMax - ZAngleMin 
ZxsDiff = ZxsMax - ZxsMin 
 
Zxs = ZxsMin + (ZAngle - ZAngleMin)/ZAngleDiff*ZxsDiff 
 
END SUBROUTINE 
 
!------------------------------------------------------------ 
! This Subroutine determines the intrinsic detector efficiency 
! using equation 15.8b from Knoll, 3rd Ed. Fits for the hydrogen 
! cross-section are good for 1+ MeV. The carbon fit is only accurate 
! over the range 8.5 MeV < E < 14.1 MeV. 
!------------------------------------------------------------ 
SUBROUTINE DetectorEfficiency(ZEout, ZLmax, ZEff) 
REAL(KIND=4), INTENT(IN) :: ZEout, ZLmax 
REAL(KIND=4), INTENT(OUT) :: ZEff 
REAL(KIND=4) :: SigH, SigC, NH, NC, Hxs, Cxs 
 
NH = 0.08397 * 1.023 * 0.6022 / 1. 
NC = 0.91603 * 1.023 * 0.6022 / 12. 
SigH = EXP(1.6431845 - 0.324906*ZEout + 0.021717*ZEout**2-0.000632*ZEout**3) 
SigC = 4.4929537 - 0.906192*ZEout + 0.0718101*ZEout**2 - 0.001809*ZEout**3 
Hxs = NH * SigH 
Cxs = NC * SigC 
 
ZEff = Hxs * (1 - EXP(-(Hxs + Cxs)*ZLmax)) / (Hxs + Cxs)  
 
END SUBROUTINE 
 
END PROGRAM 
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APPENDIX C.  —THE MAKEINP CODE AND SUPPORTING FILES 

The MakeInp Code 
PROGRAM makeinp 
! Version 2.20 
! Written January 5th, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: January 24th, 2009 
 
IMPLICIT NONE 
REAL(KIND=4) :: face, Theta, phi, radius, offset, nu, Depth, x0, y0 
REAL(KIND=4) :: crys, rotate, xy, yx, phi2, zplane, detsep, FWHM, CorrFact  
REAL(KIND=4), ALLOCATABLE :: Detect(:,:,:), SDEF(:,:)  
REAL(KIND=4) :: pixangle, xcos, ycos, PDFSum, pixcenter 
REAL(KIND=4) :: threshold, deadtime, window 
INTEGER :: I, J, NumDet, FirstNum, DetMat, N, DetNum, P, NumPixels 
INTEGER :: ErrCode, NumLines, L, M, FancyDet, Q, NumSDEFCards, NumThisLine 
INTEGER(KIND=4) :: K, NPS 
!FileBase=User Input File Name; FileNme=PoliMi input file 
CHARACTER :: FileBase*8, FileNme*8, FileNum*2, Hist*16 
CHARACTER :: PixelNum*2, TxtOut*64, OutNme*8, DatNme*8 
CHARACTER :: FileNme3*16, ParamText*64, ThisLine*80 
CHARACTER(80) :: Inp(10000) 
 
CALL GetArg(1, ParamText) 
IF (LEN(TRIM(ParamText)) == 0) THEN 
 PRINT *, "Enter file name (8.3) of the parameter input file." 
 READ (*,*) ParamText 
END IF 
 
CALL ReadParams() 
 
!FileBase = "void.inp" 
!offset = -55. 
!radius = 110. 
!face = 3.0607 
!detsep = 3.20 
!crys = 2.54 
!Depth = 10.16 
!FirstNum = 401 
DetMat = FirstNum 
!N = 4 
!NPS = 12500000 
!NumPixels=16 
!FWHM=3.055 
!NumSDEFCards = 46 
!NumDet=32 
!zplane=117.5 
!FancyDet=1 
 
ALLOCATE(SDEF(NumSDEFCards,5)) 
 
phi = 2.*ATAN(detsep/radius/2.) 
 
!First Order of business: Calculate numbers for detector surfaces. 
!Calculations based on source at origin (transform from there). 
ALLOCATE(Detect(NumDet, 14, 5)) 
nu = -(REAL(NumDet-1)/2.)*phi 
 
DO I = 0, NumDet-1 
 J = I + 1 
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 ! Create the surface cards for the detector crystal 
 x0 = radius * cos(nu) 
 y0 = radius * sin(nu) 
 Detect(J, 1, 1) = FirstNum + I*N 
 Detect(J, 2, 1) = x0 + (crys/2.0) * sin(nu) 
 Detect(J, 3, 1) = y0 - (crys/2.0) * cos(nu) 
 Detect(J, 4, 1) = -crys/2.0 
 Detect(J, 5, 1) = -crys*sin(nu) 
 Detect(J, 6, 1) = crys*cos(nu) 
 Detect(J, 7, 1) = 0. 
 Detect(J, 8, 1) = Depth*cos(nu) 
 Detect(J, 9, 1) = Depth*sin(nu) 
 Detect(J, 10, 1) = 0. 
 Detect(J, 11, 1) = 0. 
 Detect(J, 12, 1) = 0. 
 Detect(J, 13, 1) = crys 
 Detect(J, 14, 1) = nu 
 
 ! Create the surface cards for the detector housing (inner surface) 
 x0 = (radius-0.0001) * cos(nu) 
 y0 = (radius-0.0001) * sin(nu) 
 Detect(J, 1, 2) = 1000 + FirstNum + I*N 
 Detect(J, 2, 2) = x0 + ((face-0.22)/2.0) * sin(nu) 
 Detect(J, 3, 2) = y0 - ((face-0.22)/2.0) * cos(nu) 
 Detect(J, 4, 2) = -(face-0.22)/2.0 
 Detect(J, 5, 2) = -(face-0.22)*sin(nu) 
 Detect(J, 6, 2) = (face-0.22)*cos(nu) 
 Detect(J, 7, 2) = 0. 
 Detect(J, 8, 2) = (Depth+1.17)*cos(nu) 
 Detect(J, 9, 2) = (Depth+1.17)*sin(nu) 
 Detect(J, 10, 2) = 0. 
 Detect(J, 11, 2) = 0. 
 Detect(J, 12, 2) = 0. 
 Detect(J, 13, 2) = (face-0.22) 
 Detect(J, 14, 2) = nu 
 
 ! Create the surface cards for the detector housing (outer surface) 
 x0 = (radius-0.1) * cos(nu) 
 y0 = (radius-0.1) * sin(nu) 
 Detect(J, 1, 3) = 2000 + FirstNum + I*N 
 Detect(J, 2, 3) = x0 + ((face-0.02)/2.0) * sin(nu) 
 Detect(J, 3, 3) = y0 - ((face-0.02)/2.0) * cos(nu) 
 Detect(J, 4, 3) = -(face-0.02)/2.0 
 Detect(J, 5, 3) = -(face-0.02)*sin(nu) 
 Detect(J, 6, 3) = (face-0.02)*cos(nu) 
 Detect(J, 7, 3) = 0. 
 Detect(J, 8, 3) = (Depth+1.37)*cos(nu) 
 Detect(J, 9, 3) = (Depth+1.37)*sin(nu) 
 Detect(J, 10, 3) = 0. 
 Detect(J, 11, 3) = 0. 
 Detect(J, 12, 3) = 0. 
 Detect(J, 13, 3) = (face-0.02) 
 Detect(J, 14, 3) = nu 
 
 ! Create the surface cards for the PMT housing (inner surface) 
 ! These values will define a right circular cylinder 
 ! Format: Surface# RCC Transform# x0 y0 z0 x y z r 
 ! Format: 1 RCC Transform# 2 3 4 8 9 10 13 
 ! x0, y0, z0 are coordinates to center of one of the bases 
 ! x, y, z is the vector to the center of the other bace 
 ! r is the radius 
 x0 = (radius+Depth+0.0001) * cos(nu) 
 y0 = (radius+Depth+0.0001) * sin(nu) 
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 Detect(J, 1, 4) = 3000 + FirstNum + I*N 
 Detect(J, 2, 4) = x0 
 Detect(J, 3, 4) = y0  
 Detect(J, 4, 4) = 0. 
 Detect(J, 5, 4) = 0. 
 Detect(J, 6, 4) = 0. 
 Detect(J, 7, 4) = 0. 
 Detect(J, 8, 4) = 9.475*cos(nu) 
 Detect(J, 9, 4) = 9.475*sin(nu) 
 Detect(J, 10, 4) = 0. 
 Detect(J, 11, 4) = 0. 
 Detect(J, 12, 4) = 0. 
 Detect(J, 13, 4) = (face-0.12)/2 
 Detect(J, 14, 4) = nu 
 
 ! Create the surface cards for the PMT housing (outer surface) 
 ! Format: 1 RCC Transform# 2 3 4 8 9 10 13 
 x0 = (radius+Depth+0.0001) * cos(nu) 
 y0 = (radius+Depth+0.0001) * sin(nu) 
 Detect(J, 1, 5) = 4000 + FirstNum + I*N 
 Detect(J, 2, 5) = x0 
 Detect(J, 3, 5) = y0  
 Detect(J, 4, 5) = 0. 
 Detect(J, 5, 5) = 0. 
 Detect(J, 6, 5) = 0. 
 Detect(J, 7, 5) = 0. 
 Detect(J, 8, 5) = 9.525*cos(nu) 
 Detect(J, 9, 5) = 9.525*sin(nu) 
 Detect(J, 10, 5) = 0. 
 Detect(J, 11, 5) = 0. 
 Detect(J, 12, 5) = 0. 
 Detect(J, 13, 5) = (face-0.02)/2 
 Detect(J, 14, 5) = nu 
 
 
 nu = nu + phi 
END DO 
 
!Get the name of the input file and create a subdirectory based on the name. 
!CALL GETARG(1,FileBase) 
TxtOut = "md " // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
 
!Open the input file and read it into the "Inp" array. 
OPEN (UNIT=66, File=TRIM(FileBase), STATUS="OLD", ACTION="READ") 
DO I = 1, 1000 
 READ (66, '(A)', IOSTAT=ErrCode) Inp(I) 
 IF (ErrCode < 0) EXIT 
END DO 
NumLines = I-1 
CLOSE (UNIT=66) 
 
TxtOut = FileBase(1:4) // ".bat" 
OPEN (UNIT=99, FILE=TRIM(TxtOut), STATUS = "REPLACE", ACTION = "WRITE") 
OPEN (UNIT=98, FILE="PP.bat", STATUS="REPLACE", ACTION="WRITE") 
phi2 = phi * 360. / 6.283185307 
 
!The main loop of the program, loops over pixel number 
DO P = 1, NumPixels 
 
IF (P < 10) THEN 
 WRITE (PixelNum, '(I1)') P 
ELSE 
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 WRITE (PixelNum, '(I2)') P 
END IF 
 
 
!Create the pixel subdirectory 
TxtOut = "md .\" // FileBase(1:4) // "\" // TRIM(PixelNum) 
CALL SYSTEM(TRIM(TxtOut)) 
 
FileNme3 = "Start" // TRIM(PixelNum) // ".sh" 
OPEN(UNIT=97, FILE=TRIM(FileNme3), STATUS = "REPLACE", ACTION = "WRITE") 
 
!Writes to the 2 .bat files 
WRITE (99, '(A)') "cd " // TRIM(PixelNum) 
WRITE (98, '(A)') "cd " // TRIM(PixelNum) 
 
 
WRITE (97, '(A)') "cd " // TRIM(PixelNum) 
WRITE (97, '(A)') "dos2unix *.*" 
 
!J loops the subsample number (it's actually J+1). K gives the actual SS  
!number. 
DO J = 0, N-1 
K = J+1 
IF (K < 10) THEN 
 WRITE (FileNum, '(I1)') K 
ELSE 
 WRITE (FileNum, '(I2)') K 
END IF 
 
!PomiMi input file name 
FileNme = FileBase(1:2) // TRIM(PixelNum) // TRIM(FileNum) // ".i" 
!Output file name (PoliMi Output - shows subsample) 
OutNme = FileBase(1:2) // TRIM(PixelNum) // TRIM(FileNum) // ".o" 
!Dat file name 
DatNme = FileBase(1:2) // TRIM(PixelNum) // TRIM(FileNum) // ".d" 
 
!Write PoliMi execution statement to the batch file 
WRITE (97, '(A)') "mcnp-polimi inp=" // TRIM(FileNme) // " out=" // &  
& TRIM(OutNme) // " dumn1=" // TRIM(DatNme) 
 
WRITE(98, '(A, I12, I10, F10.0, F8.4)') "PoliMiPP " // DatNme // " 0 ", NPS, 
INT(window), & 
& deadtime, threshold 
 
WRITE (99, '(A)') "mcnp-polimi inp=" // TRIM(FileNme) // " out=" // &  
& TRIM(OutNme) // " dumn1=" // TRIM(DatNme) 
 
 
OPEN (UNIT=1, FILE = TRIM(FileNme), STATUS = "REPLACE", ACTION = "WRITE") 
 
DO L = 1, NumLines 
 
IF (TRIM(INP(L)) == "c 111111") THEN 
! Put #det nums. here 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
DO M = 3, 5, 2 
 WRITE(1, '(A)', ADVANCE="NO") " " 
 DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,M)) + J 
 WRITE (1, '(I5)', ADVANCE="NO") DetNum 
 IF (MOD(I,12) == 0 .AND. I .NE. NumDet) THEN 
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 WRITE(1, *) 
 WRITE(1,'(A)', ADVANCE="NO") " " 
 END IF 
 END DO 
 WRITE(1, *) 
END DO 
 
ELSE 
 WRITE(1, '(A)', ADVANCE="NO") " " 
 DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,1)) + J 
 WRITE (1, '(I5)', ADVANCE="NO") DetNum 
 IF (MOD(I,12) == 0 .AND. I .NE. NumDet) THEN 
 WRITE(1, *) 
 WRITE(1,'(A)', ADVANCE="NO") " " 
 END IF 
 END DO 
 WRITE(1, *) 
 
END IF 
 
! Fancy Detectors 
 
IF (FancyDet == 1) THEN 
 WRITE (1, '(A)') " #961 966 968" 
END IF 
 
WRITE (1, '(A)') " imp:n,p=1" 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detectors" 
WRITE (1, '(A)') "c" 
 
!Detector Cell Cards 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,1)) + J 
 WRITE (1, '(I3, I4, F9.4, I5, A, I2)') DetNum, FirstNum, -1.023, -DetNum,& 
 &" imp:n,p=1 $ detector ", I 
END DO 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Housing" 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,2)) + J 
 WRITE (1, '(I4, I4, A, 2I6, 2(A,I4) A, I2)') DetNum, 0, " ", -DetNum,& 
 &DetNum-1000, " #", DetNum+2000, " #", DetNum+3000, " imp:n,p=1 $ detector ", I 
END DO 
 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,3)) + J 
 WRITE (1, '(I4, I4, F9.4, 2I6, 2(A,I4) A, I2)') DetNum, FirstNum+2, -2.70, -
DetNum,& 
 &DetNum-1000, " #", DetNum+1000, " #", DetNum+2000, " imp:n,p=1 $ detector ", I 
END DO 
 
WRITE (1, '(A)') "c" 
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WRITE (1, '(A)') "c Photomultiplier Tubes" 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,4)) + J 
 WRITE (1, '(I4, I4, F9.4, I6, A, I2)') DetNum, FirstNum+3, -0.50, -DetNum,& 
 &" imp:n,p=1 $ detector ", I 
END DO 
 
WRITE (1, '(A)') "c" 
 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,5)) + J 
 WRITE (1, '(I4, I4, F9.4, 2I6, A, I2)') DetNum, FirstNum+1, -8.75, -DetNum,& 
 &DetNum-1000, " imp:n,p=1 $ detector ", I 
END DO 
 
END IF 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Frame and Mounting Arm" 
WRITE (1, '(A)') "c" 
 
! WRITE (1, '(I4, I4, F9.4, 6I6)') 951, FirstNum+2, -2.70, 951, -952,& 
! &953, -954, 957, -958 
! WRITE (1, '(A)') " imp:n,p=1 $ detector frame upper" 
! WRITE (1, '(I4, I4, F9.4, 6I6)') 952, FirstNum+2, -2.70, 951, -952,& 
! &955, -956, 957, -958  
! WRITE (1, '(A)') " imp:n,p=1 $ detector frame lower" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 961, FirstNum+2, -2.70, -961, 962 
WRITE (1, '(A)') " imp:n,p=1 $ detector arm" 
! WRITE (1, '(I4, I4, F9.4, I6)') 963, FirstNum+2, -2.70, -963 
! WRITE (1, '(A)') " imp:n,p=1 $ detector arm" 
! WRITE (1, '(I4, I4, F9.4, I6)') 964, FirstNum+2, -2.70, -964 
! WRITE (1, '(A)') " imp:n,p=1 $ detector arm" 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c DT Generator Body"  
WRITE (1, '(A)') "c" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 966, FirstNum+4, -8.60, -966, 967  
WRITE (1, '(A)') " imp:n,p=1 $ DT Generator Tube" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 967, FirstNum+2, -2.70, -968, 969 
WRITE (1, '(A)') " imp:n,p=1 $ PMT Housing" 
WRITE (1, '(I4, A, I6)') 968, " 0 ", -967 
WRITE (1, '(A)') " imp:n,p=1 $ DT Generator Interior" 
WRITE (1, '(I4, I4, F9.4, 2I6)') 969, FirstNum+3, -0.50, -969, 966 
WRITE (1, '(A)') " imp:n,p=1 $ PMT Interior" 
 
END IF 
 
CYCLE !Go read the next line of input 
!IF 111111 
END IF 
 
 
IF (TRIM(INP(L)) == "c 222222") THEN 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detectors" 
WRITE (1, '(A)') "c" 
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! Detector surface cards go here 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,1)) + J 
 WRITE (1, '(I3, I4, A5, 5F12.6)') DetNum, J+FirstNum, " BOX ", Detect(I,2,1), 
Detect(I,3,1), &  
 &Detect(I,4,1), Detect(I,5,1), Detect(I,6,1) 
 WRITE (1, '(A6, 6F12.6)') " ", Detect(I,7,1), Detect(I,8,1), Detect(I,9,1), & 
 &Detect(I,10,1), Detect(I,11,1), Detect(I,12,1) 
 Theta = Detect(I,14,1)*360/6.283185307 
 WRITE (1, '(A6, F12.6, A, F12.6)') " ", Detect(I,13,1), " $ Angle = ", Theta 
END DO 
 
! Fancy Detectors 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Housing" 
WRITE (1, '(A)') "c" 
 
DO M = 2,3 
 DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,M)) + J 
 WRITE (1, '(I4, I4, A5, 5F12.6)') DetNum, J+FirstNum, " BOX ", Detect(I,2,M), 
Detect(I,3,M), &  
 &Detect(I,4,M), Detect(I,5,M), Detect(I,6,M) 
 WRITE (1, '(A6, 6F12.6)') " ", Detect(I,7,M), Detect(I,8,M), Detect(I,9,M), & 
 &Detect(I,10,M), Detect(I,11,M), Detect(I,12,M) 
 WRITE (1, '(A6, F12.6)') " ", Detect(I,13,M) 
 END DO 
END DO 
 
! Fancy Detectors 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Photomultiplier Tubes" 
WRITE (1, '(A)') "c" 
 
DO M = 4,5 
 DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,M)) + J 
 WRITE (1, '(I4, I4, A5, 3F12.6)') DetNum, J+FirstNum, " RCC ", Detect(I,2,M), 
Detect(I,3,M), &  
 &Detect(I,4,M) 
 WRITE (1, '(A6, 6F12.6)') " ", Detect(I,8,M), Detect(I,9,M), Detect(I,10,M), & 
 &Detect(I,13,M) 
 END DO 
END DO 
 
END IF 
 
! Fancy Detectors 
 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c Detector Mount and Support Arm" 
WRITE (1, '(A)') "c" 
 
 
! WRITE (1, '(I4, I4, A5, F12.6)') 951, J+FirstNum, " SO ", radius+4. 
! WRITE (1, '(I4, I4, A5, F12.6)') 952, J+FirstNum, " SO ", radius+14. 
! WRITE (1, '(I4, I4, A5, F12.6)') 953, J+FirstNum, " PZ ", -face/2. - 0.81 
! WRITE (1, '(I4, I4, A5, F12.6)') 954, J+FirstNum, " PZ ", -face/2. - 0.01 
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! WRITE (1, '(I4, I4, A5, F12.6)') 955, J+FirstNum, " PZ ", face/2. + 0.01 
! WRITE (1, '(I4, I4, A5, F12.6)') 956, J+FirstNum, " PZ ", face/2. + 0.81 
 
! Theta = REAL(NumDet+1)*phi/2. 
! WRITE (1, '(I4, I4, A, 3F12.6)') 957, J+FirstNum, " P 0 0 0 0 0 100 ", radius, & 
! & radius*TAN(-Theta), 0. 
! WRITE (1, '(I4, I4, A, 3F12.6)') 958, J+FirstNum, " P 0 0 0 0 0 100 ", radius, & 
! & radius*TAN(Theta), 0. 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(I4, I4, A5, 3F12.6, A)') 961, FirstNum-1, " BOX ", radius+1., -82.5, &  
&face/2. + 6., " 10.16 0 0 0 165 0 0 0 11.113" 
 
WRITE (1, '(I4, I4, A5, 3F12.6, A)') 962, FirstNum-1, " BOX ", radius+1.32, -82.5, 
&  
&face/2. + 7.27, " 9.52 0 0 0 165 0 0 0 9.52" 
 
! WRITE (1, '(I4, I4, A5, 3F12.6, A)') 963, FirstNum-1, " RCC ", radius+6.08, -20., 
& 
! &face/2. + 0.81, " 0 0 5.19 1.5"  
! WRITE (1, '(I4, I4, A5, 3F12.6, A)') 964, FirstNum-1, " RCC ", radius+6.08, 20., 
& 
! &face/2. + 0.81, " 0 0 5.19 1.5"  
 
 
WRITE (1, '(A)') "c" 
WRITE (1, '(A)') "c DT Generator Body"  
WRITE (1, '(A)') "c" 
WRITE (1, '(I4, I4, A)') 966, FirstNum-1, " RCC 0 -30.48 0 0 90.54 0 3.81"  
WRITE (1, '(I4, I4, A)') 967, FirstNum-1, " RCC 0 -30.28 0 0 90.14 0 3.61"  
WRITE (1, '(I4, I4, A)') 968, FirstNum-1, " RCC -15 0 0 11.18 0 0 3.81"  
WRITE (1, '(I4, I4, A)') 969, FirstNum-1, " RCC -14.4 0 0 9.98 0 0 3.61" 
 
END IF !Fancy Detectors 
 
CYCLE !Go read the next line of input 
!IF 222222 
END IF 
 
IF (TRIM(INP(L)) == "c 333333") THEN 
! Detector Material Specification 
WRITE (1, '(A,I3,A)') "m", FirstNum, " NLIB=60C $ organic scintillator" 
WRITE (1, '(A)') " 6000 10" 
WRITE (1, '(A)') " 1001 11" 
 
! Fancy Detectors 
 
IF (FancyDet == 1) THEN 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+1, " NLIB=70C $ Mu Metal, rho = 8.75 g/cm3" 
WRITE (1, '(A)') " 6000 -0.000200" 
WRITE (1, '(A)') " 14028 -0.003228 14029 -0.000163" 
WRITE (1, '(A)') " 14030 -0.000109 25055 -0.005000" 
WRITE (1, '(A)') " 26054 -0.008734 26056 -0.136983" 
WRITE (1, '(A)') " 26057 -0.003165 26058 -0.000418" 
WRITE (1, '(A)') " 28058 -0.544640 28060 -0.209760" 
WRITE (1, '(A)') " 28061 -0.009120 28062 -0.029040" 
WRITE (1, '(A)') " 28064 -0.007440" 
WRITE (1, '(A)') " 42092 -0.006233" 
WRITE (1, '(A)') " 42094 -0.003885 42095 -0.006686" 
WRITE (1, '(A)') " 42096 -0.007006 42097 -0.004011" 
WRITE (1, '(A)') " 42098 -0.010135 42100 -0.004044" 
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WRITE (1, '(A,I3,A)') "m", FirstNum+2, " NLIB=70C $ Aluminum 6061-T6, rho=2.70 
g/cm3" 
WRITE (1, '(A)') " 12024 -0.007899 12025 -0.001000" 
WRITE (1, '(A)') " 12026 -0.001101 13027 -0.980000" 
WRITE (1, '(A)') " 14028 -0.005534 14029 -0.000280" 
WRITE (1, '(A)') " 14030 -0.000186" 
WRITE (1, '(A)') " 24050 -0.000087 24052 -0.001676" 
WRITE (1, '(A)') " 24053 -0.000190 24054 -0.000047" 
WRITE (1, '(A)') " 29063 -0.001383 29065 -0.000617" 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+3, " NLIB=70C $ Photomultiplier Tube volume 
average, rho ~ 0.5 g/cm3" 
WRITE (1, '(A)') " 1001 -0.051892 1002 -0.000008" 
WRITE (1, '(A)') " 6000 -0.303200" 
WRITE (1, '(A)') " 8016 -0.096600 9019 -0.076000" 
WRITE (1, '(A)') " 13027 -0.150000" 
WRITE (1, '(A)') " 14028 -0.112797 14029 -0.005712" 
WRITE (1, '(A)') " 14030 -0.003791" 
WRITE (1, '(A)') " 29063 -0.138340 29065 -0.061660" 
 
WRITE (1, '(A,I3,A)') "m", FirstNum+4, " NLIB=70C $ Common Brass, rho = 8.6 g/cm3" 
WRITE (1, '(A)') " 29063 -0.435771 29065 -0.194229"  
WRITE (1, '(A)') " 30000 -0.370000" 
END IF 
 
 
WRITE (1, '(A, I3, F8.2, A, F8.2)') "*TR", FirstNum-1, offset, " 0 ", zplane  
! Detector Transforms go here 
DO I = 1, 2*N-1, 2 
K = FirstNum + (I+1)/2 - 1 
 rotate = phi*360*REAL(I-N)/REAL(N)/6.283185307/2. 
 xy = 90.-rotate 
 yx = 90.+rotate 
 WRITE (1, '(A, I3, F8.2, A, 3F10.6, A, 2F10.6, A)') "*TR", K, offset, " 0 ", 
zplane, -rotate, xy 
 WRITE (1, '(A, 2F10.6, A)') " 90 ", yx, -rotate, " 90 90 90 0" 
END DO 
 
WRITE (1, '(A,F8.2,A)') "*TR999", offset, " 0 0" 
 
! Calculate the angle to the center of the pixel 
!IF (NumPixels == 8) THEN 
! pixangle = -29.03 + 6.11*REAL(P) 
!ELSE IF (NumPixels == 16) THEN 
! pixangle = -25.975 + 3.055*REAL(P) 
!ELSE 
! PRINT *, "Unknown pixel configuration" 
! PRINT *, "Only 8 or 16 pixels are supported." 
! STOP 
!END IF 
pixangle = pixcenter - (REAL(NumPixels + 1)/2. - REAL(P))*FWHM 
 
! Now compute the values for the SI & SP cards for the SDEF 
! CorrFact is a correction factor that narrows the pixel slightly. 
! This correction is necessary to account for the fact that the SDEF card is a 
! discrete function. Without it, the pixels will be slightly more tail heavy 
! than expected and produce a 'wavy' void measurement. 
CorrFact = REAL(NumSDEFCards - 2) / REAL(NumSDEFCards - 1) 
PDFSum = 0. 
DO Q = 1, NumSDEFCards 
 SDEF(Q, 1) = REAL(Q-1) * 90. / REAL(NumSDEFCards-1) 
 SDEF(Q, 2) = COS(FWHM*SDEF(Q,1)/90.*6.283185307/360.*CorrFact) 
 SDEF(Q, 3) = (COS(SDEF(Q,1)*6.283185307/360.)) ** 2 
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 SDEF(Q, 4) = REAL(Q**2 - (Q-1)**2) 
 PDFSum = PDFSum + SDEF(Q,3) * SDEF(Q,4) 
END DO 
 
DO Q = 1, NumSDEFCards 
 SDEF(Q, 5) = SDEF(Q, 3) * SDEF(Q, 4) / PDFSum 
END DO 
 
xcos = COS(pixangle*6.283185307/360.) 
ycos = COS((90.-pixangle)*6.283185307/360.) 
WRITE (1, '(A,F8.2,A,F8.2,A)') "SDEF pos=", offset, " 0 ", zplane," ERG=14.100 
DIR=d1 "  
WRITE (1, '(A, 2F10.6, A)') " PAR=1 VEC=", xcos, ycos, " 0" 
 
! Write out the SI Card 
WRITE(1, '(A,4F12.8)') "SI1 -1 ", SDEF(NumSDEFCards,2), SDEF(NumSDEFCards-1,2), & 
& SDEF(NumSDEFCards-2,2), SDEF(NumSDEFCards-3,2) 
WRITE(1, '(A)', ADVANCE="NO") " " 
NumThisLine = 0 
DO Q = NumSDEFCards-4, 1, -1 
 WRITE(1, '(F12.8)', ADVANCE="NO") SDEF(Q,2) 
 NumThisLine = NumThisLine + 1 
 IF (NumThisLine == 5 .AND. Q /= 1) THEN 
 NumThisLine = 0 
 WRITE(1, *) 
 WRITE(1, '(A)', ADVANCE="NO") " " 
 END IF 
END DO 
WRITE(1, *) 
 
! Now write the SP Card 
WRITE(1, '(A,4F12.8)') "SP1 0 ", SDEF(NumSDEFCards,5), SDEF(NumSDEFCards-1,5), & 
& SDEF(NumSDEFCards-2,5), SDEF(NumSDEFCards-3,5) 
WRITE(1, '(A)', ADVANCE="NO") " " 
NumThisLine = 0 
DO Q = NumSDEFCards-4, 1, -1 
 WRITE(1, '(F12.8)', ADVANCE="NO") SDEF(Q,5) 
 NumThisLine = NumThisLine + 1 
 IF (NumThisLine == 5 .AND. Q /= 1) THEN 
 NumThisLine = 0 
 WRITE(1, *) 
 WRITE(1, '(A)', ADVANCE="NO") " " 
 END IF 
END DO 
 
WRITE(1, *) 
WRITE (1, '(A)') "phys:n J 20."  
WRITE (1, '(A)') "phys:p 0 1 1"  
WRITE (1, '(A,F12.4)') "cut:n ", window*0.1  
WRITE (1, '(A,F12.4,A)') "cut:p ", window*0.1," J 0"  
WRITE (1, '(A)') "rdum 0.000150 0.001000" 
! IDUM Card 
WRITE (1, '(A, I3)') "idum 0 1 2 1 J 1 ", NumDet 
WRITE (1, '(A)', Advance="NO") " " 
DO I = 1, NumDet 
 DetNum = INT(Detect(I,1,1)) + J 
 WRITE (1, '(I4)', ADVANCE="NO") DetNum 
 IF (MOD(I,10) == 0) THEN 
 WRITE(1, *) 
 IF(I .NE. NumDet) WRITE(1,'(A)', ADVANCE="NO") " " 
 ELSEIF (I == NumDet) THEN 
 WRITE(1,*) 
 END IF 
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END DO 
! DBCN Card 
WRITE (1, '(A)', ADVANCE="NO") "DBCN 74822145211985 6J " 
K = 1 + NPS * J * P 
WRITE (Hist, '(I12)') K 
Hist = TRIM(Hist) 
! PRINT *, Hist 
WRITE (1, '(A)', ADVANCE="NO") Hist 
WRITE (1, '(A)') " 4J 12851" 
WRITE (1, '(A,I12)') "nps ", NPS  
WRITE (1, '(A)') "FILES 21 DUMN1" 
 
CYCLE 
!IF 333333 
END IF 
 
WRITE (1, '(A)') Inp(L) 
 
!End of L Loop (L = Line of input deck) 
END DO 
CLOSE (UNIT=1) 
 
 
TxtOut = "move " // TRIM(FileNme) // " .\" // FileBase(1:4) & 
& // "\" // TRIM(PixelNum) 
CALL SYSTEM(TRIM(TxtOut)) 
 
 
!End of J (subsample) loop 
END DO 
 
WRITE (97, '(A)') "rm -f runtp*" 
CLOSE(UNIT=97) 
TxtOut = "move " // TRIM(FileNme3) // " .\" // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
 
WRITE (98, '(A, 3I4, 2F10.5)') "JoinSS " // FileBase(1:2) // TRIM(PixelNum), N, 
NumDet, & 
& FirstNum, radius, DetSep 
WRITE (98, '(A)') "copy " // FileBase(1:2) // TRIM(PixelNum) & 
& // ".peaks .." 
WRITE (98, '(A)') "cd .." 
 
WRITE (99, '(A)') "cd .." 
 
!End P (pixels) loop 
END DO 
 
WRITE (98, '(A, I4)') "JoinPixels " // FileBase(1:2) , NumPixels 
WRITE (98, '(A)') "pause" 
CLOSE(UNIT=98) 
 
WRITE (99, '(A)') "pause" 
CLOSE(UNIT=99) 
 
 
 
TxtOut = "move " // FileBase(1:4) // ".bat .\" // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
TxtOut = "move PP.bat .\" // FileBase(1:4) 
CALL SYSTEM(TRIM(TxtOut)) 
 
CONTAINS 
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SUBROUTINE ReadParams() 
 
OPEN(UNIT=101, FILE=TRIM(ParamText), ACTION="READ", STATUS="OLD", IOSTAT=ErrCode) 
IF (ErrCode > 0) STOP "Could not find specified input parameter file." 
 
DO I = 1, 10000 
 READ(101, '(A)', IOSTAT=ErrCode) ThisLine 
 IF (ErrCode < 0) EXIT !End of parameter file 
 
 IF (ThisLine(1:4) == "BASE") THEN 
 DO J = 5, 80 
 IF (ThisLine(J:J) /= " ") THEN 
 FileBase = TRIM(ThisLine(J:80)) 
 EXIT 
 END IF 
 END DO 
 ELSE IF (ThisLine(1:3) == "NPS") THEN  
 READ(ThisLine(4:80), '(I11)') NPS 
 ELSE IF (ThisLine(1:5) == "NUMSS") THEN  
 READ(ThisLine(6:80), '(I11)') N 
 ELSE IF (ThisLine(1:4) == "SRCX") THEN  
 READ(ThisLine(5:80), '(F16.8)') offset 
 ELSE IF (ThisLine(1:6) == "ZPLANE") THEN  
 READ(ThisLine(7:80), '(F16.8)') zplane 
 ELSE IF (ThisLine(1:6) == "STODET") THEN  
 READ(ThisLine(7:80), '(F16.8)') radius 
 ELSE IF (ThisLine(1:6) == "NUMDET") THEN  
 READ(ThisLine(7:80), '(I11)') NumDet 
 ELSE IF (ThisLine(1:6) == "1STDET") THEN  
 READ(ThisLine(7:80), '(I11)') FirstNum 
 ELSE IF (ThisLine(1:6) == "DETDIM") THEN  
 READ(ThisLine(7:80), '(F16.8)') crys 
 ELSE IF (ThisLine(1:6) == "DETDEP") THEN  
 READ(ThisLine(7:80), '(F16.8)') Depth 
 ELSE IF (ThisLine(1:4) == "FACE") THEN  
 READ(ThisLine(5:80), '(F16.8)') face 
 ELSE IF (ThisLine(1:6) == "DETSEP") THEN  
 READ(ThisLine(7:80), '(F16.8)') detsep 
 ELSE IF (ThisLine(1:5) == "FANCY") THEN  
 READ(ThisLine(6:80), '(I11)') FancyDet 
 ELSE IF (ThisLine(1:6) == "NUMPIX") THEN  
 READ(ThisLine(7:80), '(I11)') NumPixels 
 ELSE IF (ThisLine(1:6) == "PIXCEN") THEN  
 READ(ThisLine(7:80), '(F16.8)') pixcenter 
 ELSE IF (ThisLine(1:4) == "FWHM") THEN  
 READ(ThisLine(5:80), '(F16.8)') FWHM 
 ELSE IF (ThisLine(1:6) == "SIBINS") THEN  
 READ(ThisLine(7:80), '(I11)') NumSDEFCards 
 ELSE IF (ThisLine(1:6) == "WINDOW") THEN  
 READ(ThisLine(7:80), '(F16.8)') window 
 ELSE IF (ThisLine(1:6) == "DEADTM") THEN  
 READ(ThisLine(7:80), '(F16.8)') deadtime 
 ELSE IF (ThisLine(1:6) == "THRESH") THEN  
 READ(ThisLine(7:80), '(F16.8)') threshold 
 END IF 
END DO 
 
CLOSE(UNIT=101) 
 
END SUBROUTINE ReadParams 
 
END PROGRAM makeinp 
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A Sample Parameters File 
-! The input name of the base MCNP deck 
BASE Barr.inp 
! The number of source particles 
NPS 25000000 
! The number of subsamples 
NUMSS 4 
 
! The x position of the source, in cm.  
SRCX -55.0 
! The z position of the source and the detector array 
ZPLANE 0. 
! The source to detector distance. Standard NMIS distances are 85, 110, 
! and 217.17 cm. 
STODET 110.0 
 
! The number of imaging detectors in the array 
NUMDET 32 
! The cell number of the first imaging detector. 1STDET + NUMSS * NUMDET must 
! be < 1000 or the resulting decks crash. 
1STDET 401 
! The size of the front face of the plastic scintillator crystal. 
! Only crystals with a square face are supported at this time. 
DETDIM 2.54 
! The depth (long dimension) of the scintillator crystal 
DETDEP 10.16 
! The dimension of the front face of the detector housing. 
! Only square facess are supported. 
FACE 3.0607 
! The separation between adjacent detector centers, in cm. 
! DETSEP =~ STODET * TAN(Angle between detector centers) 
DETSEP 3.20 
! Setting FANCY to 1 will generate detectors with housings and photo-multiplier 
! tubes. Setting it to 0 omits these. The RSICC version of mcnp-polimi will 
! probably not be able to handle FANCY=1 with > 16 detectors. 
FANCY 0 
 
! The number of DT Generator Pixels 
NUMPIX 8 
! The offset of the center of the pixels from the center of the detector array. 
PIXCEN -1.535 
! The full width at half maximum of the pixels. 
FWHM 6.11 
! The number of bins that will be used on the SI and SP cards to define the  
! initial neutron directions. More bins will more closely approximate a  
! continuous function.  
SIBINS 46 
 
! The size of the correlation window, in ns.  
WINDOW 256. 
! The detector deadtime, in ns. 
DEADTM 35. 
The neutron threshold of the array detectors, in MeV. 
THRESH 1.0 
 
An Example Base Input Deck 
Barrel Simulation Base File  
C  
C CELL CARDS ************************************************************  
c  
c  
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c Object being scanned - Barrel with iron pipes and steel shot  
c  
101 3 -7.86 -101 102 IMP:N,P=1  
102 0 -102 #111 #121 #131 #141 #151 IMP:N,P=1  
103 6 -0.25 -103 104 IMP:N,P=1  
104 0 -104 IMP:N,P=1  
111 2 -0.95 -102 -111 -152 IMP:N,P=1  
121 5 -18.90 -102 121 -122 -152 IMP:N,P=1  
131 3 -7.86 -102 131 -132 -153 IMP:N,P=1  
141 3 -7.86 -102 141 -142 -153 IMP:N,P=1  
151 3 -4.75 -102 132 -151 #141 IMP:N,P=1  
c  
c 
c Problem boundary and 'everything else' cell  
c  
99 0 99 imp:n,p=0  
98 0 -99 101 103  
c 111111 
  
C BLANK LINE DELIMITER --------------------------------------------------  
C  
C SURFACE CARDS *********************************************************  
C  
c  
c Problem Boundary  
99 BOX -400 -400 -100 800 0 0 0 800 0 0 0 400  
c  
c  
c Object Being Scanned - Barrel with iron pipes and steel shot  
c  
101 3 RCC 0 0 10.0 0 0 47.00 17.88  
102 3 RCC 0 0 10.1 0 0 46.80 17.78  
103 3 RCC 0 0 0 0 0 10 16.88  
104 3 RCC 0 0 0 0 0 10 6.72  
c  
111 3 CZ 1.27  
121 3 CZ 4.445  
122 3 CZ 6.35  
131 3 CZ 7.62  
132 3 CZ 8.41375  
141 3 CZ 10.16  
142 3 CZ 10.95375  
151 3 PZ 23  
152 3 PZ 25.24  
153 3 PZ 28.0  
c  
c 222222 
  
C BLANK LINE DELIMITER --------------------------------------------------  
C  
C  
C DATA CARDS ************************************************************  
C  
MODE n p  
c  
c Geometric Transforms  
c 
*TR3 0 0 -17 0.000000 90.000000 90 90.000000 0.000000 90 90 90 0  
TR201 -55.00 0 0  
C  
C MATERIALS  
C  
c  
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c Polyethylene, Rho=0.95 g/cc  
c  
M1 NLIB=60c  
 6000 2  
 1001 4  
c  
c Graphite, Rho = 2.20 g/cc  
c  
M2 NLIB=60c  
 6000 1  
c  
c Elemental Iron, Rho = 7.86 g/cc  
c  
M3 NLIB=60c  
 26054 -0.058500  
 26056 -0.917500  
 26057 -0.021200  
 26058 -0.002800  
c  
c Elemental Lead, Rho = 11.6 g/cc  
c  
M4 NLIB=60c  
 82206 -0.244400  
 82207 -0.224100  
 82208 -0.531500  
c  
c Depleted Uranium, Rho = 18.9  
c  
M5 NLIB=60c  
 92235 -0.002  
 92238 -0.998  
c  
c Cellulose (Wood)  
c  
M6 NLIB=70c  
 1001 0.499925  
 1002 0.000075  
 6000 0.25  
 8016 0.25  
c  
c 333333 

 
A Sample MCNP Input Deck Created by MakeInp 
Barrel Simulation Base File  
C  
C CELL CARDS ************************************************************  
c  
c  
c Object being scanned - Barrel with iron pipes and steel shot  
c  
101 3 -7.86 -101 102 IMP:N,P=1  
102 0 -102 #111 #121 #131 #141 #151 IMP:N,P=1  
103 6 -0.25 -103 104 IMP:N,P=1  
104 0 -104 IMP:N,P=1  
111 2 -0.95 -102 -111 -152 IMP:N,P=1  
121 5 -18.90 -102 121 -122 -152 IMP:N,P=1  
131 3 -7.86 -102 131 -132 -153 IMP:N,P=1  
141 3 -7.86 -102 141 -142 -153 IMP:N,P=1  
151 3 -4.75 -102 132 -151 #141 IMP:N,P=1  
c  
c  
c Problem boundary and 'everything else' cell  
c  
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99 0 99 imp:n,p=0  
98 0 -99 101 103  
 401 405 409 413 417 421 425 429 433 437 441 445 
 449 453 457 461 465 469 473 477 481 485 489 493 
 497 501 505 509 513 517 521 525 
 imp:n,p=1 
c 
c Detectors 
c 
401 401 -1.0230 -401 imp:n,p=1 $ detector 1 
405 401 -1.0230 -405 imp:n,p=1 $ detector 2 
409 401 -1.0230 -409 imp:n,p=1 $ detector 3 
413 401 -1.0230 -413 imp:n,p=1 $ detector 4 
417 401 -1.0230 -417 imp:n,p=1 $ detector 5 
421 401 -1.0230 -421 imp:n,p=1 $ detector 6 
425 401 -1.0230 -425 imp:n,p=1 $ detector 7 
429 401 -1.0230 -429 imp:n,p=1 $ detector 8 
433 401 -1.0230 -433 imp:n,p=1 $ detector 9 
437 401 -1.0230 -437 imp:n,p=1 $ detector 10 
441 401 -1.0230 -441 imp:n,p=1 $ detector 11 
445 401 -1.0230 -445 imp:n,p=1 $ detector 12 
449 401 -1.0230 -449 imp:n,p=1 $ detector 13 
453 401 -1.0230 -453 imp:n,p=1 $ detector 14 
457 401 -1.0230 -457 imp:n,p=1 $ detector 15 
461 401 -1.0230 -461 imp:n,p=1 $ detector 16 
465 401 -1.0230 -465 imp:n,p=1 $ detector 17 
469 401 -1.0230 -469 imp:n,p=1 $ detector 18 
473 401 -1.0230 -473 imp:n,p=1 $ detector 19 
477 401 -1.0230 -477 imp:n,p=1 $ detector 20 
481 401 -1.0230 -481 imp:n,p=1 $ detector 21 
485 401 -1.0230 -485 imp:n,p=1 $ detector 22 
489 401 -1.0230 -489 imp:n,p=1 $ detector 23 
493 401 -1.0230 -493 imp:n,p=1 $ detector 24 
497 401 -1.0230 -497 imp:n,p=1 $ detector 25 
501 401 -1.0230 -501 imp:n,p=1 $ detector 26 
505 401 -1.0230 -505 imp:n,p=1 $ detector 27 
509 401 -1.0230 -509 imp:n,p=1 $ detector 28 
513 401 -1.0230 -513 imp:n,p=1 $ detector 29 
517 401 -1.0230 -517 imp:n,p=1 $ detector 30 
521 401 -1.0230 -521 imp:n,p=1 $ detector 31 
525 401 -1.0230 -525 imp:n,p=1 $ detector 32 
  
C BLANK LINE DELIMITER --------------------------------------------------  
C  
C SURFACE CARDS *********************************************************  
C  
c  
c Problem Boundary  
99 BOX -400 -400 -100 800 0 0 0 800 0 0 0 400  
c  
c  
c Object Being Scanned - Barrel with iron pipes and steel shot  
c  
101 3 RCC 0 0 10.0 0 0 47.00 17.88  
102 3 RCC 0 0 10.1 0 0 46.80 17.78  
103 3 RCC 0 0 0 0 0 10 16.88  
104 3 RCC 0 0 0 0 0 10 6.72  
c  
111 3 CZ 1.27  
121 3 CZ 4.445  
122 3 CZ 6.35  
131 3 CZ 7.62  
132 3 CZ 8.41375  
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141 3 CZ 10.16  
142 3 CZ 10.95375  
151 3 PZ 23  
152 3 PZ 25.24  
153 3 PZ 28.0  
c  
c 
c Detectors 
c 
401 401 BOX 98.453758 -49.076168 -1.270000 1.106819 2.286165 
 0.000000 9.144662 -4.427274 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -25.833366 
405 401 BOX 99.839478 -46.191906 -1.270000 1.039858 2.317390 
 0.000000 9.269559 -4.159431 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -24.166698 
409 401 BOX 101.140717 -43.268559 -1.270000 0.972017 2.346653 
 0.000000 9.386614 -3.888068 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -22.500029 
413 401 BOX 102.356384 -40.308598 -1.270000 0.903354 2.373932 
 0.000000 9.495727 -3.613416 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -20.833361 
417 401 BOX 103.485451 -37.314537 -1.270000 0.833927 2.399201 
 0.000000 9.596805 -3.335707 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -19.166693 
421 401 BOX 104.526955 -34.288902 -1.270000 0.763794 2.422441 
 0.000000 9.689763 -3.055175 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -17.500023 
425 401 BOX 105.480019 -31.234255 -1.270000 0.693015 2.443631 
 0.000000 9.774523 -2.772058 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -15.833355 
429 401 BOX 106.343842 -28.153181 -1.270000 0.621649 2.462753 
 0.000000 9.851012 -2.486596 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -14.166686 
433 401 BOX 107.117676 -25.048288 -1.270000 0.549757 2.479792 
 0.000000 9.919167 -2.199029 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -12.500018 
437 401 BOX 107.800880 -21.922199 -1.270000 0.477401 2.494732 
 0.000000 9.978929 -1.909603 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -10.833349 
441 401 BOX 108.392883 -18.777563 -1.270000 0.404640 2.507562 
 0.000000 10.030248 -1.618560 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -9.166680 
445 401 BOX 108.893158 -15.617040 -1.270000 0.331537 2.518270 
 0.000000 10.073079 -1.326148 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -7.500012 
449 401 BOX 109.301315 -12.443302 -1.270000 0.258154 2.526847 
 0.000000 10.107388 -1.032614 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -5.833344 
453 401 BOX 109.616982 -9.259036 -1.270000 0.184552 2.533287 
 0.000000 10.133146 -0.738206 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -4.166675 
457 401 BOX 109.839905 -6.066936 -1.270000 0.110794 2.537582 
 0.000000 10.150330 -0.443174 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -2.500006 
461 401 BOX 109.969894 -2.869702 -1.270000 0.036942 2.539731 
 0.000000 10.158925 -0.147767 0.000000 0.000000 0.000000 
 2.540000 $ Angle = -0.833337 
465 401 BOX 110.006836 0.329960 -1.270000 -0.036941 2.539731 
 0.000000 10.158925 0.147766 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 0.833332 
469 401 BOX 109.950699 3.529342 -1.270000 -0.110793 2.537582 
 0.000000 10.150330 0.443173 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 2.500000 
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473 401 BOX 109.801537 6.725738 -1.270000 -0.184551 2.533287 
 0.000000 10.133146 0.738205 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 4.166669 
477 401 BOX 109.559464 9.916443 -1.270000 -0.258153 2.526847 
 0.000000 10.107388 1.032613 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 5.833337 
481 401 BOX 109.224701 13.098758 -1.270000 -0.331537 2.518270 
 0.000000 10.073079 1.326147 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 7.500006 
485 401 BOX 108.797516 16.269991 -1.270000 -0.404640 2.507562 
 0.000000 10.030248 1.618559 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 9.166675 
489 401 BOX 108.278282 19.427456 -1.270000 -0.477400 2.494732 
 0.000000 9.978929 1.909602 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 10.833344 
493 401 BOX 107.667435 22.568483 -1.270000 -0.549757 2.479792 
 0.000000 9.919167 2.199028 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 12.500011 
497 401 BOX 106.965485 25.690416 -1.270000 -0.621649 2.462753 
 0.000000 9.851012 2.486595 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 14.166680 
501 401 BOX 106.173035 28.790615 -1.270000 -0.693014 2.443631 
 0.000000 9.774523 2.772057 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 15.833349 
505 401 BOX 105.290749 31.866451 -1.270000 -0.763794 2.422441 
 0.000000 9.689763 3.055174 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 17.500019 
509 401 BOX 104.319374 34.915325 -1.270000 -0.833926 2.399201 
 0.000000 9.596805 3.335706 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 19.166687 
513 401 BOX 103.259743 37.934658 -1.270000 -0.903354 2.373932 
 0.000000 9.495727 3.613415 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 20.833355 
517 401 BOX 102.112740 40.921894 -1.270000 -0.972017 2.346653 
 0.000000 9.386614 3.888068 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 22.500025 
521 401 BOX 100.879333 43.874504 -1.270000 -1.039858 2.317390 
 0.000000 9.269560 4.159430 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 24.166693 
525 401 BOX 99.560577 46.789997 -1.270000 -1.106818 2.286165 
 0.000000 9.144662 4.427273 0.000000 0.000000 0.000000 
 2.540000 $ Angle = 25.833361 
  
C BLANK LINE DELIMITER --------------------------------------------------  
C  
C  
C DATA CARDS ************************************************************  
C  
MODE n p  
c  
c Geometric Transforms  
c  
*TR3 0 0 -17 0.000000 90.000000 90 90.000000 0.000000 90 90 90 0  
TR201 -55.00 0 0  
C  
C MATERIALS  
C  
c  
c Polyethylene, Rho=0.95 g/cc  
c  
M1 NLIB=60c  
 6000 2  
 1001 4  
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c  
c Graphite, Rho = 2.20 g/cc  
c  
M2 NLIB=60c  
 6000 1  
c  
c Elemental Iron, Rho = 7.86 g/cc  
c  
M3 NLIB=60c  
 26054 -0.058500  
 26056 -0.917500  
 26057 -0.021200  
 26058 -0.002800  
c  
c Elemental Lead, Rho = 11.6 g/cc  
c  
M4 NLIB=60c  
 82206 -0.244400  
 82207 -0.224100  
 82208 -0.531500  
c  
c Depleted Uranium, Rho = 18.9  
c  
M5 NLIB=60c  
 92235 -0.002  
 92238 -0.998  
c  
c Cellulose (Wood)  
c  
M6 NLIB=70c  
 1001 0.499925  
 1002 0.000075  
 6000 0.25  
 8016 0.25  
c  
m401 NLIB=60C $ organic scintillator 
 6000 10 
 1001 11 
*TR400 -55.00 0 0.00 
*TR401 -55.00 0 0.000000 0.625001 90.625000 
 90 89.375000 0.625001 90 90 90 0 
*TR402 -55.00 0 0.000000 0.208334 90.208336 
 90 89.791664 0.208334 90 90 90 0 
*TR403 -55.00 0 0.000000 -0.208334 89.791664 
 90 90.208336 -0.208334 90 90 90 0 
*TR404 -55.00 0 0.000000 -0.625001 89.375000 
 90 90.625000 -0.625001 90 90 90 0 
*TR999 -55.00 0 0 
SDEF pos= -55.00 0 0.00 ERG=14.100 DIR=d1  
 PAR=1 VEC= 0.921050 -0.389445 0 
SI1 -1 0.99456882 0.99480730 0.99504048 0.99526829 
 0.99549073 0.99570787 0.99591964 0.99612612 0.99632716 
 0.99652290 0.99671328 0.99689835 0.99707800 0.99725235 
 0.99742132 0.99758494 0.99774319 0.99789608 0.99804366 
 0.99818581 0.99832267 0.99845415 0.99858022 0.99870098 
 0.99881637 0.99892640 0.99903107 0.99913037 0.99922431 
 0.99931288 0.99939603 0.99947387 0.99954635 0.99961346 
 0.99967521 0.99973154 0.99978256 0.99982822 0.99986845 
 0.99990338 0.99993289 0.99995703 0.99997586 0.99998927 
 0.99999732 1.00000000 
SP1 0 0.00000000 0.00017344 0.00067736 0.00148600 
 0.00257230 0.00390802 0.00546408 0.00721063 0.00911736 
 0.01115372 0.01328905 0.01549287 0.01773509 0.01998616 
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 0.02221729 0.02440068 0.02650962 0.02851873 0.03040410 
 0.03214340 0.03371609 0.03510346 0.03628879 0.03725742 
 0.03799684 0.03849673 0.03874905 0.03874798 0.03849005 
 0.03797406 0.03720104 0.03617428 0.03489926 0.03338354 
 0.03163673 0.02967037 0.02749782 0.02513415 0.02259600 
 0.01990143 0.01706977 0.01412148 0.01107793 0.00796129 
 0.00479429 0.00160004 
phys:n J 20. 
phys:p 0 1 1 
cut:n 25.6000 
cut:p 25.6000 J 0 
rdum 0.000150 0.001000 
idum 0 1 2 1 J 1 32 
 401 405 409 413 417 421 425 429 433 437 
 441 445 449 453 457 461 465 469 473 477 
 481 485 489 493 497 501 505 509 513 517 
 521 525 
DBCN 74822145211985 6J 1 4J 12851 
nps 25000000 
FILES 21 DUMN1 
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APPENDIX D.  —THE POLIMIPP CODE AND SUPPORTING FILES 

The PoliMiPP Code 
PROGRAM PoliMiPP 
! Version 3.00 
! Written January 7th, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: December 21st, 2009 
 
!================================================================================= 
! Variable declaration 
!================================================================================= 
 
IMPLICIT NONE 
 
TYPE DatFile 
 INTEGER(KIND=4) Col1, Col2, Col3, Col4, Col5, Col6 
 REAL(KIND=4) Col7, Col8, Col9, Col10, Col11, Col12 
 INTEGER(KIND=4) Col13, Col14, Col15 
 ! REAL(KIND=4) Col16 
END TYPE DatFile 
 
TYPE DetectorPulse 
 INTEGER(KIND=4) HistNo, DetNo, ParNo, Direct, SubHist, XTalk 
 REAL(KIND=4) :: Time, PulseHeight 
END TYPE DetectorPulse 
 
TYPE PeaksFile 
 INTEGER(Kind=4) DetNo, TotalPeak 
 REAL(KIND=4) TotalMean 
 INTEGER(KIND=4) DirectPeak 
 REAL(KIND=4) DirectMean 
 INTEGER(KIND=4) XTPeak 
 REAL(KIND=4) XTMean 
END TYPE PeaksFile 
 
! Removed - qqqqq 
! The DatFile array holds all of the data from the PoliMi .DAT file 
! It's dimensions will be the number of rows in the .DAT file x the number of 
columns 
! in the PoliMi output (16). 
! REAL, ALLOCATABLE :: DatFile(:,:) 
 
TYPE(DatFile), ALLOCATABLE :: ThisHist(:) 
TYPE(DatFile) :: HistSwap, TestInput 
 
TYPE(DetectorPulse), ALLOCATABLE :: TempPulses(:), Pulses(:) 
INTEGER(KIND=4) :: NumPulses 
 
! This array will temporarily store the data on the starting histories until the 
total 
! number of histories in the .DAT file is known, at which time the data will be 
moved 
! to the (smaller) DatHist array. 
INTEGER(KIND=4), ALLOCATABLE :: TempHist(:,:) 
 
! The DatHist array contains the history the history number, starting line number 
(in the 
! DatFile array) of each history number, and the number of events for that history. 
INTEGER(KIND=4), ALLOCATABLE :: DatHist(:,:), PulseHist(:,:) 
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! Records the number of detectors (NumDet) and detector cell numbers found in the 
.DAT file. 
! CurrentDet holds the cell number of the detector in the current history that is 
being  
! manipulated by the program. 
INTEGER(KIND=4) :: NumDet, Detector(50), CurrentDet 
! NewDet indicates whether a detector cell number has been seen in the .DAT file 
previously. 
LOGICAL :: NewDet 
 
! Integer variables used for DO loops and swapping 
INTEGER(KIND=4) :: I, J, K, L, SwapInt, SubHistNo, NumSubHist 
REAL(KIND=4) :: MinTime 
 
! NumEvents is the number of rows in the .DAT file. NumHist is the number of 
histories 
! in the .DAT file. MaxEvt is the maximum number of events recorded for a single 
history. 
! MaxEvtHist is the history number with the maximum number of events. 
INTEGER(KIND=4) :: NumEvents, NumHist, MaxEvt, MaxEvtHist, NumHistP, MaxPulse, 
MaxPulseHist 
 
! This variable is used to sort the events in a history by interaction time. 
INTEGER(KIND=4) :: MinRowLoc(1) 
 
! 'History' holds the history number of the line currently being read in the .DAT 
file. 
! 'OldHistory' holds the history number of the previous line 
INTEGER(KIND=4) :: History, OldHistory 
 
! 'InputStatus' holds the IO status of a file read. IO status < 0 indicates end of 
file. 
INTEGER :: InputStatus, FileBaseSize 
CHARACTER :: DatName*64, FileBase*64, DetectName*4, NPSText*11, OneLetter*1 
CHARACTER :: CorrWindowText*11, DeadTimeText*11, DatFormatText*128, nThreshText*11 
 
! These variables store the time at the beginning and end of the program in order 
to  
! measure the execution time of the program. 
REAL(Kind = 4) :: StartTime, FinishTime 
 
! Dummy Variables 
INTEGER(KIND=4) :: DummyInt 
REAL(KIND=4) :: DummyReal 
 
! DeadStart records the time that the detector deadtime window opens. PulseStart 
records 
! the time the pulse generation window opens. PHThisEvent is the total light output 
! attributed to a particular event in the .DAT file. PHTotal is the total light 
output 
! generated during the pulse generation window so far. 
REAL(Kind = 4) :: DeadStart, PulseStart, PHThisEvent 
 
REAL(KIND=4), ALLOCATABLE :: PHTotal(:) 
 
! Input parameters. These are currently hard-coded, but may be placed off-line 
later. 
! Pulse generation time. This is the amount of time it takes the detector to 
generate a  
! pulse once the initial energy is deposited in the detector cell. If two events 
occur 
! within pgentime of each other, their light output will combine. 
REAL :: pgentime = 10.0 
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! The time after a pulse in a detector in which all further events are lost. 
! REAL, PARAMETER :: deadtime = 80.0 
REAL :: deadtime 
! The light output (in MeVee) required to produce a pulse in the detector. 
REAL :: threshold, nthresh 
! INTEGER, PARAMETER :: CorrWindow = 1024 
INTEGER(KIND=4) :: CorrWindow 
! The cell number of the start detector which will be used for cross-correlation 
! calculations 
INTEGER :: StartDet, StartDetRow, StopDetRow 
 
! Used to hold the integer (rather than real) pulse time. 
INTEGER :: IntTime, StopIntTime, TimeLag, CorrWindowOverflow 
 
! Arrays used to hold the program output. 
INTEGER(KIND=4), ALLOCATABLE :: Correlation(:,:,:), CrossCorr(:,:,:) 
 
! Variables used for calculating multiplicities 
! qqqqq - Made this a command line input for now. 
! INTEGER(KIND=4), PARAMETER :: nps = 18600000 
INTEGER(KIND=4) :: nps 
INTEGER(KIND=4) :: TotalMult, TotalNeutronMult 
INTEGER(KIND=4), ALLOCATABLE :: Multiplicity(:,:) 
 
TYPE(PeaksFile), ALLOCATABLE :: Peaks(:) 
INTEGER, PARAMETER :: PeakWidth = 5 
INTEGER(KIND=4) :: PeakSumTotal, PeakSumDirect, PeakSumNoXT, PeakStart, PeakOld 
 
! PH Spectrum parameters 
REAL, PARAMETER :: PHSIncrement = 0.05, PHSMax = 10.00 
INTEGER :: PHSNumBins, PHSBin 
INTEGER(KIND=4), ALLOCATABLE :: PHSpectrum(:,:,:) 
 
INTEGER :: NumNeutronPulses 
 
! Variables Used for assigning the minimum particle number and subhist to a pulse 
if 
! it is the aggregation of more than 1 event 
INTEGER(KIND=4) :: MinParNo, MinSubHist, MinCollisions, MinGen, MinCode 
REAL :: MinWeight 
 
! These values are used to control the maximum number of lines and histories the 
program 
! will read from the .DAT files. If these values are too small, the entire .DAT 
file 
! will not be processed. If they are set too large, a huge .DAT file may overflow  
! system memory and cause a crash. Values as large as MaxHist = 10000000 and  
! MaxLines = 24000000 have been tested. 
INTEGER(KIND=4) :: MaxHist, MaxLines 
MaxHist = 20000000 
MaxLines = 40000000 
 
!================================================================================== 
! Read variables from command line, open .DAT file, initialize variables 
!================================================================================== 
 
CALL CPU_TIME(StartTime) 
 
 
PRINT *, "PolimiPP, Version 3.00" 
PRINT *, "Modified 26 October 2009" 
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! Reads the .DAT filename from the command line 
CALL GetArg(1, DatName) 
CALL GetArg(2, DetectName) 
CALL GetArg(3, NPSText) 
CALL GetArg(4, CorrWindowText) 
CALL GetArg(5, DeadTimeText) 
CALL GetArg(6, nThreshText) 
 
IF (LEN(TRIM(DatName)) == 0) THEN 
 Print *, "PoliMiPP Syntax:" 
 PRINT *, 
 PRINT *, "PoliMiPP <.dat Filename> <Start Det Cell #> <nps> <Correlation Window 
Size>," 
 PRINT *, "<Detector Dead Time>, <Neutron Threshold>" 
 STOP 
END IF 
 
READ (DetectName, '(I4)') StartDet 
IF (LEN(TRIM(NPSText)) > 0) THEN 
 READ (NPSText, '(I11)') nps 
ELSE 
 nps = 1 
END IF 
 
IF (LEN(TRIM(CorrWindowText)) > 0) THEN 
 READ (CorrWindowText, '(I11)') CorrWindow 
ELSE 
 CorrWindow = 256 
END IF 
 
IF (CorrWindow > 2048) THEN 
 PRINT *, "Correlation Window exceeds maximum value of 2048 ns. Correlation Window 
size, dead time, " 
 PRINT *, "and pulse generation time will be converted to microseconds by dividing 
by 1000." 
END IF 
 
! qqqqq 
!PRINT *, CorrWindow 
 
IF (LEN(TRIM(DeadTimeText)) > 0) THEN 
 READ (DeadTimeText, '(F11.0)') deadtime 
ELSE 
 deadtime = 35.0 
END IF 
 
IF (LEN(TRIM(nThreshText)) > 0) THEN 
 READ (nThreshText, '(F11.0)') nthresh 
ELSE 
 nthresh = 1.0 
END IF 
 
threshold = 0.0364*nthresh**2 + 0.125*nthresh 
 
 
! qqqqq 
!PRINT *, deadtime 
 
FileBase = " " 
 
J = ICHAR(".") 
DO I = 1,LEN(TRIM(DatName)) 
 IF (DatName(I:I) == ".") THEN 
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 EXIT 
 ELSE  
 OneLetter = DatName(I:I) 
 FileBase(I:I) = OneLetter 
 END IF 
END DO 
 
! qqqqq 
!PRINT *, TRIM(FileBase) 
 
!FileBase = DatName(1:4) 
 
! Opens .DAT file 
OPEN(UNIT=1, FILE=TRIM(DatName), ACTION="READ", STATUS="OLD", POSITION="REWIND", 
IOSTAT = InputStatus) 
IF (InputStatus > 0) STOP "Error opening specified .DAT file" 
 
NumHist = 0 
OldHistory = 0 
NumDet = 0 
Detector = 0 
 
! TempHist will record history numbers and starting line of all histories in the 
.DAT file. 
! Because the number of histories will not be known until after all of the 
histories are 
! read in, it must be allocated with more rows than the maximum number of histories 
any 
! reasonably (< 2 GB) sized .DAT file could contain. 
ALLOCATE(TempHist(MaxHist,2)) 
 
 
!================================================================================== 
! Step 1 : Process the raw .DAT file 
!================================================================================== 
 
!120 FORMAT(I11, I5, I3, I5, I6, I4) 
 
! This loop runs through the .DAT file to record the number of events and 
histories. 
! The loop will terminate when the end of the file is reached. 
DO I=1,MaxLines 
  
 NewDet = .TRUE. 
 ! Reads the history number of each line 
 READ(1,*, IOSTAT=InputStatus) History, DummyInt, DummyInt, DummyInt, DummyInt, 
CurrentDet 
 
 ! Terminates the loop once the end of the .DAT file is reached. 
 IF (InputStatus < 0) THEN 
 PRINT *, "Last History in .DAT file: ", History 
 EXIT 
 END IF 
 ! Stops the program if the .DAT file cannot be read. 
 IF (InputStatus > 0) STOP "*** Error Reading DAT file *** Unrecognized .DAT file 
format" 
 
 IF(I == MaxLines) THEN 
 PRINT *, "Warning, .DAT file is too large. Only histories up to number " 
 PRINT *, TempHist(NumHist, 1), " were processed." 
 
 END IF 
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 IF (MOD(I, 1000000)==0) PRINT *, I, " lines read" 
 
 
 DO J = 1, NumDet 
 IF (CurrentDet == Detector(J)) THEN 
 NewDet = .FALSE. 
 EXIT  
 END IF 
 END DO 
 
 IF (NewDet .EQV. .TRUE.) THEN 
 NumDet = NumDet + 1 
 Detector(NumDet) = CurrentDet 
 END IF 
 
 
 ! Checks to see if this is a new history number. If so, NumHist is increased by 
 ! one and this history number becomes the 'OldHistory'. 
 IF (History == OldHistory) THEN 
 CYCLE 
 ELSE 
 NumHist = NumHist + 1 
 ! Check to see if the maximum number of histories has been exceeded. If so, 
 ! stop processing and  
 IF (NumHist > MaxHist) THEN 
 NumHist = MaxHist 
 PRINT *, "Warning, .DAT file too large. Maximum history number processed" 
 PRINT *, "is number ", TempHist(NumHist, 1) 
 EXIT 
 END IF 
 OldHistory = History 
 TempHist(NumHist,1) = History 
 TempHist(NumHist,2) = I 
 END IF 
 
END DO 
 
NumEvents = I-1 
 
 
DO I = 1, NumDet-1 
 MinRowLoc = I + MINLOC(Detector(I+1:NumDet)) 
 IF (Detector(I) .GT. Detector(MinRowLoc(1))) THEN 
 SwapInt = Detector(I) 
 Detector(I) = Detector(MinRowLoc(1)) 
 Detector(MinRowLoc(1)) = SwapInt 
 END IF 
END DO 
 
StartDetRow = 0 
DO I = 1, NumDet 
 IF (Detector(I) == StartDet) StartDetRow = I 
END DO 
 
 
IF (StartDetRow == 0) THEN 
 PRINT *, "Starting Detector Cell not found in .DAT file. Detector-detector cross-& 
 &correlations will not be computed for this file." 
END IF 
 
! Allocates the arrays now that the number of events and histories is known 
! Removed DatFile array - qqqqq 
! ALLOCATE(DatFile(NumEvents,16)) 
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ALLOCATE(DatHist(NumHist,3)) 
 
MaxEvt = 0 
 
! This loop writes the data stored in the TempHist array into the DatHist array.  
! TempHist is (probably much) larger than DatHist because it could not be allocated 
! with the correct number of histories until after the entire DAT file had been 
read. 
DO I = 1, NumHist 
 DatHist(I,1) = TempHist(I,1) 
 DatHist(I,2) = TempHist(I,2) 
 IF (I < NumHist) THEN 
 DatHist(I,3) = TempHist(I+1,2) - TempHist(I,2) 
 ELSE 
 DatHist(I,3) = NumEvents+1 - TempHist(I,2) 
 END IF 
 IF (DatHist(I,3) > MaxEvt) THEN 
 MaxEvt = DatHist(I,3) 
 MaxEvtHist = DatHist(I,1) 
 END IF 
END DO 
 
! Now that the data has been written to the smaller DatHist array, this array is 
! no longer needed. 
DEALLOCATE(TempHist) 
 
! 
! Used for testing - qqqqq 
! 
!OPEN(UNIT=2, FILE="TEST.OUT", ACTION="WRITE", STATUS="REPLACE") 
!DO I = 1, NumHist 
! WRITE (2, '(3I13)') DatHist (I,1), DatHist(I,2), DatHist(I,3) 
!END DO 
!CLOSE(UNIT=2) 
 
 
!================================================================================== 
! Step 2 : Extract pulses for each history 
!================================================================================== 
 
! Return to the start of the .DAT file 
REWIND 1 
 
110 FORMAT(I11,I5,I3,I5,I6,I4,F10.5,F10.3,F9.2,F8.2,F8.2,F7.3,I5,I6,I4) 
130 FORMAT(I11, I4, I5, I4, I5, I3, F10.3, F8.3) 
 
ALLOCATE(TempPulses(NumEvents)) 
ALLOCATE(ThisHist(MaxEvt)) 
ALLOCATE(PHTotal(MaxEvt)) 
PHTotal = 0. 
 
NumPulses = 0 
 
! Convert deadtime and pgentime to microseconds if necessary. 
IF (CorrWindow > 2048) THEN 
 deadtime = deadtime / 1000. 
 pgentime = pgentime / 1000. 
END IF 
 
 
! qqqqq 
! OPEN(UNIT=8, FILE="mlge.dat", ACTION="WRITE", STATUS="REPLACE") 
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! Loop through the history file.  
DO I = 1, NumHist 
 ! Reads all of the events for history 'I' into the ThisHist array. 
 DO J = 1, DatHist(I,3) 
 READ (1, *) ThisHist(J)%Col1, ThisHist(J)%Col2, ThisHist(J)%Col3, 
ThisHist(J)%Col4, & 
 & ThisHist(J)%Col5, ThisHist(J)%Col6, ThisHist(J)%Col7, ThisHist(J)%Col8, & 
 & ThisHist(J)%Col9, ThisHist(J)%Col10, ThisHist(J)%Col11, ThisHist(J)%Col12, & 
 & ThisHist(J)%Col13, ThisHist(J)%Col14, ThisHist(J)%Col15  
 
 
!================================================================================== 
 ! Converts the time from shakes (10^-8 s.) to ns if CorrWindow is <= 2048. 
 ! If CorrWindow > 2048, converts the time to microseconds instead. 
 
 IF (CorrWindow <= 2048) THEN 
 ThisHist(J)%Col8 = 10. * ThisHist(J)%Col8 
 ELSE 
 ThisHist(J)%Col8 = ThisHist(J)%Col8 / 100. 
 END IF 
 
 ! qqqqq 
 ! IF (ThisHist(J)%Col1 == 31461277) WRITE(8,110) ThisHist(j) 
 END DO 
 
 
!================================================================================== 
 ! Step ?? : Sort Histories ascending by detector cell and then by time within the 
detector 
 ! cell. If there is a tie for both detector cell and time, the event with the 
lowest 
 ! collision number and then code is brought up.  
 
!================================================================================== 
 
 IF(DatHist(I,3) > 1) THEN 
 DO J = 1, DatHist(I,3)-1 
 DO K = J, DatHist(I,3) 
 IF (ThisHist(J)%Col6 > ThisHist(K)%Col6) THEN 
 HistSwap = ThisHist(J) 
 ThisHist(J) = ThisHist(K) 
 ThisHist(K) = HistSwap 
 ELSEIF(ThisHist(J)%Col6 == ThisHist(K)%Col6 .AND. & 
 & ThisHist(J)%Col8 > ThisHist(K)%Col8) THEN 
 HistSwap = ThisHist(J) 
 ThisHist(J) = ThisHist(K) 
 ThisHist(K) = HistSwap 
 ELSEIF(ThisHist(J)%Col6 == ThisHist(K)%Col6 .AND. & 
 & ThisHist(J)%Col8 == ThisHist(K)%Col8 .AND. ThisHist(J)%Col14 > 
ThisHist(K)%Col14) THEN 
 HistSwap = ThisHist(J) 
 ThisHist(J) = ThisHist(K) 
 ThisHist(K) = HistSwap 
 ELSEIF(ThisHist(J)%Col6 == ThisHist(K)%Col6 .AND. & 
 & ThisHist(J)%Col8 == ThisHist(K)%Col8 .AND. ThisHist(J)%Col14 == 
ThisHist(K)%Col14 & 
 & .AND. ThisHist(J)%Col15 > ThisHist(K)%Col15) THEN 
 HistSwap = ThisHist(J) 
 ThisHist(J) = ThisHist(K) 
 ThisHist(K) = HistSwap 
 END IF 
 END DO 
 END DO 
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 END IF 
 
 
 
 DO J = 1, DatHist(I,3) 
 CALL PulseHeight(ThisHist(J)%Col3, ThisHist(J)%Col4, ThisHist(J)%Col5, 
ThisHist(J)%Col7, PHThisEvent) 
 PHTotal(J) = PHThisEvent 
 
 ! qqqqq 
 ! PRINT '(I11,F10.5)', ThisHist(J)%Col1, PHTotal(J) 
 ! IF (DatHist(I,3) > 1) PRINT 110, ThisHist(J) 
 ! qqqqq 
 ! Used for splitting up big .DAT files 
 ! IF (I <= 50000) WRITE (8, 110) ThisHist(J) 
 
 
 END DO 
 
 CurrentDet = 0 
 
 DO J = 1, DatHist(I,3) 
 
 IF (ThisHist(J)%Col6 /= CurrentDet) THEN 
 ! Set the start of the deadtime and pulse generation time to a negative number 
large 
 ! enough that the first event will not be in either window. 
 DeadStart = -2.*deadtime 
 PulseStart = -2.*pgentime 
 CurrentDet = ThisHist(J)%Col6 
 END IF 
 
 
 
 IF (ThisHist(J)%Col8 < DeadStart + deadtime) CYCLE 
 
 IF (PHTotal(J) >= threshold) THEN 
 NumPulses = NumPulses + 1 
 TempPulses(NumPulses)%HistNo = ThisHist(J)%Col1 
 TempPulses(NumPulses)%DetNo = ThisHist(J)%Col6 
 TempPulses(NumPulses)%ParNo = ThisHist(J)%Col3 
 TempPulses(NumPulses)%Time = ThisHist(J)%Col8 
 TempPulses(NumPulses)%PulseHeight = PHTotal(J) 
 TempPulses(NumPulses)%SubHist = ThisHist(J)%Col2 
 
 
 ! Check to see if the event that generated the pulse was a directly transmitted DT 
neutron. 
 ! SubHistory = 1, Particle Type = 1 (neutron), Weight > 0.95, Generation = 0,  
 ! # Collisions = 0, Code = 0 
 IF(ThisHist(J)%Col2 == 1 .AND. ThisHist(J)%Col3 == 1 .AND. ThisHist(J)%Col12 >= 
0.95 & 
 & .AND. ThisHist(J)%Col13 == 0 .AND. ThisHist(J)%Col14 == 0 .AND. 
ThisHist(J)%Col15 == 0) THEN 
 TempPulses(NumPulses)%Direct = 1 
 ELSE 
 TempPulses(NumPulses)%Direct = 0 
 END IF 
 
 DeadStart = ThisHist(J)%Col8 
 PulseStart = -2.*pgentime 
 CYCLE 
 ELSE 
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 PulseStart = ThisHist(J)%Col8 
 END IF 
 
 DO K = J+1, DatHist(I,3) 
 IF (ThisHist(K)%Col6 /= CurrentDet) EXIT 
 
 ! qqqqq 
 ! PRINT *, "J= ", J, "K= ", K, "PHTotal= ", PHTotal(J) 
 
 IF (ThisHist(K)%Col8 < PulseStart + pgentime) THEN 
 PHTotal(J) = PHTotal(J) + PHTotal(K) 
 ELSE 
 EXIT  
 END IF 
 
 IF (PHTotal(J) >= threshold) THEN 
 MinParNo = 99999 
 MinSubHist = 99999 
 MinCollisions = 99999 
 MinGen = 99999 
 MinCode = 99999 
 NumPulses = NumPulses + 1 
 TempPulses(NumPulses)%HistNo = ThisHist(J)%Col1 
 TempPulses(NumPulses)%DetNo = ThisHist(J)%Col6 
 TempPulses(NumPulses)%Time = ThisHist(J)%Col8 
 TempPulses(NumPulses)%PulseHeight = PHTotal(J) 
 
 DO L = J, K 
 IF (ThisHist(L)%Col2 <= MinSubHist .AND. ThisHist(L)%Col3 <= MinParNo .AND. & 
 & ThisHist(L)%Col13 <= MinGen .AND. ThisHist(L)%Col14 <= MinCollisions .AND. & 
 & ThisHist(L)%Col15 <= MinCode) THEN 
 MinSubHist = ThisHist(L)%Col2 
 MinParNo = ThisHist(L)%Col3 
 MinGen = ThisHist(L)%Col13 
 MinCollisions = ThisHist(L)%Col14 
 MinCode = ThisHist(L)%Col15 
 MinWeight = ThisHist(L)%Col12 
 END IF 
 END DO 
 TempPulses(NumPulses)%ParNo = MinParNo 
 TempPulses(NumPulses)%SubHist = MinSubHist 
 
 ! Check to see if the event that generated the pulse was a directly transmitted DT 
neutron. 
 IF(MinSubHist == 1 .AND. MinParNo == 1 .AND. MinWeight >= 0.95 & 
 & .AND. MinGen == 0 .AND. MinCollisions == 0 .AND. MinCode == 0) THEN 
 TempPulses(NumPulses)%Direct = 1 
 ELSE 
 TempPulses(NumPulses)%Direct = 0 
 END IF 
 
 DeadStart = ThisHist(J)%Col8 
 PulseStart = -2.*pgentime 
 EXIT 
 END IF 
 END DO 
 END DO 
 
 PHTotal = 0. 
 
END DO 
 
! Now convert CorrWindow to microseconds if need be. 
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IF (CorrWindow > 2048) THEN 
 CorrWindow = CorrWindow / 1000 + 1 
END IF 
 
CLOSE(UNIT=1) 
! qqqqq 
! CLOSE(UNIT=8) 
 
ALLOCATE(Pulses(NumPulses)) 
 
DO I = 1, NumPulses 
 Pulses(I) = TempPulses(I) 
 Pulses(I)%XTalk = 0 
 ! This loop changes the detector number value from the actual cell number to the 
line 
 ! referencing that cell number in the Detector() array. This will make matching 
the  
 ! detector cell faster in the correlation section. 
 DO J = 1, NumDet 
 IF (Pulses(I)%DetNo == Detector(J)) THEN 
 Pulses(I)%DetNo = J 
 EXIT 
 END IF 
 END DO 
END DO 
 
! qqqqq 
! DO I = 1, MaxEvt 
! WRITE (*, 110) ThisHist(I) 
! END DO 
 
! DO I = 1,NumDet 
! PRINT *, Detector(I) 
! END DO 
 
 
DEALLOCATE(ThisHist) 
DEALLOCATE(PHTotal) 
DEALLOCATE(TempPulses) 
DEALLOCATE(DatHist) 
 
!================================================================================== 
! Step 3 : Extract multiplicities and correlations from pulse data 
!================================================================================== 
 
ALLOCATE(TempHist(NumPulses,2)) 
 
NumHistP = 0 
OldHistory = 0 
MaxPulse = 0 
 
PHSNumBins = INT(PHSMax/PHSIncrement) 
ALLOCATE(PHSpectrum(-1:PHSNumBins,0:NumDet,3)) 
PHSpectrum = 0 
 
DO I = 1, 3 
 PHSpectrum(-1,0,I) = nps 
 DO J = 1, NumDet 
 PHSpectrum(-1,J,I) = Detector(J) 
 END DO 
END DO 
 
DO I = 1, NumPulses 
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PHSBin = INT(Pulses(I)%PulseHeight / PHSIncrement) 
IF (PHSBin > PHSNumBins) PHSBin = PHSNumBins 
PHSpectrum(PHSBin,Pulses(I)%DetNo,1) = PHSpectrum(PHSBin,Pulses(I)%DetNo,1) + 1 
IF (Pulses(I)%ParNo == 1) THEN 
 PHSpectrum(PHSBin,Pulses(I)%DetNo,2) = PHSpectrum(PHSBin,Pulses(I)%DetNo,2) + 1  
ELSE IF (Pulses(I)%ParNo == 2) THEN 
 PHSpectrum(PHSBin,Pulses(I)%DetNo,3) = PHSpectrum(PHSBin,Pulses(I)%DetNo,3) + 1  
END IF 
 
! qqqqq 
! IF (Pulses(I)%Direct == 1 .AND. Pulses(I)%Time > 50) PRINT *, Pulses(I)%HistNo 
 
 
 IF (Pulses(I)%HistNo == OldHistory) CYCLE 
 OldHistory = Pulses(I)%HistNo 
 NumHistP = NumHistP + 1 
 TempHist(NumHistP,1) = Pulses(I)%HistNo 
 TempHist(NumHistP,2) = I 
END DO 
 
ALLOCATE(PulseHist(NumHistP,3)) 
 
DO I = 1, NumHistP 
 PulseHist(I,1) = TempHist(I,1) 
 PulseHist(I,2) = TempHist(I,2) 
 IF (I < NumHistP) THEN 
 PulseHist(I,3) = TempHist(I+1,2) - TempHist(I,2) 
 ELSE 
 PulseHist(I,3) = NumPulses+1 - TempHist(I,2) 
 END IF 
 IF (PulseHist(I,3) > MaxPulse) THEN 
 MaxPulse = PulseHist(I,3) 
 MaxPulseHist = PulseHist(I,1) 
 END IF 
END DO 
 
DEALLOCATE(TempHist) 
 
 
 
 
!================================================================================== 
! Step 3a : Calculate multiplicities 
!================================================================================== 
 
PRINT *, "Calculating Multiplicities" 
 
! Multiplicity structure: Rows = number of source triggered multiplicities; Columns 
-  
! Column 1 = total multiplicities; Column 2 = neutron multiplicities 
ALLOCATE(Multiplicity(0:MaxPulse,2)) 
Multiplicity = 0 
 
! Go through the pulse file and record the number of pulses created for each 
history in 
! the Multiplicity array. 
DO I = 1, NumHistP 
 Multiplicity(PulseHist(I,3),1) = Multiplicity(PulseHist(I,3),1) + 1 
  
 NumNeutronPulses = 0 
 DO J = 1, PulseHist(I,3) 
 IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1) NumNeutronPulses = NumNeutronPulses + 1 
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 END DO 
 Multiplicity(NumNeutronPulses, 2) = Multiplicity(NumNeutronPulses, 2) + 1 
 
END DO 
 
TotalMult = 0 
TotalNeutronMult = 0 
 
! Assigns to 'TotalMult' the total number of histories which have >= 1 pulse. 
DO I = 1, MaxPulse 
 TotalMult = TotalMult + Multiplicity(I, 1) 
 TotalNeutronMult = TotalNeutronMult + Multiplicity(I, 2)  
END DO 
 
! Total histories minus all histories with >= 1 pulse = no. of histories with no 
pulses. 
Multiplicity(0, 1) = nps - TotalMult 
Multiplicity(0, 2) = nps - TotalNeutronMult 
 
!================================================================================== 
! Step 3b : Calculate source-detector correlations 
!  
! NOTE: If CorrWindow is still > 2048 then no correlations are computed 
!================================================================================== 
 
! Begin CorrWindow IF Statement 
IF (CorrWindow <= 2048) THEN 
 
! Correlation Structure - Rows = Time, Columns = Det #, Panes = Total, n, gamma, 
direct, no x-talk 
ALLOCATE(Correlation(-1:CorrWindow,0:NumDet,5)) 
! CrossCorr Structure - Rows = Time Lag, Columns = Det #, Panes = Total, nn, gg, 
np, pn 
ALLOCATE(CrossCorr(-CorrWindow-1:CorrWindow,0:NumDet,5)) 
 
Correlation = 0 
CrossCorr=0 
 
! Input detector cell numbers and time steps into correlation arrays 
DO I = 1, 5 
 CrossCorr(-CorrWindow-1,0,I) = nps 
 DO J = 1, NumDet 
 CrossCorr(-CorrWindow-1,J,I) = Detector(J) 
 END DO 
 DO J = -CorrWindow,CorrWindow 
 CrossCorr(J,0,I) = J 
 END DO 
END DO 
 
DO I = 1, 5 
 Correlation(-1,0,I) = nps 
 DO J = 1, NumDet 
 Correlation(-1,J,I) = Detector(J) 
 END DO 
 DO J = 0, CorrWindow 
 Correlation(J,0,I) = J 
 END DO 
END DO 
 
 
! qqqqq 
! OPEN (UNIT=99, FILE="error.out", STATUS="REPLACE", ACTION="WRITE") 
 



 

D-14 

PRINT *, "Calculating Source-Detector Correlations" 
 
CorrWindowOverflow = 0 
 
! This is where the magic happens!!!!1111!!! Correlations and cross-correlations 
are  
! computed here. 
DO I = 1, NumHistP 
 DO J = 1, PulseHist(I,3) 
 IntTime = INT(Pulses(PulseHist(I,2)+J-1)%Time) 
 IF (ABS(IntTime) > CorrWindow) THEN 
 CorrWindowOverflow = CorrWindowOverflow + 1 
 CYCLE 
 END IF 
 CurrentDet = Pulses(PulseHist(I,2)+J-1)%DetNo 
 Correlation(IntTime,CurrentDet,1) = Correlation(IntTime,CurrentDet,1) + 1 
 IF (Pulses(PulseHist(I,2)+J-1)%Direct == 1) THEN 
 Correlation(IntTime,CurrentDet,4) = Correlation(IntTime,CurrentDet,4) + 1 
 END IF 
 IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1) THEN 
 Correlation(IntTime,CurrentDet,2) = Correlation(IntTime,CurrentDet,2) + 1 
 ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 2) THEN 
 Correlation(IntTime,CurrentDet,3) = Correlation(IntTime,CurrentDet,3) + 1 
 ELSE 
 PRINT *, "Error! Particle type other than a photon or a neutron encountered & 
 &in .DAT file, history number ", PulseHist(I,1), ". Check .DAT file." 
 WRITE (*, 130) Pulses(PulseHist(I,2)+J-1) 
 STOP 
 END IF 
 
!================================================================================== 
! Step 3c : Calculate detector-detector correlations if start detector is specified 
!================================================================================== 
 
 ! Check cross-correlations and fill in the cross-correlation arrays. 
 IF (CurrentDet == StartDetRow) THEN 
 DO K = 1, PulseHist(I,3) 
 IF (K == J) CYCLE 
 StopDetRow = Pulses(PulseHist(I,2)+K-1)%DetNo 
 StopIntTime = NINT(Pulses(PulseHist(I,2)+K-1)%Time) 
 TimeLag = StopIntTime - IntTime 
 IF (ABS(TimeLag) > CorrWindow) THEN 
 PRINT *, "ERROR!! Start Time= ", IntTime, "Stop Time= ", StopIntTime, & 
 & "TimeLag= ", TimeLag 
 CYCLE 
 END IF 
 CrossCorr(TimeLag,StopDetRow,1) = CrossCorr(TimeLag,StopDetRow,1) + 1 
 ! qqqqq 
 ! IF (ABS(TimeLag) <= 5) WRITE(99,'(I11)') PulseHist(I,1) 
 IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1 .AND. & 
 & Pulses(PulseHist(I,2)+K-1)%ParNo == 1) THEN 
 CrossCorr(TimeLag,StopDetRow,2) = CrossCorr(TimeLag,StopDetRow,2) + 1 
 ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 2 .AND. & 
 & Pulses(PulseHist(I,2)+K-1)%ParNo == 2) THEN 
 CrossCorr(TimeLag,StopDetRow,3) = CrossCorr(TimeLag,StopDetRow,3) + 1 
 ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 1 .AND. & 
 & Pulses(PulseHist(I,2)+K-1)%ParNo == 2) THEN 
 CrossCorr(TimeLag,StopDetRow,4) = CrossCorr(TimeLag,StopDetRow,4) + 1 
 ELSE IF (Pulses(PulseHist(I,2)+J-1)%ParNo == 2 .AND. & 
 & Pulses(PulseHist(I,2)+K-1)%ParNo == 1) THEN 
 CrossCorr(TimeLag,StopDetRow,5) = CrossCorr(TimeLag,StopDetRow,5) + 1 
 END IF 
 ! IF (ABS(TimeLag) < NINT(deadtime) .AND. ABS(TimeLag) > 0 .AND. & 
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 ! & StopDetRow == StartDetRow) THEN 
 ! WRITE (99,'(4I11)') PulseHist(I,1), StopIntTime, IntTime, TimeLag 
 ! END IF 
 END DO 
 END IF 
 END DO 
END DO 
 
! qqqqq 
! CLOSE(UNIT=99) 
 
!================================================================================== 
! Step ?? : Determine the Fast Neutron Time Window. This is determined by finding 
the 
! largest source-detector correlations in the entire measurement. All detectors 
have the 
! same time window. 
!================================================================================== 
 
 
PRINT *, "Calculating Peak Values" 
 
ALLOCATE(Peaks(1:NumDet)) 
PeakOld = 0 
PeakStart = 0 
PeakSumTotal = 0 
 
DO I = 1, NumDet 
 Peaks(I)%DetNo = Detector(I) 
 DO J = 0, CorrWindow 
 PeakSumTotal = Correlation(J,I,1) 
 IF (PeakSumTotal >= PeakOld) THEN 
 PeakOld = PeakSumTotal 
 PeakStart = J 
 END IF 
 END DO 
END DO 
 PeakStart = PeakStart - PeakWidth / 2 
 
PRINT *, "Fast Neutron Time Window: ", PeakStart, " to ", PeakStart+Peakwidth-1 
 
!================================================================================== 
! Step ?? : Now that the fast neutron time window is known, mark the cross talk 
between 
! detectors. Pulses are sorted by detector and then by time, so if more than one  
! correlation occurs in the fast time window for a given history, the one with the 
larger 
! time is marked as cross-talk regardless of detector cell. 
!================================================================================== 
 
PRINT *, "Calculating Cross-Talk" 
 
DO I = 1, NumHistP 
 IF (PulseHist(I,3) == 1) THEN 
 IF (Pulses(PulseHist(I,2))%Time < REAL(PeakStart) .OR. & 
 & Pulses(PulseHist(I,2))%Time >= REAL(PeakStart + PeakWidth)) THEN 
 Pulses(PulseHist(I,2))%XTalk = 1 
 END IF 
 CYCLE 
 END IF 
 DO J = 1, PulseHist(I,3) 
 ! Cycle if Pulse J not in time window or if it has already been marked as XTalk 
 ! Note that the window is 1 smaller in integer math than in Real math because of  
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 ! rounding. 
 IF (Pulses(PulseHist(I,2)+J-1)%Time < REAL(PeakStart) .OR. & 
 & Pulses(PulseHist(I,2)+J-1)%Time >= REAL(PeakStart + PeakWidth)) THEN 
 Pulses(PulseHist(I,2)+J-1)%XTalk = 1 
 CYCLE 
 END IF 
 IF (Pulses(PulseHist(I,2)+J-1)%XTalk == 1) CYCLE 
 DO K = J+1, PulseHist(I,3) 
 IF (Pulses(PulseHist(I,2)+K-1)%Time < REAL(PeakStart) .OR. & 
 & Pulses(PulseHist(I,2)+K-1)%Time >= REAL(PeakStart+PeakWidth)) CYCLE 
 ! If we have reached this point, both Pulse J and K are in the time window. The 
 ! one with the higher time gets marked a XTalk. PoliMi only gives time to 0.1 ns, 
 ! so it's possible (but very unlikely) the times could be equal. If so, the  
 ! detector with the higher number gets counted as XTalk because of the order of 
 ! pulses in the array. 
 IF (Pulses(PulseHist(I,2)+J-1)%Time > Pulses(PulseHist(I,2)+K-1)%Time) THEN 
 Pulses(PulseHist(I,2)+J-1)%XTalk = 1 
 ELSE 
 Pulses(PulseHist(I,2)+K-1)%XTalk = 1 
 END IF 
 END DO 
 END DO 
END DO 
 
! Unfortunately, in order to find the fast neutron window to remove the cross-talk, 
I had 
! to compute correlations and now I have to go through again to compute the no 
cross-talk 
! correlations. These no cross-talk correlations should equal the directs plus 
scatter 
! in the object being imaged inside of the fast neutron window. If other features 
are in 
! the geometry as well, such as the fancy detectors or the detector arm, scattered 
! neutrons and induced gammas from those objects can contribute as well. No cross-
talk 
! is computed outside of the peaks window, so those values should be exactly the 
same 
! as the measured. 
 
DO I = 1, NumHistP 
 DO J = 1, PulseHist(I,3) 
 IntTime = INT(Pulses(PulseHist(I,2)+J-1)%Time) 
 IF (ABS(IntTime) > CorrWindow) CYCLE 
 CurrentDet = Pulses(PulseHist(I,2)+J-1)%DetNo 
 IF (Pulses(PulseHist(I,2)+J-1)%XTalk == 0) THEN 
 Correlation(IntTime,CurrentDet,5) = Correlation(IntTime,CurrentDet,5) + 1 
 END IF 
 END DO 
END DO 
 
PeakSumTotal = 0 
PeakSumDirect = 0 
PeakSumNoXT = 0 
 
DO I = 1, NumDet 
 DO J = PeakStart, PeakStart + PeakWidth - 1 
 PeakSumTotal = PeakSumTotal + Correlation(J,I,1) 
 PeakSumDirect = PeakSumDirect + Correlation(J,I,4) 
 PeakSumNoXT = PeakSumNoXT + Correlation(J,I,5) 
 END DO 
 
 Peaks(I)%TotalPeak = PeakSumTotal 
 Peaks(I)%DirectPeak = PeakSumDirect 
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 Peaks(I)%XTPeak = PeakSumNoXT 
 
 Peaks(I)%TotalMean = 0. 
 Peaks(I)%DirectMean = 0. 
 Peaks(I)%XTMean = 0. 
 
 DO J = PeakStart, PeakStart + PeakWidth - 1 
 
 IF (PeakSumTotal > 0) THEN 
 Peaks(I)%TotalMean = Peaks(I)%TotalMean + REAL(J * Correlation(J,I,1)) 
 END IF 
 
 IF (PeakSumDirect > 0) THEN 
 Peaks(I)%DirectMean = Peaks(I)%DirectMean + REAL(J * Correlation(J,I,4)) 
 END IF 
 
 IF (PeakSumNoXT > 0) THEN 
 Peaks(I)%XTMean = Peaks(I)%XTMean + REAL(J * Correlation(J,I,5)) 
 END IF 
 END DO 
 
IF (PeakSumTotal > 0) THEN 
 Peaks(I)%TotalMean = Peaks(I)%TotalMean / REAL(Peaks(I)%TotalPeak) 
END IF 
IF (PeakSumDirect > 0) THEN 
 Peaks(I)%DirectMean = Peaks(I)%DirectMean / REAL(Peaks(I)%DirectPeak) 
END IF 
IF (PeakSumNoXT > 0) THEN 
 Peaks(I)%XTMean = Peaks(I)%XTMean / REAL(Peaks(I)%XTPeak) 
END IF 
 
PeakSumTotal = 0 
PeakSumDirect = 0 
PeakSumNoXT = 0 
 
END DO 
 
 
! Outputs a list of pulses for debug purposes. 
! qqqqq 
! OPEN(UNIT=5, FILE="Pulses.out", STATUS="REPLACE", ACTION="WRITE") 
! DO I = 1, NumPulses 
! WRITE (5,130) Pulses(I) 
! END DO 
! qqqqq 
! CLOSE(UNIT=5) 
 
! qqqqq 
! Outputs histories which contain 2 or more pulses for troubleshooting purposes 
! OPEN(UNIT=7, FILE="MultiPulse.out", ACTION="WRITE", STATUS="REPLACE") 
! DO I = 1, NumHistP 
! IF (PulseHist(I,3) > 1) THEN 
! DO J = 1, PulseHist(I,3) 
! WRITE(7,130) Pulses(PulseHist(I,2)+J-1) 
! END DO 
! END IF 
! END DO 
! CLOSE(UNIT=7) 
 
 
 
DEALLOCATE(PulseHist) 
DEALLOCATE(Pulses) 
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ELSE 
 PRINT *, "Correlation Window exceeds 2048 microseconds. source-detector and 
detector-detector" 
 PRINT *, "correlations will not be calculated. Lower correlation window size to 
2,048,000 ns" 
 PRINT *, "or less if correlations are desired." 
! End CorrWindow IF Statement 
END IF 
 
!================================================================================== 
! Step 4 : Print Output to screen and file(s). 
!================================================================================== 
 
PRINT *, 
PRINT *, "The .DAT file contains ", NumEvents," lines and ", NumHist, " histories." 
PRINT *, 
PRINT *, "The largest history is number ", MaxEvtHist, ". It has ", MaxEvt, " 
events." 
PRINT *,  
PRINT *, "The .DAT file has records for ", NumDet, " detectors." 
PRINT *, 
PRINT *, "A total of ", NumPulses, " pulses were recorded." 
PRINT *, 
PRINT *, "The largest history is number ", MaxPulseHist, ". It has ", MaxPulse, " 
pulses." 
PRINT *, 
IF (CorrWindowOverflow > 0) THEN 
 PRINT '(I10, A)', CorrWindowOverflow, " pulses were discarded because the 
correlation window & 
 &was too small. Consider increasing the size of the window if these losses are 
large." 
 PRINT *, 
END IF 
 
 
! Begin CorrWindow IF Statement 
IF (CorrWindow <= 2048) THEN 
 
 
! Writes the correlation output to files. 
OPEN(UNIT=11, FILE=TRIM(FileBase)//".total.corr", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=12, FILE=TRIM(FileBase)//".neutron.corr", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=13, FILE=TRIM(FileBase)//".gamma.corr", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=14, FILE=TRIM(FileBase)//".direct.corr", STATUS="REPLACE", 
ACTION="WRITE") 
OPEN(UNIT=15, FILE=TRIM(FileBase)//".noXT.corr", STATUS="REPLACE", ACTION="WRITE") 
DO I = -1, CorrWindow 
 DO J = 0, NumDet-1 
 WRITE(11,'(I10)', ADVANCE="NO") Correlation(I,J,1) 
 WRITE(12,'(I10)', ADVANCE="NO") Correlation(I,J,2) 
 WRITE(13,'(I10)', ADVANCE="NO") Correlation(I,J,3) 
 WRITE(14,'(I10)', ADVANCE="NO") Correlation(I,J,4) 
 WRITE(15,'(I10)', ADVANCE="NO") Correlation(I,J,5) 
 END DO 
 WRITE(11,'(I10)') Correlation(I,NumDet,1) 
 WRITE(12,'(I10)') Correlation(I,NumDet,2) 
 WRITE(13,'(I10)') Correlation(I,NumDet,3) 
 WRITE(14,'(I10)') Correlation(I,NumDet,4) 
 WRITE(15,'(I10)') Correlation(I,NumDet,5) 
END DO 
CLOSE(UNIT=11) 
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CLOSE(UNIT=12) 
CLOSE(UNIT=13) 
CLOSE(UNIT=14) 
CLOSE(UNIT=15) 
 
IF (StartDetRow /= 0) THEN 
! Writes the cross-correlation output to files. 
OPEN(UNIT=21, FILE=TRIM(FileBase)//".total.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=22, FILE=TRIM(FileBase)//".nn.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=23, FILE=TRIM(FileBase)//".pp.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=24, FILE=TRIM(FileBase)//".np.cc", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=25, FILE=TRIM(FileBase)//".pn.cc", STATUS="REPLACE", ACTION="WRITE") 
 
DO I = -CorrWindow - 1, CorrWindow 
 DO J = 0, NumDet - 1 
 WRITE(21,'(I10)', ADVANCE="NO") CrossCorr(I,J,1) 
 WRITE(22,'(I10)', ADVANCE="NO") CrossCorr(I,J,2) 
 WRITE(23,'(I10)', ADVANCE="NO") CrossCorr(I,J,3) 
 WRITE(24,'(I10)', ADVANCE="NO") CrossCorr(I,J,4) 
 WRITE(25,'(I10)', ADVANCE="NO") CrossCorr(I,J,5) 
 END DO 
 WRITE(21,'(I10)') CrossCorr(I,NumDet,1) 
 WRITE(22,'(I10)') CrossCorr(I,NumDet,2) 
 WRITE(23,'(I10)') CrossCorr(I,NumDet,3) 
 WRITE(24,'(I10)') CrossCorr(I,NumDet,4) 
 WRITE(25,'(I10)') CrossCorr(I,NumDet,5) 
END DO 
 
CLOSE(UNIT=21) 
CLOSE(UNIT=22) 
CLOSE(UNIT=23) 
CLOSE(UNIT=24) 
CLOSE(UNIT=25) 
END IF 
 
! End CorrWindow IF Statement 
END IF 
 
 
! Writes the Multiplicity array to file. 
OPEN(UNIT=31, FILE=TRIM(FileBase)//".multip", STATUS="REPLACE", ACTION="WRITE") 
WRITE(31,'(A)') " N Total Neutrons" 
DO I = 0, MaxPulse 
 WRITE (31, '(I3, 2I11)') I, Multiplicity(I,1), Multiplicity(I,2) 
END DO 
CLOSE(UNIT=31) 
 
OPEN(UNIT=41, FILE=TRIM(FileBase)//".peaks", STATUS="REPLACE", ACTION="WRITE") 
 WRITE (41,'(I12, A)') nps, " Total Mean(T) Direct Mean(D) No XTalk Mean(N)" 
DO I = 1, NumDet 
 WRITE (41, '(2I12, ES12.4, I12, ES12.4, I12, ES12.4)') Peaks(I) 
END DO 
CLOSE(UNIT=41) 
 
OPEN(UNIT=51, FILE=TRIM(FileBase)//".total.ph", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=52, FILE=TRIM(FileBase)//".neutron.ph", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=53, FILE=TRIM(FileBase)//".gamma.ph", STATUS="REPLACE", ACTION="WRITE") 
 
DO I = 0, NumDet - 1 
 WRITE(51,'(I11)', ADVANCE="NO") PHSpectrum(-1,I,1) 
 WRITE(52,'(I11)', ADVANCE="NO") PHSpectrum(-1,I,2) 
 WRITE(53,'(I11)', ADVANCE="NO") PHSpectrum(-1,I,3) 
END DO 
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 WRITE(51,'(I11)') PHSpectrum(-1,NumDet,1) 
 WRITE(52,'(I11)') PHSpectrum(-1,NumDet,2) 
 WRITE(53,'(I11)') PHSpectrum(-1,NumDet,3) 
 
DO I = 0, PHSNumBins 
 WRITE(51,'(F11.5)', ADVANCE="NO") REAL(I) * PHSIncrement 
 WRITE(52,'(F11.5)', ADVANCE="NO") REAL(I) * PHSIncrement 
 WRITE(53,'(F11.5)', ADVANCE="NO") REAL(I) * PHSIncrement 
 DO J = 1, NumDet - 1 
 WRITE(51,'(I11)', ADVANCE="NO") PHSpectrum(I,J,1) 
 WRITE(52,'(I11)', ADVANCE="NO") PHSpectrum(I,J,2) 
 WRITE(53,'(I11)', ADVANCE="NO") PHSpectrum(I,J,3) 
 END DO 
 WRITE(51,'(I11)') PHSpectrum(I,NumDet,1) 
 WRITE(52,'(I11)') PHSpectrum(I,NumDet,2) 
 WRITE(53,'(I11)') PHSpectrum(I,NumDet,3) 
 
END DO 
 
CLOSE(UNIT=51) 
CLOSE(UNIT=52) 
CLOSE(UNIT=53) 
 
DEALLOCATE (Correlation, CrossCorr, Multiplicity, Peaks, PHSpectrum) 
 
CALL CPU_TIME(FinishTime) 
WRITE (*, '(A, F8.3, A)') " The program took ", FinishTime - StartTime, " seconds 
to finish." 
 
CONTAINS 
 
!================================================================================== 
! Subroutine PulseHeight converts the energy deposited in a collision (MeV) to 
light 
! output in the detector (in MeVee) 
!================================================================================== 
SUBROUTINE PulseHeight(Zprojectile, ZRx, Ztarget, ZEin, Zpheight) 
 
INTEGER(KIND=4), INTENT(IN) :: Zprojectile, Ztarget, ZRx 
REAL(KIND=4), INTENT(IN) :: ZEin 
 
REAL(KIND=4), INTENT(OUT) :: Zpheight 
 
IF (Ztarget == 6000 .AND. Zprojectile == 1) THEN 
 Zpheight = 0.02 * ZEin 
 RETURN 
ELSEIF (Ztarget == 6 .AND. Zprojectile == 1) THEN 
 Zpheight = 0.02 * ZEin 
 RETURN 
ELSEIF (Zprojectile == 1 .AND. Ztarget == 1001 .AND. ZRx == -99) THEN 
 Zpheight = 0.0364 * ZEin ** 2 + 0.125 * ZEin 
 RETURN 
ELSEIF (Zprojectile == 1 .AND. Ztarget == 2003 .AND. ZRx == 0) THEN 
 Zpheight = ZEin 
 RETURN 
ELSEIF (Zprojectile == 2 .AND. Ztarget == 1) THEN 
 Zpheight = ZEin 
 RETURN 
ELSEIF (Zprojectile == 2 .AND. Ztarget == 6) THEN 
 Zpheight = ZEin 
 RETURN 
ELSE 
 Zpheight = 0 
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 RETURN 
END IF 
 
END SUBROUTINE PulseHeight 
 
END PROGRAM 
 
A Sample .peaks File 
  
 25000000  Total  Mean(T)  Direct   Mean(D)  No XTalk  Mean(N) 
 401   2249  2.2075E+01  0   0.0000E+00  2190   2.2055E+01 
 405   2648  2.2104E+01  0   0.0000E+00  2496   2.2039E+01 
 409   4072  2.2219E+01  221   2.1688E+01  3438   2.2065E+01 
 413   43140  2.1797E+01  37934   2.1740E+01  42054   2.1772E+01 
 417   66022  2.1774E+01  60767   2.1734E+01  64800   2.1755E+01 
 421   35946  2.1810E+01  30868   2.1732E+01  34763   2.1774E+01 
 425   22037  2.1820E+01  18115   2.1737E+01  21324   2.1785E+01 
 429   11670  2.1820E+01  8727   2.1730E+01  11287   2.1785E+01 
 433   4909  2.1900E+01  2671   2.1748E+01  4687   2.1851E+01 
 437   1832  2.2011E+01  150   2.1727E+01  1719   2.1955E+01 
 441   1303  2.2039E+01  0   0.0000E+00  1256   2.2018E+01 
 445   955  2.2134E+01  0   0.0000E+00  913   2.2102E+01 
 449   765  2.2207E+01  0   0.0000E+00  750   2.2188E+01 
 453   605  2.2326E+01  0   0.0000E+00  593   2.2314E+01 
 457   419  2.2456E+01  0   0.0000E+00  404   2.2441E+01 
 461   297  2.2572E+01  0   0.0000E+00  288   2.2542E+01 
 465   218  2.2674E+01  0   0.0000E+00  209   2.2641E+01 
 469   158  2.2759E+01  0   0.0000E+00  152   2.2730E+01 
 473   118  2.3000E+01  0   0.0000E+00  116   2.2991E+01 
 477   76  2.3145E+01  0   0.0000E+00  74   2.3135E+01 
 481   80  2.3237E+01  0   0.0000E+00  76   2.3224E+01 
 485   50  2.3380E+01  0   0.0000E+00  50   2.3380E+01 
 489   36  2.3639E+01  0   0.0000E+00  36   2.3639E+01 
 493   32  2.3281E+01  0   0.0000E+00  32   2.3281E+01 
 497   28  2.3464E+01  0   0.0000E+00  28   2.3464E+01 
 501   14  2.3643E+01  0   0.0000E+00  14   2.3643E+01 
 505   13  2.3538E+01  0   0.0000E+00  12   2.3500E+01 
 509   9  2.2778E+01  0   0.0000E+00  9   2.2778E+01 
 513   6  2.3000E+01  0   0.0000E+00  6   2.3000E+01 
 517   8  2.3750E+01  0   0.0000E+00  8   2.3750E+01 
 521   4  2.2250E+01  0   0.0000E+00  4   2.2250E+01 
 525   5  2.2800E+01  0   0.0000E+00  5   2.2800E+01 
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APPENDIX E.  —THE JOINSS AND JOINPIXELS CODES 

The JoinSS Code 
PROGRAM JoinSS 
! Version 2.00 
! Written February 2nd, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: November 28th, 2009 
 
IMPLICIT NONE 
CHARACTER :: FileBase*8, NumSSTxt*4, DetsPerSSTxt*4, FirstDetTxt*4, FileNumTxt*2 
CHARACTER :: StoDetTxt*10, DetSepTxt*10 
INTEGER :: I, J 
INTEGER :: NumSS, DetsPerSS, FirstDet, TotalDet, DetNum 
INTEGER(KIND=4), ALLOCATABLE :: PeaksSS(:,:) 
INTEGER(KIND=4) :: nps 
REAL(KIND=4) :: DummyReal, StoDet, DetSep, Phi, AngleStart 
REAL(KIND=4), ALLOCATABLE :: Angles(:) 
INTEGER :: ErrorCode 
 
 
! Get input from the command line 
CALL GETARG(1, FileBase) 
CALL GETARG(2, NumSSTxt) 
CALL GETARG(3, DetsPerSSTxt) 
CALL GETARG(4, FirstDetTxt) 
CALL GETARG(5, StoDetTxt) 
CALL GETARG(6, DetSepTxt) 
 
READ (NumSSTxt, '(I4)') NumSS 
READ (DetsPerSSTxt, '(I4)') DetsPerSS 
READ (FirstDetTxt, '(I4)') FirstDet 
READ (StoDetTxt, '(F10.5)') StoDet 
READ (DetSepTxt, '(F10.5)') DetSep 
 
TotalDet = NumSS*DetsPerSS 
ALLOCATE(PeaksSS(FirstDet-1:FirstDet+TotalDet-1,4)) 
ALLOCATE(Angles(FirstDet:FirstDet+TotalDet-1)) 
PeaksSS = 0 
 
Phi = 2.*ATAN(DetSep/2./StoDet)*360./6.283185 
AngleStart = (-DetsPerSS/2. + 1/2./NumSS)*Phi 
 
DO I = FirstDet, FirstDet+TotalDet-1 
 PeaksSS(I,1) = I 
 Angles(I) = AngleStart + REAL(I-FirstDet)*Phi/REAL(NumSS) 
END DO 
 
DO I = 1, NumSS 
 IF (I < 10) THEN 
 WRITE(FileNumTxt, '(I1)') I 
 ELSE 
 WRITE(FileNumTxt, '(I2)') I 
 END IF 
 OPEN(UNIT = I, FILE=TRIM(FileBase) // TRIM(FileNumTxt) // ".peaks", ACTION="READ", 
& 
 & STATUS="OLD", IOSTAT=ErrorCode) 
 IF (ErrorCode > 0) STOP "Error! Cannot open .DAT file. Check file name." 
 READ(I, '(I12)') nps 
 IF (I == 1) PeaksSS(FirstDet-1,1) = nps 
 DO J = 1, DetsPerSS 
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 READ(I, '(I12)', ADVANCE="NO", IOSTAT=ErrorCode) DetNum 
 ! Exits the loop if the end of the peaks file is reached before DetsPerSS 
 IF (ErrorCode < 0) EXIT 
 IF (DetNum < FirstDet .OR. DetNum > FirstDet + TotalDet) THEN 
 PRINT *, "Error! Unexpected detector cell number encountered in peaks file." 
 STOP 
 END IF 
 READ(I, '(I12, ES12.4, I12, ES12.4, I12)') PeaksSS(DetNum,2), DummyReal, &  
 & PeaksSS(DetNum,3), DummyReal, PeaksSS(DetNum,4) 
 END DO 
 CLOSE(UNIT=I) 
END DO 
 
 
OPEN(UNIT = 99, FILE=TRIM(FileBase) // ".peaks", STATUS="REPLACE", ACTION="WRITE") 
WRITE (99, '(I12,A)') PeaksSS(FirstDet-1,1), " Detector Total Direct No X-Talk" 
DO I = FirstDet, FirstDet+TotalDet-1 
 WRITE(99, '(F12.6,4I12)') Angles(I), PeaksSS(I,1), PeaksSS(I,2), PeaksSS(I,3), 
PeaksSS(I,4) 
END DO  
CLOSE(UNIT=99) 
END PROGRAM 
 
The JoinPeaks Code 
PROGRAM JoinPixels 
! Version 2.00 
! Written February 2nd, 2009 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: November 28th, 2009 
 
IMPLICIT NONE 
 
INTEGER(KIND=4), ALLOCATABLE :: Peaks(:,:,:) 
CHARACTER :: FileBase*8, NumPixelsTxt*4, FileNumTxt*2 
INTEGER :: I, J, K, NumPixels, NumDets 
INTEGER :: ErrorCode 
INTEGER(KIND=4) :: DummyInt, nps, PeakSum 
REAL(KIND=4), ALLOCATABLE :: Angles(:) 
REAL(KIND=4) :: DummyReal 
 
CALL GETARG(1,FileBase) 
CALL GETARG(2,NumPixelsTxt) 
 
READ (NumPixelsTxt, '(I4)') NumPixels 
 
OPEN(UNIT=99, File=TRIM(FileBase) // "1.peaks", ACTION="READ", STATUS="OLD", & 
& IOSTAT=ErrorCode) 
IF (ErrorCode > 0) STOP "Error! Input file could not be read. Check filename." 
DO I = 1, 1000 
 READ(99,'(I12)', IOSTAT=ErrorCode) DummyInt 
 IF (ErrorCode < 0) EXIT 
END DO 
CLOSE(UNIT=99) 
 
NumDets = I - 2 
 
ALLOCATE(Peaks(NumDets,0:NumPixels+1,3)) 
ALLOCATE(Angles(NumDets)) 
 
DO I = 1, NumPixels 
 IF (I < 10) THEN 
 WRITE(FileNumTxt, '(I1)') I 
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 ELSE 
 WRITE(FileNumTxt, '(I2)') I 
 END IF 
 
 OPEN(UNIT=I, FILE=TRIM(FileBase) // TRIM(FileNumTxt) // ".peaks", STATUS="OLD", & 
 & ACTION="READ", POSITION="REWIND", IOSTAT=ErrorCode) 
 IF (ErrorCode > 0) STOP "Error! Missing one or more .peaks files." 
 READ (I, '(I12)') DummyInt 
 IF (I == 1) nps = DummyInt 
 DO J = 1, NumDets 
 READ (I, '(F12.6,4I12)') DummyReal, Peaks(J, 0, 1), Peaks(J, I, 1), & 
 & Peaks(J, I, 2), Peaks(J,I,3) 
 IF (I == 1) Angles(J) = DummyReal 
 END DO 
 CLOSE(UNIT=I) 
END DO 
 
DO I = 1,3 
 DO J = 1, NumDets 
 PeakSum = 0 
 DO K = 1, NumPixels 
 PeakSum = PeakSum + Peaks(J,K,I) 
 END DO 
 Peaks(J,NumPixels+1,I) = PeakSum 
 END DO 
END DO 
 
OPEN(UNIT=98, FILE=TRIM(FileBase) // ".peaks", STATUS="REPLACE", ACTION="WRITE") 
 
! Writes the header row into the output file 
DO I = 1,3 
 WRITE(98, '(I12, A)', ADVANCE="NO") nps, " Detector" 
 DO J = 1, NumPixels 
 WRITE(98, '(A, I2)', ADVANCE="NO") " Pixel", J 
 END DO 
 IF (I .LE. 2) THEN 
 WRITE(98, '(A)', ADVANCE="NO") " Total Unc. Total " 
 ELSE 
 WRITE(98, '(A)') " Total Unc. Total" 
 END IF 
END DO 
 
DO J = 1, NumDets 
 DO I = 1, 3 
 WRITE(98, '(F12.6)', ADVANCE="NO") Angles(J) 
 WRITE(98, '(I12)', ADVANCE="NO") Peaks(J,0,1) 
 DO K = 1, NumPixels 
 WRITE(98, '(I12)', ADVANCE="NO") Peaks(J,K,I) 
 END DO 
 WRITE(98, '(I12)', ADVANCE="NO") Peaks(J,NumPixels+1,I) 
 WRITE(98, '(ES12.4)', ADVANCE="NO") SQRT(REAL(Peaks(J,NumPixels+1,I))) 
 IF (I .LE. 2) THEN 
 WRITE(98, '(A)', ADVANCE="NO") " " 
 ELSE 
 WRITE(98, *) 
 END IF 
 END DO 
END DO 
 
CLOSE(UNIT=98) 
 
END PROGRAM JoinPixels 
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APPENDIX F.  —THE GAUSSFIT CODE  

PROGRAM GaussFit 
! Version 1.00 
! By Brandon Grogan 
! At The Oak Ridge National Laboratory 
! Last Edited: January 24th, 2010 
 
IMPLICIT NONE 
 
INTEGER(KIND=4) :: I, J, K, L, M, NPSObject, NPSVoid 
REAL :: DummyReal 
! Peaks layout - Rows = detectors, Column 0 = angle, Col 1 = Total, Col 2 = Direct, 
Col 3 = 
! NoXTalk, Col 4 = Scattered, Col 5 = Fitted, Col6 = PScF, Col7 = Scatter in Array, 
! Col8 = Scatter in Object, Col9 = raw object scatter; Pane 1 = object, Pane 2 = 
void 
REAL(KIND=4) :: Peaks(32,0:9,2) 
! Variables used for finding the Gaussian function 
REAL(KIND=4) :: FitMax1, FitSD1 
REAL(KIND=4) :: FitMax2, FitSD2, FitMax3, FitSD3 
REAL(KIND=4) :: VarSum, NumCounts, ChiSquared 
! The Measured Attenuation at the Center Detector 
REAL(KIND=4) :: MeasAtt 
CHARACTER :: ObjectFile*80, VoidFile*80, DummyChar*1, StoC*1, MFP*3, OutFile*80 
 
 
! Read the Object and Void .peaks File Names from the command line 
CALL GETARG(1, ObjectFile) 
CALL GETARG(2, VoidFile) 
 
! Read the Object to Center Distance and MFP of material 
CALL GETARG(3, StoC) 
CALL GETARG(4, MFP) 
 
! Open .peaks files and read the data into the .peaks array 
OPEN(UNIT=1, FILE=TRIM(ObjectFile), STATUS="OLD", ACTION="READ", POSITION="REWIND") 
OPEN(UNIT=2, FILE=TRIM(VoidFile), STATUS="OLD", ACTION="READ", POSITION="REWIND") 
 
! Reads the number of source histories from the .peaks files 
READ (1,*) NPSObject 
READ (2,*) NPSVoid 
 
! Read data from the .peaks files 
DO I = 1, 32 
 
 READ (1,*) DummyReal, Peaks(I,1,1), DummyReal, Peaks(I,2,1), DummyReal, 
Peaks(I,3,1) 
 ! Calculate the Detector Angle 
 Peaks(I,0,1) = -25.0005 + 1.6667 * REAL(I-1) 
 ! Calculate the Number of Scattered Counts in each detector 
 Peaks(I,4,1) = Peaks(I,3,1) - Peaks(I,2,1) 
 
 READ (2,*) DummyReal, Peaks(I,1,2), DummyReal, Peaks(I,2,2), DummyReal, 
Peaks(I,3,2) 
 ! Calculate the Detector Angle 
 Peaks(I,0,2) = -25.0005 + 1.6667 * REAL(I-1) 
 ! Calculate the Number of Scattered Counts in each detector 
 Peaks(I,4,2) = Peaks(I,3,2) - Peaks(I,2,2) 
 
END DO 
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CLOSE(UNIT=1) 
CLOSE(UNIT=2) 
 
! Calculate the true attenuation for the center detector. This uses the  
MeasAtt = -LOG(Peaks(16,2,1) * NPSVoid / Peaks(16,2,2) / NPSObject) 
 
! Now Calculate the Maximum and std. deviation of the scattered column. 
! These values will be used as the initial guess of the fitted parameters 
 
FitMax1 = 0. 
FitMax2 = 0. 
NumCounts = 0. 
VarSum = 0. 
 
DO I = 1, 32 
 
 NumCounts = NumCounts + Peaks(I,4,1) 
 VarSum = VarSum + Peaks(I,4,1) * Peaks(I,0,1)**2 
 IF(Peaks(I,4,1) > FitMax1) FitMax1 = Peaks(I,4,1) 
 
END DO 
 
FitSD1 = SQRT(VarSum / NumCounts) 
 
! The values from the object fit are taken directly from a gaussian fit of 
! a void measurement. 
! 1 MeV Threshold Values 
FitSD2 = 1.420884 
FitMax2 = 0.02969844*Peaks(16,2,1) 
FitSD3 = 2.911001 
FitMax3 = 0.004047225*Peaks(16,2,1) 
 
! 1.5 MeV Threshold Values 
! FitSD2 = 1.434710 
! FitMax2 = 0.03117959*Peaks(16,2,1) 
! FitSD3 = 2.981670 
! FitMax3 = 0.004329379*Peaks(16,2,1) 
 
! This subroutine calculates the optimal parameters of a Gaussian fit using 
! an iterative least squares method. 
CALL DoFit(Peaks, FitMax1, FitMax2, FitMax3, FitSD1, FitSD2, FitSD3, & 
& ChiSquared, NPSObject, NPSVoid) 
 
 
! The output file contains the original .peaks data plus the scattered values, 
! the fit, and the PScF 
OutFile = ObjectFile(1:4) // StoC // TRIM(MFP) // ".peaks2" 
 
OPEN(UNIT=3, FILE=TRIM(OutFile), STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=4, FILE="Params.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
 
WRITE(3, '(I16, 6A16)') NPSObject, "Total", "Direct", "No XTalk", "Scattered", & 
& "Fitted", "PScF" 
DO I = 1, 32 
 DO J = 0, 6, 1 
 WRITE(3, '(F16.6)', ADVANCE="NO") Peaks(I,J,1) 
 END DO 
 WRITE(3,*) 
END DO 
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WRITE(4, '(3A4, 8ES16.7)') ObjectFile(1:4), StoC // "0", TRIM(MFP), MeasAtt, 
FitMax1, & 
& FitSD1, FitMax2, FitSD2, FitMax3, FitSD3, ChiSquared 
 
CLOSE(UNIT=3) 
CLOSE(UNIT=4) 
 
OPEN(UNIT=5, FILE="PScF.out", STATUS="UNKNOWN", ACTION="WRITE", POSITION="APPEND") 
OPEN(UNIT=6, FILE="FittedTotal.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=7, FILE="FittedArray.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=8, FILE="FittedObject.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
OPEN(UNIT=9, FILE="ObjectRaw.out", STATUS="UNKNOWN", ACTION="WRITE", 
POSITION="APPEND") 
 
WRITE (5, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (6, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (7, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (8, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
WRITE (9, '(A9)', ADVANCE="NO") ObjectFile(1:4) // StoC // TRIM(MFP) 
 
DO I = 1, 32 
 WRITE (5, '(ES16.7)', ADVANCE="NO") 
Peaks(I,4,1)*REAL(NPSVoid)/Peaks(16,2,2)/REAL(NPSObject) 
 WRITE (6, '(ES16.7)', ADVANCE="NO") Peaks(I,6,1) 
 WRITE (7, '(ES16.7)', ADVANCE="NO") Peaks(I,7,1) 
 WRITE (8, '(ES16.7)', ADVANCE="NO") Peaks(I,8,1) 
 WRITE (9, '(ES16.7)', ADVANCE="NO") Peaks(I,9,1) 
END DO 
 
WRITE (5,*) 
WRITE (6,*) 
WRITE (7,*) 
WRITE (8,*) 
WRITE (9,*) 
 
CLOSE(UNIT=5) 
CLOSE(UNIT=6) 
CLOSE(UNIT=7) 
CLOSE(UNIT=8) 
CLOSE(UNIT=9) 
 
CONTAINS 
 
SUBROUTINE DoFit(ZPeaks, C, D, E, S, T, U, ChiSq, NPSO, NPSV) 
 
REAL(KIND=4), INTENT(INOUT) :: C, S, D, T, E, U, ChiSq, ZPeaks(32,0:9,2) 
INTEGER(KIND=4), INTENT(IN) :: NPSO, NPSV 
! The XTalk Scatter Array holds the part of the scattering from the object. 
! It needs to be identified separately in order to fit one Gaussian to the  
! XTalk and another to the Object Scatter. 
REAL(KIND=4) :: ObjectScatter(32) 
REAL(KIND=4) :: RangeC, RangeS, ChiSqMin, CMin, SMin, CInit, SInit 
REAL(KIND=4) :: FofTheta 
! These variables are used for smoothing out the center of the scattered counts 
! to account for the fact that MCNP doesn't handle small angle scattering well. 
 
RangeC = 2.0 * C 
RangeS = 5.0 * S 
CInit = C 
SInit = 2.5*S 
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ChiSq = 0. 
ChiSqMin = 1.0E+25 
 
PRINT *, C, S, D, T, E, U 
 
! Subtracts the Object Scatter Gaussian from the Total Scattering to leave only 
! the scattering due to cross-talk. 
 DO L = 1, 32 
 IF (L == 16) THEN 
 ObjectScatter(L) = ZPeaks(L,4,1) 
 ELSE 
 FofTheta = D*EXP(-ZPeaks(L,0,1)**2/(2.*T**2)) + E*EXP(-ABS(ZPeaks(L,0,1))/U)  
 ObjectScatter(L) = ZPeaks(L,4,1) - FofTheta 
 END IF 
 END DO 
 
 
DO I = 1, 10 
 
 DO J = 0, 200, 1 
 C = (-0.5 + 0.005*REAL(J))*RangeC + CInit 
 IF (C <= 0.) CYCLE 
 DO K = 0, 200, 1 
 S = (-0.5 + 0.005*REAL(K))*RangeS + SInit 
 IF (S <= 0.) CYCLE 
 DO L = 1, 32 
 ! IF (L == 16) CYCLE 
 FofTheta = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) 
 ChiSq = ChiSq + ((ObjectScatter(L) - FofTheta) / SQRT(ZPeaks(L,4,1)))**2 
! ChiSq = ChiSq + (ObjectScatter(L) - FofTheta)**2 
 END DO 
 IF (ChiSq < ChiSqMin) THEN 
 ChiSqMin = ChiSq 
 CMin = C 
 SMin = S 
 END IF 
 ChiSq = 0. 
 END DO ! K Loop 
 END DO ! J Loop 
 
 
 ChiSqMin = 1.0E+25 
 
 
RangeC = RangeC / 5.0 
RangeS = RangeS / 5.0 
C = CMin 
S = SMin 
CInit = C 
SInit = S 
ChiSqMin = 1.0E+25 
 
WRITE (*,'(I2, 6F16.6)') I, C, S, D, T, E, U 
 
END DO ! I Loop 
 
 
DO L = 1, 32 
 IF (L == 16) THEN 
 FofTheta = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) 
 ELSE 
 FofTheta = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) + & 
 & D*EXP(-ZPeaks(L,0,1)**2/(2.*T**2)) + E*EXP(-ABS(ZPeaks(L,0,1))/U) 
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 END IF 
 ZPeaks(L,5,1) = FofTheta 
 ZPeaks(L,6,1) = FofTheta * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
 ZPeaks(L,9,1) = ObjectScatter(L) * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
 ChiSq = ChiSq + ((ZPeaks(L,4,1) - FofTheta) / SQRT(ZPeaks(L,4,1)))**2 
! ChiSq = ChiSq + (ZPeaks(L,4,1) - FofTheta)**2 
END DO 
 
! Convert magnitudes of the fits to a per source neutron basis. 
C = C * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
D = D * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
E = E * REAL(NPSV) / ZPeaks(16,2,2) / REAL(NPSO) 
 
 
DO L = 1, 32 
 ZPeaks(L,8,1) = C*EXP(-ZPeaks(L,0,1)**2/(2.*S**2)) 
 IF (L == 16) THEN 
 ZPeaks(L,7,1) = 0. 
 CYCLE 
 END IF 
 ZPeaks(L,7,1) = D*EXP(-ZPeaks(L,0,1)**2/(2.*T**2))+E*EXP(-ABS(ZPeaks(L,0,1))/U) 
END DO 
 
END SUBROUTINE DoFit 
 
 
END PROGRAM GaussFit 



 

 
 



 

G-1 

APPENDIX G.  —THE PSCF PARAMETERS FOR A 1 MEV DETECTOR THRESHOLD 

Scenario Attenuation PScF Maximum PScF standard deviation 
Poly30.5 0.500 5.37E-03 6.511 
Poly31 0.999 6.17E-03 6.800 
Poly31.5 1.498 5.33E-03 7.107 
Poly32 1.997 4.11E-03 7.447 
Poly32.5 2.496 3.00E-03 7.763 
Poly33 2.995 2.10E-03 8.094 
Poly33.5 3.496 1.44E-03 8.403 
Poly34 3.996 9.69E-04 8.724 
Poly34.5 4.494 6.40E-04 9.090 
Poly35 4.989 4.21E-04 9.388 
Poly35.5 5.489 2.75E-04 9.731 
Poly36 5.991 1.77E-04 10.071 
Poly36.5 6.485 1.14E-04 10.479 
Poly37 6.985 7.35E-05 10.779 
Poly40.5 0.500 3.35E-03 7.931 
Poly41 0.999 3.88E-03 8.240 
Poly41.5 1.498 3.39E-03 8.571 
Poly42 1.997 2.65E-03 8.905 
Poly42.5 2.496 1.96E-03 9.236 
Poly43 2.995 1.39E-03 9.582 
Poly43.5 3.496 9.53E-04 9.937 
Poly44 3.996 6.45E-04 10.244 
Poly44.5 4.494 4.29E-04 10.640 
Poly45 4.989 2.85E-04 10.961 
Poly45.5 5.490 1.87E-04 11.358 
Poly46 5.992 1.21E-04 11.731 
Poly46.5 6.485 7.88E-05 12.128 
Poly47 6.986 5.07E-05 12.581 
Poly50.5 0.500 2.25E-03 9.429 
Poly51 0.999 2.64E-03 9.773 
Poly51.5 1.498 2.32E-03 10.116 
Poly52 1.997 1.83E-03 10.475 
Poly52.5 2.496 1.36E-03 10.835 
Poly53 2.995 9.68E-04 11.205 
Poly53.5 3.496 6.70E-04 11.590 
Poly54 3.996 4.57E-04 11.927 
Poly54.5 4.494 3.04E-04 12.436 
Poly55 4.989 2.05E-04 12.681 
Poly55.5 5.490 1.35E-04 13.191 
Poly56 5.992 8.85E-05 13.617 
Poly60.5 0.500 1.59E-03 11.052 
Poly61 0.999 1.88E-03 11.396 
Poly61.5 1.498 1.68E-03 11.746 
Poly62 1.997 1.33E-03 12.135 
Poly62.5 2.496 9.85E-04 12.581 
Poly63 2.995 7.08E-04 12.979 
Poly63.5 3.496 4.94E-04 13.427 
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Scenario Attenuation PScF Maximum PScF standard deviation 
Poly64 3.996 3.39E-04 13.847 
Poly64.5 4.494 2.30E-04 14.166 
Poly65 4.989 1.54E-04 14.650 
Poly70.5 0.500 1.18E-03 12.677 
Poly71 0.999 1.40E-03 13.068 
Poly71.5 1.498 1.25E-03 13.555 
Poly72 1.997 9.94E-04 13.962 
Poly72.5 2.496 7.45E-04 14.521 
Poly73 2.995 5.36E-04 14.981 
Poly73.5 3.496 3.75E-04 15.536 
Poly80.5 0.500 9.04E-04 14.613 
Poly81 0.999 1.07E-03 15.076 
Poly81.5 1.498 9.68E-04 15.547 
Poly82 1.997 7.71E-04 16.120 
Poly82.5 2.496 5.74E-04 16.883 
Poly90.5 0.500 6.99E-04 17.266 
Poly91 0.999 8.36E-04 17.907 
Poly91.5 1.498 7.57E-04 18.319 
Carb30.5 0.505 6.61E-03 6.693 
Carb31 1.009 7.72E-03 7.130 
Carb31.5 1.513 6.85E-03 7.568 
Carb32 2.016 5.41E-03 8.022 
Carb32.5 2.521 4.05E-03 8.495 
Carb33 3.024 2.92E-03 8.988 
Carb33.5 3.529 2.07E-03 9.475 
Carb34 4.034 1.44E-03 9.964 
Carb34.5 4.537 9.90E-04 10.522 
Carb35 5.037 6.75E-04 11.090 
Carb35.5 5.545 4.62E-04 11.656 
Carb36 6.051 3.12E-04 12.283 
Carb36.5 6.553 2.10E-04 13.026 
Carb37 7.055 1.42E-04 13.755 
Carb40.5 0.505 4.17E-03 8.267 
Carb41 1.009 4.95E-03 8.710 
Carb41.5 1.513 4.44E-03 9.162 
Carb42 2.017 3.54E-03 9.646 
Carb42.5 2.521 2.68E-03 10.124 
Carb43 3.024 1.96E-03 10.605 
Carb43.5 3.530 1.39E-03 11.120 
Carb44 4.035 9.72E-04 11.666 
Carb44.5 4.537 6.74E-04 12.209 
Carb45 5.037 4.61E-04 12.820 
Carb45.5 5.545 3.16E-04 13.390 
Carb46 6.050 2.14E-04 14.022 
Carb46.5 6.552 1.44E-04 14.665 
Carb47 7.054 9.85E-05 15.173 
Carb50.1 0.101 8.28E-04 9.895 
Carb50.2 0.202 1.52E-03 9.829 
Carb50.3 0.303 2.07E-03 9.863 
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Scenario Attenuation PScF Maximum PScF standard deviation 
Carb50.4 0.404 2.49E-03 9.930 
Carb50.5 0.505 2.81E-03 9.991 
Carb50.6 0.605 3.04E-03 10.081 
Carb50.7 0.706 3.21E-03 10.155 
Carb50.8 0.807 3.31E-03 10.261 
Carb50.9 0.908 3.37E-03 10.344 
Carb51 1.009 3.38E-03 10.434 
Carb51.5 1.513 3.06E-03 10.915 
Carb52 2.017 2.47E-03 11.412 
Carb52.5 2.521 1.87E-03 11.954 
Carb53 3.024 1.36E-03 12.499 
Carb53.5 3.530 9.80E-04 13.020 
Carb54 4.035 6.93E-04 13.540 
Carb54.5 4.537 4.82E-04 14.120 
Carb55 5.037 3.34E-04 14.721 
Carb55.5 5.545 2.30E-04 15.308 
Carb56 6.051 1.56E-04 15.962 
Carb60.5 0.505 2.00E-03 11.793 
Carb61 1.009 2.42E-03 12.273 
Carb61.5 1.513 2.20E-03 12.809 
Carb62 2.017 1.79E-03 13.358 
Carb62.5 2.521 1.36E-03 13.925 
Carb63 3.024 1.01E-03 14.445 
Carb63.5 3.530 7.26E-04 15.001 
Carb64 4.035 5.19E-04 15.565 
Carb64.5 4.969 2.37E-04 16.190 
Carb65 5.037 2.50E-04 17.078 
Carb70.5 0.505 1.47E-03 13.715 
Carb71 1.009 1.80E-03 14.175 
Carb71.5 1.513 1.66E-03 14.732 
Carb72 2.017 1.35E-03 15.378 
Carb72.5 2.521 1.04E-03 16.028 
Carb73 3.024 7.75E-04 16.492 
Carb73.5 3.530 5.63E-04 17.108 
Carb74 4.034 4.03E-04 17.744 
Carb80.5 0.505 1.13E-03 15.705 
Carb81 1.009 1.40E-03 16.083 
Carb81.5 1.513 1.29E-03 16.716 
Carb82 2.017 1.06E-03 17.454 
Carb82.5 2.521 8.22E-04 18.080 
Carb90.5 0.505 9.04E-04 17.700 
Carb91 1.009 1.12E-03 18.126 
Carb91.5 1.513 1.04E-03 18.880 
Iron30.5 0.505 9.53E-03 4.997 
Iron31 1.009 1.15E-02 5.314 
Iron31.5 1.513 1.04E-02 5.666 
Iron32 2.016 8.40E-03 6.033 
Iron32.5 2.520 6.44E-03 6.380 
Iron33 3.023 4.72E-03 6.752 
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Scenario Attenuation PScF Maximum PScF standard deviation 
Iron33.5 3.527 3.40E-03 7.136 
Iron34 4.031 2.39E-03 7.530 
Iron34.5 4.533 1.69E-03 7.899 
Iron35 5.032 1.17E-03 8.309 
Iron35.5 5.548 8.12E-04 8.687 
Iron36 6.056 5.63E-04 9.048 
Iron36.5 6.550 3.92E-04 9.361 
Iron37 7.048 2.69E-04 9.706 
Iron40.5 0.505 6.01E-03 6.320 
Iron41 1.009 7.32E-03 6.638 
Iron41.5 1.513 6.69E-03 7.001 
Iron42 2.016 5.44E-03 7.365 
Iron42.5 2.520 4.19E-03 7.721 
Iron43 3.023 3.11E-03 8.117 
Iron43.5 3.527 2.26E-03 8.472 
Iron44 4.031 1.61E-03 8.850 
Iron44.5 4.533 1.14E-03 9.229 
Iron45 5.032 7.98E-04 9.617 
Iron45.5 5.548 5.55E-04 10.037 
Iron46 6.057 3.82E-04 10.353 
Iron46.5 6.551 2.71E-04 10.637 
Iron47 7.050 1.86E-04 11.039 
Iron50.5 0.505 4.13E-03 7.645 
Iron51 1.009 5.07E-03 7.944 
Iron51.5 1.513 4.66E-03 8.310 
Iron52 2.016 3.81E-03 8.670 
Iron52.5 2.520 2.97E-03 9.018 
Iron53 3.023 2.21E-03 9.409 
Iron53.5 3.528 1.61E-03 9.766 
Iron54 4.031 1.15E-03 10.163 
Iron54.5 4.534 8.23E-04 10.575 
Iron55 5.033 5.80E-04 10.956 
Iron55.5 5.549 4.09E-04 11.336 
Iron56 6.058 2.82E-04 11.647 
Iron56.5 6.552 1.97E-04 12.053 
Iron57 7.051 1.36E-04 12.599 
Iron60.5 0.505 3.03E-03 8.864 
Iron61 1.009 3.72E-03 9.204 
Iron61.5 1.513 3.44E-03 9.555 
Iron62 2.016 2.83E-03 9.937 
Iron62.5 2.520 2.20E-03 10.311 
Iron63 3.023 1.65E-03 10.672 
Iron63.5 3.527 1.21E-03 11.064 
Iron64 4.031 8.68E-04 11.483 
Iron64.5 4.534 6.17E-04 11.937 
Iron65 5.033 4.36E-04 12.441 
Iron65.5 5.549 3.08E-04 12.782 
Iron66 6.058 2.15E-04 13.068 
Iron66.5 6.553 1.49E-04 13.609 
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Scenario Attenuation PScF Maximum PScF standard deviation 
Iron67 7.050 1.05E-04 14.080 
Iron70.5 0.505 2.31E-03 10.111 
Iron71 1.009 2.85E-03 10.414 
Iron71.5 1.513 2.65E-03 10.759 
Iron72 2.016 2.18E-03 11.175 
Iron72.5 2.520 1.70E-03 11.555 
Iron73 3.023 1.28E-03 11.938 
Iron73.5 3.527 9.41E-04 12.332 
Iron74 4.031 6.77E-04 12.800 
Iron74.5 4.533 4.83E-04 13.258 
Iron75 5.033 3.47E-04 13.622 
Iron75.5 5.549 2.43E-04 14.123 
Iron76 6.058 1.68E-04 14.688 
Iron76.5 6.552 1.17E-04 15.274 
Iron77 7.051 8.18E-05 15.469 
Iron80.5 0.505 1.81E-03 11.295 
Iron81 1.009 2.25E-03 11.634 
Iron81.5 1.513 2.09E-03 11.983 
Iron82 2.016 1.73E-03 12.403 
Iron82.5 2.520 1.35E-03 12.791 
Iron83 3.023 1.02E-03 13.251 
Iron83.5 3.527 7.48E-04 13.688 
Iron84 4.031 5.39E-04 14.202 
Iron84.5 4.534 3.84E-04 14.706 
Iron85 5.033 2.74E-04 15.232 
Iron85.5 5.549 1.94E-04 15.497 
Iron90.5 0.505 1.45E-03 12.561 
Iron91 1.009 1.81E-03 12.881 
Iron91.5 1.513 1.68E-03 13.265 
Iron92 2.016 1.40E-03 13.716 
Iron92.5 2.520 1.09E-03 14.130 
Iron93 3.023 8.28E-04 14.591 
Lead30.5 0.507 1.67E-02 3.269 
Lead31 1.014 1.97E-02 3.532 
Lead31.5 1.521 1.75E-02 3.815 
Lead32 2.027 1.38E-02 4.121 
Lead32.5 2.534 1.02E-02 4.454 
Lead33 3.040 7.27E-03 4.862 
Lead33.5 3.547 5.06E-03 5.294 
Lead34 4.053 3.41E-03 5.844 
Lead34.5 4.559 2.28E-03 6.464 
Lead35 5.062 1.52E-03 7.099 
Lead35.5 5.581 1.01E-03 7.782 
Lead36 6.089 6.89E-04 8.273 
Lead36.5 6.588 4.70E-04 8.741 
Lead37 7.086 3.19E-04 9.305 
Lead40.5 0.507 1.11E-02 4.076 
Lead41 1.014 1.32E-02 4.372 
Lead41.5 1.521 1.17E-02 4.698 
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Scenario Attenuation PScF Maximum PScF standard deviation 
Lead42 2.027 9.39E-03 5.012 
Lead42.5 2.534 7.00E-03 5.390 
Lead43 3.040 5.03E-03 5.815 
Lead43.5 3.547 3.51E-03 6.292 
Lead44 4.053 2.38E-03 6.903 
Lead44.5 4.559 1.61E-03 7.516 
Lead45 5.062 1.09E-03 8.170 
Lead45.5 5.580 7.36E-04 8.802 
Lead46 6.089 4.94E-04 9.418 
Lead46.5 6.587 3.41E-04 9.922 
Lead47 7.086 2.33E-04 10.471 
Lead50.5 0.507 7.82E-03 4.923 
Lead51 1.014 9.34E-03 5.244 
Lead51.5 1.521 8.37E-03 5.581 
Lead52 2.027 6.67E-03 5.962 
Lead52.5 2.535 5.02E-03 6.361 
Lead53 3.040 3.63E-03 6.826 
Lead53.5 3.547 2.54E-03 7.338 
Lead54 4.053 1.76E-03 7.901 
Lead54.5 4.559 1.20E-03 8.536 
Lead55 5.062 8.23E-04 9.137 
Lead55.5 5.580 5.59E-04 9.781 
Lead56 6.089 3.83E-04 10.238 
Lead56.5 6.588 2.63E-04 10.791 
Lead57 7.087 1.79E-04 11.393 
Lead60.5 0.507 5.77E-03 5.764 
Lead61 1.014 6.90E-03 6.133 
Lead61.5 1.521 6.20E-03 6.505 
Lead62 2.027 4.98E-03 6.880 
Lead62.5 2.534 3.78E-03 7.289 
Lead63 3.040 2.74E-03 7.791 
Lead63.5 3.547 1.95E-03 8.315 
Lead64 4.052 1.36E-03 8.866 
Lead64.5 4.559 9.49E-04 9.361 
Lead65 5.062 6.48E-04 9.971 
Lead65.5 5.580 4.44E-04 10.628 
Lead66 6.089 3.08E-04 10.996 
Lead66.5 6.587 2.12E-04 11.459 
Lead67 7.086 1.44E-04 12.313 
Lead70.5 0.507 4.41E-03 6.607 
Lead71 1.014 5.31E-03 6.976 
Lead71.5 1.521 4.79E-03 7.382 
Lead72 2.027 3.87E-03 7.772 
Lead72.5 2.534 2.96E-03 8.192 
Lead73 3.040 2.16E-03 8.701 
Lead73.5 3.547 1.55E-03 9.206 
Lead74 4.052 1.09E-03 9.677 
Lead74.5 4.559 7.64E-04 10.220 
Lead75 5.062 5.29E-04 10.763 
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Scenario Attenuation PScF Maximum PScF standard deviation 
Lead75.5 5.581 3.63E-04 11.320 
Lead76 6.090 2.55E-04 11.727 
Lead80.5 0.507 3.50E-03 7.404 
Lead81 1.014 4.22E-03 7.801 
Lead81.5 1.521 3.83E-03 8.220 
Lead82 2.027 3.10E-03 8.637 
Lead82.5 2.534 2.38E-03 9.042 
Lead83 3.040 1.75E-03 9.538 
Lead83.5 3.547 1.27E-03 9.983 
Lead84 4.052 9.00E-04 10.451 
Lead84.5 4.559 6.32E-04 10.955 
Lead90.5 0.507 2.83E-03 8.184 
Lead91 1.014 3.43E-03 8.599 
Lead91.5 1.521 3.13E-03 9.003 
Lead92 2.027 2.55E-03 9.418 
Lead92.5 2.534 1.97E-03 9.827 
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APPENDIX H.  —THE SCATTERSUBTRACT CODE 

The ScatterSubtract Code 
PROGRAM ScatterSubtract 
!--------------------------------------------------------------------------- 
! Written by Brandon R. Grogan 
! at the Oak Ridge National Laboratory 
! Last Modified 13 January 2010 
!--------------------------------------------------------------------------- 
IMPLICIT NONE 
INTEGER(KIND=4) :: I, J, K, L, M, ErrorCode, NumDets, NumSS 
INTEGER(KIND=4) :: MatNum, LOK 
REAL(KIND=4) :: DR, NPSO, NPSV, ObjtoDet, ChiSq(3) 
REAL(KIND=4), ALLOCATABLE :: VoidPeaks(:,:,:), ObjPeaks(:,:,:) 
REAL(KIND=4), ALLOCATABLE :: ISF(:,:,:), Attenuation(:,:,:) 
REAL(KIND=4), ALLOCATABLE :: Uncertainty(:,:,:), Scatter(:,:,:) 
CHARACTER :: ObjFile*80, VoidFile*80, SSText*4, OtoDText*4, Material*16 
CHARACTER :: NumDetText*4, LOKText*1 
REAL(KIND=4) :: Epsilon 
 
Epsilon = 0.00001 
 
!--------------------------------------------------------------------------- 
! STEP 1: Read user input from the command line. 
! SYNTAX: ScatterSubtract <object .peaks file> <void .peaks file> <# SS> 
! <# Detectors> <Object to Center Distance> <Material> 
!--------------------------------------------------------------------------- 
CALL GETARG(1, ObjFile) 
CALL GETARG(2, VoidFile) 
CALL GETARG(3, SSText) 
CALL GETARG(4, NumDetText) 
CALL GETARG(5, OtoDText) 
CALL GETARG(6, Material) 
CALL GETARG(7, LOKText) 
 
IF (LEN(TRIM(ObjFile)) == 0) THEN 
 Print *, "ScatterSubtract Syntax:" 
 PRINT *, 
 PRINT *, "ScatterSubtract <object .peaks file> <void .peaks file> <# SS>" 
 PRINT *, "<Object to Center Distance> <Material>" 
 STOP 
END IF 
 
 
READ(SSText, '(I4)') NumSS 
READ(NumDetText, '(I4)') NumDets 
READ(OtoDText, '(F4.0)') ObjtoDet 
READ(LOKText, '(I1)') LOK 
 
IF (Material(1:2) == "Po" .OR. Material(1:2) == "PO" .OR. &  
& Material(1:2) == "CH" .OR. Material(1:2) == "CH") THEN 
 MatNum = 1 
ELSEIF(LOK == 3) THEN 
 MatNum = 6 
ELSEIF (Material(1:1) == "C" .OR. Material(1:1) == "c") THEN 
 MatNum = 2 
ELSEIF(LOK == 2) THEN 
 MatNum = 5 
ELSEIF (Material(1:2) == "Ir" .OR. Material(1:2) == "IR" .OR. & 
& Material(1:2) == "ir" .OR. Material(1:2) == "Fe") THEN 
 MatNum = 3 
ELSEIF (Material(1:2) == "Le" .OR. Material(1:2) == "LE" .OR. & 
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& Material(1:2) == "le" .OR. Material(1:2) == "Pb") THEN 
 MatNum = 4 
ELSE 
 PRINT *, "Invalid Material! Program Halted." 
 STOP 
END IF 
 
PRINT *, ObjtoDet, MatNum 
 
! Allocate and initialize arrays 
ALLOCATE(ObjPeaks(NumDets+1,6,NumSS)) 
ALLOCATE(VoidPeaks(NumDets+1,6,NumSS)) 
ALLOCATE(Attenuation(NumDets+1,6,NumSS)) 
ALLOCATE(ISF(NumDets,NumDets+1,NumSS)) 
ALLOCATE(Uncertainty(NumDets,5,NumSS)) 
ALLOCATE(Scatter(NumDets,5,NumSS)) 
 
ObjPeaks = 0. 
VoidPeaks = 0. 
Attenuation = 0. 
ISF = 0. 
Uncertainty = 0. 
 
 
!--------------------------------------------------------------------------- 
! STEP 2: Read the .peaks files into memory. 
!--------------------------------------------------------------------------- 
 
OPEN(UNIT=1, FILE=TRIM(ObjFile), STATUS="OLD", ACTION="READ", IOSTAT=ErrorCode) 
OPEN(UNIT=2, FILE=TRIM(VoidFile), STATUS="OLD", ACTION="READ", IOSTAT=ErrorCode) 
 
READ(1, *) NPSO 
READ(2, *) NPSV 
 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 READ(1, *) ObjPeaks(I,1,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
 & ObjPeaks(I,2,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
 & ObjPeaks(I,3,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
 & ObjPeaks(I,4,K) 
 READ(2, *) VoidPeaks(I,1,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
 & VoidPeaks(I,2,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
 & VoidPeaks(I,3,K), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, DR, & 
 & VoidPeaks(I,4,K) 
 VoidPeaks(I,5,K) = VoidPeaks(I,4,K) 
 ObjPeaks(I,5,K) = ObjPeaks(I,4,K) 
 Attenuation(I,1,K) = VoidPeaks(I,1,K) 
 END DO 
END DO 
 
CLOSE(UNIT=1) 
CLOSE(UNIT=2) 
 
PRINT *, NPSO, NPSV 
 
!--------------------------------------------------------------------------- 
! STEP 3: Convert I0measured to I0corrected 
!--------------------------------------------------------------------------- 
 
CALL FindI0(VoidPeaks, ISF) 
 
! Now normalize the ISF Array to the object counts. 
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DO K = 1, NumSS 
 DO I = 1, NumDets 
 DO J = 1, NumDets+1 
 ISF(I,J,K) = ISF(I,J,K) * NPSO / NPSV 
 END DO 
 END DO 
END DO 
 
!--------------------------------------------------------------------------- 
! STEP 4: Convert Imeasured to Icorrected and use it to find the corrected 
! attenuation. 
!--------------------------------------------------------------------------- 
 
CALL FindAttenuation(VoidPeaks, ObjPeaks, ISF, Attenuation, NPSO, NPSV, & 
& ObjtoDet, MatNum) 
 
!--------------------------------------------------------------------------- 
! STEP 5: Find the uncertainty on the attenuation values. 
!--------------------------------------------------------------------------- 
 
CALL FindUncertainty(VoidPeaks, ObjPeaks, Uncertainty) 
 
!--------------------------------------------------------------------------- 
! STEP 6: Find the fraction of scattering in the total, NoXTalk, and 
! corrected object transmission values. 
!--------------------------------------------------------------------------- 
 
CALL FindScattering(ObjPeaks,Scatter) 
 
!--------------------------------------------------------------------------- 
! STEP 7: Find the Chi-Squared goodness of fit values for the total, NoXtalk, 
! and Corrected attenuation values. 
!--------------------------------------------------------------------------- 
 
CALL FindChiSq(Attenuation, Uncertainty, ChiSq) 
 
!--------------------------------------------------------------------------- 
! STEP 8: Write Output to Files. The 5 files are: 
! 
! (3) void.out - contains the void correlation values (incl. corrected) 
! (4) object.out - contains the object correlation values (incl. corrected) 
! (5) attenuation.out - contains the attenuation values 
! (6) scatter.out - contains the scatter fractions 
! (7) ChiSq.out - contains the chi squared goodness of fit results 
!--------------------------------------------------------------------------- 
 
OPEN(UNIT=3, FILE="Void.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=4, FILE="Object.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=5, FILE="Attenuation.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=6, FILE="Scatter.out", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=7, FILE="ChiSq.out", STATUS="REPLACE", ACTION="WRITE") 
 
WRITE(3, '(I16,5A16)') INT(NPSV),"Total","Direct","No XTalk","Corrected", & 
& "Frac. Error" 
WRITE(4, '(I16,5A16)') INT(NPSO),"Total","Direct","No XTalk","Corrected", & 
& "Frac. Error" 
WRITE(5, '(7A16)', ADVANCE="NO") "Angle", "Total", "Direct", "No XTalk", &  
& "Corrected", "Frac. Error", " " 
WRITE(5, '(4A16)') "Total", "Direct", "No XTalk", "Corrected" 
WRITE(6, '(4A16)') "Angle", "Total", "No XTalk", "Corrected" 
WRITE(7, '(3A16)') "Total", "No XTalk", "Corrected" 
 
DO I = 1, NumDets 
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 DO K = 1, NumSS 
 DO L = 1,6 
 WRITE(3, '(ES16.6)', ADVANCE="NO") VoidPeaks(I,L,K) 
 WRITE(4, '(ES16.6)', ADVANCE="NO") ObjPeaks(I,L,K) 
 WRITE(5, '(ES16.6)', ADVANCE="NO") Attenuation(I,L,K) 
 IF (L == 3) CYCLE 
 IF (L == 6) EXIT 
 WRITE(6, '(ES16.6)', ADVANCE="NO") Scatter(I,L,K) 
 END DO 
 WRITE(5, '(A16)', ADVANCE="NO") " " 
 DO L = 2,5 
 WRITE(5, '(ES16.6)', ADVANCE="NO") Uncertainty(I,L,K) 
 END DO 
 
 WRITE(3,*) 
 WRITE(4,*) 
 WRITE(5,*) 
 WRITE(6,*) 
 END DO 
END DO 
 
WRITE(7,'(3ES16.6)') ChiSq(1), ChiSq(2), ChiSq(3) 
 
CLOSE(UNIT=3) 
CLOSE(UNIT=4) 
CLOSE(UNIT=5) 
CLOSE(UNIT=6) 
CLOSE(UNIT=7) 
 
!--------------------------------------------------------------------------- 
! Subroutines  
!--------------------------------------------------------------------------- 
CONTAINS 
 
!--------------------------------------------------------------------------- 
! Subroutine FindI0 - This subroutine calculates the corrected values of I0 
! from the measured. Reutrns the I0 values and the ISF. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindI0(ZVoid, ISFCounts) 
REAL(KIND=4), INTENT(INOUT) :: ZVoid(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ISFCounts(NumDets, NumDets+1,NumSS) 
REAL(KIND=4) :: ZISF(NumDets, NumDets+1, NumSS) 
REAL(KIND=4) :: ConvCheck 
 
OPEN(UNIT=99, FILE="Void.iter", STATUS="REPLACE", ACTION="WRITE") 
WRITE(99,'(A13)', ADVANCE="NO") " " 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(F13.6)', ADVANCE="NO") ZVoid(I,1,K) 
 END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
 
WRITE (99, '(A13)', ADVANCE="NO") "Iteration 0" 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(ES13.6)', ADVANCE="NO") ZVoid(I,5,K) 
 END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
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! Find the normalized ISF Values (Scattered Counts in det. I per  
! direct count in det J. 
DO K = 1, NumSS 
 DO I = 1, NumDets 
 DO J = 1, NumDets 
 CALL GetISF(ZVoid(J,1,K), ZVoid(I,1,K), ZISF(I,J,K)) 
 END DO ! J Loop 
 END DO ! I Loop 
END DO ! K Loop 
 
! Maximum of 100 iterations, although convergence will probably come much faster. 
DO L = 1, 100 
 DO K = 1, NumSS 
 DO I = 1, NumDets 
 DO J = 1, NumDets 
 
 ! The actual number of scattered counts produced in I by det. J 
 ISFCounts(I,J,K) = ZISF(I,J,K) * ZVoid(J,5,K) 
 
 ! Total counts scattered into detector I 
 ISFCounts(I,NumDets+1,K) = ISFCounts(I,NumDets+1,K) + ISFCounts(I,J,K) 
 
 END DO ! J Loop 
 END DO ! I Loop 
 END DO ! K Loop 
 
 DO K = 1, NumSS 
 DO I = 1, NumDets 
 
 ZVoid(I,6,K) = ZVoid(I,4,K) - ISFCounts(I,NumDets+1,K) 
 IF (ZVoid(I,6,K) < 0.) ZVoid(I,6,K) = 0. 
 
 ! The sum of the difference in counts between iteration will be the  
 ! criterion used to determine convergence. 
 ZVoid(NumDets+1,6,NumSS) = ZVoid(NumDets+1,6,NumSS) + & 
 & ABS(ZVoid(I,4,K) - ZVoid(I,6,K)) 
 
 END DO ! I Loop 
 END DO ! K Loop 
 
 
WRITE (99, '(A9,I4)', ADVANCE="NO") "Iteration", L 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(ES13.6)', ADVANCE="NO") ZVoid(I,6,K) 
 END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
 
 
 
 ! Now check for convergence. 
 ConvCheck = ABS((ZVoid(NumDets+1,6,NumSS)-ZVoid(NumDets+1,5,NumSS)) / & 
 & ZVoid(NumDets+1,5,NumSS)) 
 
 IF(ConvCheck < Epsilon) THEN 
 
 ! Get rid of the convergence testing values because they're not need any more. 
 ZVoid(NumDets+1,5,NumSS) = 0. 
 ZVoid(NumDets+1,6,NumSS) = 0. 
 DO K = 1, NumSS 
 DO I = 1, NumDets 
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 ! Column 5 now becomes the corrected I0 values. 
 ZVoid(I,5,K) = ZVoid(I,6,K) 
 
 ! Column 6 will become the fractional error of the corrected values. 
 ZVoid(I,6,K) = (ZVoid(I,5,K)-ZVoid(I,3,K))/ZVoid(I,5,K) 
 
 ! This cell will hold the average fractional error for the entire 
 ! void run. 
 ZVoid(NumDets+1,6,NumSS) = ZVoid(NumDets+1,6,NumSS) + ZVoid(I,6,K) 
 END DO 
 END DO 
 
 ! Divide by total number of dets. to find average frac. error. 
 ZVoid(NumDets+1,6,NumSS) = ZVoid(NumDets+1,6,NumSS) / REAL(NumDets*NumSS) 
 
 WRITE (99, '(A13)', ADVANCE="NO") "Direct " 
 DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(ES13.6)', ADVANCE="NO") ZVoid(I,3,K) 
 END DO ! K Loop 
 END DO ! I Loop 
 WRITE(99,*) 
 
 
  
 EXIT 
 
 ! If not converged, the values from column 6 (present iteration) are copied 
 ! into column 5 (old iteration) and column 6 is set to 0 for the next loop. 
 ELSE 
 ISFCounts = 0. 
 DO K = 1, NumSS 
 DO I = 1, NumDets+1 
 ZVoid(I,5,K) = ZVoid(I,6,K) 
 ZVoid(I,6,K) = 0. 
 END DO 
 END DO 
 
 WRITE(*, '(I6, 2ES16.6)') L, ZVoid(NumDets+1,5,NumSS), ConvCheck 
  
 END IF 
 
END DO ! L Loop 
 
CLOSE(UNIT=99) 
 
END SUBROUTINE FindI0 
 
!--------------------------------------------------------------------------- 
! Subroutine GetISF - This subroutine returns the ISF scattering fraction 
! for a given combination of detector angles. 
!--------------------------------------------------------------------------- 
SUBROUTINE GetISF(ThetaFrom, ThetaTo, ISFVal) 
REAL(KIND=4), INTENT(IN) :: ThetaFrom, ThetaTo 
REAL(KIND=4), INTENT(OUT) :: ISFVal 
REAL(KIND=4) :: AngleDiff, ZIter 
 
  
AngleDiff = ThetaFrom - ThetaTo 
 
IF (ABS(AngleDiff) < 0.01) THEN 
 ISFVAL = 0. 
ELSE 
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 ISFVal = 0.02969844 * EXP(-AngleDiff**2 / (2. * 1.420884**2)) + & 
 & 0.004047225 * EXP(-ABS(AngleDiff) / 2.911001) 
END IF 
 
END SUBROUTINE GetISF 
 
!--------------------------------------------------------------------------- 
! Subroutine FindAttenuation - This subroutine subtracts the object scatter  
! from I to find the corrected values and uses them to calculate the corrected 
! attenuation. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindAttenuation(ZVoid, ZObj, ZISF, ZAtten, ZNPSO, ZNPSV, & 
& ZObjDet, ZMat) 
REAL(KIND=4), INTENT(IN) :: ZVoid(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZISF(NumDets,NumDets+1,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZObj(NumDets+1,6,NumSS), ZAtten(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(IN) :: ZNPSO, ZNPSV, ZObjDet 
INTEGER(KIND=4), INTENT(IN) :: ZMat 
REAL(KIND=4) :: ZPScF(NumDets, NumDets+1, NumSS), ConvCheck 
 
! Calculates the total, direct, and measured attenuation values. 
! Also calculates the first guess for corrected attenuation. 
DO K = 1, NumSS 
 DO I = 1, NumDets 
 ZAtten(I,2,K) = -LOG(ZObj(I,2,K)*ZNPSV/ZVoid(I,2,K)/ZNPSO) 
 IF(ZVoid(I,2,K) == 0. .OR. ZObj(I,2,K)==0.) ZAtten(I,2,K) = 0. 
 ZAtten(I,3,K) = -LOG(ZObj(I,3,K)*ZNPSV/ZVoid(I,3,K)/ZNPSO) 
 IF(ZVoid(I,3,K) == 0. .OR. ZObj(I,3,K)==0.) ZAtten(I,3,K) = 0. 
 ZAtten(I,4,K) = -LOG(ZObj(I,4,K)*ZNPSV/ZVoid(I,4,K)/ZNPSO) 
 IF(ZVoid(I,4,K) == 0. .OR. ZObj(I,4,K)==0.) ZAtten(I,4,K) = 0. 
 ZAtten(I,5,K) = -LOG(ZObj(I,5,K)*ZNPSV/ZVoid(I,5,K)/ZNPSO) 
 IF(ZVoid(I,5,K) == 0. .OR. ZObj(I,5,K)==0.) ZAtten(I,5,K) = 0. 
 ZObj(NumDets+1,5,NumSS) = ZObj(NumDets+1,5,NumSS) + ZObj(I,5,K) 
 END DO ! I Loop 
END DO ! K Loop 
 
 
OPEN(UNIT=99, FILE="Obj.iter", STATUS="REPLACE", ACTION="WRITE") 
OPEN(UNIT=98, FILE="Atten.iter", STATUS="REPLACE", ACTION="WRITE") 
 
WRITE(99,'(A13)', ADVANCE="NO") " " 
WRITE(98,'(A13)', ADVANCE="NO") " " 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(F13.6)', ADVANCE="NO") ZObj(I,1,K) 
 WRITE(98,'(F13.6)', ADVANCE="NO") ZAtten(I,1,K) 
 END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
WRITE(98,*) 
 
WRITE (99, '(A13)', ADVANCE="NO") "Iteration 0" 
WRITE (98, '(A13)', ADVANCE="NO") "Iteration 0" 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(ES13.6)', ADVANCE="NO") ZObj(I,5,K) 
 WRITE(98,'(ES13.6)', ADVANCE="NO") ZAtten(I,5,K) 
 END DO ! K Loop 
END DO ! I Loop 
WRITE(99,*) 
WRITE(98,*) 
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! Maximum of 100 iterations, although convergence will probably come much faster. 
DO L = 1, 100 
 
! After each 100 iterations, decrease convergence criteria by a factor of 10. 
! IF(MOD(L,100) == 0) Epsilon = 10. * Epsilon 
 
 ! Clear the PScF array at the beginning of each iteration. 
 ZPScF = 0. 
 
 DO K = 1, NumSS 
 DO I = 1, NumDets 
 
 ! Clear the last column of the ISF array so that it can hold the total  
 ! Inter-array scattering into that detector. 
 ISF(I,NumDets+1,K) = 0. 
  
 DO J = 1, NumDets 
 
 ! Get the PScF Values using the PScFGEs 
 CALL PScFGE(ZObj(J,1,K), ZObj(I,1,K), ZPScF(I,J,K), ZMat, ZObjDet, & 
 & ZAtten(J,5,K), L) 
 
 ! Convert the PScF value to counts and sum the total scattered  
 ! counts into each detector 
 ZPScF(I,J,K) = ZPScF(I,J,K) * ZVoid(J,5,K) * ZNPSO / ZNPSV 
 ZPScF(I,NumDets+1,K) = ZPScF(I,NumDets+1,K) + ZPScF(I,J,K) 
 
 ! ISF counts are summed across contributing detectors. Each value is weighted 
 ! by the attenuation value from the previous iteration. 
 ZISF(I,NumDets+1,K) = ZISF(I,NumDets+1,K) + EXP(-ZAtten(J,5,K))*ZISF(I,J,K) 
  
 
 END DO ! J Loop 
 END DO ! I Loop 
 END DO ! K Loop 
 
 DO K = 1, NumSS 
 DO I = 1, NumDets 
 
 ! Find Icorr by subtracting the ISF and PScF 
 ZObj(I,6,K) = ZObj(I,4,K) - ZISF(I,NumDets+1,K) - ZPScF(I,NumDets+1,K) 
 IF(ZObj(I,6,K) <= 0.) ZObj(I,6,K) = 0. 
 
 ! This IF statement is used to force convergence by averaging the results 
 ! of each iteration past the 10th. This is useful for getting measurements 
 ! with poor statistics to converge. Otherwise, there is a tendancy to 
 ! oscillate between two values. 
 IF (L > 10) THEN 
 ZObj(I,6,K) = (ZObj(I,6,K) + REAL(L-10)*ZObj(I,5,K))/REAL(L-9) 
 END IF 
 
 
 ! Now calculate the new attenuation. 
 IF(ZObj(I,6,K) == 0. .OR. ZVoid(I,5,K) == 0.) THEN 
 ZAtten(I,6,K) = 0. 
 ELSE 
 ZAtten(I,6,K) = -LOG(ZObj(I,6,K)*ZNPSV/ZVoid(I,5,K)/ZNPSO) 
 END IF 
 IF(ZAtten(I,6,K) < 0.) ZAtten(I,6,K) = 0. 
 
 ! This value is the total object counts for the entire measurement. It is used 
 ! for checking convergence. 
 ZObj(NumDets+1,6,NumSS) = ZObj(NumDets+1,6,NumSS) + ZObj(I,6,K) 
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 END DO ! I Loop 
 END DO ! K Loop 
 
 ! Writes the corrected value for this iteration to a file. 
 WRITE (99, '(A9,I4)', ADVANCE="NO") "Iteration", L 
 WRITE (98, '(A9,I4)', ADVANCE="NO") "Iteration", L 
 DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(ES13.6)', ADVANCE="NO") ZObj(I,6,K) 
 WRITE(98,'(ES13.6)', ADVANCE="NO") ZAtten(I,6,K) 
 END DO ! K Loop 
 END DO ! I Loop 
 WRITE(99,*) 
 WRITE(98,*) 
 
 
 IF (L >= 5) THEN 
 ! Now check for convergence. 
 ConvCheck = ABS((ZObj(NumDets+1,6,NumSS)-ZObj(NumDets+1,5,NumSS)) / & 
 & ZObj(NumDets+1,5,NumSS)) 
 ELSE 
 ConvCheck = 1. 
 END IF 
 
 IF(ConvCheck < Epsilon) THEN 
 
 ! Get rid of the convergence testing values because they're not need any more. 
 ZObj(NumDets+1,5,NumSS) = 0. 
 ZObj(NumDets+1,6,NumSS) = 0. 
 DO K = 1, NumSS 
 DO I = 1, NumDets 
 
 ! Column 5 now becomes the corrected I values. 
 ZObj(I,5,K) = ZObj(I,6,K) 
 ZAtten(I,5,K) = ZAtten(I,6,K) 
 
 ! Column 6 will become the fractional error of the corrected values. 
 IF (ZObj(I,5,K) == 0.) THEN 
 ZObj(I,6,K) = 0. 
 ZAtten(I,6,K) = 0. 
 ELSE 
 ZObj(I,6,K) = (ZObj(I,5,K)-ZObj(I,3,K))/ZObj(I,5,K) 
 ZAtten(I,6,K) = (ZAtten(I,5,K)-ZAtten(I,3,K))/ZAtten(I,5,K) 
 END IF 
 
 ! This cell will hold the average fractional error for the entire 
 ! void run. 
 ZAtten(NumDets+1,6,NumSS) = ZAtten(NumDets+1,6,NumSS) + ZAtten(I,6,K) 
 END DO 
 END DO 
 
 ! Divide by total number of dets. to find average frac. error. 
 ZObj(NumDets+1,6,NumSS) = ZObj(NumDets+1,6,NumSS) / REAL(NumDets*NumSS) 
 
 WRITE (99, '(A13)', ADVANCE="NO") "Direct " 
 WRITE (98, '(A13)', ADVANCE="NO") "Direct " 
 DO I = 1, NumDets 
 DO K = 1, NumSS 
 WRITE(99,'(ES13.6)', ADVANCE="NO") ZObj(I,3,K) 
 WRITE(98,'(ES13.6)', ADVANCE="NO") ZAtten(I,3,K) 
 END DO ! K Loop 
 END DO ! I Loop 
 WRITE(99,*) 
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 WRITE(98,*) 
 
  
 EXIT 
 
 ! If not converged, the values from column 6 (present iteration) are copied 
 ! into column 5 (old iteration) and column 6 is set to 0 for the next loop. 
 ELSE 
 DO K = 1, NumSS 
 DO I = 1, NumDets+1 
 ZObj(I,5,K) = ZObj(I,6,K) 
 ZAtten(I,5,K) = ZAtten(I,6,K) 
 ZObj(I,6,K) = 0. 
 END DO 
 END DO 
 
 WRITE(*, '(I6, 2ES16.6)') L, ZObj(NumDets+1,5,NumSS), ConvCheck 
  
 END IF 
 
END DO ! L Loop 
 
CLOSE(UNIT=98) 
CLOSE(UNIT=99) 
 
END SUBROUTINE FindAttenuation 
 
!--------------------------------------------------------------------------- 
! Subroutine PScFGE - This subroutine returns the appropriate PScF value for 
! a given combination of material, Obj to Det distance, and detector angles. 
!--------------------------------------------------------------------------- 
SUBROUTINE PScFGE(ThetaFrom, ThetaTo, PScFVal, MatNo, ODD, Tau, ZIter) 
REAL(KIND=4), INTENT(IN) :: ThetaFrom, ThetaTo, ODD, Tau 
REAL(KIND=4), INTENT(OUT) :: PScFVal 
INTEGER(KIND=4), INTENT(IN) :: MatNo, ZIter 
REAL(KIND=4) :: AngleDiff, PScFMax, PScFSD, Factor 
REAL(KIND=4) :: a0, a1, a2, a3, a4, a5, a6, a7 
REAL(KIND=4) :: b0, b1, b2, b3, b4, b5, Beta 
 
AngleDiff = ThetaFrom - ThetaTo 
 
IF (ZIter < 5) THEN 
 Factor = REAL(ZIter)/5. 
ELSEIF (ZIter < 8) THEN 
 Factor = 0.80 + 0.05*(REAL(ZIter-4)) 
END IF 
 
Beta = LOG(Tau) - Tau 
 
IF (MatNo == 1) THEN 
 
IF(ZIter >= 8) Factor = 0.95 
 
a0 = -2.015225E+00 
a1 = -7.679420E-02 
a2 = 5.112759E-04 
a3 = -1.711049E-06 
a4 = 1.288199E+00 
a5 = 2.053442E-02 
a6 = -2.418549E-03 
a7 = 0.000000E+00 
 



 

H-11 

b0 = 3.954940E+00 
b1 = 4.910408E-02 
b2 = 1.018272E-03 
b3 = 3.312332E-01 
b4 = 1.360807E-02 
b5 = 7.200204E-03 
 
ELSEIF(MatNo == 2) THEN 
 
IF(ZIter >= 8) Factor = 0.95 
 
a0 = -2.028606E+00 
a1 = -7.184288E-02 
a2 = 4.461472E-04 
a3 = -1.348499E-06 
a4 = 1.131994E+00 
a5 = 1.638951E-02 
a6 = -1.976645E-03 
a7 = 0.000000E+00 
 
b0 = 2.199167E+00 
b1 = 1.227376E-01 
b2 = 4.967885E-04 
b3 = 6.212162E-01 
b4 = 3.649710E-02 
b5 = 4.528034E-03 
 
ELSEIF(MatNo == 3) THEN 
 
IF(ZIter >= 8) Factor = 0.97 
 
a0 = -1.582257E+00 
a1 = -8.241122E-02 
a2 = 6.540168E-04 
a3 = -2.353720E-06 
a4 = 1.037106E+00 
a5 = 8.299626E-03 
a6 = -2.858238E-03 
a7 = 1.541697E-05 
 
b0 = 1.120331E+00 
b1 = 1.216453E-01 
b2 = 0.000000E+00 
b3 = 5.337523E-01 
b4 = 1.092541E-02 
b5 = 3.126423E-03 
 
ELSEIF(MatNo == 4) THEN 
 
IF(ZIter >= 8) Factor = 1.05 
 
a0 = -1.128685E+00 
a1 = -6.752032E-02 
a2 = 4.280224E-04 
a3 = -1.315156E-06 
a4 = 1.214529E+00 
a5 = 2.257471E-02 
a6 = -2.402139E-03 
a7 = 0.000000E+00 
 
b0 = -5.296592E-01 
b1 = 1.124436E-01 
b2 = -2.060663E-04 
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b3 = 6.195354E-01 
b4 = 4.911718E-02 
b5 = 0.000000E+00 
 
ELSEIF(MatNo == 5) THEN 
 
IF(ZIter >= 8) Factor = 1.00 
 
a0 = -2.112510E+00 
a1 = -4.644079E-02 
a2 = 1.537551E-04 
a3 = 0.000000E+00 
a4 = 9.314129E-01 
a5 = 0.000000E+00 
a6 = 0.000000E+00 
a7 = 0.000000E+00 
 
b0 = -1.590860E-01 
b1 = 1.125601E-01 
b2 = 0.000000E+00 
b3 = 9.099116E-01 
b4 = 0.000000E+00 
b5 = 0.000000E+00 
 
ELSEIF(MatNo == 6) THEN 
 
IF(ZIter >= 8) Factor = 1.00 
 
a0 = -1.647906E+00 
a1 = -7.204015E-02 
a2 = 3.299292E-04 
a3 = 0.000000E+00 
a4 = 1.077152E+00 
a5 = 0.000000E+00 
a6 = -3.809334E-03 
a7 = 0.000000E+00 
 
b0 = 1.889415E+00 
b1 = 1.123858E-01 
b2 = 0.000000E+00 
b3 = 7.124436E-01 
b4 = 0.000000E+00 
b5 = 0.000000E+00 
 
END IF 
 
 
IF(Tau < 0.1) THEN 
 PScFMax = 0. 
 PScFSD = 1.0 
ELSE 
 PScFMax = EXP(a0 + a1*ODD + a2*ODD**2 + a3*ODD**3 + a4*Beta + a5*Beta**2 + & 
 & a6*Beta*ODD + a7*Beta*ODD**2) 
 PScFSD = b0 + b1*ODD + b2*ODD**2 + b3*Tau + b4*Tau**2 + b5*Tau*ODD 
END IF 
 
! PRINT *, PScFMax, PScFSD 
 
PScFVal = Factor * PScFMax * EXP(-AngleDiff**2 / (2.*PScFSD**2)) 
 
END SUBROUTINE PScFGE 
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!--------------------------------------------------------------------------- 
! Subroutine FindUncertainty - This subroutine calculates the uncertainty 
! in the total, direct, No XTalk, and Corrected attenuation values. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindUncertainty(ZVoid, ZObj, ZUnc) 
REAL(KIND=4), INTENT(IN) :: ZVoid(NumDets+1,6,NumSS), ZObj(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZUnc(NumDets,5,NumSS) 
 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 ZUnc(I,1,K) = ZObj(I,1,K) 
 DO J = 2, 5 
 IF(ZObj(I,J,K) <= 0. .OR. ZVoid(I,J,K) <= 0.) THEN 
 ZUnc(I,J,K) = 0. 
 ELSE 
 ZUnc(I,J,K) = SQRT(1./ZObj(I,J,K) + 1./ZVoid(I,J,K)) 
 END IF 
 END DO 
 END DO 
END DO 
 
END SUBROUTINE FindUncertainty 
 
!--------------------------------------------------------------------------- 
! Subroutine FindScattering - This subroutine calculates the fraction of 
! scattering in the total, direct, No XTalk, and Corrected object correlation 
! values. Obviously, direct will be 0, but it's easier to just include it. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindScattering(ZObj, ZScat) 
REAL(KIND=4), INTENT(IN) :: ZObj(NumDets+1,6,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZScat(NumDets,5,NumSS) 
 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 ZScat(I,1,K) = ZObj(I,1,K) 
 DO J = 2, 5 
 IF(ZObj(I,J,K) <= 0.) THEN 
 ZScat(I,J,K) = 0. 
 ELSE 
 ZScat(I,J,K) = (ZObj(I,J,K)-ZObj(I,3,K)) / ZObj(I,J,K) 
 END IF 
 END DO 
 END DO 
END DO 
 
END SUBROUTINE FindScattering 
 
!--------------------------------------------------------------------------- 
! Subroutine FindScattering - This subroutine calculates the fraction of 
! scattering in the total, direct, No XTalk, and Corrected object correlation 
! values. Obviously, direct will be 0, but it's easier to just include it. 
!--------------------------------------------------------------------------- 
SUBROUTINE FindChiSq(ZAtten, ZUnc, ZChi) 
REAL(KIND=4), INTENT(IN) :: ZAtten(NumDets+1,6,NumSS), ZUnc(NumDets,5,NumSS) 
REAL(KIND=4), INTENT(INOUT) :: ZChi(3) 
 
ZChi = 0. 
 
DO I = 1, NumDets 
 DO K = 1, NumSS 
 IF(ZUnc(I,3,K) == 0.) CYCLE 
 ZChi(1) = ZChi(1) + ((ZAtten(I,2,K) - ZAtten(I,3,K))/ZUnc(I,3,K))**2 
 ZChi(2) = ZChi(2) + ((ZAtten(I,4,K) - ZAtten(I,3,K))/ZUnc(I,3,K))**2 
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 ZChi(3) = ZChi(3) + ((ZAtten(I,5,K) - ZAtten(I,3,K))/ZUnc(I,3,K))**2 
 END DO 
END DO 
 
END SUBROUTINE FindChiSq 
 
END PROGRAM ScatterSubtract 
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APPENDIX I.  —SIMULATION TESTING AND RESULTS 

The attenuation curves for a scenario consisting of 2 and 4 MFP of lead titled L2L4 are shown in 
Fig. I.1.  

The attenuation curves for the Carb61, Iron76, and Lead32 scenarios using the material 6 
PScFGE coefficients are shown in Figs. I.2–I.4. The use of the averaged values results in an 
overcorrection for carbon and iron scenarios and an undercorrection for lead. As with the material 5 
results, there is a significant divergence from the Direct values, but the corrected values are still 
considerably closer than the uncorrected ones. The shape of the attenuation curve is generally 
improved; however, there is some significant deviation from horizontal, particularly in the Lead32 
scenario. 

The attenuation curves resulting from the use of the material 6 coefficients to correct the C2C4 
and L2L4 (two different thicknesses of carbon and lead, respectively) scenarios are presented in 
Figs. I.5 and I.6. As before, the scenario with carbon is overcorrected and the scenario with lead is 
undercorrected. Here, the scatter correction does a fairly poor job correcting the attenuation values, 
and the shape of the corrected curves differ significantly from the Direct curves, particularly in the 
higher attenuation areas. Overall, the corrected values are only marginally better than the uncorrected 
ones particularly for carbon. 

The attenuation curves resulting from the use of lead and polyethylene PScF values, respectively, 
to correct the PoPb scenario are shown in Fig. I.7 and I.8. This scenario has 2 MFP of polyethylene 
on the inside 2 MFP of lead on the outside.  
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Fig. I.1  The attenuation curves for the L2L4 scenario. 
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Fig. I.2  The attenuation curves for the Carb61 scenario. The PSRA used material 6 

(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Fig. I.3  The attenuation curves for the Iron76 scenario. The PSRA used material 6 

(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Fig. I.4  The attenuation curves for the Lead32 scenario. The PSRA used material 6 

(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Fig. I.5  The attenuation curves for the C2C4 scenario. The PSRA used material 6 

(average of carbon, iron, and lead) PScF values to correct the scatter. 
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Fig. I.6  The attenuation curves for the L2L4 scenario. The PSRA used material 6 (average 

of carbon, iron, and lead) PScF values to correct the scatter. 
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Fig. I.7  The attenuation curves for the PoPb scenario. The PSRA used lead PScF values to 

correct the scatter. 
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Fig. I.8  The attenuation curves for the PoPb scenario. The PSRA used polyethylene PScF 

values to correct the scatter. 
 

As with the previous scenario, the use of a single material in the PSRA produces poor results 
when removing the scatter from the attenuation values. 

The next scenario simulated consisted of a 2 MFP thick layer of polyethylene sandwiched 
between two 1 MFP layers of lead. This scenario was given the designation LPoL. It was designed to 
test if the scattering in either the outer layers or the interior of the object dominates the other. The 
attenuation curves resulting from using lead and polyethylene coefficients, respectively, when 
applying the PSRA are plotted in Figs. I.9 and I.10. As with the previous two scenarios, the correction 
produces poor results using both materials. This indicates that scatter all through the object 
contributes significantly to the PScF and not just a single region. 
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Fig. I.9  The attenuation curves for the LPoL scenario. The PSRA used lead PScF values to 

correct the scatter. 
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Fig. I.10  The attenuation curves for the LPoL scenario. The PSRA used polyethylene PScF 

values to correct the scatter. 
 

Another series of scenarios was used to test the effect of varying the relative amount of the two 
materials on the scatter correction. The thicknesses of each material were 1, 2, or 3 MFP while the 
total thickness of 4 MFP of material was kept constant. The scenario designations indicate the 
thickness of each material (e.g., L1P3 has 1 MFP of lead inside 3 MFP of polyethylene). The L2P2 
scenario is identical to the PbPo scenario. It was renamed here for clarity.  

The attenuation curves resulting from using the lead and polyethylene coefficients, respectively, 
are shown in Figs. I.11 and I.12. Note that although the Direct and uncorrected (No XTalk) values 
differ slightly between scenarios, only the values for the L2P2 scenario are shown for clarity. These 
figures show that the corrected attenuation values improve as the fraction of the material used for the 
scatter correction increases. However, even when the selected material comprises 75% of the object 
thickness, the result is rather poor. 
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Fig. I.11  Attenuation curves for the L1P3, L2P2, and L3P1 scenarios. The PSRA used 

lead PScF values to correct the scatter for each scenario. Note that the Direct and uncorrected 
(No XTalk) values differ slightly between scenarios, but only the L2P2 values are shown for 
clarity. 
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Fig. I.12  Attenuation curves for the L1P3, L2P2, and L3P1 scenarios. The PSRA used 

polyethylene PScF values to correct the scatter for each scenario. Note that the Direct and uncorrected 
(No XTalk) values differ slightly between scenarios, but only the L2P2 values are shown for clarity. 

 
These two scenarios used a simple slab geometry. Each slab had a perpendicular thickness of 

3 MFP and horizontal and vertical dimensions of 1 m. The slabs were located 50 cm from the center 
of the detector array. At this distance, the edges of the slabs extend well outside the horizontal extent 
of the neutron pixels. In the first scenario, designated CaSl, the slab is composed of carbon and in the 
second, LeSl, the slab is composed of lead. The attenuation curves for the CaSl and LeSl scenarios 
are plotted in Figs. I.13 and I.14. Note that, unlike the cylindrically symmetric geometry, the slab 
geometry produces a concave attenuation curve even after the scatter is removed. There is a very 
slight undercorrection at the center of the CaSl corrected attenuation curve, but otherwise the 
modified ScatterSubtract program does a very good job of removing the scatter. 
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Fig. I.13  The attenuation curves for the CaSl scenario. 
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Fig. I.14  The attenuation curves for the LeSl scenario. 

 
The next scenario uses slabs of two different thicknesses joined vertically along the plane 

connecting the source location and the horizontal center of the detector array. The two slabs have 
perpendicular thicknesses of 1 and 3 MFP of lead. The scenario is titled L13S. The resulting 
attenuation curves L13S scenario are shown in Fig. I.15. The corrected attenuation curves follow the 
Direct attenuation curves very well and only small deviations are visible. The scatter correction also 
increases the contrast between the two slabs. 

The next scenario simulated a homogeneous polyethylene cylinder with a radius of 18.24 cm, 
which is approximately 2 MFP of material. The cylinder is placed so that the minimum distance 
between its outer surface and the detector array is 40 cm.  

This distance was chosen so that the cylinder would cover the majority of the horizontal extent of 
the DT neutron cones, but not the regions beyond approximately ±24° where the correlation statistics  
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Fig. I.15  The attenuation curves for the L13S scenario. 
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are very poor. The attenuation curves for this scenario, which has been designated PoCy, are shown in 
Fig. I.16. The scatter correction does an excellent job removing the scatter from the PoCy values. 
There is a very slight undercorrection near the center of the cylinder, but otherwise the corrected 
attenuation curve matches the Direct values very well. 

The next scenario tested was a homogenous iron cylinder with a radius of 9.19 cm designated 
FeCy. As with the PoCy scenario, the radius of the iron cylinder is equivalent to approximately 
2 MFP of material.  
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Fig. I.16  The attenuation curves for the PoCy scenario. 

 
The outside surface of the cylinder is located 70 cm from the center of the detector array in order 

to cover the majority of the horizontal extent of the DT neutron pixels. The attenuation curves for the 
FeCy scenario are plotted in Fig. I.17. As with the polyethylene cylinder, the PSRA does an excellent 
job of removing the scatter from the measured values. There is a slight overcorrection at the center of 
the attenuation curve, but other than that the corrected values line up with the Direct attenuation curve 
very well.  
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Fig. I.17  The attenuation curves for the FeCy scenario. 
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