
 ORNL/TM-2010/34

Software Design Document for the
AMP Nuclear Fuel Performance Code

February 2010

Prepared by
Bobby Philip, Kevin T. Clarno, and William K. Cochran
Oak Ridge National Laboratory

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of

Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the

following source.

 National Technical Information Service

 5285 Port Royal Road

 Springfield, VA 22161

 Telephone 703-605-6000 (1-800-553-6847)

 TDD 703-487-4639

 Fax 703-605-6900

 E-mail info@ntis.gov

 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

(ETDE) representatives, and International Nuclear Information System (INIS) representatives from

the following source.

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone 865-576-8401

 Fax 865-576-5728

 E-mail reports@osti.gov

 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal

liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or

otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or

any agency thereof. The views and opinions of authors expressed

herein do not necessarily state or reflect those of the United States

Government or any agency thereof.

ORNL/TM-2010/34

Nuclear Science and Technology Division

SOFTWARE DESIGN DOCUMENT FOR THE AMP

NUCLEAR FUEL PERFORMANCE CODE

Bobby Philip, Kevin T. Clarno, and William K. Cochran

February 2010

Prepared by

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283

managed by

UT-BATTELLE, LLC

for the

U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

iii

CONTENTS

Page

LIST OF FIGURES...v

1. INTRODUCTION ..1

1.1 PURPOSE AND REQUIREMENTS..1

1.2 SUMMARY ..2

2. FUEL SIMULATION OVERVIEW ..2

3. DEVELOPMENT PROCESS AND DESIGN CONSIDERATIONS..3

 3.1 DESIGN CONSIDERATIONS ..4

 3.2 INFRASTRUCTURE ..4

 3.3 POLICIES...4

4. SYSTEM ARCHITECTURE ...5

5. DETAILED SYSTEM DESIGN ..7

 5.1 BACKPLANE ..7

 5.1.1 Variables ...7

 5.1.2 Vectors ..8

 5.1.3 Matrices ..9

 5.1.4 Mesh..10

 5.2 OPERATORS ...11

 5.3 SOLVERS...12

 5.4 TIME INTEGRATORS..14

REFERENCES..17

APPENDICES...18

 A DELIVERABLES...18

 B DOXYGEN-GENERATED DOCUMENTATION..19

v

LIST OF FIGURES

Figure Page

 1 Iterative development plan for AMP ...2

 2 Structure of components in AMP ..6

 3 Inheritance model for variable classes...8

 4 Inheritance model for vector classes..9

 5 Inheritance model for mesh classes ...10

 6 Design of the operators component ...11

 7 Example of a composite operator ..12

 8 Design of the solvers component...13

 9 Example of a JFNK solver strategy ...13

 10 Example of an accelerated inexact newton solver strategy ...14

 11 Design of the time integrators component...15

 12 Example of an explicit time integration scheme..15

 13 Example of an implicit time integration scheme ...16

 14 Example of a semi-implicit time integration scheme ..17

SOFTWARE DESIGN DOCUMENT FOR THE AMP NUCLEAR FUEL
PERFORMANCE CODE

Bobby Philip, Kevin T. Clarno, and William K. Cochran

Revision 0

1 INTRODUCTION

The purpose of this document is to describe the design of the AMP nuclear fuel performance code1. It
provides an overview of the decomposition into separable components, an overview of what those compo-
nents will do, and the strategic basis for the design. The primary components of a computational physics
code include a user interface, physics packages, material properties, mathematics solvers, and computa-
tional infrastructure. Some capability from established off-the-shelf (OTS) packages will be leveraged in the
development of AMP, but the primary physics components will be entirely new. The material properties
required by these physics operators include many highly non-linear properties, which will be replicated from
FRAPCON2 and LIFE where applicable, as well as some computationally-intensive operations, such as gap
conductance, which depends upon the plenum pressure. Because there is extensive capability in off-the-shelf
leadership class computational solvers, AMP will leverage the Trilinos3, PETSc4, and SUNDIALS5 packages.
The computational infrastructure includes a build system, mesh database, and other building blocks of a
computational physics package. The user interface will be developed through a collaborative effort with
the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Capability Transfer program element as
much as possible and will be discussed in detail in a future document.

1.1 PURPOSE AND FEATURES

To meet the immediate need of the fuel performance community and provide a tool for clarifying the require-
ments of the 2015 NEAMS engineering-scale fuel performance code, the AMP software will be completed
in August 2010 with a user-focused training session and final delivery to the Radiation Safety Information
Computing Center (RSICC) to follow in September. AMP will be a new code developed through a close
collaboration of the Oak Ridge, Idaho, Los Alamos, and Argonne national laboratories, and major lever-
aging of existing OTS codes, to provide an interim capability to (1) deliver a useful, new capability to the
user community; (2) enhance our understanding of the software and user requirements; (3) demonstrate an
understanding of the coupled physics simulation process with best-of-class software; and (4) gain experience
developing software as a multi-institutional team with a single set of coding conventions, standards, and
tools.

This effort will solidify the joint understanding of the physics that must be modeled, how they physics
interrelate, and how the developers can streamline the process toward a true collaborative, multi-institutional
software development environment. Much of the required capability exists in OTS codes that were enhanced
and modularized in Fiscal Year (FY) 2009, but the multidimensional core of the fuel performance code
(thermo-mechanical chemistry) will be developed from scratch in FY 2010 by leveraging the experience gained
in FY 2009. This new code will tightly couple these core physics and leverage zero- and low-dimensional
approximations for much of the associated physics. The AMP project will provide

1. a tightly coupled, three-dimensional thermochemical-mechanical solver that accounts for contact;

2. approximate models for the material properties, depletion, heat generation, plenum pressure, and
convective heat transfer, which are similar to those found in FRAPCON and SCALE6;

3. a simple user interface to set up, simulate, and understand the performance of Light-Water Reactor
(LWR) oxides; and

4. a compiled version that executes in parallel on a cluster at Oak Ridge National Laboratory (ORNL).

1

Figure 1: Iterative development plan for AMP.

With a final release in August 2010, AMP will be developed in five 2-month iterations (Fig. 1) that will
each include an opportunity for a few expert users and associated NEAMS efforts (Enabling Computational
Technologies, Capability Transfer, and Verification, Validation and Uncertainty Quantification) to review
what has been accomplished and provide feedback.

AMP will be rapidly designed and developed without a focus on longevity or software quality engineering
(especially within the OTS components). Because of the fundamental limitations that are present when
working with a collection of OTS codes, which were not designed with a consistent approach toward quality,
modularity, or coupling, the initial release of the 2015 code in August 2012 will replace AMP with software
designed and built to simplify maintenance, enhance inherent quality, add additional physics, and incorporate
lower-length-scale models. Therefore, there will be no additional releases of AMP after August 2010. The
specific deliverables associated with this project are included in Appendix A.

1.2 SUMMARY

This document provides a detailed design of the AMP code and basis for the decisions that led to this
particular design. This section provides an overview of the purpose and overarching requirements of AMP

and summarizes the L2 and L3 deliverables for the project. Section 2 provides a brief overview of nuclear fuel
simulation, the physics approximations that AMP will leverage, and the external physics packages that will
be leveraged. Section 3 includes a discussion of the development process and resulting design considerations,
as well as the software infrastructure and software development policies that will guide the development of
AMP. The design considerations, discussed in Section 3, lead to a general system architecture, described in
Section 4. The details of the software components are described in Section 5.

2 FUEL SIMULATION OVERVIEW

This section provides a brief overview of the physics that will be modeled in AMP, the physics that will
be neglected, and the anticipated future use of the code. These are the highest-level requirements of the
code that provide the basis for design considerations, which are discussed in detail in Section 3. For a more
detailed description of the physics, see Olander7. A more detailed description of the software requirements
will be provided in a supplementary document.

The AMP nuclear fuel performance code will compute the three-dimensional thermal, mechanical, and
stoichiometric state of traditional nuclear fuel (UO2) in an LWR. Nuclear fuel in an LWR is composed

2

of hundreds of individual ceramic UO2 pellets stacked inside a protective metal cladding tube, which is
surrounded by flowing water to cool the system. The nuclear heat produced in the materials is transported
through the fuel, across a gap, through the cladding, and removed by the coolant. The materials respond
mechanically to the thermal stresses and the stoichiometric state changes due to thermal gradients. Because
the temperature distribution is dependent upon both the mechanical and stoichiometric state, the physics
are always nonlinearly coupled. Nuclear irradiation changes the isotopic and elemental composition of the
materials, which changes the material properties of the materials and, along with thermal gradients, imposes
slowly varying stresses (densification, creep, and swelling).

Modeling these physical processes requires that AMP incorporate:

• a nuclear source term (simplified through preprocessing),

• elastic-plastic mechanics within solid bodies and mechanical stresses between solid bodies,

• thermal and oxygen diffusion within solid bodies and heat transfer between solid bodies,

• coolant flow and heat transfer (approximated as one-dimensional),

• nonlinear material properties, and

• mathematical solvers, all built upon

• a general, computational backplane.

However, there are several significant physics that will not be modeled, including, but not limited to,
chemistry, mechanical fracture, multidimensional flow and neutronics, and grain-level physics. A primary
purpose of AMP is to be used as an exploratory tool to understand the software requirements associated with
incorporating these physics in the planning for a future, predictive nuclear fuel performance code. Therefore,
AMP is designed to enable the incremental incorporation of additional physics for rapid prototyping. Each
physics that may be modeled will have a different degree of coupling with the other physics and require
resolution on different time scales.

Because AMP is being rapidly designed, developed, and delivered, it will leverage established OTS soft-
ware where possible. The material properties will leverage the functional equations from the FRAPCON

code, which has a strong legacy in modeling UO2 fuel in a LWR. The mathematical solver will be built upon
the Trilinos package, which has a large set of parallel solvers and preconditioners for linear and nonlinear
systems of equations. The isotopic depletion will be modeled with the ORIGEN-S code, from the SCALE

nuclear analysis code suite, which provides the most extensive data set available. The mesh database and
finite-element library will leverage the LibMesh software8, which has an extensive user base for computational
physics simulation.

However, risk mitigation requires that AMP not be tightly bound to any given package, in the event that
a package proves insufficient. Therefore, AMP is designed to provide a modular coupling to these external
packages that will minimize the cost of exchanging a given package for something different.

3 DEVELOPMENT PROCESS AND DESIGN CONSIDERATIONS

AMP is being rapidly developed by multiple researchers at four national laboratories. To enable efficient
development, we will rely on modern revision control software and testing to discover and correct bugs and
ensure interoperability between external components as soon as possible. The coding standards will be
minimally defined and loosely enforced because there are insufficient resources and time to provide adequate
review of all coding. However, through the development of AMP, the collective set of researchers will have
learned to work together and developed a common nomenclature in a collaborative software development
experience that will enable us to define strict coding standards and practices for the development of a future,
predictive fuel performance code.

3

3.1 Design Considerations

AMP is written to:

• provide users with a consistent, simple, and extensible interface for solving multi-physics problems

• provide developers with the ability to leverage multiple existing software frameworks through a con-
sistent interface

• allow for loose as well as tightly coupled physics components

• allow incremental approaches to solving multi-physics problems

• allow rapid prototyping in parallel over multiple potentially interacting mesh data structures

• allow for time dependent, time independent, and differential algebraic equation (DAE) systems

Many software frameworks are built on top of existing frameworks to leverage their capabilities. This,
over time can lead to over dependence on a particular software framework, which may or may not continue
to be supported by its own developers. AMP takes a slightly different approach, being built to live in between

existing software frameworks. This approach allows AMP to leverage existing frameworks while at the same
time avoid over dependence on a particular package or capability.

3.2 INFRASTRUCTURE

The software and documentation will be maintained, with revision control, on a GFORGE site at ORNL9.
This site is accessible to all developers on the team who have a license to the source code of the SCALE code
system (for export control protection) and ORNL cyber access. Documents, presentations, and software
development information regarding AMP will be collected and maintained on the GFORGE site. For more
information on GFORGE, see the GFORGE website10. The AMP software will be maintained under revision
control on the GFORGE site through the use of the Subversion software11. In addition, documentation that
is developed in a nonproprietary format (such as HTML and LaTeX, as opposed to .doc or .ppt), will be
maintained along with the software. An excellent resource for Subversion is the redbean website12.

AMP will leverage the Nemesis build system, from the Denovo radiation transport code13 in the SCALE

nuclear analysis code system. The Nemesis build system is a portable build system and development environ-
ment configuration that leverages the Autoconf software14 that creates a configuration script for a package
from a template file which lists the operating system features that the package can use. Nemesis contains
the configuration utilities for the external packages that will, or may, be used by AMP, including Trilinos,
PETSc, SUNDIALS, and LibMesh. Nemesis contains a testing harness that simplifies the development of unit
and regression testing.

3.3 POLICIES

There will be no rigorous review of software to ensure that it conforms to a given nomenclature, format, or
quality. However, we will conform to traditional software development etiquette of ”if you write the code,
you own it, and are responsible for it”, which provides sufficient motivation for each developer to rigorously
test and verify the proper operation and integration of the code. This and other developer information will
be maintained in the ”docs” section of the GFORGE site. The repository is decomposed into packages and
each package will have a test directory. The Nemesis build system provides an infrastructure to incorporate
a unit test for every class and/or function in every package of AMP.

1. It is the responsibility of developers to ensure the software they commit to the repository compiles,
links, and is bug-free.

2. Every class committed to the repository should have at least one associated unit test. Examples of
unit tests can be found in every package, including those distributed with Nemesis.

4

3. Before committing code the ”trunk” of the repository, every developer should perform a ”make check”
of the entire AMP to ensure that all unit tests compile and run.

4. After committing to the ”trunk” of the repository, every developer should perform a clean checkout,
configure, compile, and test of the code.

5. If a developer plans to make a major change to the repository, a ”branch” of the main development
”trunk” should be created.

6. If a ”branch” to the repository is made, it is the developer working on the branches responsibility to
merge changes from the trunk into the branch to stay in sync.

7. When a ”branch” is going to be merged into the trunk, the final changes should be made at a time and
in a manner so as to minimally impact other developers (late at night, weekends, or early mornings).

8. If a developer finds an apparent bug in a section of coding, the GFORGE site provides a tracker to
report the error

9. The individual who discovers a bug should provide a small test code (unit test) that demonstrates the
error in a clear fashion.

10. Fixing a bug ultimately lies with the person who added the code to the repository; however, anyone is
welcome to fix an error.

There will be a nightly checkout, configure, compile, and regression test of AMP on at least two platforms.
An e-mail will be distributed to each active developer to ensure that the developers are aware of the current
state of the code and can address bugs as they arise. The regression test will be composed of the entire suite
of unit tests.

4 SYSTEM ARCHITECTURE

The design considerations for AMP resulted in several software components. In particular, components exist
for:

• Mesh and geometry

• Discretization

• Vectors and matrices

• Operators

• Solvers

• Time integrators

Each component is designed to provide a uniform consistent interface which interacts with other compo-
nents, and developers of other components are only exposed to these interfaces. This is despite the fact that
AMP is designed to sit in between existing software frameworks to leverage their strengths and investments
without overdependence. The complexities of interfacing different software frameworks are kept behind the
standard interfaces that AMP provides (Fig. 2).

• Mesh and geometry: The mesh and geometry interface (AMPMesh) allows AMP to potentially
interact with multiple mesh or geometry packages. AMPMesh already allows us to interface with the
LibMesh package and may be used to interface with the STKMesh package which is a part of Trilinos.

• Discretization: Due to the close coupling between mesh and discretization, AMPMesh (through
LibMesh, currently handles the discretization also. This is may become be a separate interface, if the
need arises for to interface different discretization packages with mesh packages.

5

Figure 2: Structure of components in AMP.

• Vectors and matrices: AMP provides standard AMP::Vector and AMP::Matrix classes which serve
two purposes. Firstly, they provide users with a standard interface to perform vector and matrix
operators. At the same time, the classes hide the details of the interfacing various software packages
that have their own definition of vectors and matrices. For example, Trilinos and PETSc both provide
matrix operations and Trilinos, PETSc, and SUNDIALS provide and/or use vector operations. AMP

Vector and Matrix act as the interfaces to these packages through the Vector and Matrix classes.
The complexities associated with enabling these packages to interact is hidden from the user and the
packages.

• Operators: Operators are the core of the AMP design and where all of the physics is contained.
Operators encapsulate the details of the mapping operation L : X → Y where X and Y are appro-
priately defined spaces. Operators may represent discretized PDE operators, boundary operators, an
operation to extract material properties from material databases or tables, linear or nonlinear algebraic
operations, or compositions of the above. The ability to compose operators and to extract informa-
tion from compositions is intended to facilitate the incremental construction of multi-physics and/or
multidomain simulations as well as rapid prototyping and experimentation to understand couplings in
multi-physics simulations.

• Solvers: Solvers in AMP refer to the nonlinear and linear solvers that represent the action of an
approximate inverse map of a given operator if that inverse operation has some well defined meaning.
In this sense solvers can also be considered as operators. Whether solvers should be implemented
as (approximate) inverse operators is a design choice that might need to be revisited. Currently, an
inverse operator can be easily constructed by wrapping a solver in an inverse operator class. The solver
interface allows the user to utilize a standard interface to solvers from Trilinos and PETSc (currently
interfaces exist), native AMP solvers (these exist), and potentially other packages in future. Again, the
design emphasis has been to provide a standard interface to hide the complexity of particular software
packages from a user and to avoid overdependence on a particular software package.

• Time integrators: AMP time integrators provide a uniform interface to solving time-dependent
systems which can include Differential Algebraic Equations (DAEs). This is necessary within the
context of our target application because of coupling between time dependent thermal and quasi-
static mechanical systems being simulated. The design allows for explicit, semi-implicit, and fully
implicit simulations of coupled multi-physics problems. In the case of semi-implicit and fully implicit
calculations, the solver interfaces in AMP are used, and in all cases, the operator interfaces are used
to allow composable multi-physics simulations allowing users to experiment with coupling different
physics together. The time integrator interface is used to provide an interface to the SUNDIALS suite

6

of time integrators and can be used in future to interface to the Rhythmos package of Trilinos as it
matures.

The specific I/O entities for developing a fuel simulation input have not yet been determined and will be
included in a future document.

5 DETAILED SYSTEM DESIGN

This section is intended to be a higher-level supplement to the highly-detailed documentation embedded
within the source code, which are automatically generated (and included for reference in Appendix B) as
HTML files by the Nemesis build system through the use of the Doxygen software.

5.1 BACKPLANE

5.1.1 Variables

Since the intent of AMP is to perform multi-physics simulation, AMP is designed to ease coupling of disparate
physics. These physics are often described individually as operators, such as in the residual equations, D1x =
0 and D2z = 0, where D1 : X → Y and D2 : Z → W are operators. These operators are then combined
through a coupling mechanism, C, to create a “global system” to be solved: C(D1, D2) : X × Z → Y ×W .
This, in turn, is another operator.

These operators are implemented using a discretization process, such as finite differences or energy
minimizing variational formulations. So,D1, a continuous operator, would give rise to D̂1, a discrete operator.
A multi-physics simulation may require applying any or all of the discrete operators on a variety of variables
discretized on a variety of meshes. To facilitate this, AMP implements the concept of a ”variable.” A variable
is a description of how an operator expects its input or output to be discretized. For instance, if D1 is an
operator arising from mechanics in three dimensions, then X may be R3, the set of 3-vector valued functions,
and any particular x ∈ X might be computed at the nodes of a mesh.

A variable is also a context. Again, if D1 is the mechanics operator mentioned above, then X = Y = R3.
Applying D1 to a variable gives a variable in the same space: D1x1 = x2. The variables, x1 and x2, are said
to have different contexts, often represented mathematically as different subscripts or different symbols.

To speed implementation of coupled physics, two or more variables can be composed into a single variable.
If C is the coupling mechanism mentioned above, D1 is a mechanics operator, and D2 is a thermal operator
(Z = W = R), then C(D1, D2)u = 0, a thermo-mechanical operator, can be applied to any u ∈ X × Z =
R3 ×R, a composition of displacement and temperature.

Variables also provide a mechanism to order memory access. In the thermo-mechanical example above,
the data in the variable, u, can be organized in several ways. For instance, for vector displacement at node,
n, xn = {xn

1
, xn

2
, xn

3
} and scalar temperature Tn at node n, the data in memory could be organized as

u =

{

x

T

}

= {x1

1
x1

2
x1

3
x2

1
x2

2
x2

3
. . . T 1 T 2 . . .}T . (1)

Alternatively, u can be completely interleaved, u = {x1

1
x1

2
x1

3
T 1 x2

1
x2

2
x2

3
T 2 . . .}T . Or, if the mechanics

are highly anisotropic and the operator reflects this, then the interleaving could be different:

u =















{

x1

x2

}

x3

T















= {x1

1
x1

2
x2

1
x2

2
. . . x1

3
x2

3
. . . T 1 T 2 . . .}T .

Any of these organizations is constructed by composing variables in the appropriate fashion. When two
variables x and T are composed, then the storage designated by x and T are used in the composition as
in equation (1). In this way, simulation designers can have very precise control of memory access patterns
using a concept with which they are already familiar.

As part of the implementation, vector values may be stored at nodes or on elements. For instance,
a displacement computed or stored on a node would be a Nodal3VectorVariable. In this sense, the term

7

Figure 3: Inheritance model for variable classes.

“vector” refers to the range of a vector valued function or image of a map. In Fig. 3, the inheritance
of the model is shown. VectorVariable is a template on variable type and length of the output of the
discretized vector valued function. In future implementations, VectorVariable will not be a specialization of
MeshVariable, but of Variable.

5.1.2 Vectors

Simulation descriptions often use the term vector in two similar ways. A variable as defined above may be
referred to as a vector, being a member of a vector space, or a vector valued function, the result of which is
a vector. In the former, a vector, u, may be in the space of once continuously differentiable functions, C1, or
in the latter, a vector may be the result of such a function. Within AMP, the discretization of the variable is
a ”vector”—an approximation of a vector valued function taken at points in the domain of the function. As
such, vectors are constructed from a variable and a discretization. Currently, the discretization is assumed
to be a mesh.

There are a multitude of libraries that implement various vector functions such as inner products, norms,
BLAS axpy, and many others. The vector class provides numerous interfaces to perform these operations.
AMP leverages existing libraries by exposing a virtual interface to the operator, solver, and simulation
designer while implementing wrappers to the libraries in specializations of the interface. In this way, the
inheritance model not only indicates which library is used but also provides both a run-time and compile-
time selection of library routines for use in existing solver libraries. This is accomplished by providing helper
classes named for the libraries represented in the implementation.

Also, by providing classes that construct library-specific data structures for proven solver packages, the
vectors in AMP can immediately use popular software libraries for solution of linear and nonlinear systems.
For instance, using a PETSc nonlinear solver with an Epetra vector is accomplished by using the PetscVector
and EpetraVector interface.

Since the overarching objective is to provide a robust multi-physics simulation environment, vectors
also provide a mechanism to combine vectors “loosely” or “tightly.” Continuing the example from the
previous section, a thermo-mechanical simulation may loosely couple temperature and displacement: separate
operators are solved independently and joined through another operator. In this case, the vector allows the
combination of the displacement vector and temperature vector into a single vector, even if displacement and
temperature are different vectors used in solvers from different packages. This vector, called a MultiVector,

8

Figure 4: Inheritance model for vector classes.

provides all of the same functionality as its constituents. And, since it is a vector itself, it can be used by
solvers and operators just as any other vector.

In Fig. 4, a truncated view of the inheritance model is given. ExternalVector and ManagedVector indicate
how the vector is created. An ExternalVector is a package-specific implementation and storage wrapper that
allows AMP to use vectors of other packages natively. ManagedVectors are vectors created by AMP, whose
memory and communication lists are managed by AMP, and can be seamlessly used with any of the packages
used by AMP without copying the contents of the vector.

PetscVector, EpetraVector, and SundialsVector are convenience classes that allow the inheritance model
to both choose which engine should be used to perform vector operations, provide a createView mechanism
that allows presentation of ManagedVectors to the various packages, and allows access to the underlying
vector type for those packages.

Finally, MultiVector is a vector and has a collection of vectors. In this way, multiple different types of
vectors can be combined to form a vector used in a coupled simulation where each constituent of the coupled
operator uses different packages. Currently, there is no intelligent parallel decision making in this class. In
the future, the MultiVector will use domain decomposition information to conclude certain variables only
exist on certain subsets of processors allowing for parallelism in operator composition to be exploited.

It is important to note that users should never see the ExternalVector, ManagedVector, or MultiVector
classes. These are used by factories such as meshes to generate the appropriate vector type given a variable.
If a user uses entirely AMP operators and solvers, then only the base class Vector should be seen. If external
packages are required, then the user can use the appropriate class and interface relative to the external
package.

5.1.3 Matrices

Matrices are implemented in a similar fashion to vectors. The portion of the inheritance model of vectors
related to library choice is mirrored in the matrix hierarchy. In this way, much of the linear algebra required
for solution of operators is presented as a uniform interface independent of the library used to perform
the mathematics. A user can concentrate on implementation of the physics and use proven OTS libraries
interchangeably.

For instance, the PETSc Krylov Solver Package (KSP) can be used with PETSc matrix-vector operations
or Trilinos matrix-vector operations, with no distinction made in the AMP operators, solvers, or time integra-
tors. In this case, the interface presented by PETSc allows for various matrix-vector operations be provided
by an outside library. Through the matrix and vector interfaces, a run-time decision is made to invoke the
appropriate matrix-vector operation, be it the PETSc implementation, the Trilinos implementation, or other
implementation.

9

Figure 5: Inheritance model for mesh classes.

5.1.4 Mesh

A mesh is a locally supported discretization of a continuous domain. By discretization, we mean the values
of a function on the continuous domain are sampled at a finite number of locations in the domain. By
locally supported, we mean a low-order piecewise interpolant through nearby points can be consistent with
the continuous function throughout a subset of the domain defined by the points. The points are referred
to as nodes, and the subset of the domain as edges, faces, cells or elements, depending on context.

There are several different methods for storing meshes, the most common for scientific applications being
”connectivity lists.” A connectivity list is two arrays, one that provides locations of nodes and another that
provides the nodes that make up cells. Packages such as libMesh rely on connectivity lists to store and
manipulate meshes. These packages provide abstractions to intuitive mesh types such as sides, faces, cells,
and nodes.

Other packages such as the SIERRA ToolKit rely on two abstract concepts: a mesh object and a relation-
ship. A mesh is defined as a collection of these objects and relationships. In these packages, a mesh object
has data, such as displacement, temperature, etc., and dimensionality, a tag that indicates where in the
hierarchy of mesh objects this object is placed. A relationship is just that, a member of the set of possible
relations of mesh objects. In order to provide support for computational science, the set of possible relations
is well-ordered.

These two approaches both provide the basic concepts of cell and node. These approaches also lend
themselves to use of the iterator idiom popularized by C++. While random access of nodes and elements
may require O(log n) computation, iterative access is accomplished in O(1). The AMP mesh adapter relies
on this idiom to abstract away from the developer the underlying storage mechanism.

Borrowing from the SIERRA ToolKit, the AMP mesh adapter attempts to provide iterators to relatively
homogeneous subsets of the mesh. Inasmuch as a mesh can be used to create operators and vectors uniformly,
the mesh adapter presents elements to the operator that can be treated in exactly the same way. Since this
capability is not present in libMesh, the concept of a mesh manager is used. The mesh manager is a collection
of mesh that are homogenous with respect to element and material type.

Fig. 5 shows the inheritance model for the entire mesh utility. The mesh manager class is used on the
entire continuum problem. If an operator needs to be composed from several mesh types (be it cells or
materials), then the programmer can use the MeshManager class to obtain appropriate adapters for the

10

operator. Given a variable, a mesh will create a vector that can be used with the operator. On the other
hand, if the operator represents a single type of physics, the programmer need only use the adapter class.

5.2 OPERATORS

As mentioned earlier, operators form the core of AMP (Fig. 6). Individual operators are implemented
for particular single or multi-physics components that can be combined to form composite multi-physics
operators. These individual or composite operators are required to provide a minimal interface that solvers
expect in running simulations. The operator interface is meant to be as extensible as desired by the physics
developers to meet individual requirements. AMP only requires the user to conform to the minimal interface
that the various other components of AMP such as solvers and time integrators expect.

Figure 6: Design of the operators component.

• Construction: The constructor for an operator should use an OperatorParameter class argument de-
rived from DiscreteOperatorParameters. By using a standard parameter interface and changing the
members of the OperatorParameter class as requirements evolve over time, we minimize the disruption
of initialization in large codes that can otherwise be encountered over time.

• Reset operation: Each operator provides a reset member function that takes an OperatorParameter
object for re-initalization of the operator as parameters on which the operator may depend change.

• Apply operation: Each operator is required to provide an apply member function of the form

Operator::apply(f , u, r, a, b).

f , u, r are vectors, and a and b are scalars. The apply operation calculates r = b ∗ f + a ∗ A(u).
The default values are a = −1.0 and b = 1.0 which correspond to calculating the residual. However,
this interface can also be used to calculate A(u) by setting a = 1.0 and b = 0.0. Such an operator is
required, for example, in Krylov solvers or the Full Approximation Scheme (FAS) nonlinear solver.

• getJacobianParameters operation: This interface is optional and needs to be implemented only if
the user wishes to use a solver that requires a Jacobian, an approximate Jacobian, or components of a
Jacobian. The getJacobianParameters member function returns an OperatorParameter object that can
be used to construct or reset a Jacobian or approximate Jacobian operator. This interface is designed
on purpose to return the parameters necessary to construct a Jacobian or approximate Jacobian rather
than the actual operators themselves as different solvers and preconditioners could potentially request
different parts or components of the Jacobian of the operator.

11

As mentioned previously, operators are primarily used to represent maps of the form L : X → Y where
X and Y are appropriately defined spaces. Below we enumerate a few of the common operator categories
that are being designed and implemented.

• Nonlinear and Linear PDE Discretization Operators: These operators derived from
AMP::DiscreteOperator form the discretizations of partial differential equations (PDEs) on a mesh
which is built and accessed through AMPMesh.

• Boundary Operators: These are used to represent operators that live on the boundaries of domains.
These can either impose boundary conditions or act as coupling operators, for example, in thermal or
mechanical contact at the pellet-clad interface.

• Materials Operators: Materials operators will in general only implement the construction, apply,
and reset interfaces. We choose to represent interfaces to extract material properties as operators also
(through the apply operation) because the apply operation to obtain a material property may itself
internally be as simple as an algebraic function to a full nonlinear solve or may involve lower-length-scale
calculations.

• Composite Operators: Operator composition is a natural way to tackle the complex multi-physics
couplings encountered in the problems we are tackling (Fig. 7). This allows users to build multi-physics
components as individual components rather than as monolithic pieces that need to be constantly
rewritten to account for additional physics, though for strongly coupled physics components monolithic
components may be the optimal representation. Composition allows us to tackle either form or to use
both in conjunction to form extremely complex models.

Figure 7: Example of a composite operator.

5.3 SOLVERS

AMP provides a uniform interface to nonlinear and linear solvers and preconditioners (Fig. 8). AMP currently
interfaces to the Trilinos and PETSc solver frameworks, and the design of the vector and operator classes
allows us to combine solver components from both packages to solve multi-physics problems and potentially
from other packages in future. In addition, the SolverStrategy interface allows developers to implement
solvers that can then be immediately tested with the multi-physics operators. Fig. 9 demonstrates the use
of a Jacobian-Free Newton Krylov (JFNK) method.

• SolverStrategy::SolverStrategy(SolverStrategyParameters parameters): Each solver constructor takes
a SolverParameter argument derived from a SolverStrategyParameter class. The SolverParameter can
contain a pointer to an operator that can be used to initialize the solver.

• SolverStrategy::reset(SolverStrategyParameters parameters): meant to reset solver parameters.

12

Figure 8: Design of the solvers component.

Figure 9: Example of a JFNK solver strategy.

• SolverStrategy::registerOperator(DiscreteOperator op): register an operator, A with the solver.

• SolverStrategy::resetOperator(DiscreteOperator op): reset the operator which is registered with the
solver. This could be a quite sophisticated routine in the case of a nonlinear solver if the nonlinear
solver internally uses linear solvers and preconditioners (such as in the case of preconditioned Newton-
Krylov methods) which have associated operators that need to be reset based on the nonlinear solver
reset.

• SolverStrategy::solve(f, u): solves the problem A(u) = f where u and f are vectors.

Concrete derivations of the SolverStrategy class include:

• TrilinosMLSolver: An interface to the ML multilevel solver in Trilinos.

• PETScSNESSolver: An interface to the inexact Newton methods in PETSc.

• PETScKrylovSolver: An interface to the Krylov solver methods in PETSc.

The suite of solvers available in AMP includes a NonlinearKrylovSolver which implements the Accelerated
Inexact Newton method (Fig. 10) of Miller and Carlsson. In the future, an interface will be added to the

13

Figure 10: Example of an accelerated inexact newton solver strategy.

Trilinos NOX solver as well.

The uniform interface to the solvers, operators, and backplane components (vectors, matrices, and mesh),
allow us to combine, for example, the NonlinearKrylovSolver with a PETScKrylovSolver preconditioned by
a TrilinosMLSolver exploiting potential strengths of the various solver packages.

5.4 TIME INTEGRATORS

AMP has been designed to allow for explicit, semi-implicit, and fully implicit time integration (Fig. 11).
We note that semi-implicit time integrators depend on the availability of both explicit and implicit time
integrators. This explains why the design has to include explicit time integrators. A second reason for
explicit time integrators is in the context of debugging where they are extremely useful as a reference
calculation as well as a tool to ensure the correctness of nonlinear multi-physics function evaluations. The
base class for time integrators is the TimeIntegrator class. It defines the minimal interface required of all
time integrators. This interface consists of:

• registerOperator: registers a DiscreteOperator with a TimeIntegrator

• reset : reset the TimIntegrator, for example after a regridding operation

• advanceSolution: attempt to advance the solution

• checkNewSolution: check if the attempt to advance produced a valid solution

• updateSolution: if the criteria to advance to the next time step have been satisfied update internal
state

• getNextDt: provides a mechanism for time step control

There are multiple means of configuring and using these time integrators to be able to explore various
configurations for each of the physics that will be coupled.

• Explicit time integrators: in AMP are currently designed to solve problems of the form:

ut = F (u), u(t = 0) = u0;

14

Figure 11: Design of the time integrators component.

A DiscreteOperator implements the operation on the right hand side denoted by F (u) through the
DiscreteOperator::apply() interface. The TimeIntegrator registers this operator through the regis-
terOperator interface or at construction time. The explicit time integrators provide explicit time
discretizations for the term ut. Since all that is required of the user is to supply the operator (Fig.
12) which implements F(u) this provides a powerful mechanism for users to experiment with various
explicit time integrators.

Figure 12: Example of an explicit time integration scheme.

• Implicit time integrators: in AMP are currently designed to solve problems of the form:

(F1(u))t = F2(u); u(t = 0) = u0;

where u0 is an initial condition vector. The requirement on the user is to provide the DiscreteOperators
that implement F1 and F2. The user can optionally provide the solvers that the implicit time integrator
will need to solve a system of equations at each time step. All the implicit time integrators are derived
from an ImplicitTimeIntegrator class that provides default implementations for the TimeIntegrator
interfaces. Internally an ImplicitTimeIntegrator constructs a TimeOperator object that implements
the discrete form of (F1(u))t − F2(u) specific to the implicit scheme. For example, for backward Euler
the internally constructed TimeOperator would implement the operator

(F1(u))

∆t
− F2(u)

where ∆t is the current time step. Every ImplicitTimeIntegrator internally maintains a pointer to a
SolverStrategy object which solves the implicit equations encapsulated in the associated TimeOperator
(Fig. 13). We note that the operators corresponding to F1 and F2 may be formed by composition to
enable complex multi-physics simulations.

15

Figure 13: Example of an implicit time integration scheme.

• Semi-implicit time integrators: in AMP are currently designed to solve problems of the form:

(F1(u))t = F2(u); u(t = 0) = u0;

where u0 is an initial condition vector. The requirement on the user is to provide the DiscreteOperators
that implement F1 and F2. It is assumed that the vector, u, represents more than one type of physics.
It is in such contexts that semi-implicit integrators make sense. Semi-implicit time integrators will
be implemented as controllers that drive a combination of implicit and explicit time integrators in an
operator split manner (Fig. 14).

16

Figure 14: Example of a semi-implicit time integration scheme.

References

[1] J. Turner, K. Clarno, and G. Hansen, Roadmap to an Engineering-Scale Nuclear Fuel Performance
Code, Technical Report ORNL/TM-2009/233, Oak Ridge National Laboratory, 2009.

[2] http://www.pnl.gov/frapcon3/.

[3] http://trilinos.sandia.gov/.

[4] http://www.mcs.anl.gov/petsc/petsc-as/.

[5] https://computation.llnl.gov/casc/sundials/main.html.

[6] http://www.ornl.gov/sci/scale/.

[7] D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, University of Michigan Library,
1976.

[8] http://libmesh.sourceforge.net/.

[9] http://nstdsrv.ornl.gov/gf/project/amp/.

[10] http://gforge.org/gf/.

[11] http://subversion.tigris.org/.

[12] http://svnbook.red-bean.com/.

[13] T. Evans and K. Clarno, C++ Coding Standards for AMP, Technical Report ORNL/TM-2009/240,
Oak Ridge National Laboratory, 2009.

[14] http://www.gnu.org/software/autoconf/.

17

Appendices

A DELIVERABLES

1. AMP Planning

• AMP Software Design Document that describes the software which will be developed, including
what physics will be modeled and how the physics will be solved. An ORNL L3 milestone for
January 30, 2010.

• AMP Demonstration Specification Document that describes the demonstration problem which will
be solved using the AMP code. An Idaho National Laboratory (INL) L3 milestone for January
30, 2010.

2. AMP User Interface

• AMP User Interface Software that includes an input specification and reader, mesh generation,
output collection, and visualization. An ORNL L3 milestone for April 30, 2010.

• AMP User Interface Document that describes the AMP user interface. An INL L3 milestone for
April 30, 2010.

3. The AMP Code Components

• Development and integration of components for the TimeIntegrationSolver, ComputationalEngine,
Mechanics, Infrastructure, and Neutronics into AMP. An ORNL L3 milestone for August 1, 2010.

• Development and integration of components for Thermal / Species Diffusion, MaterialProperties,
and Damage mechanics into AMP. A Los Alamos National Laboratory (LANL) L3 milestone for
August 1, 2010.

• Development and integration of components for MaterialEquations, Thermal/Mechanical Contact,
and PlenumPressure/Volume into AMP. An INL L3 milestone for August 1, 2010.

4. The AMP Code

• ORNL, INL, and LANL will deliver a new 3D coupled thermal-mechanical-chemical code with links
to existing modularized zero-dimensional solvers (depletion, species formation, plenum pressure,
and material properties), as well as a simplified flow and power module. The export-controlled
AMP code will be distributed through the Radiation Safety Information Computational Center
(RSICC). This is an L2 milestone for each of the three laboratories to be delivered on September
30, 2010.

• In addition to the software, each laboratory will complete the additional tasks to satisfy the L2
milestone.

– ORNL will perform the set of demonstration problems, specified in the Demonstration Spec-
ification.

– LANL will deliver a document that describes the demonstration problem, results, and con-
clusions.

– INL will host an AMP training course for the nuclear community.

18

B DOXYGEN-GENERATED DOCUMENTATION

The Doxygen-generated documentation from the existing AMP source code is included for reference. The
documentation is provided for the following packages, respectively:

• vectors,

• matrices,

• ampmesh,

• materials,

• operators,

• solvers, and

• time integrators.

The page numbers and section labels were generated independently of, and do not correspond with, this
document.

19

amp

amp-0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:06 2010

CONTENTS 1

Contents

1 The AMP Documentation System 1

1 The AMP Documentation System

Authors

Kevin Clarno (ORNL). Glen Hansen (INL). Marius Stan

(LANL). Bobby Philip (ORNL). Srdjan Simunovic (ORNL).

Gary Dilts (LANL). Abdellatif Yacout (ANL). Jay Billings

(ORNL). Rahul Sampath (ORNL). Srikanth Allu (ORNL). Pallab

Barai (ORNL). Phani Nukala (ORNL). Jung Ho Lee (ORNL).

Executive Summary

AMP: Adfero Minuo Physiologus (latin: to contribute diminishing physics), Ad-

vanced Modeling of Phuel, or Another Multi-Physics code

Components

AMP consists of the following components. Click on the links to find documenta-

tion about each component.

• NewPackage

• ampmesh

• comm

• harness

• materials

• matrices

• operators

• solvers

• time_integrators

• utils

• vectors

Generated on Wed Feb 24 16:28:06 2010 for amp by Doxygen

mailto:clarnokt@ornl.gov
mailto:glen.hansen@inl.gov
mailto:mastan@lanl.gov
mailto:mastan@lanl.gov
mailto:philipb@ornl.gov
mailto:simunovics@ornl.gov
mailto:gary.dilts@lanl.gov
mailto:yacout@anl.gov
mailto:billingsjj@ornl.gov
mailto:billingsjj@ornl.gov
mailto:sampathrs@ornl.gov
mailto:allus@ornl.gov
mailto:baraip@ornl.gov
mailto:baraip@ornl.gov
mailto:nukalapk@ornl.gov
mailto:jungho@ornl.gov
file:NewPackage/index.html
file:ampmesh/index.html
file:comm/index.html
file:harness/index.html
file:materials/index.html
file:matrices/index.html
file:operators/index.html
file:solvers/index.html
file:time_integrators/index.html
file:utils/index.html
file:vectors/index.html

vectors

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:27:56 2010

CONTENTS 1

Contents

1 Overview of the vectors package 1

2 Class Documentation 1

2.1 AMP::Vector Class Reference . 1

2.1.1 Detailed Description . 8

2.1.2 Constructor & Destructor Documentation 8

2.1.3 Member Function Documentation 9

1 Overview of the vectors package

Version:

amp-0_0_0

Vectors package in amp

2 Class Documentation

2.1 AMP::Vector Class Reference

Class Vector is a base class for the vector types in AMP.

#include <Vector.h>

Inherited by AMP::DualVector, AMP::EpetraVector[virtual],

AMP::ManagedVector[virtual], AMP::MultiVector,

AMP::NativeVector[virtual], and AMP::PetscVector[virtual].

Public Types

• enum ScatterType { BROADCAST, GATHER_SCATTER }

• enum UpdateState { NOT_UPDATING, ADDING, SETTING }

• typedef boost::shared_ptr< Vector > shared_ptr

Public Member Functions

• Vector (VectorParameters::shared_ptr parameters)

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 2

Constructor for Vector class is used to construct each unique vector within an appli-

cation.

• virtual ∼Vector ()

Virtual destructor for Vector class.

• virtual boost::shared_ptr< ParameterBase > getParameters ()=0

• void setVariable (const Variable::shared_ptr name)

Set string identifier for this vector object.

• void setOutputStream (std::ostream &s)

Set output stream for vector object.

• std::ostream & getOutputStream ()

Return reference to the output stream used by this vector object.

• const Variable::shared_ptr getVariable () const

Return Variable identifier for this vector object.

• virtual shared_ptr cloneVector (const Variable::shared_ptr name) const =0

Clone this vector object and return a pointer to the vector copy (i.e., a new vector).

• shared_ptr cloneVector () const

• shared_ptr cloneVector (const char ∗name)

• virtual shared_ptr subsetVectorForVariable (const Variable::shared_ptr &name)

Select the portion of the vector that corresponds to this variable.

• virtual void freeVectorComponents ()

Destroy the storage corresponding to the vector components and free the associated

patch data entries from the variable database (which will also clear the indices from

the patch descriptor).

• virtual void allocateVectorData (const double timestamp=0.0)

Allocate data storage for all components of this vector object.

• virtual void deallocateVectorData ()

Deallocate data storage for all components of this vector object.

• template<typename RETURN_TYPE>

RETURN_TYPE ∗ getRawDataBlock ()

Access a block of data of type RETURN_TYPE used to store the values of the vector.

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 3

• template<typename RETURN_TYPE>

const RETURN_TYPE ∗ getRawDataBlock () const

• virtual void copyVector (const Vector &src_vec)=0

Copy data from source vector components to components of this vector.

• void copyVector (const shared_ptr &src_vec)

• virtual void swapVectors (Vector &other)=0

Swap data components (i.e.

• void swapVectors (shared_ptr &other)

• virtual void aliasVector (Vector &other, size_t offset=0)=0

Alias this vector with the argument vector or offset into the argument vector.

• void aliasVector (shared_ptr &other, size_t offset=0)

Vector arithmetic functions

• virtual void setToScalar (double alpha)=0

Set all components of this vector to given scalar value.

• virtual void scale (double alpha, const Vector &x)=0

Set this vector to src vector multiplied by given scalar.

• void scale (double alpha, const shared_ptr &x)

Set all components of this vector to given scalar value.

• virtual void scale (double alpha)=0

Multiply this vector by given scalar.

• virtual void addScalar (const Vector &x, double alpha)

Set this vector to sum of given vector and scalar.

• void addScalar (const shared_ptr &x, double alpha)

Set all components of this vector to given scalar value.

• virtual void add (const Vector &x, const Vector &y)=0

Set this vector to sum of two given vectors.

• void add (const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void subtract (const Vector &x, const Vector &y)=0

Set this vector to difference of two given vectors (i.e., x - y).

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 4

• void subtract (const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void multiply (const Vector &x, const Vector &y)=0

Set each entry in this vector to product of corresponding entries in input vectors.

• void multiply (const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void divide (const Vector &x, const Vector &y)=0

Set each entry in this vector to ratio of corresponding entries in input vectors (i.e.,

this = x .

• void divide (const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void reciprocal (const Vector &x)=0

Set each entry of this vector to reciprocal of corresponding entry in input vector.

• void reciprocal (const shared_ptr &x)

Set all components of this vector to given scalar value.

• virtual double minQuotient (const Vector &x, const Vector &y)

Set all components of this vector to given scalar value.

• double minQuotient (const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual double wrmsNorm (const Vector &x, const Vector &y)

Set all components of this vector to given scalar value.

• double wrmsNorm (const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void linearSum (double alpha, const Vector &x, double beta, const

Vector &y)=0

Set this vector to the linear sum αx + @betay , where α, @beta are scalars and

x, y are vectors.

• void linearSum (double alpha, const shared_ptr &x, double beta, const

shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void axpy (double alpha, const Vector &x, const Vector &y)=0

Set this vector to the sum αx + y , where α is a scalar and x, y are vectors.

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 5

• void axpy (double alpha, const shared_ptr &x, const shared_ptr &y)

Set all components of this vector to given scalar value.

• virtual void axpby (double alpha, double beta, const Vector &x)=0

this = alpha∗x + beta∗this

• void axpby (double alpha, double beta, const shared_ptr &x)

Set all components of this vector to given scalar value.

• virtual void abs (const Vector &x)=0

Set each entry of this vector to absolute values of corresponding entry in input

vector.

• void abs (const shared_ptr &x)

Set all components of this vector to given scalar value.

• virtual double min (void) const =0

Return the minimum data entry in this vector.

• virtual double max (void) const =0

Return the maximum entry of this vector.

• virtual void setRandomValues (void)=0

Set data in this vector to random values.

• virtual void setValuesByLocalID (int num, int ∗indices, double ∗vals)=0

Set all components of this vector to given scalar value.

• virtual void setValueByLocalID (int i, double val)

Set all components of this vector to given scalar value.

• virtual void setLocalValuesByGlobalID (int num, int ∗indices, double

∗vals)=0

Set all components of this vector to given scalar value.

• virtual void setLocalValueByGlobalID (int i, double val)

Set all components of this vector to given scalar value.

• virtual void setValuesByGlobalID (int num, int ∗indices, double ∗vals)

Set all components of this vector to given scalar value.

• virtual void setValueByGlobalID (int i, double val)

Set all components of this vector to given scalar value.

• virtual void addValuesByLocalID (int num, int ∗indices, double ∗vals)=0

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 6

Set all components of this vector to given scalar value.

• virtual void addValueByLocalID (int i, double val)

Set all components of this vector to given scalar value.

• virtual void addLocalValuesByGlobalID (int num, int ∗indices, double

∗vals)=0

Set all components of this vector to given scalar value.

• virtual void addLocalValueByGlobalID (int i, double val)

Set all components of this vector to given scalar value.

• virtual void addValuesByGlobalID (int num, int ∗indices, double ∗vals)

Set all components of this vector to given scalar value.

• virtual void addValueByGlobalID (int i, double val)

Set all components of this vector to given scalar value.

• virtual void getValuesByGlobalID (int numVals, int ∗ndx, double ∗vals) const

Set all components of this vector to given scalar value.

• virtual void getLocalValuesByGlobalID (int numVals, int ∗ndx, double ∗vals)

const =0

Set all components of this vector to given scalar value.

• virtual double getValueByGlobalID (int i) const

Set all components of this vector to given scalar value.

• virtual void getValuesByLocalID (int numVals, int ∗ndx, double ∗vals) const

Set all components of this vector to given scalar value.

• virtual double getValueByLocalID (int ndx) const

Set all components of this vector to given scalar value.

• virtual void makeConsistent (ScatterType t=GATHER_SCATTER)

Set all components of this vector to given scalar value.

• virtual void assemble ()=0

Set all components of this vector to given scalar value.

• virtual double L1Norm (void) const =0

Return discrete L1 -norm of this vector using the control volume to weight the

contribution of each data entry to the sum.

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 7

• virtual double L2Norm (void) const =0

Return discrete L2 -norm of this vector using the control volume to weight the

contribution of each data entry to the sum.

• virtual double maxNorm (void) const =0

Return the max -norm of this vector.

• virtual double dot (const Vector &x) const =0

Return the dot product of this vector with the argument vector.

• double dot (const shared_ptr &x)

Set all components of this vector to given scalar value.

• virtual unsigned int getLocalSize () const =0

Set all components of this vector to given scalar value.

• virtual unsigned int getGlobalSize () const =0

Set all components of this vector to given scalar value.

• virtual unsigned int getGhostSize () const

Set all components of this vector to given scalar value.

• virtual void setCommunicationList (CommunicationList::shared_ptr comm)

Set all components of this vector to given scalar value.

Protected Member Functions

• virtual void ∗ getRawDataBlockAsVoid ()=0

• virtual const void ∗ getRawDataBlockAsVoid () const =0

• virtual void addCommunicationListToParameters

(CommunicationList::shared_ptr)

• void aliasGhostBuffer (shared_ptr in)

Protected Attributes

• CommunicationList::shared_ptr d_CommList

• UpdateState d_UpdateState

• Variable::shared_ptr d_pVariable

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 8

2.1.1 Detailed Description

Class Vector is a base class for the vector types in AMP.

Specifically, this class provides a set of common vector operations to manipulate all

of the data components as a whole. The most obvious use of this class is in AMP

applications that use solver libraries, such as PETSc or Trilinos. Specific vector objects

that can be used with these packages are defined elsewhere in AMP. However, all these

vactor interfaces are built using this vector class.

Before the vector operations can be used, the storage for each of its components must

be allocated. Storage allocation is only possible through a vector object after all com-

ponent variables are added to the vector (using the addComponent() function). Then,

the allocateVectorData() function will allocate storage for all components when called.

Alternatively, patch data objects (corresponding to the variables and vector patch data

indices) may be explicitly created elsewhere. However, depending on the circumstance,

this second alternative may be more confusing and require more bookkeeping on the

user’s part. See the documentation accompanying the addComponent() function for

more information.

Definition at line 64 of file Vector.h.

2.1.2 Constructor & Destructor Documentation

2.1.2.1 AMP::Vector::Vector (VectorParameters::shared_ptr parameters)

Constructor for Vector class is used to construct each unique vector within an applica-

tion.

That is, each vector that is used to represent a unique set of variable quantities is con-

sidered unique. This constructor is used to create a solution vector for an application or

solver algorithm. The cloneVector() function is provided to generate copies of a given

vector. For example, the clone function may be used by a solver to generate copies of

the vector as needed; e.g., in a Krylov subspace method like GMRES.

Before the vector may be used, data components must be added to it using the addd-

Component() function. Also, this constructor does not allocate storage for vector data.

This is usually done after all components are added. The allocateVectorData() function

is used for this purpose. Otherwise, existing patch data quantities can be added as vec-

tor components. In any case, storage for all components must be allocated before the

vector can be used.

It is important to note that a non-recoverable assertion will result if the specified levels

do not exist in the hierarchy before a vector object is used, or if the hierarchy pointer

itself is null. The range levels can be reset at any time (e.g., if the level configuration

changes by re-meshing), by calling the resetLevels() member function.

Although an empty string may be passed as the vector name, it is recommended that a

descriptive name be used to facilitate debugging and error reporting.

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 9

By default the vector component information and data will be sent to the "plog" output

stream when the print() function is called. This stream can be changed at any time via

the setOutputStream() function.

Definition at line 45 of file Vector.cc.

2.1.2.2 AMP::Vector::∼Vector () [virtual]

Virtual destructor for Vector class.

The destructor destroys all vector component information. However, the destructor

does not deallocate the vector component storage, nor does it return the vector patch

data indices to the patch descriptor free list. The freeVectorComponents() function is

provided for this task. The reason for this is that an application may create a vector

based on some pre-existing patch data objects that must live beyond the destruction of

the vector object.

Definition at line 69 of file Vector.cc.

2.1.3 Member Function Documentation

2.1.3.1 void AMP::Vector::setOutputStream (std::ostream & s)

Set output stream for vector object.

When the print() function is called, all vector data will be sent to the given output

stream.

2.1.3.2 std::ostream& AMP::Vector::getOutputStream ()

Return reference to the output stream used by this vector object.

This function is primarily used by classes which define interfaces between this vector

class and vector kernels defined by other packages. Specifically, AMP vectors and

package-specific wrappers for those vectors may all access the same output stream.

2.1.3.3 virtual shared_ptr AMP::Vector::cloneVector (const Variable::shared_-

ptr name) const [pure virtual]

Clone this vector object and return a pointer to the vector copy (i.e., a new vector).

If an empty string is passed in, the name of this vector object is used for the new vector.

Referenced by addScalar(), minQuotient(), and wrmsNorm().

2.1.3.4 void AMP::Vector::allocateVectorData (const double timestamp = 0.0)

[virtual]

Allocate data storage for all components of this vector object.

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 10

If no memory arena is specified, then the standard memory arena will be used.

Definition at line 142 of file Vector.cc.

2.1.3.5 void AMP::Vector::deallocateVectorData () [virtual]

Deallocate data storage for all components of this vector object.

Note that this routine will not free the associated data indices in the patch descriptor.

See freeVectorComponents() function.

Definition at line 147 of file Vector.cc.

Referenced by freeVectorComponents().

2.1.3.6 virtual void AMP::Vector::swapVectors (Vector & other) [pure

virtual]

Swap data components (i.e.

storage) between this vector object and argument vector.

2.1.3.7 virtual void AMP::Vector::multiply (const Vector & x, const Vector & y)

[pure virtual]

Set each entry in this vector to product of corresponding entries in input vectors.

(i.e., this = x .∗ y)

Referenced by multiply().

2.1.3.8 virtual void AMP::Vector::divide (const Vector & x, const Vector & y)

[pure virtual]

Set each entry in this vector to ratio of corresponding entries in input vectors (i.e., this

= x .

/ y). No check for division by zero.

Referenced by divide().

2.1.3.9 virtual void AMP::Vector::reciprocal (const Vector & x) [pure

virtual]

Set each entry of this vector to reciprocal of corresponding entry in input vector.

No check is made for division by zero.

Referenced by reciprocal().

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 11

2.1.3.10 virtual double AMP::Vector::min (void) const [pure virtual]

Return the minimum data entry in this vector.

Note that this routine returns a global min over all vector components and makes no

adjustment for coarser level vector data that may be masked out by the existence of

underlying fine values. In particular, the control volumes are not used in this operation.

This may change based on user needs.

2.1.3.11 virtual double AMP::Vector::max (void) const [pure virtual]

Return the maximum entry of this vector.

Note that this routine returns a global max over all vector components and makes no

adjustment for coarser level vector data that may be masked out by the existence of

underlying fine values. In particular, the control volumes are not used in this operation.

This may change based on user needs.

2.1.3.12 virtual double AMP::Vector::L1Norm (void) const [pure

virtual]

Return discrete L1 -norm of this vector using the control volume to weight the contri-

bution of each data entry to the sum.

That is, the return value is the sum
∑

i
(‖datai‖cvoli) . If the control volume is not

defined for a component, the contribution is
∑

i
(‖datai‖) for that data component.

Thus, to have a consistent norm calculation all components must have control volumes,

or no control volumes should be used at all.

2.1.3.13 virtual double AMP::Vector::L2Norm (void) const [pure

virtual]

Return discrete L2 -norm of this vector using the control volume to weight the contri-

bution of each data entry to the sum.

That is, the return value is the sum
√
∑

i
((datai)2cvoli) . If the control volume is not

defined for a component, the contribution is
√

∑

i
((datai)2) for that data component.

Thus, to have a consistent norm calculation all components must have control volumes,

or no control volumes should be used at all.

2.1.3.14 virtual double AMP::Vector::maxNorm (void) const [pure

virtual]

Return the max -norm of this vector.

If control volumes are defined for all components, the return value is the max norm

over all data values where the control volumes are non-zero. If the control volume is

not defined for a component, its contribution to the norm will take a max over all of

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

2.1 AMP::Vector Class Reference 12

its data values. Thus, to have a consistent norm calculation all components must have

control volumes, or no control volumes should be used at all.

2.1.3.15 virtual double AMP::Vector::dot (const Vector & x) const [pure

virtual]

Return the dot product of this vector with the argument vector.

If control volumes are defined for all components, the return value is a weighted sum

involving all data values where the control volumes are non-zero. If the control volume

is not defined for a component, its contribution to the sum will involve all of its data

values. Thus, to have a consistent dot product calculation all components must have

control volumes, or no control volumes should be used at all.

Referenced by dot().

The documentation for this class was generated from the following files:

• Vector.h

• Vector.cc

Generated on Wed Feb 24 16:27:56 2010 for vectors by Doxygen

Index

∼Vector

AMP::Vector, 8

allocateVectorData

AMP::Vector, 9

AMP::Vector, 1

∼Vector, 8

allocateVectorData, 9

cloneVector, 9

deallocateVectorData, 9

divide, 10

dot, 11

getOutputStream, 9

L1Norm, 11

L2Norm, 11

max, 10

maxNorm, 11

min, 10

multiply, 10

reciprocal, 10

setOutputStream, 9

swapVectors, 9

Vector, 8

cloneVector

AMP::Vector, 9

deallocateVectorData

AMP::Vector, 9

divide

AMP::Vector, 10

dot

AMP::Vector, 11

getOutputStream

AMP::Vector, 9

L1Norm

AMP::Vector, 11

L2Norm

AMP::Vector, 11

max

AMP::Vector, 10

maxNorm

AMP::Vector, 11

min

AMP::Vector, 10

multiply

AMP::Vector, 10

reciprocal

AMP::Vector, 10

setOutputStream

AMP::Vector, 9

swapVectors

AMP::Vector, 9

Vector

AMP::Vector, 8

matrices

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:00 2010

CONTENTS 1

Contents

1 Overview of the matrices package 1

2 Class Documentation 1

2.1 AMP::ManagedPetscMatrix Class Reference 1

2.1.1 Detailed Description . 2

2.2 AMP::Matrix Class Reference . 2

2.2.1 Detailed Description . 3

2.2.2 Member Function Documentation 3

2.3 AMP::NativePetscMatrix Class Reference 4

2.3.1 Detailed Description . 5

2.3.2 Member Function Documentation 5

2.4 AMP::PetscMatrix Class Reference 5

2.4.1 Detailed Description . 6

1 Overview of the matrices package

Version:

amp-0_0_0

Matrices package in amp

2 Class Documentation

2.1 AMP::ManagedPetscMatrix Class Reference

A wrapper around PETSc’s Mat object.

#include <ManagedPetscMatrix.h>

Inherits AMP::PetscMatrix, and AMP::ManagedEpetraMatrix.

Public Member Functions

• ManagedPetscMatrix (ParametersPtr params)

• void copyFromMat (Mat)

Generated on Wed Feb 24 16:28:00 2010 for matrices by Doxygen

2.2 AMP::Matrix Class Reference 2

• virtual Vector::shared_ptr getRightVector ()

• virtual Vector::shared_ptr getLeftVector ()

• shared_ptr cloneMatrix () const

Static Public Member Functions

• static Matrix::shared_ptr duplicateMat (Mat)

Protected Member Functions

• ManagedPetscMatrix (const ManagedPetscMatrix &rhs)

• void initPetscMat ()

2.1.1 Detailed Description

A wrapper around PETSc’s Mat object.

Definition at line 20 of file ManagedPetscMatrix.h.

The documentation for this class was generated from the following files:

• ManagedPetscMatrix.h

• ManagedPetscMatrix.cc

2.2 AMP::Matrix Class Reference

A pure virtual base class to store Matrices.

#include <Matrix.h>

Inherited by AMP::EpetraMatrix[virtual], AMP::ManagedMatrix[virtual],

AMP::NativePetscMatrix, and AMP::PetscMatrix[virtual].

Public Types

• typedef boost::shared_ptr< Matrix > shared_ptr

• typedef MatrixParameters::shared_ptr ParametersPtr

Public Member Functions

• Matrix (ParametersPtr params)

• virtual void mult (const Vector &in, Vector &out)=0

This function must be implemented by the child classes.

Generated on Wed Feb 24 16:28:00 2010 for matrices by Doxygen

2.2 AMP::Matrix Class Reference 3

• void mult (const boost::shared_ptr< Vector > &in, boost::shared_ptr< Vector

> &out)

• virtual shared_ptr cloneMatrix () const =0

• virtual void scale (double alpha)=0

• virtual void axpy (double alpha, const Matrix &x)=0

• void axpy (double alpha, const Matrix::shared_ptr &x)

• virtual void addValuesByGlobalID (int num_rows, int num_cols, int ∗rows, int

∗cols, double ∗values)=0

• virtual void setValuesByGlobalID (int num_rows, int num_cols, int ∗rows, int

∗cols, double ∗values)=0

• virtual void addValueByGlobalID (int row, int col, double value)

• virtual void setValueByGlobalID (int row, int col, double value)

• virtual void setScalar (double)=0

• void zero ()

• virtual void getRowByGlobalID (int row, std::vector< unsigned int > &cols,

std::vector< double > &values) const =0

• virtual void setDiagonal (const Vector &in)=0

• void setDiagonal (const Vector::shared_ptr &in)

• virtual void makeConsistent ()=0

• virtual Vector::shared_ptr extractDiagonal (Vector::shared_ptr

buf=Vector::shared_ptr())=0

• virtual Vector::shared_ptr getRightVector ()=0

• virtual Vector::shared_ptr getLeftVector ()=0

• virtual double L1Norm ()=0

Protected Member Functions

• Matrix (const Matrix &)

2.2.1 Detailed Description

A pure virtual base class to store Matrices.

Definition at line 22 of file Matrix.h.

2.2.2 Member Function Documentation

2.2.2.1 virtual void AMP::Matrix::mult (const Vector & in, Vector & out)

[pure virtual]

This function must be implemented by the child classes.

Generated on Wed Feb 24 16:28:00 2010 for matrices by Doxygen

2.3 AMP::NativePetscMatrix Class Reference 4

Parameters:

in input vector

out output vector. The result of multiplying this matrix with in.

Implemented in AMP::NativePetscMatrix.

The documentation for this class was generated from the following files:

• Matrix.h

• Matrix.cc

2.3 AMP::NativePetscMatrix Class Reference

A wrapper around PETSc’s Mat object.

#include <NativePetscMatrix.h>

Inherits AMP::Matrix.

Public Member Functions

• NativePetscMatrix (Mat m, bool internally_created=false)

• void copyFromMat (Mat)

• virtual void mult (const Vector &in, Vector &out)

This function must be implemented by the child classes.

• virtual shared_ptr cloneMatrix () const

• Mat getMat ()

• virtual Vector::shared_ptr getRightVector ()

• virtual Vector::shared_ptr getLeftVector ()

• virtual void scale (double alpha)

• virtual void axpy (double alpha, const Matrix &x)

• virtual void addValuesByGlobalID (int num_rows, int num_cols, int ∗rows, int

∗cols, double ∗values)

• virtual void setValuesByGlobalID (int num_rows, int num_cols, int ∗rows, int

∗cols, double ∗values)

• virtual void getRowByGlobalID (int row, std::vector< unsigned int > &cols,

std::vector< double > &values) const

• virtual void setScalar (double)

• virtual void setDiagonal (const Vector &in)

• virtual void makeConsistent ()

• virtual Vector::shared_ptr extractDiagonal (Vector::shared_ptr

p=Vector::shared_ptr())

• virtual double L1Norm ()

Generated on Wed Feb 24 16:28:00 2010 for matrices by Doxygen

2.4 AMP::PetscMatrix Class Reference 5

Static Public Member Functions

• static Matrix::shared_ptr duplicateMat (Mat)

Protected Attributes

• Mat d_Mat

2.3.1 Detailed Description

A wrapper around PETSc’s Mat object.

Definition at line 18 of file NativePetscMatrix.h.

2.3.2 Member Function Documentation

2.3.2.1 void AMP::NativePetscMatrix::mult (const Vector & in, Vector & out)

[virtual]

This function must be implemented by the child classes.

Parameters:

in input vector

out output vector. The result of multiplying this matrix with in.

Implements AMP::Matrix.

Definition at line 73 of file NativePetscMatrix.cc.

The documentation for this class was generated from the following files:

• NativePetscMatrix.h

• NativePetscMatrix.cc

2.4 AMP::PetscMatrix Class Reference

A wrapper around PETSc’s Mat object.

#include <PetscMatrix.h>

Inherits AMP::Matrix.

Inherited by AMP::ManagedPetscMatrix.

Generated on Wed Feb 24 16:28:00 2010 for matrices by Doxygen

2.4 AMP::PetscMatrix Class Reference 6

Public Member Functions

• PetscMatrix (ParametersPtr params)

• virtual Mat & getMat ()

• virtual Mat getMat () const

Static Public Member Functions

• static shared_ptr createView (shared_ptr)

Protected Member Functions

• PetscMatrix (const PetscMatrix &rhs)

Protected Attributes

• bool d_MatCreatedInternally

• Mat d_Mat

2.4.1 Detailed Description

A wrapper around PETSc’s Mat object.

Definition at line 17 of file PetscMatrix.h.

The documentation for this class was generated from the following files:

• PetscMatrix.h

• PetscMatrix.cc

Generated on Wed Feb 24 16:28:00 2010 for matrices by Doxygen

Index

AMP::ManagedPetscMatrix, 1

AMP::Matrix, 2

mult, 3

AMP::NativePetscMatrix, 4

mult, 5

AMP::PetscMatrix, 5

mult

AMP::Matrix, 3

AMP::NativePetscMatrix, 5

ampmesh

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:02 2010

CONTENTS 1

Contents

1 Overview of the ampmesh package 1

2 Class Documentation 1

2.1 AMP::BCDirichlet Class Reference 1

2.1.1 Detailed Description . 1

2.2 AMP::BCPointForce Class Reference 2

2.2.1 Detailed Description . 2

2.3 AMP::MeshUtils Class Reference 2

2.3.1 Detailed Description . 3

2.3.2 Member Function Documentation 4

1 Overview of the ampmesh package

Version:

amp-0_0_0

Ampmesh package in amp

2 Class Documentation

2.1 AMP::BCDirichlet Class Reference

A class to store a Dirichlet boundary condition.

#include <BCDirichlet.h>

Public Attributes

• unsigned int d_GlobalDOFid

• double d_Value

2.1.1 Detailed Description

A class to store a Dirichlet boundary condition.

Generated on Wed Feb 24 16:28:02 2010 for ampmesh by Doxygen

2.2 AMP::BCPointForce Class Reference 2

Definition at line 10 of file BCDirichlet.h.

The documentation for this class was generated from the following file:

• BCDirichlet.h

2.2 AMP::BCPointForce Class Reference

A class to store an applied point force.

#include <BCPointForce.h>

Public Attributes

• unsigned int d_GlobalDOFid

• double d_Value

2.2.1 Detailed Description

A class to store an applied point force.

Definition at line 10 of file BCPointForce.h.

The documentation for this class was generated from the following file:

• BCPointForce.h

2.3 AMP::MeshUtils Class Reference

A class for managing the mesh related operations required by the Operators.

#include <MeshUtils.h>

Public Member Functions

• MeshUtils (const boost::shared_ptr< MeshAdapter > &mesh, int numSystem-

Variables, MPI_Comm comm)

• MeshUtils (const boost::shared_ptr< Mesh > &mesh, int numSystemVariables,

MPI_Comm comm)

• void loadPointForces (char ∗fname)

• void loadDirichletValues (char ∗fname)

• void scalePointForces (double scale)

• void scaleDirichletValues (double scale)

• boost::shared_ptr< Mesh > getMesh ()

Generated on Wed Feb 24 16:28:02 2010 for ampmesh by Doxygen

2.3 AMP::MeshUtils Class Reference 3

• MeshAdapter::shared_ptr getMeshAdapter ()

• unsigned int getNumPointForces ()

• BCPointForce getPointForce (unsigned int j)

• unsigned int getNumDirichlet ()

• BCDirichlet getDirichlet (unsigned int j)

• unsigned int getLocalId (unsigned int globalId)

• template<typename T>

void createGhostedVector (const std::vector< T > &inVec, std::vector< T >

&ghostedVec, MPI_Datatype datatype)

Scatters values from the non-ghosted vector into the ghosted vector.

• bool isDirichlet (unsigned int globalId)

• const EquationSystems & get_equation_systems () const

Protected Types

• enum DOFtype { DIRICHLET, FREE }

Protected Member Functions

• void init (int numSystemVariables)

Protected Attributes

• std::vector< DOFtype > d_DOFtypeList

• std::vector< unsigned int > d_PartitionInfo

• std::vector< unsigned int > d_DOFlist

• std::vector< int > d_GhostSideSizes

• std::vector< int > d_OwnerSideSizes

• std::vector< int > d_GhostSideDisps

• std::vector< int > d_OwnerSideDisps

• std::vector< unsigned int > d_OwnerSideLocalIds

• MPI_Comm d_Comm

• boost::shared_ptr< MeshAdapter > d_MeshPtr

• EquationSystems d_Equation_systems

• std::vector< BCPointForce > d_PointForces

• std::vector< BCDirichlet > d_DirichletValues

2.3.1 Detailed Description

A class for managing the mesh related operations required by the Operators.

Definition at line 28 of file MeshUtils.h.

Generated on Wed Feb 24 16:28:02 2010 for ampmesh by Doxygen

2.3 AMP::MeshUtils Class Reference 4

2.3.2 Member Function Documentation

2.3.2.1 template<typename T> void AMP::MeshUtils::createGhostedVector

(const std::vector< T > & inVec, std::vector< T > & ghostedVec, MPI_Datatype

datatype) [inline]

Scatters values from the non-ghosted vector into the ghosted vector.

Parameters:

inVec non-ghosted vector of type T

ghostedVec ghosted vector of type T

datatype MPI_Datatype for T

Definition at line 214 of file MeshUtils.cc.

The documentation for this class was generated from the following files:

• MeshUtils.h

• MeshUtils.cc

Generated on Wed Feb 24 16:28:02 2010 for ampmesh by Doxygen

Index

AMP::BCDirichlet, 1

AMP::BCPointForce, 1

AMP::MeshUtils, 2

createGhostedVector, 3

createGhostedVector

AMP::MeshUtils, 3

materials

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:01 2010

CONTENTS i

Contents

1 Overview of the vectors package 1

2 Class Documentation 1

2.1 AMP::materials::DefaultTraits Class Reference 1

2.1.1 Detailed Description . 1

2.2 AMP::materials::Material Class Reference 2

2.2.1 Detailed Description . 2

2.3 AMP::materials::MaterialBase< Traits > Class Template Reference . 2

2.3.1 Detailed Description . 3

2.4 Prop0< type > Class Template Reference 3

2.4.1 Detailed Description . 3

2.5 Prop1< type > Class Template Reference 3

2.5.1 Detailed Description . 4

2.6 Prop2< type > Class Template Reference 4

2.6.1 Detailed Description . 4

2.7 Prop2Param< type > Class Template Reference 4

2.7.1 Detailed Description . 5

2.8 AMP::materials::Property0D< Number > Class Template Reference . 5

2.8.1 Detailed Description . 5

2.8.2 Member Function Documentation 6

2.9 AMP::materials::Property1D< Number > Class Template Reference . 6

2.9.1 Detailed Description . 6

2.9.2 Member Function Documentation 7

2.10 AMP::materials::Property2D< Number > Class Template Reference . 7

2.10.1 Detailed Description . 8

2.10.2 Member Function Documentation 8

2.11 AMP::materials::PropertyBase< Number > Class Template Reference 8

2.11.1 Detailed Description . 9

2.12 AMP::materials::PropertySpec< Number > Class Template Reference 9

2.12.1 Detailed Description . 9

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

1 Overview of the vectors package 1

2.13 AMP::materials::Undefined Class Reference 10

2.13.1 Detailed Description . 10

2.14 AMP::materials::UndefinedMaterial Class Reference 10

2.14.1 Detailed Description . 11

1 Overview of the vectors package

Version:

amp-0_0_0

Vectors package in amp

2 Class Documentation

2.1 AMP::materials::DefaultTraits Class Reference

Provide complete list of default undefined properties.

#include <Material.h>

Public Types

• typedef UndefinedTC ThermalConductivity_t

• typedef UndefinedPR PoissonRatio_t

• typedef UndefinedD Density_t

2.1.1 Detailed Description

Provide complete list of default undefined properties.

This class should be the base class for any material Traits class used as a template

argument to MaterialBase.

Definition at line 32 of file Material.h.

The documentation for this class was generated from the following file:

• Material.h

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.2 AMP::materials::Material Class Reference 2

2.2 AMP::materials::Material Class Reference

Root material abstract base class.

#include <Material.h>

Inherited by AMP::materials::MaterialBase< Traits >, and

AMP::materials::MaterialBase< AMP::materials::DefaultTraits >.

Public Member Functions

• virtual void thermalconductivity (double ∗r, const double ∗T, const double ∗U,

const unsigned int n)=0

• virtual void poissonratio (double ∗r, const unsigned int n)=0

• virtual void density (double ∗r, const double ∗T, const unsigned int n)=0

2.2.1 Detailed Description

Root material abstract base class.

Definition at line 41 of file Material.h.

The documentation for this class was generated from the following file:

• Material.h

2.3 AMP::materials::MaterialBase< Traits > Class Template Ref-

erence

Provides the complete list of material properties that can be supplied by a material

class.

#include <Material.h>

Inherits AMP::materials::Material.

Inherited by AMP::materials::UndefinedMaterial.

Public Member Functions

• double thermalconductivityScalar (const double T, const double U)

• double poissonratioScalar ()

• double densityScalar (double T)

• virtual void thermalconductivity (double ∗r, const double ∗T, const double ∗U,

const unsigned int n)

• virtual void poissonratio (double ∗r, const unsigned int n)

• virtual void density (double ∗r, const double ∗T, const unsigned int n)

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.4 Prop0< type > Class Template Reference 3

2.3.1 Detailed Description

template<class Traits> class AMP::materials::MaterialBase< Traits >

Provides the complete list of material properties that can be supplied by a material

class.

Each is expected to be derived from the property classes in Property.h.

Parameters:

Traits should be a subclass of DefaultTraits.

Definition at line 56 of file Material.h.

The documentation for this class was generated from the following file:

• Material.h

2.4 Prop0< type > Class Template Reference

A helper class to minimize typing.

#include <Helpers.h>

Public Member Functions

• double eval ()

• virtual void evalv (double ∗r, const unsigned int n)

2.4.1 Detailed Description

template<PropertyType type> class Prop0< type >

A helper class to minimize typing.

Definition at line 22 of file Helpers.h.

The documentation for this class was generated from the following file:

• Helpers.h

2.5 Prop1< type > Class Template Reference

A helper class to minimize typing.

#include <Helpers.h>

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.6 Prop2< type > Class Template Reference 4

Public Member Functions

• double eval (const double)

• virtual void evalv (double ∗r, const double ∗a0, const unsigned int n)

2.5.1 Detailed Description

template<PropertyType type> class Prop1< type >

A helper class to minimize typing.

Definition at line 40 of file Helpers.h.

The documentation for this class was generated from the following file:

• Helpers.h

2.6 Prop2< type > Class Template Reference

A helper class to minimize typing.

#include <Helpers.h>

Public Member Functions

• double eval (const double, const double)

• virtual void evalv (double ∗r, const double ∗a0, const double ∗a1, const unsigned

int n)

2.6.1 Detailed Description

template<PropertyType type> class Prop2< type >

A helper class to minimize typing.

Definition at line 58 of file Helpers.h.

The documentation for this class was generated from the following file:

• Helpers.h

2.7 Prop2Param< type > Class Template Reference

A helper class to minimize typing.

#include <Helpers.h>

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.8 AMP::materials::Property0D< Number > Class Template Reference 5

Public Member Functions

• Prop2Param (double ∗param, unsigned int nparam)

• double eval (const double, const double)

• virtual void evalv (double ∗r, const double ∗a0, const double ∗a1, const unsigned

int n)

2.7.1 Detailed Description

template<PropertyType type> class Prop2Param< type >

A helper class to minimize typing.

Definition at line 76 of file Helpers.h.

The documentation for this class was generated from the following file:

• Helpers.h

2.8 AMP::materials::Property0D< Number > Class Template

Reference

Provides a base class for obtaining constants from a property.

#include <Property.h>

Inherits AMP::materials::PropertyBase< Number >.

Public Member Functions

• Property0D (const PropertySpec< Number > spec)

• virtual void evalv (Number ∗result, const unsigned int n)

Each subclass will have a virtual evaluator for an array of input values.

• template<>

void evalv (double ∗r, unsigned int n)

• template<>

void evalv (float ∗r, unsigned int n)

2.8.1 Detailed Description

template<typename Number> class AMP::materials::Property0D< Number >

Provides a base class for obtaining constants from a property.

Definition at line 100 of file Property.h.

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.9 AMP::materials::Property1D< Number > Class Template Reference 6

2.8.2 Member Function Documentation

2.8.2.1 template<typename Number> virtual void

AMP::materials::Property0D< Number >::evalv (Number ∗ result, const

unsigned int n) [virtual]

Each subclass will have a virtual evaluator for an array of input values.

The virtual function resolution mechanism overhead will be amortized over the vector

evaluations. It is best to use a large value for n.

Parameters:

result array for results of evaluation of property

n number of evaluations to perform

The documentation for this class was generated from the following file:

• Property.h

2.9 AMP::materials::Property1D< Number > Class Template

Reference

Provides a base class for functions of one variable.

#include <Property.h>

Inherits AMP::materials::PropertyBase< Number >.

Public Member Functions

• Property1D (const PropertySpec< Number > spec)

• virtual void evalv (Number ∗result, const Number ∗x, const unsigned int n)

Each subclass will have a virtual evaluator for an array of input values.

• template<>

void evalv (double ∗r, const double ∗x, unsigned int n)

• template<>

void evalv (float ∗r, const float ∗x, unsigned int n)

2.9.1 Detailed Description

template<typename Number> class AMP::materials::Property1D< Number >

Provides a base class for functions of one variable.

Definition at line 127 of file Property.h.

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.10 AMP::materials::Property2D< Number > Class Template Reference 7

2.9.2 Member Function Documentation

2.9.2.1 template<typename Number> virtual void

AMP::materials::Property1D< Number >::evalv (Number ∗ result, const

Number ∗ x, const unsigned int n) [virtual]

Each subclass will have a virtual evaluator for an array of input values.

The virtual function resolution mechanism overhead will be amortized over the vector

evaluations. It is best to use a large value for n.

Parameters:

result array for results of evaluation of property

x input arguments to evaluator

n number of evaluations to perform

The documentation for this class was generated from the following file:

• Property.h

2.10 AMP::materials::Property2D< Number > Class Template

Reference

Provides a base class for functions of two variables.

#include <Property.h>

Inherits AMP::materials::PropertyBase< Number >.

Public Member Functions

• Property2D (const PropertySpec< Number > spec)

• virtual void evalv (Number ∗result, const Number ∗x, const Number ∗y, const

unsigned int n)

Each subclass will have a virtual evaluator for an array of input values.

• template<>

void evalv (double ∗r, const double ∗x, const double ∗y, unsigned int n)

• template<>

void evalv (float ∗r, const float ∗x, const float ∗y, unsigned int n)

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.11 AMP::materials::PropertyBase< Number > Class Template Reference 8

2.10.1 Detailed Description

template<typename Number> class AMP::materials::Property2D< Number >

Provides a base class for functions of two variables.

Definition at line 155 of file Property.h.

2.10.2 Member Function Documentation

2.10.2.1 template<typename Number> virtual void

AMP::materials::Property2D< Number >::evalv (Number ∗ result, const

Number ∗ x, const Number ∗ y, const unsigned int n) [virtual]

Each subclass will have a virtual evaluator for an array of input values.

The virtual function resolution mechanism overhead will be amortized over the vector

evaluations. It is best to use a large value for n.

Parameters:

result array for results of evaluation of property

first argument to evaluator

second argument to evaluator

n number of evaluations to perform

The documentation for this class was generated from the following file:

• Property.h

2.11 AMP::materials::PropertyBase< Number > Class Template

Reference

Base class for all material properties.

#include <Property.h>

Inherited by AMP::materials::Property0D< Number >,

AMP::materials::Property1D< Number >, and AMP::materials::Property2D<

Number >.

Public Member Functions

• PropertyType get_type ()

• std::string get_name ()

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.12 AMP::materials::PropertySpec< Number > Class Template Reference 9

• std::string get_source ()

• std::valarray< Number > get_parameters ()

• PropertyBase (const PropertySpec< Number > &spec)

2.11.1 Detailed Description

template<typename Number> class AMP::materials::PropertyBase< Number >

Base class for all material properties.

Definition at line 73 of file Property.h.

The documentation for this class was generated from the following file:

• Property.h

2.12 AMP::materials::PropertySpec< Number > Class Template

Reference

Property Specification.

#include <Property.h>

Public Member Functions

• PropertySpec (const PropertyType type=None, const std::string

name=std::string("none"), const std::string source=std::string("unknown"),

const Number ∗params=NULL, const unsigned int nparams=0)

Public Attributes

• const PropertyType d_type

• const std::string d_name

• const std::string d_source

• const std::valarray< Number > d_params

• const unsigned int d_nparams

2.12.1 Detailed Description

template<typename Number> class AMP::materials::PropertySpec< Number >

Property Specification.

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.13 AMP::materials::Undefined Class Reference 10

Collects a variety of initialization information in one place for use in Property constuc-

tors.

Definition at line 43 of file Property.h.

The documentation for this class was generated from the following file:

• Property.h

2.13 AMP::materials::Undefined Class Reference

Default classes to tell the client programmer they made a boo-boo.

#include <Material.h>

Inherited by AMP::materials::UndefinedD, AMP::materials::UndefinedPR, and

AMP::materials::UndefinedTC.

Public Member Functions

• double eval ()

• double eval (double a)

• double eval (double a, double b)

• void evalv (double ∗r, const unsigned int n)

• void evalv (double ∗r, const double ∗a0, const unsigned int n)

• void evalv (double ∗r, const double ∗a0, const double ∗a1, const unsigned int n)

2.13.1 Detailed Description

Default classes to tell the client programmer they made a boo-boo.

Definition at line 16 of file Material.h.

The documentation for this class was generated from the following file:

• Material.h

2.14 AMP::materials::UndefinedMaterial Class Reference

Undefined material.

#include <Material.h>

Inherits AMP::materials::MaterialBase< AMP::materials::DefaultTraits >.

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

2.14 AMP::materials::UndefinedMaterial Class Reference 11

2.14.1 Detailed Description

Undefined material.

Definition at line 78 of file Material.h.

The documentation for this class was generated from the following file:

• Material.h

Generated on Wed Feb 24 16:28:01 2010 for materials by Doxygen

Index

AMP::materials::DefaultTraits, 1

AMP::materials::Material, 1

AMP::materials::MaterialBase, 2

AMP::materials::Property0D, 5

evalv, 6

AMP::materials::Property1D, 6

evalv, 7

AMP::materials::Property2D, 7

evalv, 8

AMP::materials::PropertyBase, 8

AMP::materials::PropertySpec, 9

AMP::materials::Undefined, 10

AMP::materials::UndefinedMaterial, 10

evalv

AMP::materials::Property0D, 6

AMP::materials::Property1D, 7

AMP::materials::Property2D, 8

Prop0, 3

Prop1, 3

Prop2, 4

Prop2Param, 4

operators

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:03 2010

CONTENTS i

Contents

1 Class Documentation 1

1.1 AMP::ColumnOperator Class Reference 1

1.1.1 Detailed Description . 2

1.1.2 Member Function Documentation 2

1.2 AMP::ColumnOperatorParameters Class Reference 3

1.2.1 Detailed Description . 4

1.3 AMP::LinearElasticityOperator Class Reference 4

1.3.1 Detailed Description . 5

1.3.2 Member Function Documentation 5

1.4 AMP::LinearElasticityParameters Class Reference 5

1.4.1 Detailed Description . 6

1.5 AMP::LinearFEOperator Class Reference 6

1.5.1 Detailed Description . 6

1.5.2 Member Function Documentation 7

1.6 AMP::LinearOperator Class Reference 7

1.6.1 Detailed Description . 8

1.6.2 Member Function Documentation 8

1.7 AMP::MassMatrix Class Reference 8

1.7.1 Detailed Description . 9

1.7.2 Member Function Documentation 9

1.8 AMP::NeutronicsSource Class Reference 9

1.8.1 Detailed Description . 11

1.8.2 Member Function Documentation 11

1.9 AMP::NeutronicsSourceParameters Class Reference 11

1.9.1 Detailed Description . 12

1.10 AMP::NonlinearFEOperator Class Reference 12

1.10.1 Detailed Description . 13

1.10.2 Member Function Documentation 13

1.11 AMP::Operator Class Reference . 13

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1 Class Documentation 1

1.11.1 Detailed Description . 15

1.11.2 Member Function Documentation 15

1.12 AMP::OperatorParameters Class Reference 17

1.12.1 Detailed Description . 18

1.12.2 Constructor & Destructor Documentation 18

1.12.3 Member Data Documentation 18

1.13 AMP::PlasticJacobianParameters Class Reference 19

1.13.1 Detailed Description . 19

1.14 AMP::PlasticResidualParameters Class Reference 19

1.14.1 Detailed Description . 20

1.15 AMP::SmallStrainPlasticJacobian Class Reference 20

1.15.1 Detailed Description . 21

1.16 AMP::SmallStrainPlasticResidual Class Reference 21

1.16.1 Detailed Description . 22

1.16.2 Member Function Documentation 23

1.17 AMP::ThermalJacobian Class Reference 25

1.17.1 Detailed Description . 26

1.18 AMP::ThermalJacobianParameters Class Reference 26

1.18.1 Detailed Description . 26

1.19 AMP::ThermalResidual Class Reference 27

1.19.1 Detailed Description . 28

1.19.2 Member Function Documentation 28

1.20 AMP::ThermalResidualParameters Class Reference 29

1.20.1 Detailed Description . 29

1 Class Documentation

1.1 AMP::ColumnOperator Class Reference

A class for representing a composite (nonlinear) operator, F=(F1, F2, F3, .

#include <ColumnOperator.h>

Inherits AMP::Operator.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.1 AMP::ColumnOperator Class Reference 2

Public Member Functions

• ColumnOperator (const boost::shared_ptr< OperatorParameters > ¶ms)

• virtual void apply (const Vector::shared_ptr &f, const Vector::shared_ptr &u,

Vector::shared_ptr &r, const double a=-1.0, const double b=1.0)

A default implementation has been provided.

• boost::shared_ptr< OperatorParameters > getJacobianParameters (const

Vector::shared_ptr &u)

A function for computing the information necessary to construct the jacobian.

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

This function is useful for re-initializing an operator.

• virtual void appendRow (boost::shared_ptr< Operator > op)

Protected Attributes

• std::vector< boost::shared_ptr< Operator > > d_Operators

1.1.1 Detailed Description

A class for representing a composite (nonlinear) operator, F=(F1, F2, F3, .

., Fk), where each of F1,.., Fk are (nonlinear) operators. The user is expected to have

created and initialized the operators F1,.., Fk

Definition at line 18 of file ColumnOperator.h.

1.1.2 Member Function Documentation

1.1.2.1 void AMP::ColumnOperator::apply (const Vector::shared_ptr & f,

const Vector::shared_ptr & u, Vector::shared_ptr & r, const double a = -1.0,

const double b = 1.0) [virtual]

A default implementation has been provided.

This can be overriden by the child classes if necessary.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0.

u,: input vector for u

r,: output vector containing the result: r = b∗f+a∗A(u)

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.2 AMP::ColumnOperatorParameters Class Reference 3

Implements AMP::Operator.

Definition at line 9 of file ColumnOperator.cc.

1.1.2.2 boost::shared_ptr< OperatorParameters >

AMP::ColumnOperator::getJacobianParameters (const Vector::shared_ptr

& u)

A function for computing the information necessary to construct the jacobian.

Parameters:

u The solution vector that is used to construct the jacobian

Returns:

The parameters required to construct the jacobian.

Definition at line 21 of file ColumnOperator.cc.

References AMP::ColumnOperatorParameters::d_OperatorParameters.

1.1.2.3 void AMP::ColumnOperator::reset (const boost::shared_ptr< Opera-

torParameters > & params) [virtual]

This function is useful for re-initializing an operator.

Parameters:

params parameter object containing parameters to change

Reimplemented from AMP::Operator.

Definition at line 41 of file ColumnOperator.cc.

The documentation for this class was generated from the following files:

• ColumnOperator.h

• ColumnOperator.cc

1.2 AMP::ColumnOperatorParameters Class Reference

A class that encapsulates the parameters required to construct the composite Operator

operator.

#include <ColumnOperatorParameters.h>

Inherits AMP::OperatorParameters.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.3 AMP::LinearElasticityOperator Class Reference 4

Public Member Functions

• ColumnOperatorParameters (const boost::shared_ptr< AMP::Database >

&db)

Public Attributes

• std::vector< boost::shared_ptr< OperatorParameters > > d_-

OperatorParameters

1.2.1 Detailed Description

A class that encapsulates the parameters required to construct the composite Operator

operator.

See also:

ColumnOperator

Definition at line 19 of file ColumnOperatorParameters.h.

The documentation for this class was generated from the following file:

• ColumnOperatorParameters.h

1.3 AMP::LinearElasticityOperator Class Reference

A class representing the linear elasticity operator with homogeneous and isotropic ma-

terial properties.

#include <LinearElasticityOperator.h>

Inherits AMP::LinearOperator.

Public Member Functions

• LinearElasticityOperator (const boost::shared_ptr< LinearElasticityParame-

ters > ¶ms)

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

A function to reinitialize the object.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.4 AMP::LinearElasticityParameters Class Reference 5

1.3.1 Detailed Description

A class representing the linear elasticity operator with homogeneous and isotropic ma-

terial properties.

Definition at line 18 of file LinearElasticityOperator.h.

1.3.2 Member Function Documentation

1.3.2.1 void AMP::LinearElasticityOperator::reset (const boost::shared_ptr<

OperatorParameters > & params) [virtual]

A function to reinitialize the object.

end for qp

Reimplemented from AMP::Operator.

Definition at line 40 of file LinearElasticityOperator.cc.

References AMP::OperatorParameters::d_db, and AMP::LinearElasticityParameters::meshPtr.

The documentation for this class was generated from the following files:

• LinearElasticityOperator.h

• LinearElasticityOperator.cc

1.4 AMP::LinearElasticityParameters Class Reference

A class that encapsulates the parameters that are required for constructing the linear

elasticity operator.

#include <LinearElasticityParameters.h>

Inherits AMP::OperatorParameters.

Public Member Functions

• LinearElasticityParameters (const boost::shared_ptr< AMP::Database >

&db)

Public Attributes

• Mesh ∗ meshPtr

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.5 AMP::LinearFEOperator Class Reference 6

1.4.1 Detailed Description

A class that encapsulates the parameters that are required for constructing the linear

elasticity operator.

Definition at line 18 of file LinearElasticityParameters.h.

The documentation for this class was generated from the following file:

• LinearElasticityParameters.h

1.5 AMP::LinearFEOperator Class Reference

A class for representing a linear finite element operator.

#include <LinearFEOperator.h>

Inherits AMP::LinearOperator.

Inherited by AMP::DiffusionLinearFEOperator, and

AMP::MechanicsLinearFEOperator.

Public Member Functions

• LinearFEOperator (const boost::shared_ptr< AssemblyParameters >

¶ms)

• virtual void preAssembly ()

• virtual void postAssembly ()

• virtual void preElementOperation (const MeshManager::Adapter::Element

&elem, const DOFMap::shared_ptr &input_dof_map, const DOFMap::shared_-

ptr &output_dof_map)

• virtual void postElementOperation ()

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

This function is useful for re-initializing an operator.

Protected Attributes

• boost::shared_ptr< ElementOperation > d_elemOp

1.5.1 Detailed Description

A class for representing a linear finite element operator.

Definition at line 21 of file LinearFEOperator.h.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.6 AMP::LinearOperator Class Reference 7

1.5.2 Member Function Documentation

1.5.2.1 void AMP::LinearFEOperator::reset (const boost::shared_ptr< Opera-

torParameters > & params) [virtual]

This function is useful for re-initializing an operator.

Parameters:

params parameter object containing parameters to change

Reimplemented from AMP::Operator.

Definition at line 7 of file LinearFEOperator.cc.

References AMP::Operator::getInputVariable(), and

AMP::Operator::getOutputVariable().

The documentation for this class was generated from the following files:

• LinearFEOperator.h

• LinearFEOperator.cc

1.6 AMP::LinearOperator Class Reference

An abstract base class for representing a linear operator.

#include <LinearOperator.h>

Inherits AMP::Operator.

Inherited by AMP::LinearElasticityOperator, AMP::LinearFEOperator,

AMP::MassMatrix, AMP::SmallStrainPlasticJacobian, and AMP::ThermalJacobian.

Public Member Functions

• LinearOperator (const boost::shared_ptr< OperatorParameters > ¶ms)

• virtual void apply (const Vector::shared_ptr &f, const Vector::shared_ptr &u,

Vector::shared_ptr &r, const double a=-1.0, const double b=1.0)

A default implementation has been provided for Matrix-based implementations.

• const boost::shared_ptr< Matrix > & getMatrix ()

Returns the matrix representation of this linear operator.

• void setMatrix (const boost::shared_ptr< Matrix > &in_mat)

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.7 AMP::MassMatrix Class Reference 8

Protected Attributes

• boost::shared_ptr< Matrix > d_matrix

1.6.1 Detailed Description

An abstract base class for representing a linear operator.

Definition at line 16 of file LinearOperator.h.

1.6.2 Member Function Documentation

1.6.2.1 void AMP::LinearOperator::apply (const Vector::shared_ptr & f, const

Vector::shared_ptr & u, Vector::shared_ptr & r, const double a = -1.0, const

double b = 1.0) [virtual]

A default implementation has been provided for Matrix-based implementations.

This can be overriden by the child classes if necessary.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0.

u,: input vector for u

r,: output vector containing the result: r = b∗f+a∗A(u)

Implements AMP::Operator.

Definition at line 8 of file LinearOperator.cc.

References AMP::Operator::getInputVariable(), and

AMP::Operator::getOutputVariable().

The documentation for this class was generated from the following files:

• LinearOperator.h

• LinearOperator.cc

1.7 AMP::MassMatrix Class Reference

Class MassMatrix is an abstract base class for representing a operator which may be

linear or nonlinear.

#include <MassMatrix.h>

Inherits AMP::LinearOperator.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.8 AMP::NeutronicsSource Class Reference 9

Public Member Functions

• MassMatrix (boost::shared_ptr< MassMatrixParameters > params)

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

This function is useful for re-initializing an operator.

1.7.1 Detailed Description

Class MassMatrix is an abstract base class for representing a operator which may be

linear or nonlinear.

Concrete implementations must include an implementation of the apply() function. The

constructor for the class takes a pointer to a OperatorParameters object.

Definition at line 19 of file MassMatrix.h.

1.7.2 Member Function Documentation

1.7.2.1 void AMP::MassMatrix::reset (const boost::shared_ptr< OperatorPa-

rameters > & params) [virtual]

This function is useful for re-initializing an operator.

Parameters:

params parameter object containing parameters to change

Reimplemented from AMP::Operator.

Definition at line 37 of file MassMatrix.cc.

The documentation for this class was generated from the following files:

• MassMatrix.h

• MassMatrix.cc

1.8 AMP::NeutronicsSource Class Reference

A class for representing the neutronics source operator.

#include <NeutronicsSource.h>

Inherits AMP::Operator.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.8 AMP::NeutronicsSource Class Reference 10

Public Member Functions

• NeutronicsSource (boost::shared_ptr< NeutronicsSourceParameters > param-

eters)

• virtual ∼NeutronicsSource ()

Empty destructor for NeutronicsSource.

• virtual void initialize (boost::shared_ptr< NeutronicsSourceParameters > pa-

rameters)

Initialize state of NeutronicsSource package.

• void printClassData (std::ostream &os) const

Print out all members of integrator instance to given output stream.

• void putToDatabase (boost::shared_ptr< AMP::Database > db)

Write out state of object to given database.

• void apply (const boost::shared_ptr< Vector > &f, const boost::shared_ptr<

Vector > &u, boost::shared_ptr< Vector > &r, const double a=1.0, const double

b=0.0)

The function that computes the residual.

• void reset (const boost::shared_ptr< OperatorParameters > ¶meters)

A function to reinitialize this object.

Protected Member Functions

• void getFromInput (boost::shared_ptr< AMP::Database > db)

Protected Attributes

• boost::shared_ptr< AMP::MeshUtils > d_MeshUtils

• boost::shared_ptr< AMP::Database > d_db

• boost::shared_ptr< std::vector< double > > d_SpecificPower

• int d_numTimeSteps

• double d_time

• std::vector< double > d_power

• std::vector< double > d_timeSteps

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.9 AMP::NeutronicsSourceParameters Class Reference 11

1.8.1 Detailed Description

A class for representing the neutronics source operator.

Definition at line 24 of file NeutronicsSource.h.

1.8.2 Member Function Documentation

1.8.2.1 void AMP::NeutronicsSource::putToDatabase (boost::shared_ptr<

AMP::Database > db)

Write out state of object to given database.

When assertion checking is active, the database pointer must be non-null.

Definition at line 111 of file NeutronicsSource.cc.

1.8.2.2 void AMP::NeutronicsSource::apply (const boost::shared_ptr< Vector

> & f, const boost::shared_ptr< Vector > & u, boost::shared_ptr< Vector > &

r, const double a = 1.0, const double b = 0.0)

The function that computes the residual.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0.

u,: multivector of the state.

r,: specific power in Watts per gram The result of apply is r = b∗f+a∗A(u)

Definition at line 162 of file NeutronicsSource.cc.

The documentation for this class was generated from the following files:

• NeutronicsSource.h

• NeutronicsSource.cc

1.9 AMP::NeutronicsSourceParameters Class Reference

A class for encapsulating the parameters that are required for constructing the neutron-

ics source operator.

#include <NeutronicsSourceParameters.h>

Inherits AMP::OperatorParameters.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.10 AMP::NonlinearFEOperator Class Reference 12

Public Member Functions

• NeutronicsSourceParameters (const boost::shared_ptr< AMP::Database >

&db)

Public Attributes

• boost::shared_ptr< AMP::MeshUtils > d_MeshUtils

1.9.1 Detailed Description

A class for encapsulating the parameters that are required for constructing the neutron-

ics source operator.

See also:

NeutronicsSource

Definition at line 21 of file NeutronicsSourceParameters.h.

The documentation for this class was generated from the following file:

• NeutronicsSourceParameters.h

1.10 AMP::NonlinearFEOperator Class Reference

A class for representing a nonlinear finite element operator.

#include <NonlinearFEOperator.h>

Inherits AMP::Operator.

Public Member Functions

• NonlinearFEOperator (const boost::shared_ptr< AssemblyParameters >

¶ms)

• virtual void preElementOperation ()

• virtual void postElementOperation ()

• virtual void preAssembly ()

• virtual void postAssembly ()

• virtual void apply (const boost::shared_ptr< Vector > &f, const boost::shared_-

ptr< Vector > &u, boost::shared_ptr< Vector > &r, const double a=-1.0, const

double b=1.0)

The function that computes the residual.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.11 AMP::Operator Class Reference 13

Protected Attributes

• boost::shared_ptr< ElementOperation > d_elemOp

1.10.1 Detailed Description

A class for representing a nonlinear finite element operator.

Definition at line 18 of file NonlinearFEOperator.h.

1.10.2 Member Function Documentation

1.10.2.1 void AMP::NonlinearFEOperator::apply (const boost::shared_ptr<

Vector > & f, const boost::shared_ptr< Vector > & u, boost::shared_ptr< Vec-

tor > & r, const double a = -1.0, const double b = 1.0) [virtual]

The function that computes the residual.

A default implementation is provided, which can be overidden by the derived

classes.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0.

u,: input vector for u.

r,: output vector The result of apply is r = b∗f+a∗A(u)

Definition at line 7 of file NonlinearFEOperator.cc.

The documentation for this class was generated from the following files:

• NonlinearFEOperator.h

• NonlinearFEOperator.cc

1.11 AMP::Operator Class Reference

Class Operator is an abstract base class for representing a discrete operator which may

be linear or nonlinear.

#include <Operator.h>

Inherited by AMP::ColumnOperator, AMP::CompositionOperator,

AMP::DirichletMatrixCorrection, AMP::DirichletVectorCorrection,

AMP::LinearOperator, AMP::NeutronicsSource, AMP::NonlinearFEOperator,

AMP::SmallStrainPlasticResidual, and AMP::ThermalResidual.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.11 AMP::Operator Class Reference 14

Public Types

• typedef boost::shared_ptr< Operator > shared_ptr

Public Member Functions

• Operator (const boost::shared_ptr< OperatorParameters > ¶ms)

Constructor.

• virtual ∼Operator ()

Destructor.

• virtual void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

This function is useful for re-initializing an operator.

• virtual void setDebugPrintInfoLevel (int print_level)

Specify level of diagnostic information printed during iterations.

• virtual void apply (const Vector::shared_ptr &f, const Vector::shared_ptr &u,

Vector::shared_ptr &r, const double a=-1.0, const double b=1.0)=0

apply() takes in a AMP vector u which may be defined over a subset of the levels in

the hierarchy and returns A(u) in f where A may be a time dependent, nonlinear or

linear operator.

• virtual boost::shared_ptr< OperatorParameters > getJacobianParameters (const

boost::shared_ptr< Vector > &)

This function returns a OperatorParameters object constructed by the operator which

contains parameters from which the Jacobian or portions of the Jacobian required by

solvers and preconditioners can be constructed.

• Variable::shared_ptr getInputVariable ()

This function returns the variable description of the type of variable the operator acts

on.

• Variable::shared_ptr getOutputVariable ()

This function returns the variable description of the type of variable the operator acts

on.

• void setInputVariable (Variable::shared_ptr var)

• void setOutputVariable (Variable::shared_ptr var)

• virtual void checkVariable ()

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.11 AMP::Operator Class Reference 15

Protected Member Functions

• void computeResidual (const Vector::shared_ptr &f, Vector::shared_ptr &r,

const double a, const double b)

• void getFromInput (const boost::shared_ptr< AMP::Database > &db)

Protected Attributes

• int d_iDebugPrintInfoLevel

• int d_iObject_id

• Variable::shared_ptr d_InputVariable

• Variable::shared_ptr d_OutputVariable

• MeshManager::Adapter::shared_ptr d_MeshAdapter

Static Protected Attributes

• static int d_iInstance_id = 0

1.11.1 Detailed Description

Class Operator is an abstract base class for representing a discrete operator which may

be linear or nonlinear.

Concrete implementations must include an implementation of the apply() function. The

constructor for the class takes a pointer to a OperatorParameters object.

Definition at line 30 of file Operator.h.

1.11.2 Member Function Documentation

1.11.2.1 void AMP::Operator::reset (const boost::shared_ptr< OperatorPa-

rameters > & params) [virtual]

This function is useful for re-initializing an operator.

Parameters:

params parameter object containing parameters to change

Reimplemented in AMP::ColumnOperator, AMP::LinearElasticityOperator,

AMP::LinearFEOperator, AMP::MassMatrix, AMP::NeutronicsSource,

AMP::SmallStrainPlasticJacobian, AMP::SmallStrainPlasticResidual,

AMP::ThermalJacobian, and AMP::ThermalResidual.

Definition at line 48 of file Operator.cc.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.11 AMP::Operator Class Reference 16

1.11.2.2 virtual void AMP::Operator::setDebugPrintInfoLevel (int print_level)

[inline, virtual]

Specify level of diagnostic information printed during iterations.

Parameters:

print_level zero prints none or minimal information, higher numbers provide in-

creasingly verbose debugging information.

Definition at line 59 of file Operator.h.

1.11.2.3 virtual void AMP::Operator::apply (const Vector::shared_ptr & f,

const Vector::shared_ptr & u, Vector::shared_ptr & r, const double a = -1.0,

const double b = 1.0) [pure virtual]

apply() takes in a AMP vector u which may be defined over a subset of the levels in the

hierarchy and returns A(u) in f where A may be a time dependent, nonlinear or linear

operator.

A concrete implementation has to be provided in the derived operators for the TimeIn-

tegrators to work with these operators.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0. The result of apply is r

= b∗f+a∗A(u)

f,: input vector for rhs

u,: input vector for u

r,: output vector containing A(u)

Implemented in AMP::ColumnOperator, and AMP::LinearOperator.

1.11.2.4 virtual boost::shared_ptr<OperatorParameters>

AMP::Operator::getJacobianParameters (const boost::shared_ptr< Vector

> &) [inline, virtual]

This function returns a OperatorParameters object constructed by the operator which

contains parameters from which the Jacobian or portions of the Jacobian required by

solvers and preconditioners can be constructed.

Returning a parameter object instead of the Jacobian itself is meant to give users more

flexibility.

Reimplemented in AMP::SmallStrainPlasticResidual, and AMP::ThermalResidual.

Definition at line 85 of file Operator.h.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.12 AMP::OperatorParameters Class Reference 17

1.11.2.5 Variable::shared_ptr AMP::Operator::getInputVariable ()

[inline]

This function returns the variable description of the type of variable the operator acts

on.

For instance, A:x->y, this operation returns a description of x.

Definition at line 95 of file Operator.h.

Referenced by AMP::ThermalResidual::apply(), AMP::LinearOperator::apply(),

AMP::ThermalResidual::getJacobianParameters(), AMP::ThermalJacobian::reset(),

and AMP::LinearFEOperator::reset().

1.11.2.6 Variable::shared_ptr AMP::Operator::getOutputVariable ()

[inline]

This function returns the variable description of the type of variable the operator acts

on.

For instance, A:x->y, this operation returns a description of y. If A is “square,” x and

y should be the same.

Definition at line 105 of file Operator.h.

Referenced by AMP::LinearOperator::apply(), and AMP::LinearFEOperator::reset().

The documentation for this class was generated from the following files:

• Operator.h

• Operator.cc

1.12 AMP::OperatorParameters Class Reference

OperatorParameters encapsulates parameters used to initialize level operators.

#include <MassMatrixParameters.h>

Inherited by AMP::AssemblyParameters, AMP::ColumnOperatorParameters,

AMP::CompositionOperatorParameters, AMP::DirichletMatrixCorrectionParameters,

AMP::DirichletVectorCorrectionParameters, AMP::LinearElasticityParameters,

AMP::MassMatrixParameters, AMP::NeutronicsSourceParameters,

AMP::PlasticJacobianParameters, AMP::PlasticResidualParameters,

AMP::ThermalJacobianParameters, and AMP::ThermalResidualParameters.

Public Member Functions

• OperatorParameters (const boost::shared_ptr< AMP::Database > &db)

Construct and initialize a parameter list according to input data.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.12 AMP::OperatorParameters Class Reference 18

• virtual ∼OperatorParameters ()

Destructor.

Public Attributes

• boost::shared_ptr< AMP::Database > d_db

Database object which needs to be initialized specific to the solver.

• Variable::shared_ptr d_InputVariable

• Variable::shared_ptr d_OutputVariable

• MeshManager::Adapter::shared_ptr d_MeshAdapter

1.12.1 Detailed Description

OperatorParameters encapsulates parameters used to initialize level operators.

OperatorParameters encapsulates parameters used to initialize operators.

It is an abstract base class.

Definition at line 23 of file OperatorParameters.h.

1.12.2 Constructor & Destructor Documentation

1.12.2.1 AMP::OperatorParameters::OperatorParameters (const

boost::shared_ptr< AMP::Database > & db) [inline]

Construct and initialize a parameter list according to input data.

Guess what the required and optional keywords are.

Definition at line 30 of file OperatorParameters.h.

1.12.3 Member Data Documentation

1.12.3.1 boost::shared_ptr<AMP::Database> AMP::OperatorParameters::d_-

db

Database object which needs to be initialized specific to the solver.

Documentation for parameters required by each solver can be found in the documenta-

tion for the solver.

Definition at line 43 of file OperatorParameters.h.

Referenced by AMP::LinearElasticityOperator::reset().

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.13 AMP::PlasticJacobianParameters Class Reference 19

The documentation for this class was generated from the following file:

• OperatorParameters.h

1.13 AMP::PlasticJacobianParameters Class Reference

A class that encapsulates the parameters required to construct the jacobian operator for

small strain plasticity.

#include <PlasticJacobianParameters.h>

Inherits AMP::OperatorParameters.

Public Member Functions

• PlasticJacobianParameters (const boost::shared_ptr< AMP::Database > &db)

Public Attributes

• boost::shared_ptr< AMP::MeshUtils > d_MeshUtils

• std::vector< std::vector< double > > d_ConsistentTangent

The consistent tangent values for each gauss point.

1.13.1 Detailed Description

A class that encapsulates the parameters required to construct the jacobian operator for

small strain plasticity.

See also:

SmallStrainPlasticJacobian

Definition at line 22 of file PlasticJacobianParameters.h.

The documentation for this class was generated from the following file:

• PlasticJacobianParameters.h

1.14 AMP::PlasticResidualParameters Class Reference

A class for encapsulating the parameters that are required for constructing the plasticity

residual operator.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.15 AMP::SmallStrainPlasticJacobian Class Reference 20

#include <PlasticResidualParameters.h>

Inherits AMP::OperatorParameters.

Public Member Functions

• PlasticResidualParameters (const boost::shared_ptr< AMP::Database > &db)

Public Attributes

• boost::shared_ptr< AMP::MeshUtils > d_MeshUtils

• boost::shared_ptr< Vector > d_InitDisp

1.14.1 Detailed Description

A class for encapsulating the parameters that are required for constructing the plasticity

residual operator.

See also:

SmallStrainPlasticResidual

Definition at line 21 of file PlasticResidualParameters.h.

The documentation for this class was generated from the following file:

• PlasticResidualParameters.h

1.15 AMP::SmallStrainPlasticJacobian Class Reference

A class for representing the jacobian operator for small strain plasticity.

#include <SmallStrainPlasticJacobian.h>

Inherits AMP::LinearOperator.

Public Member Functions

• SmallStrainPlasticJacobian (const boost::shared_ptr< PlasticJacobianParame-

ters > ¶ms)

params must be convertible to a pointer of type PlasticJacobianParameters

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

params must be convertible to a pointer of type PlasticJacobianParameters

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.16 AMP::SmallStrainPlasticResidual Class Reference 21

1.15.1 Detailed Description

A class for representing the jacobian operator for small strain plasticity.

Definition at line 16 of file SmallStrainPlasticJacobian.h.

The documentation for this class was generated from the following files:

• SmallStrainPlasticJacobian.h

• SmallStrainPlasticJacobian.cc

1.16 AMP::SmallStrainPlasticResidual Class Reference

A class for representing the residual operator for small strain plasticity.

#include <SmallStrainPlasticResidual.h>

Inherits AMP::Operator.

Public Member Functions

• SmallStrainPlasticResidual (const boost::shared_ptr< PlasticResidualParame-

ters > ¶ms)

• void apply (const boost::shared_ptr< Vector > &f, const boost::shared_ptr<

Vector > &u, boost::shared_ptr< Vector > &r, const double a=-1.0, const dou-

ble b=1.0)

The function that computes the residual.

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

A function to reinitialize this object.

• boost::shared_ptr< OperatorParameters > getJacobianParameters (const

boost::shared_ptr< Vector > &u)

A function for computing the information necessary to construct the jacobian.

Protected Member Functions

• void bodyForce (const Point &pt, double force[3])

Evaluates the body force at the specified coordinate.

• int Von_Mises_Radial_Return (double E, double Nu, double H, double Sig0,

double ∗stre_np1, double ∗stre_n, double ∗stra_np1, double ∗stra_n, double

∗ystre_np1, double ystre_n, double ∗eph_bar_plas_np1, double eph_bar_plas_n,

double ∗lambda, int ∗el_or_pl)

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.16 AMP::SmallStrainPlasticResidual Class Reference 22

This is the RADIAL RETURN for Von-Mises plasticity models.

• void Von_Mises_Consistent_Tangent (double E, double Nu, double H, double

Sig0, double ∗stre_np1, double ystre_np1, double eph_bar_plas_np1, double

lambda, int el_or_pl, double d[6][6])

This function calculates the Consistent Tangent for the Von Mises plasticity model.

Protected Attributes

• std::vector< double > d_InitStressXX

• std::vector< double > d_InitStressYY

• std::vector< double > d_InitStressZZ

• std::vector< double > d_InitStressYZ

• std::vector< double > d_InitStressZX

• std::vector< double > d_InitStressXY

• std::vector< double > d_InitStrainXX

• std::vector< double > d_InitStrainYY

• std::vector< double > d_InitStrainZZ

• std::vector< double > d_InitStrainYZ

• std::vector< double > d_InitStrainZX

• std::vector< double > d_InitStrainXY

• std::vector< double > d_InitYieldStress

• std::vector< double > d_InitEffPlasticStrain

• boost::shared_ptr< AMP::MeshUtils > d_MeshUtils

• double d_dE

• double d_dNu

• double d_dH

• double d_dSig0

• double d_dDensity

• double d_dGravity

• boost::shared_ptr< AMP::Database > d_db

• bool d_bInitialized

1.16.1 Detailed Description

A class for representing the residual operator for small strain plasticity.

Currently uses the Von Mises plasticity model.

Definition at line 22 of file SmallStrainPlasticResidual.h.

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.16 AMP::SmallStrainPlasticResidual Class Reference 23

1.16.2 Member Function Documentation

1.16.2.1 void AMP::SmallStrainPlasticResidual::apply (const boost::shared_-

ptr< Vector > & f, const boost::shared_ptr< Vector > & u, boost::shared_ptr<

Vector > & r, const double a = -1.0, const double b = 1.0)

The function that computes the residual.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0.

u,: input vector for u.

r,: output vector The result of apply is r = b∗f+a∗A(u)

end for qp

Definition at line 443 of file SmallStrainPlasticResidual.cc.

References bodyForce(), and Von_Mises_Radial_Return().

1.16.2.2 boost::shared_ptr< OperatorParameters >

AMP::SmallStrainPlasticResidual::getJacobianParameters (const

boost::shared_ptr< Vector > & u) [virtual]

A function for computing the information necessary to construct the jacobian.

Parameters:

u The solution vector that is used to construct the jacobian

Returns:

The parameters required to construct the jacobian. In this case, it is the list of

consistent tangent values at each gauss point.

Reimplemented from AMP::Operator.

Definition at line 287 of file SmallStrainPlasticResidual.cc.

References Von_Mises_Consistent_Tangent(), and Von_Mises_Radial_Return().

1.16.2.3 void AMP::SmallStrainPlasticResidual::bodyForce (const Point & pt,

double force[3]) [protected]

Evaluates the body force at the specified coordinate.

Currently, the only body force is due to gravity.

Definition at line 701 of file SmallStrainPlasticResidual.cc.

Referenced by apply().

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.16 AMP::SmallStrainPlasticResidual Class Reference 24

1.16.2.4 int AMP::SmallStrainPlasticResidual::Von_Mises_Radial_Return

(double E, double Nu, double H, double Sig0, double ∗ stre_np1, double ∗

stre_n, double ∗ stra_np1, double ∗ stra_n, double ∗ ystre_np1, double ystre_n,

double ∗ eph_bar_plas_np1, double eph_bar_plas_n, double ∗ lambda, int ∗

el_or_pl) [protected]

This is the RADIAL RETURN for Von-Mises plasticity models.

Parameters:

stre_n Stress at n-th or previous time step (Input)

stra_n Strain at n-th or previous time step (Input)

stra_np1 Strain at current time step (Input)

ystre_n Yield Stress at the n-th time step (different than sig0) (Input)

eph_bar_plas_n Effective plastic strain at n-th time step (Input)

el_or_pl Keeps track of whether the Gauss point is in Elastic or Plastic range

(Output)

stre_np1 Stress at (n+1)-th or current time step (Output)

ystre_np1 Yield Stress at the (n+1)-th time step (Output)

eph_bar_plas_n+1 Effective plastic strain at (n+1)-th time step (Output)

lambda Plastic multipler (sometime used in the Consistent Tangent evaluation)

(Output)

Returns:

"1" if the code converges properly.

Definition at line 707 of file SmallStrainPlasticResidual.cc.

Referenced by apply(), getJacobianParameters(), and reset().

1.16.2.5 void AMP::SmallStrainPlasticResidual::Von_Mises_Consistent_-

Tangent (double E, double Nu, double H, double Sig0, double ∗ stre_np1,

double ystre_np1, double eph_bar_plas_np1, double lambda, int el_or_pl, double

d[6][6]) [protected]

This function calculates the Consistent Tangent for the Von Mises plasticity model.

Parameters:

stre_np1 Stress at (n+1)-th or current time step (calculated from Radial Return

algorithm) (Input)

ystre_np1 Yield Stress at the (n+1)-th time step (calculated from Radial Return

algorithm) (Input)

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.17 AMP::ThermalJacobian Class Reference 25

eph_bar_plas_np1 Effective plastic strain at (n+1)-th time step (calculated from

Radial Return algorithm) (Input)

lambda Plastic multipler (calculated from Radial Return algorithm) (Input)

el_or_pl Elastic/Plastic indicator at a Gauss point (Updated at the Radial Return

algorithm) (Input)

d The Consistent Tangent Matrix (Output)

Definition at line 809 of file SmallStrainPlasticResidual.cc.

Referenced by getJacobianParameters().

The documentation for this class was generated from the following files:

• SmallStrainPlasticResidual.h

• SmallStrainPlasticResidual.cc

1.17 AMP::ThermalJacobian Class Reference

A class for representing the thermal jacobian operator.

#include <ThermalJacobian.h>

Inherits AMP::LinearOperator.

Public Types

• typedef ThermalJacobianParameters Parameters

• typedef NodalScalarVariable OutputVariable

• typedef NodalScalarVariable InputVariable

Public Member Functions

• ThermalJacobian (const boost::shared_ptr< ThermalJacobianParameters >

¶ms)

params must be convertible to a pointer of type ThermalJacobianParameters

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

params must be convertible to a pointer of type ThermalJacobianParameters

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.18 AMP::ThermalJacobianParameters Class Reference 26

1.17.1 Detailed Description

A class for representing the thermal jacobian operator.

Definition at line 19 of file ThermalJacobian.h.

The documentation for this class was generated from the following files:

• ThermalJacobian.h

• ThermalJacobian.cc

1.18 AMP::ThermalJacobianParameters Class Reference

A class that encapsulates the parameters required to construct the thermal jacobian

operator.

#include <ThermalJacobianParameters.h>

Inherits AMP::OperatorParameters.

Public Member Functions

• ThermalJacobianParameters (const boost::shared_ptr< AMP::Database >

&db)

Public Attributes

• boost::shared_ptr< std::vector< double > > d_ConductivityGauss

The conductivity values for each gauss point.

• Vector::shared_ptr d_ConductivityNodal

1.18.1 Detailed Description

A class that encapsulates the parameters required to construct the thermal jacobian

operator.

See also:

ThermalJacobian

Definition at line 22 of file ThermalJacobianParameters.h.

The documentation for this class was generated from the following file:

• ThermalJacobianParameters.h

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.19 AMP::ThermalResidual Class Reference 27

1.19 AMP::ThermalResidual Class Reference

A class for representing the thermal residual operator.

#include <ThermalResidual.h>

Inherits AMP::Operator.

Public Types

• typedef ThermalJacobian Jacobian

• typedef ThermalResidualParameters Parameters

• typedef NodalScalarVariable OutputVariable

• typedef NodalScalarVariable InputVariable

Public Member Functions

• ThermalResidual (const boost::shared_ptr< ThermalResidualParameters >

¶ms)

• void apply (const boost::shared_ptr< Vector > &f, const boost::shared_ptr<

Vector > &u, boost::shared_ptr< Vector > &r, const double a=-1.0, const dou-

ble b=1.0)

The function that computes the residual.

• void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

A function to reinitialize this object.

• boost::shared_ptr< OperatorParameters > getJacobianParameters (const

boost::shared_ptr< Vector > &u)

A function for computing the information necessary to construct the jacobian.

Static Public Member Functions

• static const char ∗ DBName ()

Protected Attributes

• boost::shared_ptr< AMP::Database > d_db

• boost::shared_ptr< std::vector< double > > d_ConductivityGauss

• Vector::shared_ptr d_ConductivityNodal

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.19 AMP::ThermalResidual Class Reference 28

1.19.1 Detailed Description

A class for representing the thermal residual operator.

Currently uses the Emperical relationfor the Conductivity.

Definition at line 23 of file ThermalResidual.h.

1.19.2 Member Function Documentation

1.19.2.1 void AMP::ThermalResidual::apply (const boost::shared_ptr< Vector

> & f, const boost::shared_ptr< Vector > & u, boost::shared_ptr< Vector > &

r, const double a = -1.0, const double b = 1.0)

The function that computes the residual.

Parameters:

f,: rhs vector for A(u)=f, this may be a null pointer if f=0.

u,: input vector for u.

r,: output vector The result of apply is r = b∗f+a∗A(u)

end for qp

Definition at line 242 of file ThermalResidual.cc.

References AMP::Operator::getInputVariable().

1.19.2.2 boost::shared_ptr< OperatorParameters >

AMP::ThermalResidual::getJacobianParameters (const boost::shared_ptr<

Vector > & u) [virtual]

A function for computing the information necessary to construct the jacobian.

Parameters:

u The solution vector that is used to construct the jacobian

Returns:

The parameters required to construct the jacobian. In this case, it is the list of

conductivity values at each gauss point.

Reimplemented from AMP::Operator.

Definition at line 58 of file ThermalResidual.cc.

References AMP::Operator::getInputVariable().

The documentation for this class was generated from the following files:

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

1.20 AMP::ThermalResidualParameters Class Reference 29

• ThermalResidual.h

• ThermalResidual.cc

1.20 AMP::ThermalResidualParameters Class Reference

A class for encapsulating the parameters that are required for constructing the thermal

residual operator.

#include <ThermalResidualParameters.h>

Inherits AMP::OperatorParameters.

Public Member Functions

• ThermalResidualParameters (const boost::shared_ptr< AMP::Database >

&db)

1.20.1 Detailed Description

A class for encapsulating the parameters that are required for constructing the thermal

residual operator.

See also:

ThermalResidual

Definition at line 21 of file ThermalResidualParameters.h.

The documentation for this class was generated from the following file:

• ThermalResidualParameters.h

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

Index

AMP::ColumnOperator, 1

apply, 2

getJacobianParameters, 2

reset, 2

AMP::ColumnOperatorParameters, 3

AMP::LinearElasticityOperator, 3

reset, 4

AMP::LinearElasticityParameters, 4

AMP::LinearFEOperator, 5

reset, 6

AMP::LinearOperator, 6

apply, 7

AMP::MassMatrix, 8

reset, 8

AMP::NeutronicsSource, 9

apply, 10

putToDatabase, 10

AMP::NeutronicsSourceParameters, 10

AMP::NonlinearFEOperator, 11

apply, 12

AMP::Operator, 12

apply, 15

getInputVariable, 16

getJacobianParameters, 15

getOutputVariable, 16

reset, 14

setDebugPrintInfoLevel, 15

AMP::OperatorParameters, 16

d_db, 18

OperatorParameters, 17

AMP::PlasticJacobianParameters, 18

AMP::PlasticResidualParameters, 19

AMP::SmallStrainPlasticJacobian, 19

AMP::SmallStrainPlasticResidual, 20

apply, 22

bodyForce, 22

getJacobianParameters, 22

Von_Mises_Consistent_Tangent, 23

Von_Mises_Radial_Return, 23

AMP::ThermalJacobian, 24

AMP::ThermalJacobianParameters, 25

AMP::ThermalResidual, 26

apply, 27

getJacobianParameters, 27

AMP::ThermalResidualParameters, 28

apply

AMP::ColumnOperator, 2

AMP::LinearOperator, 7

AMP::NeutronicsSource, 10

AMP::NonlinearFEOperator, 12

AMP::Operator, 15

AMP::SmallStrainPlasticResidual,

22

AMP::ThermalResidual, 27

bodyForce

AMP::SmallStrainPlasticResidual,

22

d_db

AMP::OperatorParameters, 18

getInputVariable

AMP::Operator, 16

getJacobianParameters

AMP::ColumnOperator, 2

AMP::Operator, 15

AMP::SmallStrainPlasticResidual,

22

AMP::ThermalResidual, 27

getOutputVariable

AMP::Operator, 16

OperatorParameters

AMP::OperatorParameters, 17

putToDatabase

AMP::NeutronicsSource, 10

reset

AMP::ColumnOperator, 2

AMP::LinearElasticityOperator, 4

AMP::LinearFEOperator, 6

AMP::MassMatrix, 8

AMP::Operator, 14

INDEX 31

setDebugPrintInfoLevel

AMP::Operator, 15

Von_Mises_Consistent_Tangent

AMP::SmallStrainPlasticResidual,

23

Von_Mises_Radial_Return

AMP::SmallStrainPlasticResidual,

23

Generated on Wed Feb 24 16:28:03 2010 for operators by Doxygen

solvers

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:04 2010

CONTENTS 1

Contents

1 Class Documentation 1

1.1 AMP::NonlinearKrylovAcceleratorParameters Class Reference 1

1.1.1 Detailed Description . 2

1.1.2 Constructor & Destructor Documentation 2

1.2 AMP::SolverStrategy Class Reference 2

1.2.1 Detailed Description . 4

1.2.2 Member Function Documentation 4

1.3 AMP::SolverStrategyParameters Class Reference 5

1.3.1 Detailed Description . 5

1.3.2 Constructor & Destructor Documentation 5

1.3.3 Member Data Documentation 6

1 Class Documentation

1.1 AMP::NonlinearKrylovAcceleratorParameters Class Refer-

ence

Class NonlinearKrylovAcceleratorParameters provides a uniform mechanism to pass

initialization parameters when constructing a Application.

#include <NonlinearKrylovAcceleratorParameters.h>

Inherits AMP::SolverStrategyParameters.

Public Member Functions

• NonlinearKrylovAcceleratorParameters ()

Empty constructor.

• NonlinearKrylovAcceleratorParameters (const boost::shared_ptr<

AMP::Database > &database)

Construct and initialize a parameter list according to input data.

• virtual ∼NonlinearKrylovAcceleratorParameters ()

Destructor.

Generated on Wed Feb 24 16:28:04 2010 for solvers by Doxygen

1.2 AMP::SolverStrategy Class Reference 2

Public Attributes

• boost::shared_ptr< SolverStrategy > d_pPreconditioner

• boost::shared_ptr< Vector > d_pvInitialGuess

1.1.1 Detailed Description

Class NonlinearKrylovAcceleratorParameters provides a uniform mechanism to pass

initialization parameters when constructing a Application.

Definition at line 22 of file NonlinearKrylovAcceleratorParameters.h.

1.1.2 Constructor & Destructor Documentation

1.1.2.1 AMP::NonlinearKrylovAcceleratorParameters::NonlinearKrylovAcceleratorParameters

(const boost::shared_ptr< AMP::Database > & database)

Construct and initialize a parameter list according to input data.

See Application for a list of required and optional keywords.

Definition at line 10 of file NonlinearKrylovAcceleratorParameters.cc.

The documentation for this class was generated from the following files:

• NonlinearKrylovAcceleratorParameters.h

• NonlinearKrylovAcceleratorParameters.cc

1.2 AMP::SolverStrategy Class Reference

Class SolverStrategy is a base class for methods to solve problems on a SAMR hierar-

chy.

#include <SolverStrategy.h>

Inherited by AMP::NonlinearKrylovAccelerator, AMP::PetscKrylovSolver,

AMP::PetscSNESSolver, and AMP::TrilinosMLSolver.

Public Member Functions

• SolverStrategy (boost::shared_ptr< SolverStrategyParameters > parameters)

• virtual void solve (boost::shared_ptr< Vector > f, boost::shared_ptr< Vector >

u)=0

Solve the system A(u) = f .

Generated on Wed Feb 24 16:28:04 2010 for solvers by Doxygen

1.2 AMP::SolverStrategy Class Reference 3

• virtual void initialize (boost::shared_ptr< SolverStrategyParameters > const pa-

rameters)

Initialize the solution vector and potentially create internal vectors needed for solu-

tion.

• virtual void setInitialGuess (boost::shared_ptr< Vector > initialGuess)=0

• virtual void setConvergenceTolerance (const int max_iterations, const double

max_error)

Specify stopping criteria.

• virtual void setDebugPrintInfoLevel (int print_level)

Specify level of diagnostic information printed during iterations.

• virtual int getIterations (void) const

Return the number of iterations taken by the solver to converge.

• virtual void setZeroInitialGuess (bool use_zero_guess)

Tells the solver to use an initial guess of zero and not try to copy an initial guess into

the solution std::vector.

• virtual void registerOperator (const boost::shared_ptr< Operator > op)

Register the operator that the solver will use during solves.

• virtual void resetOperator (const boost::shared_ptr< OperatorParameters >

params)

Resets the associated operator internally with new parameters if necessary.

• virtual void reset (boost::shared_ptr< SolverStrategyParameters > parame-

ters)

Resets the solver internally with new parameters if necessary.

• virtual boost::shared_ptr< Operator > getOperator (void)

Protected Member Functions

• void getFromInput (const boost::shared_ptr< AMP::Database > &db)

Protected Attributes

• int d_iNumberIterations

• double d_dResidualNorm

• int d_iMaxIterations

Generated on Wed Feb 24 16:28:04 2010 for solvers by Doxygen

1.2 AMP::SolverStrategy Class Reference 4

• double d_dMaxRhs

• double d_dMaxError

• int d_iDebugPrintInfoLevel

• bool d_bUseZeroInitialGuess

• int d_iObjectId

• boost::shared_ptr< AMP::Operator > d_pOperator

Static Protected Attributes

• static int d_iInstanceId = 0

1.2.1 Detailed Description

Class SolverStrategy is a base class for methods to solve problems on a SAMR hierar-

chy.

Definition at line 38 of file SolverStrategy.h.

1.2.2 Member Function Documentation

1.2.2.1 void AMP::SolverStrategy::resetOperator (const boost::shared_ptr<

OperatorParameters > params) [virtual]

Resets the associated operator internally with new parameters if necessary.

Parameters:

parameters OperatorParameters object that is NULL by default

Definition at line 85 of file SolverStrategy.cc.

1.2.2.2 virtual void AMP::SolverStrategy::reset (boost::shared_ptr< Solver-

StrategyParameters > parameters) [inline, virtual]

Resets the solver internally with new parameters if necessary.

Parameters:

parameters SolverStrategyParameters object that is NULL by default

Definition at line 98 of file SolverStrategy.h.

The documentation for this class was generated from the following files:

• SolverStrategy.h

• SolverStrategy.cc

Generated on Wed Feb 24 16:28:04 2010 for solvers by Doxygen

1.3 AMP::SolverStrategyParameters Class Reference 5

1.3 AMP::SolverStrategyParameters Class Reference

SolverStrategyParameters encapsulates parameters used to initialize SolverStrategy ob-

jects.

#include <SolverStrategyParameters.h>

Inherited by AMP::NonlinearKrylovAcceleratorParameters,

AMP::PetscKrylovSolverParameters, and AMP::PetscSNESSolverParameters.

Public Member Functions

• SolverStrategyParameters ()

Empty constructor.

• SolverStrategyParameters (const boost::shared_ptr< AMP::Database > &db)

Construct and initialize a parameter list according to input data.

• virtual ∼SolverStrategyParameters ()

Destructor.

Public Attributes

• boost::shared_ptr< AMP::Database > d_db

Pointer to database object which needs to be initialized specific to the solver.

• boost::shared_ptr< AMP::Operator > d_pOperator

1.3.1 Detailed Description

SolverStrategyParameters encapsulates parameters used to initialize SolverStrategy ob-

jects.

Definition at line 33 of file SolverStrategyParameters.h.

1.3.2 Constructor & Destructor Documentation

1.3.2.1 AMP::SolverStrategyParameters::SolverStrategyParameters (const

boost::shared_ptr< AMP::Database > & db)

Construct and initialize a parameter list according to input data.

Guess what the required and optional keywords are.

Definition at line 11 of file SolverStrategyParameters.cc.

Generated on Wed Feb 24 16:28:04 2010 for solvers by Doxygen

1.3 AMP::SolverStrategyParameters Class Reference 6

1.3.3 Member Data Documentation

1.3.3.1 boost::shared_ptr<AMP::Database> AMP::SolverStrategyParameters::d_-

db

Pointer to database object which needs to be initialized specific to the solver.

Documentation for parameters required by each solver can be found in the documenta-

tion for the solver.

Definition at line 57 of file SolverStrategyParameters.h.

The documentation for this class was generated from the following files:

• SolverStrategyParameters.h

• SolverStrategyParameters.cc

Generated on Wed Feb 24 16:28:04 2010 for solvers by Doxygen

Index

AMP::NonlinearKrylovAcceleratorParameters,

1

NonlinearKrylovAcceleratorParam-

eters, 1

AMP::SolverStrategy, 2

reset, 4

resetOperator, 4

AMP::SolverStrategyParameters, 4

d_db, 5

SolverStrategyParameters, 5

d_db

AMP::SolverStrategyParameters, 5

NonlinearKrylovAcceleratorParameters

AMP::NonlinearKrylovAcceleratorParameters,

1

reset

AMP::SolverStrategy, 4

resetOperator

AMP::SolverStrategy, 4

SolverStrategyParameters

AMP::SolverStrategyParameters, 5

time_integrators

amp-0_0_0

Generated by Doxygen 1.5.6

Wed Feb 24 16:28:05 2010

CONTENTS i

Contents

1 Overview of the time_integrators package 1

2 Class Documentation 1

2.1 AMP::BackwardEulerTimeIntegrator Class Reference 1

2.1.1 Detailed Description . 2

2.1.2 Member Function Documentation 2

2.2 AMP::ExplicitEuler Class Reference 3

2.2.1 Detailed Description . 4

2.2.2 Member Function Documentation 4

2.3 AMP::IDATimeIntegrator Class Reference 5

2.3.1 Detailed Description . 7

2.3.2 Member Function Documentation 7

2.4 AMP::IDATimeIntegratorParameters Class Reference 8

2.4.1 Detailed Description . 8

2.5 AMP::ImplicitTimeIntegrator Class Reference 9

2.5.1 Detailed Description . 10

2.5.2 Constructor & Destructor Documentation 11

2.5.3 Member Function Documentation 11

2.6 AMP::ImplicitTimeIntegratorParameters Class Reference 14

2.6.1 Detailed Description . 14

2.6.2 Member Data Documentation 14

2.7 AMP::RK23TimeIntegrator Class Reference 15

2.7.1 Detailed Description . 16

2.7.2 Member Function Documentation 16

2.8 AMP::RK2TimeIntegrator Class Reference 17

2.8.1 Detailed Description . 18

2.8.2 Member Function Documentation 18

2.9 AMP::RK4TimeIntegrator Class Reference 19

2.9.1 Detailed Description . 20

2.9.2 Member Function Documentation 20

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

1 Overview of the time_integrators package 1

2.10 AMP::TimeIntegrator Class Reference 21

2.10.1 Detailed Description . 23

2.10.2 Constructor & Destructor Documentation 23

2.10.3 Member Function Documentation 24

2.11 AMP::TimeIntegratorFactory Class Reference 26

2.11.1 Detailed Description . 27

2.12 AMP::TimeIntegratorParameters Class Reference 27

2.12.1 Detailed Description . 27

2.12.2 Member Data Documentation 28

2.13 AMP::TimeOperator Class Reference 28

2.13.1 Detailed Description . 29

2.13.2 Member Function Documentation 29

1 Overview of the time_integrators package

Version:

amp-0_0_0

Time_integrators package in amp

2 Class Documentation

2.1 AMP::BackwardEulerTimeIntegrator Class Reference

Class BackwardEulerTimeIntegrator is a concrete time integrator that implements the

backward Euler method.

#include <BackwardEulerTimeIntegrator.h>

Inherits AMP::ImplicitTimeIntegrator.

Public Member Functions

• BackwardEulerTimeIntegrator (boost::shared_ptr< TimeIntegratorParameters

> parameters)

Constructor that accepts parameter list.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.1 AMP::BackwardEulerTimeIntegrator Class Reference 2

• ∼BackwardEulerTimeIntegrator ()

Destructor.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize from parameter list.

• void reset (boost::shared_ptr< TimeIntegratorParameters > parameters)

Resets the internal state of the time integrator as needed.

• double getInitialDt ()

Specify initial time step.

• double getNextDt (const bool good_solution)

Specify next time step to use.

• void setInitialGuess (const bool first_step, const double current_time, const dou-

ble current_dt, const double old_dt)

Set an initial guess for the time advanced solution.

• void updateSolution (void)

Update state of the solution.

• bool checkNewSolution (void) const

Check time advanced solution to determine whether it is acceptable.

Protected Member Functions

• void initializeTimeOperator (boost::shared_ptr< TimeIntegratorParameters >

parameters)

2.1.1 Detailed Description

Class BackwardEulerTimeIntegrator is a concrete time integrator that implements the

backward Euler method.

Definition at line 17 of file BackwardEulerTimeIntegrator.h.

2.1.2 Member Function Documentation

2.1.2.1 void AMP::BackwardEulerTimeIntegrator::reset (boost::shared_ptr<

TimeIntegratorParameters > parameters) [virtual]

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.2 AMP::ExplicitEuler Class Reference 3

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::ImplicitTimeIntegrator.

Definition at line 66 of file BackwardEulerTimeIntegrator.cc.

2.1.2.2 bool AMP::BackwardEulerTimeIntegrator::checkNewSolution (void)

const [virtual]

Check time advanced solution to determine whether it is acceptable.

Return true if the solution is acceptable; return false otherwise. The integer argument

is the return code generated by the call to the nonlinear solver "solve" routine. The

meaning of this value depends on the particular nonlinear solver in use and must be

intepreted properly by the user-supplied solution checking routine.

Implements AMP::ImplicitTimeIntegrator.

Definition at line 135 of file BackwardEulerTimeIntegrator.cc.

The documentation for this class was generated from the following files:

• BackwardEulerTimeIntegrator.h

• BackwardEulerTimeIntegrator.cc

2.2 AMP::ExplicitEuler Class Reference

Class ExplicitEuler is a concrete time integrator that implements the explicit Runge-

Kutta second order (RK2) method.

#include <ExplicitEuler.h>

Inherits AMP::TimeIntegrator.

Public Member Functions

• ExplicitEuler (boost::shared_ptr< TimeIntegratorParameters > parameters)

Constructor that accepts parameter list.

• ∼ExplicitEuler ()

Destructor.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize from parameter list.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.2 AMP::ExplicitEuler Class Reference 4

• void reset (boost::shared_ptr< TimeIntegratorParameters > parameters)

Resets the internal state of the time integrator as needed.

• double getInitialDt ()

Specify initial time step.

• double getNextDt (const bool good_solution)

Specify next time step to use.

• bool checkNewSolution (void) const

Determine whether time advanced solution is satisfactory.

• void updateSolution (void)

Update state of the solution.

• int advanceSolution (const double dt, const bool first_step)

Integrate entire patch hierarchy through the specified time increment.

2.2.1 Detailed Description

Class ExplicitEuler is a concrete time integrator that implements the explicit Runge-

Kutta second order (RK2) method.

Definition at line 17 of file ExplicitEuler.h.

2.2.2 Member Function Documentation

2.2.2.1 void AMP::ExplicitEuler::reset (boost::shared_ptr< TimeIntegratorPa-

rameters > parameters) [virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::TimeIntegrator.

Definition at line 61 of file ExplicitEuler.cc.

2.2.2.2 int AMP::ExplicitEuler::advanceSolution (const double dt, const bool

first_step) [virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.3 AMP::IDATimeIntegrator Class Reference 5

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Implements AMP::TimeIntegrator.

Definition at line 88 of file ExplicitEuler.cc.

References AMP::TimeIntegrator::d_operator, and

AMP::TimeIntegrator::stepsRemaining().

The documentation for this class was generated from the following files:

• ExplicitEuler.h

• ExplicitEuler.cc

2.3 AMP::IDATimeIntegrator Class Reference

Class IDATimeIntegrator is a concrete time integrator that implements the backward

Euler method.

#include <IDATimeIntegrator.h>

Inherits AMP::TimeIntegrator.

Public Member Functions

• IDATimeIntegrator (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)

Constructor that accepts parameter list.

• ∼IDATimeIntegrator ()

Destructor.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize from parameter list.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.3 AMP::IDATimeIntegrator Class Reference 6

• void reset (boost::shared_ptr< TimeIntegratorParameters > parameters)

Resets the internal state of the time integrator as needed.

• double getInitialDt ()

Specify initial time step.

• double getNextDt (const bool good_solution)

Specify next time step to use.

• double getCurrentTime ()

Return current integration time.

• void setInitialGuess (const bool first_step, const double current_time, const dou-

ble current_dt, const double old_dt)

Set an initial guess for the time advanced solution.

• int advanceSolution (const double dt, const bool first_step)

Integrate entire patch hierarchy through the specified time increment.

• void updateSolution (void)

Update state of the solution.

• bool checkNewSolution (void) const

Check time advanced solution to determine whether it is acceptable.

• boost::shared_ptr< MassMatrix > getMassMatrix () const

• boost::shared_ptr< Operator > getOperator () const

• boost::shared_ptr< Vector > getResidualVector () const

• boost::shared_ptr< Vector > getTempVec1 () const

• boost::shared_ptr< Vector > getTempVec2 () const

• boost::shared_ptr< SolverStrategy > getPreconditioner (void)

• void ∗ getIDAMem (void)

Public Attributes

• boost::shared_ptr< Vector > d_residual

• boost::shared_ptr< Vector > d_temp_vec_1

• boost::shared_ptr< Vector > d_temp_vec_2

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.3 AMP::IDATimeIntegrator Class Reference 7

2.3.1 Detailed Description

Class IDATimeIntegrator is a concrete time integrator that implements the backward

Euler method.

Definition at line 45 of file IDATimeIntegrator.h.

2.3.2 Member Function Documentation

2.3.2.1 void AMP::IDATimeIntegrator::reset (boost::shared_ptr< TimeInte-

gratorParameters > parameters) [virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::TimeIntegrator.

Definition at line 144 of file IDATimeIntegrator.cc.

2.3.2.2 int AMP::IDATimeIntegrator::advanceSolution (const double dt, const

bool first_step) [virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment.

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Implements AMP::TimeIntegrator.

Definition at line 250 of file IDATimeIntegrator.cc.

2.3.2.3 bool AMP::IDATimeIntegrator::checkNewSolution (void) const

[virtual]

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.4 AMP::IDATimeIntegratorParameters Class Reference 8

Check time advanced solution to determine whether it is acceptable.

Return true if the solution is acceptable; return false otherwise. The integer argument

is the return code generated by the call to the nonlinear solver "solve" routine. The

meaning of this value depends on the particular nonlinear solver in use and must be

intepreted properly by the user-supplied solution checking routine.

Implements AMP::TimeIntegrator.

Definition at line 310 of file IDATimeIntegrator.cc.

The documentation for this class was generated from the following files:

• IDATimeIntegrator.h

• IDATimeIntegrator.cc

2.4 AMP::IDATimeIntegratorParameters Class Reference

TimeIntegratorParameters is a base class for providing parameters for the TimeIntegra-

tor’s. The Database object contained must contain the following entries:.

#include <IDATimeIntegratorParameters.h>

Inherits AMP::TimeIntegratorParameters.

Public Member Functions

• IDATimeIntegratorParameters (const boost::shared_ptr< AMP::Database >

db)

Public Attributes

• boost::shared_ptr< Vector > d_ic_vector_prime

• boost::shared_ptr< MassMatrix > d_mass_matrix

• boost::shared_ptr< SolverStrategy > d_pPreconditioner

2.4.1 Detailed Description

TimeIntegratorParameters is a base class for providing parameters for the TimeIntegra-

tor’s. The Database object contained must contain the following entries:.

Required input keys and data types:

Parameters:

initial_time double value for the initial simulation time.

final_time double value for the final simulation time.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.5 AMP::ImplicitTimeIntegrator Class Reference 9

max_integrator_steps integer value for the maximum number of timesteps al-

lowed.

All input data items described above, except for initial_time, may be overwritten by

new input values when continuing from restart.

Definition at line 35 of file IDATimeIntegratorParameters.h.

The documentation for this class was generated from the following files:

• IDATimeIntegratorParameters.h

• IDATimeIntegratorParameters.cc

2.5 AMP::ImplicitTimeIntegrator Class Reference

Manage implicit time integration.

#include <ImplicitTimeIntegrator.h>

Inherits AMP::TimeIntegrator.

Inherited by AMP::BackwardEulerTimeIntegrator.

Public Member Functions

• ImplicitTimeIntegrator (boost::shared_ptr< TimeIntegratorParameters > pa-

rameters)

The constructor for ImplicitTimeIntegrator initializes the default state of the integra-

tor.

• virtual ∼ImplicitTimeIntegrator ()

Empty destructor for ImplicitTimeIntegrator.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize state of time integrator.

• virtual void reset (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)=0

Resets the internal state of the time integrator as needed.

• virtual int advanceSolution (const double dt, const bool first_step)

Integrate entire patch hierarchy through the specified time increment.

• virtual double getNextDt (const bool good_solution)=0

Return time increment for next solution advance.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.5 AMP::ImplicitTimeIntegrator Class Reference 10

• virtual bool checkNewSolution (void) const =0

Check time advanced solution to determine whether it is acceptable.

• virtual void updateSolution (void)=0

Update solution (e.g., reset pointers for solution data, update dependent variables,

etc.

• void printClassData (std::ostream &os) const

Print out all members of integrator instance to given output stream.

• void putToDatabase (boost::shared_ptr< AMP::Database > db)

Write out state of object to given database.

Protected Member Functions

• virtual void initializeTimeOperator (boost::shared_ptr< TimeIntegratorParam-

eters > parameters)

Protected Attributes

• boost::shared_ptr< SolverStrategy > d_solver

• boost::shared_ptr< TimeOperatorParameters > d_pTimeOperatorParameters

2.5.1 Detailed Description

Manage implicit time integration.

Class ImplicitTimeIntegrator manages implicit time integration. It maintains refer-

ences to a TimeDependentOperator and SolverStrategy objects. The TimeDependent-

Operator describe the implicit equations at each time step and the SolverStrategy solves

the problem at each time step. the same time increment.

Initialization of an ImplicitTimeIntegrator object is performed via a combination of

default parameters and values read from input. Data read from input is summarized as

follows:

Required input keys and data types:

Parameters:

initial_time double value for the initial simulation time.

final_time double value for the final simulation time.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.5 AMP::ImplicitTimeIntegrator Class Reference 11

max_integrator_steps integer value for the maximum number of timesteps al-

lowed.

All input data items described above, except for initial_time, may be overwritten by

new input values when continuing from restart.

A sample input file entry might look like:

initial_time = 0.0

final_time = 1.0

max_integrator_steps = 100

See also:

Operator

SolverStrategy

Definition at line 68 of file ImplicitTimeIntegrator.h.

2.5.2 Constructor & Destructor Documentation

2.5.2.1 AMP::ImplicitTimeIntegrator::ImplicitTimeIntegrator

(boost::shared_ptr< TimeIntegratorParameters > parameters)

The constructor for ImplicitTimeIntegrator initializes the default state of the integrator.

The integrator is configured with the concrete strategy objects in the argument list that

provide operations related to the nonlinear solver and implicit equations to solve. Data

members are initialized from the input and restart databases.

Note that no vectors are created in the constructor. Vectors are created and the nonlinear

solver is initialized in the initialize() member function.

Definition at line 40 of file ImplicitTimeIntegrator.cc.

References initialize().

2.5.3 Member Function Documentation

2.5.3.1 void AMP::ImplicitTimeIntegrator::initialize (boost::shared_ptr<

TimeIntegratorParameters > parameters) [virtual]

Initialize state of time integrator.

This includes creating solution vector and initializing solver components.

Reimplemented from AMP::TimeIntegrator.

Reimplemented in AMP::BackwardEulerTimeIntegrator.

Definition at line 63 of file ImplicitTimeIntegrator.cc.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.5 AMP::ImplicitTimeIntegrator Class Reference 12

References AMP::TimeIntegrator::d_operator.

Referenced by ImplicitTimeIntegrator(), and AMP::BackwardEulerTimeIntegrator::initialize().

2.5.3.2 virtual void AMP::ImplicitTimeIntegrator::reset (boost::shared_ptr<

TimeIntegratorParameters > parameters) [pure virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::TimeIntegrator.

Implemented in AMP::BackwardEulerTimeIntegrator.

2.5.3.3 int AMP::ImplicitTimeIntegrator::advanceSolution (const double dt,

const bool first_step) [virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment. The time advance

assumes the use of a nonlinear solver to implicitly integrate the discrete equations. The

integer return value is the return code generated by the particular solver package in

use. It is the user’s responsibility to interpret this code in a manner consistent with the

solver she is using.

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Implements AMP::TimeIntegrator.

Definition at line 103 of file ImplicitTimeIntegrator.cc.

References AMP::TimeIntegrator::d_operator, and

AMP::TimeIntegrator::stepsRemaining().

2.5.3.4 virtual double AMP::ImplicitTimeIntegrator::getNextDt (const bool

good_solution) [pure virtual]

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.5 AMP::ImplicitTimeIntegrator Class Reference 13

Return time increment for next solution advance.

Timestep selection is generally based on whether the nonlinear solution iteration con-

verged and, if so, whether the solution meets some user-defined criteria. This rou-

tine assumes that, before it is called, the routine checkNewSolution() was called. The

boolean argument is the return value from that call. The integer argument is the return

code generated by the nonlinear solver package that computed the solution.

Implements AMP::TimeIntegrator.

Implemented in AMP::BackwardEulerTimeIntegrator.

2.5.3.5 virtual bool AMP::ImplicitTimeIntegrator::checkNewSolution (void)

const [pure virtual]

Check time advanced solution to determine whether it is acceptable.

Return true if the solution is acceptable; return false otherwise. The integer argument

is the return code generated by the call to the nonlinear solver "solve" routine. The

meaning of this value depends on the particular nonlinear solver in use and must be

intepreted properly by the user-supplied solution checking routine.

Implements AMP::TimeIntegrator.

Implemented in AMP::BackwardEulerTimeIntegrator.

2.5.3.6 virtual void AMP::ImplicitTimeIntegrator::updateSolution (void)

[pure virtual]

Update solution (e.g., reset pointers for solution data, update dependent variables, etc.

) after time advance. It is assumed that when this routine is invoked, an acceptable

new solution has been computed. The double return value is the simulation time corre-

sponding to the advanced solution.

Implements AMP::TimeIntegrator.

Implemented in AMP::BackwardEulerTimeIntegrator.

2.5.3.7 void AMP::ImplicitTimeIntegrator::putToDatabase (boost::shared_-

ptr< AMP::Database > db)

Write out state of object to given database.

When assertion checking is active, the database pointer must be non-null.

Reimplemented from AMP::TimeIntegrator.

Definition at line 156 of file ImplicitTimeIntegrator.cc.

References AMP::TimeIntegrator::putToDatabase().

The documentation for this class was generated from the following files:

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.6 AMP::ImplicitTimeIntegratorParameters Class Reference 14

• ImplicitTimeIntegrator.h

• ImplicitTimeIntegrator.cc

2.6 AMP::ImplicitTimeIntegratorParameters Class Reference

Parameter class for implicit time integrators.

#include <ImplicitTimeIntegratorParameters.h>

Inherits AMP::TimeIntegratorParameters.

Public Member Functions

• ImplicitTimeIntegratorParameters (boost::shared_ptr< AMP::Database >

db)

Public Attributes

• boost::shared_ptr< SolverStrategy > d_solver

Pointers to implicit equation and solver strategy objects and patch hierarchy.

2.6.1 Detailed Description

Parameter class for implicit time integrators.

Class ImplicitTimeIntegratorParameters contains the parameters to initialize an im-

plicit time integrator class. It contains a Database object and a pointer to a SolverStrat-

egy object.

Parameters:

d_solver pointer to SolverStrategy

See also:

SolverStrategy

Definition at line 36 of file ImplicitTimeIntegratorParameters.h.

2.6.2 Member Data Documentation

2.6.2.1 boost::shared_ptr< SolverStrategy > AMP::ImplicitTimeIntegratorParameters::d_-

solver

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.7 AMP::RK23TimeIntegrator Class Reference 15

Pointers to implicit equation and solver strategy objects and patch hierarchy.

The strategies provide nonlinear equation and solver routines for treating the nonlinear

problem on the hierarchy.

Definition at line 48 of file ImplicitTimeIntegratorParameters.h.

The documentation for this class was generated from the following files:

• ImplicitTimeIntegratorParameters.h

• ImplicitTimeIntegratorParameters.cc

2.7 AMP::RK23TimeIntegrator Class Reference

Class RK23TimeIntegrator is a concrete time integrator that implements the explicit

Bogacki-Shampine adaptive Runge-Kutta (Matlab ode23) method.

#include <RK23TimeIntegrator.h>

Inherits AMP::TimeIntegrator.

Public Member Functions

• RK23TimeIntegrator (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)

Constructor that accepts parameter list.

• ∼RK23TimeIntegrator ()

Destructor.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize from parameter list.

• void reset (boost::shared_ptr< TimeIntegratorParameters > parameters)

Resets the internal state of the time integrator as needed.

• double getInitialDt ()

Specify initial time step.

• double getNextDt (const bool good_solution)

Specify next time step to use.

• bool checkNewSolution (void) const

Determine whether time advanced solution is satisfactory.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.7 AMP::RK23TimeIntegrator Class Reference 16

• void updateSolution (void)

Update state of the solution.

• int advanceSolution (const double dt, const bool first_step)

Integrate entire patch hierarchy through the specified time increment.

2.7.1 Detailed Description

Class RK23TimeIntegrator is a concrete time integrator that implements the explicit

Bogacki-Shampine adaptive Runge-Kutta (Matlab ode23) method.

Definition at line 21 of file RK23TimeIntegrator.h.

2.7.2 Member Function Documentation

2.7.2.1 void AMP::RK23TimeIntegrator::reset (boost::shared_ptr< TimeInte-

gratorParameters > parameters) [virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::TimeIntegrator.

Definition at line 61 of file RK23TimeIntegrator.cc.

2.7.2.2 int AMP::RK23TimeIntegrator::advanceSolution (const double dt,

const bool first_step) [virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment.

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.8 AMP::RK2TimeIntegrator Class Reference 17

Implements AMP::TimeIntegrator.

Definition at line 100 of file RK23TimeIntegrator.cc.

References AMP::TimeIntegrator::d_operator.

The documentation for this class was generated from the following files:

• RK23TimeIntegrator.h

• RK23TimeIntegrator.cc

2.8 AMP::RK2TimeIntegrator Class Reference

Class RK2TimeIntegrator is a concrete time integrator that implements the explicit

Runge-Kutta second order (RK2) method.

#include <RK2TimeIntegrator.h>

Inherits AMP::TimeIntegrator.

Public Member Functions

• RK2TimeIntegrator (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)

Constructor that accepts parameter list.

• ∼RK2TimeIntegrator ()

Destructor.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize from parameter list.

• void reset (boost::shared_ptr< TimeIntegratorParameters > parameters)

Resets the internal state of the time integrator as needed.

• double getInitialDt ()

Specify initial time step.

• double getNextDt (const bool good_solution)

Specify next time step to use.

• bool checkNewSolution (void) const

Determine whether time advanced solution is satisfactory.

• void updateSolution (void)

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.8 AMP::RK2TimeIntegrator Class Reference 18

Update state of the solution.

• int advanceSolution (const double dt, const bool first_step)

Integrate entire patch hierarchy through the specified time increment.

2.8.1 Detailed Description

Class RK2TimeIntegrator is a concrete time integrator that implements the explicit

Runge-Kutta second order (RK2) method.

Definition at line 17 of file RK2TimeIntegrator.h.

2.8.2 Member Function Documentation

2.8.2.1 void AMP::RK2TimeIntegrator::reset (boost::shared_ptr< TimeInte-

gratorParameters > parameters) [virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::TimeIntegrator.

Definition at line 61 of file RK2TimeIntegrator.cc.

2.8.2.2 int AMP::RK2TimeIntegrator::advanceSolution (const double dt, const

bool first_step) [virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment.

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.9 AMP::RK4TimeIntegrator Class Reference 19

Implements AMP::TimeIntegrator.

Definition at line 91 of file RK2TimeIntegrator.cc.

References AMP::TimeIntegrator::d_operator.

The documentation for this class was generated from the following files:

• RK2TimeIntegrator.h

• RK2TimeIntegrator.cc

2.9 AMP::RK4TimeIntegrator Class Reference

Class RK4TimeIntegrator is a concrete time integrator that implements the explicit

Runge-Kutta fourth order (RK4) method.

#include <RK4TimeIntegrator.h>

Inherits AMP::TimeIntegrator.

Public Member Functions

• RK4TimeIntegrator (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)

Constructor that accepts parameter list.

• ∼RK4TimeIntegrator ()

Destructor.

• void initialize (boost::shared_ptr< TimeIntegratorParameters > parameters)

Initialize from parameter list.

• void reset (boost::shared_ptr< TimeIntegratorParameters > parameters)

Resets the internal state of the time integrator as needed.

• double getInitialDt ()

Specify initial time step.

• double getNextDt (const bool good_solution)

Specify next time step to use.

• bool checkNewSolution (void) const

Determine whether time advanced solution is satisfactory.

• void updateSolution (void)

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.9 AMP::RK4TimeIntegrator Class Reference 20

Update state of the solution.

• int advanceSolution (const double dt, const bool first_step)

Integrate entire patch hierarchy through the specified time increment.

2.9.1 Detailed Description

Class RK4TimeIntegrator is a concrete time integrator that implements the explicit

Runge-Kutta fourth order (RK4) method.

Definition at line 17 of file RK4TimeIntegrator.h.

2.9.2 Member Function Documentation

2.9.2.1 void AMP::RK4TimeIntegrator::reset (boost::shared_ptr< TimeInte-

gratorParameters > parameters) [virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implements AMP::TimeIntegrator.

Definition at line 61 of file RK4TimeIntegrator.cc.

2.9.2.2 int AMP::RK4TimeIntegrator::advanceSolution (const double dt, const

bool first_step) [virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment.

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.10 AMP::TimeIntegrator Class Reference 21

Implements AMP::TimeIntegrator.

Definition at line 97 of file RK4TimeIntegrator.cc.

References AMP::TimeIntegrator::d_operator.

The documentation for this class was generated from the following files:

• RK4TimeIntegrator.h

• RK4TimeIntegrator.cc

2.10 AMP::TimeIntegrator Class Reference

Abstract base class for time integration.

#include <TimeIntegrator.h>

Inherited by AMP::ExplicitEuler, AMP::IDATimeIntegrator,

AMP::ImplicitTimeIntegrator, AMP::RK23TimeIntegrator,

AMP::RK2TimeIntegrator, and AMP::RK4TimeIntegrator.

Public Member Functions

• TimeIntegrator (boost::shared_ptr< TimeIntegratorParameters > parameters)

The constructor for TimeIntegrator initializes the default state of the integrator.

• virtual ∼TimeIntegrator ()

Empty destructor for TimeIntegrator.

• virtual void initialize (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)

Initialize state of time integrator.

• virtual void reset (boost::shared_ptr< TimeIntegratorParameters > parame-

ters)=0

Resets the internal state of the time integrator as needed.

• virtual int advanceSolution (const double dt, const bool first_step)=0

Integrate entire patch hierarchy through the specified time increment.

• virtual bool checkNewSolution (void) const =0

Check time advanced solution to determine whether it is acceptable.

• virtual void updateSolution (void)=0

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.10 AMP::TimeIntegrator Class Reference 22

Update solution (e.g., reset pointers for solution data, update dependent variables,

etc.

• virtual boost::shared_ptr< Vector > getCurrentSolution (void)

Retrieve the current solution.

• virtual double getNextDt (const bool good_solution)=0

Return time increment for next solution advance.

• virtual double getInitialTime () const

Return initial integration time.

• virtual double getFinalTime () const

Return final integration time.

• virtual double getCurrentTime () const

Return current integration time.

• virtual double getCurrentDt () const

Return current timestep.

• virtual int getIntegratorStep () const

Return current integration step number.

• virtual int getMaxIntegratorSteps () const

Return maximum number of integration steps.

• virtual bool stepsRemaining () const

Return true if the number of integration steps performed by the integrator has not

reached the specified maximum; return false otherwise.

• void printClassData (std::ostream &os) const

Print out all members of integrator instance to given output stream.

• void putToDatabase (boost::shared_ptr< AMP::Database > db)

Write out state of object to given database.

• void registerOperator (boost::shared_ptr< Operator > op)

Protected Member Functions

• void getFromInput (const boost::shared_ptr< AMP::Database > db)

• void getFromRestart ()

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.10 AMP::TimeIntegrator Class Reference 23

Protected Attributes

• std::string d_object_name

• boost::shared_ptr< Vector > d_solution

• boost::shared_ptr< Vector > d_pPreviousTimeSolution

• boost::shared_ptr< Operator > d_operator

The operator is the right hand side operator for an explicit integrator when the time

integration problem is : u_t = f(u) but in the case of implicit time integrators the

operator represents u_t-f(u).

• boost::shared_ptr< Operator > d_pMassOperator

The operator is the right hand side operator for an explicit integrator when the time

integration problem is : u_t = f(u) but in the case of implicit time integrators the

operator represents u_t-f(u).

• double d_initial_time

• double d_final_time

• double d_current_time

• double d_current_dt

• double d_old_dt

• double d_min_dt

• double d_max_dt

• int d_integrator_step

• int d_max_integrator_steps

2.10.1 Detailed Description

Abstract base class for time integration.

Class TimeIntegrator is an abstract base class for managing time integration

Initialization of an TimeIntegrator object is performed through a TimeIntegratorParam-

eters object

Definition at line 41 of file TimeIntegrator.h.

2.10.2 Constructor & Destructor Documentation

2.10.2.1 AMP::TimeIntegrator::TimeIntegrator (boost::shared_ptr< TimeIn-

tegratorParameters > parameters)

The constructor for TimeIntegrator initializes the default state of the integrator.

Data members are initialized from the input and restart databases.

Note that no vectors are created in the constructor. Vectors are created and initialized

in the initialize() member function.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.10 AMP::TimeIntegrator Class Reference 24

Definition at line 45 of file TimeIntegrator.cc.

References initialize().

2.10.3 Member Function Documentation

2.10.3.1 void AMP::TimeIntegrator::initialize (boost::shared_ptr< TimeInte-

gratorParameters > parameters) [virtual]

Initialize state of time integrator.

This includes creating solution vector and initializing solver components.

Reimplemented in AMP::BackwardEulerTimeIntegrator,

AMP::ExplicitEuler, AMP::IDATimeIntegrator, AMP::ImplicitTimeIntegrator,

AMP::RK23TimeIntegrator, AMP::RK2TimeIntegrator, and

AMP::RK4TimeIntegrator.

Definition at line 71 of file TimeIntegrator.cc.

References d_operator, and d_pMassOperator.

Referenced by AMP::RK4TimeIntegrator::initialize(),

AMP::RK2TimeIntegrator::initialize(), AMP::RK23TimeIntegrator::initialize(),

AMP::IDATimeIntegrator::initialize(), AMP::ExplicitEuler::initialize(), and TimeInte-

grator().

2.10.3.2 virtual void AMP::TimeIntegrator::reset (boost::shared_ptr< TimeIn-

tegratorParameters > parameters) [pure virtual]

Resets the internal state of the time integrator as needed.

A parameter argument is passed to allow for general flexibility in determining what

needs to be reset Typically used after a regrid.

Implemented in AMP::BackwardEulerTimeIntegrator, AMP::ExplicitEuler,

AMP::IDATimeIntegrator, AMP::ImplicitTimeIntegrator,

AMP::RK23TimeIntegrator, AMP::RK2TimeIntegrator, and

AMP::RK4TimeIntegrator.

2.10.3.3 virtual int AMP::TimeIntegrator::advanceSolution (const double dt,

const bool first_step) [pure virtual]

Integrate entire patch hierarchy through the specified time increment.

Integrate entire patch hierarchy through the specified time increment.

The boolean first_step argument is true when this is the very first call to the advance

function or if the call occurs immediately after the hierarchy has changed due to re-

gridding. Otherwise it is false. Note that, when the argument is true, the use of extrap-

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.10 AMP::TimeIntegrator Class Reference 25

olation to construct the initial guess for the advanced solution may not be possible.

Parameters:

dt Time step size

first_step Whether this is the first step after grid change

Returns:

value is the return code generated by the particular solver package in use

Implemented in AMP::ExplicitEuler, AMP::IDATimeIntegrator,

AMP::ImplicitTimeIntegrator, AMP::RK23TimeIntegrator,

AMP::RK2TimeIntegrator, and AMP::RK4TimeIntegrator.

2.10.3.4 virtual bool AMP::TimeIntegrator::checkNewSolution (void) const

[pure virtual]

Check time advanced solution to determine whether it is acceptable.

Return true if the solution is acceptable; return false otherwise. The meaning of this

value must be intepreted properly by the user-supplied solution checking routine.

Implemented in AMP::BackwardEulerTimeIntegrator, AMP::ExplicitEuler,

AMP::IDATimeIntegrator, AMP::ImplicitTimeIntegrator,

AMP::RK23TimeIntegrator, AMP::RK2TimeIntegrator, and

AMP::RK4TimeIntegrator.

2.10.3.5 virtual void AMP::TimeIntegrator::updateSolution (void) [pure

virtual]

Update solution (e.g., reset pointers for solution data, update dependent variables, etc.

) after time advance. It is assumed that when this routine is invoked, an acceptable

new solution has been computed. The double return value is the simulation time corre-

sponding to the advanced solution.

Implemented in AMP::BackwardEulerTimeIntegrator, AMP::ExplicitEuler,

AMP::IDATimeIntegrator, AMP::ImplicitTimeIntegrator,

AMP::RK23TimeIntegrator, AMP::RK2TimeIntegrator, and

AMP::RK4TimeIntegrator.

2.10.3.6 double AMP::TimeIntegrator::getNextDt (const bool good_solution)

[pure virtual]

Return time increment for next solution advance.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.11 AMP::TimeIntegratorFactory Class Reference 26

Timestep selection is generally based on whether the solution meets some user-defined

criteria. This routine assumes that, before it is called, the routine checkNewSolution()

was called. The boolean argument is the return value from that call.

Implemented in AMP::BackwardEulerTimeIntegrator, AMP::ExplicitEuler,

AMP::IDATimeIntegrator, AMP::ImplicitTimeIntegrator,

AMP::RK23TimeIntegrator, AMP::RK2TimeIntegrator, and

AMP::RK4TimeIntegrator.

Definition at line 120 of file TimeIntegrator.cc.

2.10.3.7 void AMP::TimeIntegrator::putToDatabase (boost::shared_ptr<

AMP::Database > db)

Write out state of object to given database.

When assertion checking is active, the database pointer must be non-null.

Reimplemented in AMP::ImplicitTimeIntegrator.

Definition at line 211 of file TimeIntegrator.cc.

Referenced by AMP::ImplicitTimeIntegrator::putToDatabase().

The documentation for this class was generated from the following files:

• TimeIntegrator.h

• TimeIntegrator.cc

2.11 AMP::TimeIntegratorFactory Class Reference

TimeIntegratorFactory is a factory class that creates specific multilevel solver classes.

#include <TimeIntegratorFactory.h>

Public Member Functions

• TimeIntegratorFactory ()

Constructor.

• ∼TimeIntegratorFactory ()

Destructor.

• boost::shared_ptr< TimeIntegrator > createTimeIntegrator (boost::shared_ptr<

TimeIntegratorParameters > timeIntegratorParameters)

Factory method for generating multilevel solvers with characteristics specified by pa-

rameters.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.12 AMP::TimeIntegratorParameters Class Reference 27

2.11.1 Detailed Description

TimeIntegratorFactory is a factory class that creates specific multilevel solver classes.

These are used to provide methods that operate on a SAMR hierarchy

Definition at line 45 of file TimeIntegratorFactory.h.

The documentation for this class was generated from the following files:

• TimeIntegratorFactory.h

• TimeIntegratorFactory.cc

2.12 AMP::TimeIntegratorParameters Class Reference

TimeIntegratorParameters is a base class for providing parameters for the TimeIntegra-

tor’s. The Database object contained must contain the following entries:.

#include <TimeIntegratorParameters.h>

Inherited by AMP::IDATimeIntegratorParameters, and

AMP::ImplicitTimeIntegratorParameters.

Public Member Functions

• TimeIntegratorParameters (const boost::shared_ptr< AMP::Database > db)

Public Attributes

• boost::shared_ptr< AMP::Database > d_db

Database object which needs to be initialized specific to the time integrator.

• std::string d_object_name

• boost::shared_ptr< Vector > d_ic_vector

• boost::shared_ptr< Operator > d_operator

• boost::shared_ptr< Operator > d_pMassOperator

2.12.1 Detailed Description

TimeIntegratorParameters is a base class for providing parameters for the TimeIntegra-

tor’s. The Database object contained must contain the following entries:.

Required input keys and data types:

Parameters:

initial_time double value for the initial simulation time.

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.13 AMP::TimeOperator Class Reference 28

final_time double value for the final simulation time.

max_integrator_steps integer value for the maximum number of timesteps al-

lowed.

All input data items described above, except for initial_time, may be overwritten by

new input values when continuing from restart.

Definition at line 49 of file TimeIntegratorParameters.h.

2.12.2 Member Data Documentation

2.12.2.1 boost::shared_ptr<AMP::Database> AMP::TimeIntegratorParameters::d_-

db

Database object which needs to be initialized specific to the time integrator.

Documentation for parameters required by each integrator can be found in the docu-

mentation for the integrator.

Definition at line 60 of file TimeIntegratorParameters.h.

The documentation for this class was generated from the following files:

• TimeIntegratorParameters.h

• TimeIntegratorParameters.cc

2.13 AMP::TimeOperator Class Reference

base class for operator class associated with ImplicitTimeIntegrator

#include <TimeOperator.h>

Inherited by AMP::BackwardEulerTimeOperator.

Public Member Functions

• TimeOperator (boost::shared_ptr< OperatorParameters > params)

• virtual void reset (const boost::shared_ptr< OperatorParameters > ¶ms)

This function is useful for re-initializing an operator.

• virtual void apply (const boost::shared_ptr< Vector > &f, const boost::shared_-

ptr< Vector > &u, boost::shared_ptr< Vector > &r, const double a=-1.0, const

double b=1.0)

• void registerRhsOperator (boost::shared_ptr< Operator > op)

• void registerMassOperator (boost::shared_ptr< Operator > op)

• boost::shared_ptr< Operator > getRhsOperator (void)

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.13 AMP::TimeOperator Class Reference 29

• boost::shared_ptr< Operator > getMassOperator (void)

• void setPreviousSolution (boost::shared_ptr< Vector > previousSolution)

• void setDt (double dt)

• boost::shared_ptr< OperatorParameters > getJacobianParameters (const

boost::shared_ptr< Vector > &u)

Protected Member Functions

• void getFromInput (const boost::shared_ptr< AMP::Database > &db)

Protected Attributes

• bool d_bLinearMassOperator

• double d_dCurrentDt

• boost::shared_ptr< Operator > d_pRhsOperator

• boost::shared_ptr< Operator > d_pMassOperator

• boost::shared_ptr< Vector > d_pPreviousTimeSolution

• boost::shared_ptr< Vector > d_pScratchVector

2.13.1 Detailed Description

base class for operator class associated with ImplicitTimeIntegrator

Class ImplicitTimeOperator is a base class derived from Operator. It is the operator

class associated with a ImplicitTimeIntegrator. The solver associated with the Im-

plicitTimeIntegrator will register this object.

See also:

ImplicitTimeIntegrator

Operator

SolverStrategy

Definition at line 39 of file TimeOperator.h.

2.13.2 Member Function Documentation

2.13.2.1 void AMP::TimeOperator::reset (const boost::shared_ptr< Operator-

Parameters > & params) [virtual]

This function is useful for re-initializing an operator.

Parameters:

params parameter object containing parameters to change

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

2.13 AMP::TimeOperator Class Reference 30

Definition at line 31 of file TimeOperator.cc.

The documentation for this class was generated from the following files:

• TimeOperator.h

• TimeOperator.cc

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

Index

advanceSolution

AMP::ExplicitEuler, 4

AMP::IDATimeIntegrator, 6

AMP::ImplicitTimeIntegrator, 11

AMP::RK23TimeIntegrator, 16

AMP::RK2TimeIntegrator, 17

AMP::RK4TimeIntegrator, 19

AMP::TimeIntegrator, 24

AMP::BackwardEulerTimeIntegrator, 1

checkNewSolution, 2

reset, 2

AMP::ExplicitEuler, 3

advanceSolution, 4

reset, 4

AMP::IDATimeIntegrator, 5

advanceSolution, 6

checkNewSolution, 7

reset, 6

AMP::IDATimeIntegratorParameters, 7

AMP::ImplicitTimeIntegrator, 8

advanceSolution, 11

checkNewSolution, 12

getNextDt, 12

ImplicitTimeIntegrator, 10

initialize, 11

putToDatabase, 13

reset, 11

updateSolution, 12

AMP::ImplicitTimeIntegratorParameters,

13

d_solver, 14

AMP::RK23TimeIntegrator, 14

advanceSolution, 16

reset, 15

AMP::RK2TimeIntegrator, 16

advanceSolution, 17

reset, 17

AMP::RK4TimeIntegrator, 18

advanceSolution, 19

reset, 19

AMP::TimeIntegrator, 20

advanceSolution, 24

checkNewSolution, 24

getNextDt, 25

initialize, 23

putToDatabase, 25

reset, 23

TimeIntegrator, 23

updateSolution, 24

AMP::TimeIntegratorFactory, 26

AMP::TimeIntegratorParameters, 26

d_db, 27

AMP::TimeOperator, 28

reset, 29

checkNewSolution

AMP::BackwardEulerTimeIntegrator,

2

AMP::IDATimeIntegrator, 7

AMP::ImplicitTimeIntegrator, 12

AMP::TimeIntegrator, 24

d_db

AMP::TimeIntegratorParameters, 27

d_solver

AMP::ImplicitTimeIntegratorParameters,

14

getNextDt

AMP::ImplicitTimeIntegrator, 12

AMP::TimeIntegrator, 25

ImplicitTimeIntegrator

AMP::ImplicitTimeIntegrator, 10

initialize

AMP::ImplicitTimeIntegrator, 11

AMP::TimeIntegrator, 23

putToDatabase

AMP::ImplicitTimeIntegrator, 13

AMP::TimeIntegrator, 25

reset

AMP::BackwardEulerTimeIntegrator,

2

AMP::ExplicitEuler, 4

INDEX 32

AMP::IDATimeIntegrator, 6

AMP::ImplicitTimeIntegrator, 11

AMP::RK23TimeIntegrator, 15

AMP::RK2TimeIntegrator, 17

AMP::RK4TimeIntegrator, 19

AMP::TimeIntegrator, 23

AMP::TimeOperator, 29

TimeIntegrator

AMP::TimeIntegrator, 23

updateSolution

AMP::ImplicitTimeIntegrator, 12

AMP::TimeIntegrator, 24

Generated on Wed Feb 24 16:28:05 2010 for time_integrators by Doxygen

	The AMP Documentation System
	Overview of the vectors package
	Class Documentation
	AMP::Vector Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	Overview of the matrices package
	Class Documentation
	AMP::ManagedPetscMatrix Class Reference
	Detailed Description

	AMP::Matrix Class Reference
	Detailed Description
	Member Function Documentation

	AMP::NativePetscMatrix Class Reference
	Detailed Description
	Member Function Documentation

	AMP::PetscMatrix Class Reference
	Detailed Description

	Overview of the ampmesh package
	Class Documentation
	AMP::BCDirichlet Class Reference
	Detailed Description

	AMP::BCPointForce Class Reference
	Detailed Description

	AMP::MeshUtils Class Reference
	Detailed Description
	Member Function Documentation

	Overview of the vectors package
	Class Documentation
	AMP::materials::DefaultTraits Class Reference
	Detailed Description

	AMP::materials::Material Class Reference
	Detailed Description

	AMP::materials::MaterialBase< Traits > Class Template Reference
	Detailed Description

	Prop0< type > Class Template Reference
	Detailed Description

	Prop1< type > Class Template Reference
	Detailed Description

	Prop2< type > Class Template Reference
	Detailed Description

	Prop2Param< type > Class Template Reference
	Detailed Description

	AMP::materials::Property0D< Number > Class Template Reference
	Detailed Description
	Member Function Documentation

	AMP::materials::Property1D< Number > Class Template Reference
	Detailed Description
	Member Function Documentation

	AMP::materials::Property2D< Number > Class Template Reference
	Detailed Description
	Member Function Documentation

	AMP::materials::PropertyBase< Number > Class Template Reference
	Detailed Description

	AMP::materials::PropertySpec< Number > Class Template Reference
	Detailed Description

	AMP::materials::Undefined Class Reference
	Detailed Description

	AMP::materials::UndefinedMaterial Class Reference
	Detailed Description

	Class Documentation
	AMP::ColumnOperator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::ColumnOperatorParameters Class Reference
	Detailed Description

	AMP::LinearElasticityOperator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::LinearElasticityParameters Class Reference
	Detailed Description

	AMP::LinearFEOperator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::LinearOperator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::MassMatrix Class Reference
	Detailed Description
	Member Function Documentation

	AMP::NeutronicsSource Class Reference
	Detailed Description
	Member Function Documentation

	AMP::NeutronicsSourceParameters Class Reference
	Detailed Description

	AMP::NonlinearFEOperator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::Operator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::OperatorParameters Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Data Documentation

	AMP::PlasticJacobianParameters Class Reference
	Detailed Description

	AMP::PlasticResidualParameters Class Reference
	Detailed Description

	AMP::SmallStrainPlasticJacobian Class Reference
	Detailed Description

	AMP::SmallStrainPlasticResidual Class Reference
	Detailed Description
	Member Function Documentation

	AMP::ThermalJacobian Class Reference
	Detailed Description

	AMP::ThermalJacobianParameters Class Reference
	Detailed Description

	AMP::ThermalResidual Class Reference
	Detailed Description
	Member Function Documentation

	AMP::ThermalResidualParameters Class Reference
	Detailed Description

	Class Documentation
	AMP::NonlinearKrylovAcceleratorParameters Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	AMP::SolverStrategy Class Reference
	Detailed Description
	Member Function Documentation

	AMP::SolverStrategyParameters Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Data Documentation

	Overview of the time_integrators package
	Class Documentation
	AMP::BackwardEulerTimeIntegrator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::ExplicitEuler Class Reference
	Detailed Description
	Member Function Documentation

	AMP::IDATimeIntegrator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::IDATimeIntegratorParameters Class Reference
	Detailed Description

	AMP::ImplicitTimeIntegrator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	AMP::ImplicitTimeIntegratorParameters Class Reference
	Detailed Description
	Member Data Documentation

	AMP::RK23TimeIntegrator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::RK2TimeIntegrator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::RK4TimeIntegrator Class Reference
	Detailed Description
	Member Function Documentation

	AMP::TimeIntegrator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	AMP::TimeIntegratorFactory Class Reference
	Detailed Description

	AMP::TimeIntegratorParameters Class Reference
	Detailed Description
	Member Data Documentation

	AMP::TimeOperator Class Reference
	Detailed Description
	Member Function Documentation

