
PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance

Pittsburgh, Pennsylvania, USA, May 9-14, 2010, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2010)

PARALLEL COMPUTING IN SCALE

M. D. DeHart, M. L. Williams, and S. M. Bowman

Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6170

dehartmd@ornl.gov

ABSTRACT

The SCALE computational architecture has remained basically the same since its inception 30 years ago,

although constituent modules and capabilities have changed significantly. This SCALE concept was

intended to provide a framework whereby independent codes can be linked to provide a more

comprehensive capability than possible with the individual programs – allowing flexibility to address a

wide variety of applications. However, the current system was designed originally for mainframe

computers with a single CPU and with significantly less memory than today’s personal computers. It has

been recognized that the present SCALE computation system could be restructured to take advantage of

modern hardware and software capabilities, while retaining many of the modular features of the present
system. Preliminary work is being done to define specifications and capabilities for a more advanced

computational architecture. This paper describes the state of current SCALE development activities and

plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary

development will be available to SCALE users within the TRITON and NEWT modules.

Key Words: SCALE, NEWT, TRITON, OpenMP, MPI

1. INTRODUCTION

The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system [1] developed by Oak

Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data

for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and
sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several

important new codes have been introduced within SCALE, and significant advances applied to existing codes.

[2,3] Many of these new features became available with the release of SCALE 6.0 in early 2009. However,

beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term
improvements, a plan for longer term SCALE enhancement activities has been developed to provide an integrated

framework for future methods development. Some of the major components of the SCALE parallel computing

development plan are parallelization and multithreading of computationally intensive modules and redesign of the
fundamental SCALE computational architecture.

2. NEW COMPUTATIONAL FRAMEWORK FOR PARALLEL COMPUTING

Initial efforts at implementation of parallel computing have focused on the NEWT deterministic neutral-particle

transport code and the TRITON depletion module, to improve performance in large-scale reactor physics

calculations. Recent development efforts are being used as a learning tool for implementation of similar
capabilities in other SCALE modules. However, the existing SCALE execution and linkage paradigm has been

found to be a limiting factor in development of next generation computing capabilities. Hence, a new

development effort has been initiated to create an appropriate parallel computing architecture for transformation
of SCALE to meet evolving and anticipated hardware architecture development [4] in the future release of

SCALE 7.

Mark D. DeHart, Mark L. Williams, and Stephen M. Bowman

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 2 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

The SCALE system currently consists of a general high-level driver program [written in Fortran-90 and C
languages] that executes a variety of nuclear analysis codes which can be divided into two basic categories:

(a) functional programs that perform specific types of calculations, such as Monte Carlo transport (KENO,

Monaco codes), discrete ordinates transport (XSDRN, NEWT, Denovo), multigroup cross section self-shielding

(BONAMI,CENTRM,PMC), isotopic depletion and decay (ORIGEN), etc; and (b) sequence programs that define
a series of functional programs, to be executed in a pre-defined order by the driver, and prepare input files for the

specified functional programs. The functional programs also may be executed individually by the driver, but use

of SCALE sequences allow functional programs to be linked automatically by passing output from one program
to another via external I/O files. For example, the CSAS sequence for multigroup criticality safety analysis

executes BONAMI, CENTRM, and PMC as well as other utility codes to generate resonance self-shielded

multigroup data, followed by a calculation of the multiplication factor with the KENO Monte Carlo code. The
TRITON lattice physics sequence executes the same resonance self-shielding codes for the various unit cells

within a reactor lattice, followed by a two-dimensional (2-D) transport calculation with the NEWT code, and then

by ORIGEN depletion calculations that use the spatially-dependent reaction rates from the NEWT solution.

Although the basic SCALE approach of using a driver program to execute functional and sequence codes was

developed 30 years ago, it has proven to be a robust and effective methodology for addressing a wide range of

applications. The latest SCALE 6.0 package includes sequences for cross section processing, criticality safety,
reactor physics, shielding, isotopic depletion, and sensitivity/uncertainty analysis, among others. However, there

are limitations and trade-offs associated with the current approach. For example, the procedure of linking the

execution of stand-alone codes is not readily amenable to multi-thread parallelization, and the communication
between different codes through external I/O may be inefficient.

The main objectives in 2010 are to develop an approach for effective coarse-grain parallelization of the major

functional tasks, reduce data I/O, and provide greater standardization of subroutines. Future work will focus on
improved internal parallelization, such as modifying the SCALE Monte Carlo methods to track multiple histories

in parallel.

At present, the main functional programs in SCALE 6 are being converted into Fortran modules with an entry

application program interface (API) subroutine replacing the main program. These are identified as functional

components. SCALE 7 will retain the basic idea of executing sequences for the applications of interest; however,

the SCALE 7 sequences essentially become main routines that call the APIs to perform specific functional
computations. The subroutines and API for each functional component are compiled and stored into object

libraries that can be linked to a specific sequence program during compilation. Note that the same functional

component may be linked to several different sequences; e.g., self-shielding routines are used by multiple SCALE
sequences. Building sequences by combining smaller functional components simplifies the overall program

structure, and allows maintenance and development tasks to be distributed among the SCALE code managers who

are responsible for specific functional components.

Using internal calls to the functional components has advantages compared to performing the same computations

by launching executable codes as new processes. Information may be kept in memory, instead of being

exchanged between codes through external file I/O. Coarse grain parallelization can be achieved by parallelizing
internal loops within the sequences that call the functional components. For example, at every burnup step and

branch state, the current SCALE 6 TRITON lattice physics sequence uses CENTRM and PMC to compute self-

shielded microscopic cross sections by executing the stand-alone codes for each fuel pin in the lattice. The
initialization, external I/O, and wrap-up of each code’s independent execution may take a substantial amount of

computation time. In the SCALE 7 TRITON sequence, the self-shielding computations for multiple cells will be

performed simultaneously by calling the CENTRM/PMC API’s within a parallel loop over cells. Similarly,
multiple branch state computations can be performed at a given burnup step by parallel calls to the NEWT API.

A first pass at this approach has been developed within the SCALE 6.1 structure, as will be discussed later.

Parallel Computing in SCALE

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 3 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

However, the use of the SCALE 7 approach will eliminate most of the I/O overhead associated with the current

approach.

Within this framework, functional components will also be made more modular by segregating the major

computational routines from I/O routines and supporting functions. In this manner, some duplicate operations in

different functional components (such as macroscopic cross section mixing in different transport solvers) can be
eliminated or standardized. Once the computational kernels are isolated, sequences can be made more “plug and

play” by standardizing internal data structures shared by the different functional components. For example, the

TRITON lattice depletion sequence should be able to call the API for any available SCALE transport solver
(Monte Carlo or deterministic) to compute reaction rates, which are subsequently stored in a standardized internal

data structure. A call to the ORIGEN API will perform depletion calculations by taking the current reaction

information for each depleted region, with no knowledge of which functional component produced the values.

4. PARALLEL COMPUTING IN SCALE 6.1

The release of SCALE 6.1 in early 2010 will mark the first stage of evolution toward parallel computing within
the SCALE system. The TRITON control module, although to be distributed as a scalar executable module built

and operating in the conventional SCALE manner, will be able to perform parallel branch calculations through the

installation of an MPI (Message Passing Interface) based utility module named RUNNER. Built with the MPI
installation on a given system, RUNNER is able to execute independent SCALE input sequences on any node of a

Linux/Unix compute cluster. A common file system is required from which inputs may be accessed, although (as

with most SCALE implementations), the calculation is performed within a temporary directory on the local file
system of each node.

In general, TRITON lattice physics calculations are performed in an iterative sequence that utilizes the functional

modules CRAWDAD, BONAMI, CENTRM, PMC, WORKER and WAX for cross section processing, NEWT or
KENO for a transport solution, and COUPLE and ORIGEN for depletion calculations. The calculation is

concluded with an OPUS calculation to post-process ORIGEN results. The purpose of TRITON is to read initial

input and prepare all files and data required for proper execution of the various functional modules. As the
calculation progresses, output from a given module can be read by TRITON and used to prepare the next

calculation by a subsequent module. In general, calculations are performed in a linear fashion, with each module

dependent on results of operations performed by a previous module. Although parallel execution is possible to

some extent within various functional modules (typically at a multithreaded level), parallelization of SCALE
control modules will present more challenges. SCALE 7 development will address many of these challenges by

fundamental changes in the existing SCALE architecture.

Certain types of SCALE calculations demonstrate significant parallel functionality that can be run independently

on multiple processors. In cross section processing operations using CENTRM and PMC, independent unit cell

calculations are performed for each unit cell type (e.g., different fuel pin enrichments) in a problem. In depletion
calculations, ORIGEN point depletion calculations are performed for each mixture being depleted. With larger

problems, many independent COUPLE/ORIGEN calculations may be performed at each depletion step.

However, the type of calculation that represents the most significant level of independent, and therefore

parallelizable, computational effort occurs in TRITON lattice physics calculations with branches.

4.1 Parallel TRITON branch calculations

In TRITON lattice physics calculations, cross sections are computed as a function of burnup and collapsed to a

few-group format for subsequent use in nodal code reactor core calculations. However, for transient calculations,

cross sections are needed as a function of burnup, thermohydraulic, and other conditions. Branch calculations are
performed by varying key operational parameters at each depletion state. Within TRITON, moderator

temperatures and densities, fuel temperatures, soluble boron concentrations, and control rod states may be

Mark D. DeHart, Mark L. Williams, and Stephen M. Bowman

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 4 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

modified at each branch state; one or more of these properties may be varied. Each property change results in a

change in resonance self-shielding, hence cross-section processing must be updated. A new transport calculation
is then performed using new number densities (if modified) and updated cross sections. This process is repeated

for each desired branch state. Fig. 1 provides a simplified illustration of the TRITON branch calculation process.

At each pass, the transport solution is used to collapse cross sections to a few-group format, along with transport

cross sections, power peaking factors, etc. Data are archived to a single database for post-calculation retrieval.

In normal operations, TRITON prepares an input file for each functional module (BONAMI, CENTRM, PMC,

etc.); each module is executed sequentially by the SCALE driver in a sequence dictated by TRITON.
To make parallel execution possible, TRITON has been modified to spool individual inputs for each series of

calculations comprising a branch set into a single file. For a set of N branch calculations (including the base

depletion set), N input streams are created by TRITON. In a typical set of branch calculations, about 20-60
branches are calculated. Because the calculations are completely independent and require no

communications, a factor of N speedup could be realized if all cases were run in parallel on different nodes in

a cluster. To this end, a utility module named RUNNER has been developed using MPI communication

primitives. RUNNER is extremely simple in concept – given a list of commands in the form of strings,
RUNNER distributes those commands to a specified number of nodes. Input for RUNNER follows the

format shown in Fig. 2, where one base and N sets of branch calculations have been prepared and spooled to

files branch0000.in – branch00NN.in. The number of nodes on which RUNNER will execute is specified in
input; the nodes (machines) where the cases are to run are specified in an external machine file list.

Figure 1. Schematic illustration of TRITON branch calculations.

Parallel Computing in SCALE

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 5 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

If a sufficient number of machines is available, all cases can be run simultaneously. However, if the number of

cases N exceeds the number of available nodes M, RUNNER submits the first M cases on M nodes; remaining

cases are distributed to the first available node as each of the first set of jobs completes.

Figure 2. Example of RUNNER input.

In essence, TRITON itself is not parallel, but rather “parallel-aware.” It has been modified to prepare inputs that

can be batch-processed by RUNNER, which is an MPI-based SCALE functional module. Access to an MPI

installation (e.g., MPICH, MPICH-2, OpenMPI, etc.) is not required to compile or run TRITON. However, users

with access to a computer cluster with a working MPI installation can compile RUNNER and are able to run
TRITON in parallel mode.

ORNL is currently engaged in TRITON lattice calculations of a BWR design for the U.S. Nuclear Regulatory
Commission. To be able to provide cross sections for accident scenarios of interest, a total of 59 branches are

required in addition to the base (depletion) state. For one of the fuel assembly designs, resonance processing unit

cell calculations are performed for five fuel pins and one gadolinium-bearing pin. Depletion calculations are

performed for 48 unique depletion mixtures for 29 transport (i.e., burnup) steps. Calculations are being
performed using the SCALE 238-group ENDF/B-VII.0 library. For the purposes of this study, because of the

time that would be required to run all 59 branches for the full depletion history in scalar mode (estimated greater

than 60 days), a reduced calculation was created with 11 branches and three transport steps to illustrate the
parallel performance of TRITON. Calculations were run in both parallel and scalar mode. Timing results are

given in Table I. Comparisons exclude depletion calculations and include only the net time to complete cross-

section processing and transport calculations. To keep from further complicating the comparison, NEWT
transport calculations did not include multithreaded performance (discussed in the following section).

Table I. Parallel and scalar timings for 11 branches run on 11 compute nodes

Transport

Pass

Parallel Time

(hh:mm:ss)
Scalar Time

(hh:mm:ss)

Parallel

Speedup

1 0:54:34 8:00:09 8.8

2 1:08:26 7:53:51 6.9

3 1:00:08 7:20:32 7.3

Although a theoretical speedup approaching a factor of 11 is possible, competition with other users on a shared

distributed cluster will limit the performance. In addition, the nature of the parallel implementation limits

completion of a transport step to the time of the slowest transport calculation; other machines are idle while the
branch that is slowest to converge (whether from convergence issues or competing calculations on a given node)

Mark D. DeHart, Mark L. Williams, and Stephen M. Bowman

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 6 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

completes. In this example calculation, an average speedup of 7.7 is achieved, with a maximum of 8.8 obtained

on the first transport pass. Obviously, as the number of branches increases, the greater the possible parallel
speedup becomes.

4.2 Multithreaded transport calculations in NEWT

Although significant gains are seen in the parallel implementation for TRITON branch calculations, more general

improvements are needed throughout SCALE. TRITON branch calculations represent a special application where

vast improvement can be realized; however, few other sequences in SCALE offer such a degree of potential
parallelism where such a significant gain could be seen. Additionally, this form of parallelism is of value only for

multi-machine compute clusters. Although such systems are not in short supply, the typical SCALE user will

perform calculations on a single PC with 2-8 cores. Such systems are better suited to parallelism in the form of
multiprocessor threading. Multithreading offers the ability to distribute tasks between two or more cores and/or

CPUs on a single computer. Multithreading also allows both shared and private data for each thread, and offers a

powerful means to simultaneously execute computer codes in which tasks are independent but typically

performed in sequence.

A multithreading capability has been added to the NEWT transport solver in SCALE using OpenMP (Open

Multi-Processing). OpenMP is an API that supports shared-memory multiprocessing programming on many
architectures, including Unix, Linux, and Microsoft Windows platforms. It is supported within all current

versions of the Intel Fortran compiler used for SCALE at ORNL.

The bulk of computational effort in NEWT is spent in inner iterations where a spatial sweep is performed for each

angular direction within each energy group. Hence, the first attempt at threaded performance gain was

implemented within inner iteration loops. OpenMP may often be implemented with little or no code

modification, and consists of pragmatic information inserted within blocks for code that provide compiler
instructions for multithreading. Without going into detail into the API, OpenMP, in its simplest form (and the

form used most often in NEWT), consists of compiler directives surrounding a code block. Below is shown a

code fragment where the angular source term within each cell is updated; OpenMP directives have been added in
the form of comments that are ignored by a given compiler. Within the Intel compiler, the “-openmp” compiler

flag will notify the compiler to recognize all lines of code beginning with “!$OMP.” In this particular example,

the compiler is directed to take the first do loop (do icell) immediately following the directive and split it into

separate threads (the number of threads to be specified at runtime), with variable idir private to each thread. The

closing directive is required to close the OpenMP block.

!$OMP PARALLEL DO PRIVATE(idir)

 do icell = 1,numcells

 do idir = 1,ndir

 source(icell,idir) = source(icell,idir)*denomi(icell)

 end do

 end do

!$OMP END PARALLEL DO

Logic within NEWT has been updated to perform multithreaded operations wherever possible within the inner

spatial sweep. Timing calculations have been performed on a dual quad-core Linux machine with 2.3 GHz

Opteron 2376 64-bit processors. A model of a 15x15 PWR quarter assembly was used for testing, as shown in

Fig. 4. The computational model used 238 energy groups, 3945 computational cells, and 24 angles in the
quadrature set. Calculations were performed with the number of processors allocated varying from 1 to 8 and

were repeated 10 times on each processor set to obtain an average. The specific performance on any given

calculation will depend on competing processes, especially as one utilizes more and more CPUs. Fig. 5 illustrates
the speedup of NEWT as a function of the number of processors used. The plot shows the average, the maximum

Parallel Computing in SCALE

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 7 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

Figure 4. Assembly Model Used for Parallel Testing.

Figure 5. Speedup of NEWT as a function of number of processors.

Mark D. DeHart, Mark L. Williams, and Stephen M. Bowman

PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance Page 8 of 8

Pittsburgh, Pennsylvania, USA, May 9-14, 2010

and the minimum speedup seen on each set of cores, to demonstrate the deviation in speedup observed on the

specific machine used. For reference, the single node calculation required 52 minutes to complete. The greatest
gain is seen going from one to two nodes; a performance boost of more than 175% is observed for most

calculations. Use of 8 processors yields a speedup of more than 350%. Note that very little speedup is seen in

going from 6 to 7 cores. This is believed to be an artifact of the number of quadrature angles. 24 angles can be

evenly distributed on 2, 3, 4, 6, and 8 processors, and relatively evenly distributed on 5 processors. However, 24
angles spread over 7 processors results in an uneven distribution and inefficient processor usage.

5. SUMMARY

A redesign of the basic SCALE computational architecture is planned for SCALE 7 to provide parallelization
on both a lower level (within a computational method such as a transport solver) and a higher level (within a

sequence of similar but independent calculations). Plans include implementation of generalized coupling

between different computational methods and more efficient exchange of data between computational
modules. Redesign of the SCALE system for SCALE 7 will result in a nuclear analysis software package that

will be able to take advantage of the next generation computer hardware configurations.

With the release of SCALE 6.1, first steps in parallel computing are being made publicly available. Parallel
branch calculations within TRITON lattice physics calculations, implemented using an MPI-based functional

module, allow significant parallel speedup, approaching the number of branch calculations being performed.

This performance gain is supplemented by performance gains realized in NEWT by OpenMP-based
multithreading. These updates have been made within the framework of the current design of SCALE.

REFERENCES

1. SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation,

ORNL/TM-2005/39, Version 6, Vols. I–III, January 2009. Available from Radiation Safety Information
Computational Center at Oak Ridge National Laboratory as CCC-750.

2. S. M. Bowman, “Overview of the SCALE Code System,” ANS Transactions, 97, pp. 589-591,Washington,

D.C. (Nov. 2007).

3. M. D. DeHart, “High-Fidelity Depletion Capabilities of the SCALE Code System Using TRITON,” ANS

Transactions, 97, pp. 598-600, Washington, D.C. (Nov. 2007).

4. M. L Williams, S. M. Bowman, and C. V. Parks, “Plans for Future SCALE Development Beyond Version

6.0,” ANS Transactions, 97, pp. 606-608, Washington, D.C. (Nov. 2007).

