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This paper describes the Monte Carlo codes KENO
V.a and KENO-VI in SCALE that are primarily used to
calculate multiplication factors and flux distributions of
fissile systems. Both codes allow explicit geometric rep-
resentation of the target systems and are used internation-
ally for safety analyses involving fissile materials. KENO
V.a has limiting geometric rules such as no intersections
and no rotations. These limitations make KENO V.a
execute very efficiently and run very fast. On the other
hand, KENO-VI allows very complex geometric model-

ing. Both KENO codes can utilize either continuous-
energy or multigroup cross-section data and have been
thoroughly verified and validated with ENDF libraries
through ENDF/B-VII.0, which has been first distributed
with SCALE 6. Development of the Monte Carlo solution
technique and solution methodology as applied in both
KENO codes is explained in this paper. Available options
and proper application of the options and techniques are
also discussed. Finally, performance of the codes is dem-
onstrated using published benchmark problems.

I. INTRODUCTION

The Monte Carlo codes KENO V.a and KENO-VI
are used to calculate multiplication factors, flux distri-
butions, fission densities, and other physics parameters
of fissile systems. KENO V.a uses simple geometric bod-
ies and arrays of units and holes to define the problem
geometry and does not allow intersections. On the other
hand, KENO-VI allows more complex geometric mod-
eling by using both simple and complex geometric bod-
ies and by allowing intersections and rotation of bodies
in addition to arrays of units and holes. The added com-
plexity allowed for in KENO-VI generally requires more
computational time than the simplified geometry in
KENO V.a.

Both KENO V.a and KENO-VI offer two cross-section
modes: continuous energy and multigroup. Although it
highly depends on the number of nuclides in each mix-
ture, in general, the same problem using continuous-
energy cross sections will run more slowly by a factor of
4 or more than when multigroup cross sections are used.
However, continuous-energy cross sections offer more rig-
orous energy dependence treatment than multigroup cross
sections. This may be very important for problems that

exhibit variations in the cross sections resulting from phys-
ical distribution that cannot be represented using the lim-
ited one-dimensional ~1-D! calculations used in processing
multigroup cross sections.

Section II derives the transport equation used in both
KENO codes for determining the steady-state particle
distribution. Both continuous-energy and multigroup ap-
proaches are explained. Section III describes the actual
random walk procedure used in KENO. Section IV ex-
plains the available options and features as well as the
geometric capabilities of each version of KENO. Sec-
tion V demonstrates code performance against experi-
mental benchmark problems. Section VI summarizes the
capabilities of the KENO codes.

Since the two codes are identical except for their
respective geometry packages, from this point KENO
will refer to both KENO V.a and KENO-VI, unless other-
wise noted.

II. THE TRANSPORT EQUATION FOR MONTE CARLO

SOLUTION IN KENO

The equation solved by KENO may be derived by
starting with the time-dependent Boltzmann neutron trans-
port equation, which may be written as*E-mail: goluoglus@ornl.gov
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1

v

]F

]t
~ ZX, E, ZV, t ! � ZV{¹F~ ZX, E, ZV, t !

� St ~ ZX, E, t !F~ ZX, E, ZV, t !

� Q~ ZX, E, ZV, t ! ��
E '
�

V'
dV' dE '

� Ss~ ZX, E ' r E, ZV' r ZV, t !F~ ZX, E, ZV, t ! , ~1!

where

F~ ZX, E, ZV, t ! � neutron flux ~n0cm2{s�1! per unit
energy at energy E per steradian
about direction ZV at position ZX
at time t moving at speed v corre-
sponding to E

St~ ZX, E, t ! � macroscopic total cross section of
the media ~cm�1! at position ZX, en-
ergy E, and time t

Ss~ ZX, E ' r E, ZV' r ZV, t !

� macroscopic differential scattering
cross section of the media ~cm�1! at
position ZX, energy E ' , direction ZV' ,
and time t, for scattering to energy E
and direction ZV per unit energy and
solid angle

Q~ ZX, E, ZV, t ! � volumetric source rate ~n0cm3{s�1!
at position ZX and time t per unit en-
ergy at energy E per steradian about
direction ZV ~excludes scatter source!.

Assuming there is no external source, the time-
dependent equation can be converted to a stationary
pseudocritical equation by introducing the multiplication
factor k, which scales the fission source to exactly bal-
ance the loss rate:

ZV{¹F~ ZX, E, ZV! � St ~ ZX, E !F~ ZX, E, ZV! � q~ ZX, E, ZV! .

~2!

Equation ~2! is an eigenvalue problem with the total source
defined as

q~ ZX, E, ZV! ���dE ' dV'F~ ZX, E ', ZV!

� Ss~ ZX, E ' r E, ZV' r ZV!

�
1

k
Q~ ZX, E, ZV! , ~3!

where

k � largest eigenvalue of the homogeneous
equation

Q~ ZX, E, ZV! � fission source at position ZX for energy
E and direction ZV ~all fission contri-
butions to point E from all energy
points in the previous generation!.

This is the equation that is solved for both continuous-
energy and multigroup modes by applying the Monte
Carlo methodology.

II.A. Continuous-Energy-Mode Solution Methodology

Looking at travel from ZX to ZX ' along direction ZV with
ZX ' � ZX � R ' ZV, where R ' is the distance of travel along

the direction ZV, Eq. ~3! is rewritten

d

dR '
F~ ZX ' � R ' ZV, E, ZV! � St ~ ZX ' � R ' ZV, E !

� F~ ZX ' � R ' ZV, E, ZV! � q~ ZX ' � R ' ZV, E, ZV! . ~4!

Or, looking at travel from ZX ' to ZX,

�
d

dR
F~ ZX � R ZV, E, ZV! � St ~ ZX � R ZV, E !

� F~ ZX � R ZV, E, ZV! � q~ ZX � R ZV, E, ZV! . ~5!

Now, an integrating factor is defined as follows:

e�T ~R! � e
��

0

R

St ~ ZX�R ' ZV, E !dR '

,

such that

d

dR
e

��
0

R

St ~ ZX�R ' ZV, E ! dR '

� �St ~ ZX � R ZV, E !e
��

0

R

St ~ ZX�R ' ZV, E ! dR '

. ~6!

Next, Eq. ~5! is multiplied by the integrating factor:

�e�T ~R!
d

dR
F~ ZX � R ZV, E, ZV! � e�T ~R! St ~ ZX � R ZV, E !

� F~ ZX � R ZV, E, ZV! � q~ ZX � R ZV, E, ZV!e�T ~R! .

~7!

After utilizing Eq. ~6! in Eq. ~7!, we obtain

�
d

dR
F~ ZX � R ZV, E, ZV!e�T ~R!

� q~ ZX � R ZV, E, ZV!e�T ~R! . ~8!
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The resulting equation is integrated along the distance of
travel R and rearranged ~assuming R goes to infinity to
include all space! as follows:

F~ ZX, E, ZV! ��
0

`

q~ ZX � R ZV, E, ZV!e�T ~R! dR . ~9!

Assuming the fission neutrons to be isotropic, the fission
source Q~ ZX, E, ZV! can be written as

Q~ ZX, E, ZV! �
1

4p
�

E '
�

V'
dE ' dV'F~ ZX, E ', ZV' !

� x~ ZX, E ' r E !n~ ZX, E ' !Sf ~ ZX, E ' ! ,

~10!

where

x~ ZX, E ' r E ! � fraction of neutrons born at energy
point E from fission at energy point
E ' in the media at position ZX

n~ ZX, E ' ! � number of neutrons resulting from
a fission at energy point E ' at po-
sition ZX

Sf ~ ZX, E ' ! � macroscopic fission cross section
of the material at position ZX for a
neutron at energy point E ' .

Substituting Eq. ~3! into Eq. ~9! yields Eq. ~11!:

F~ ZX, E, ZV! ��
0

`

d Re�T ~R!

� � 1

k
Q~ ZX � R ZV, E, ZV! ��

E '
�

V'
dE ' d ZV' F~ ZX � R ZV, E ', ZV' !Ss~ ZX � R ZV, E ' r E, ZV' r ZV!� . ~11!

Using Eq. ~10!, Eq. ~11! can be written as

F~X, E, V! ��
0

`

d Re�T ~R!

� � 1

k

1

4p
�

E '
�

V'
dE ' dV' n~ ZX � R ZV, E ' !Sf ~ ZX � R ZV, E ' !x~ ZX � R ZV, E ' r E !F~ ZX � R ZV, E ', V' !

��
E '
�

V'
dE ' dV' F~ ZX � R ZV, E ', V' !Ss~ ZX � R ZV, E ' r E, ZV' r ZV!� . ~12!

The definition of k may be given as the ratio of the number of neutrons produced in the ~n � 1!’th generation to the
number of neutrons produced in the n’th generation. Writing Eq. ~12! in “generation notation,” multiplying and
dividing certain terms by St~ ZX, E !, and multiplying both sides of the equation by n~ ZX, E !Sf ~ ZX, E ! yields Eq. ~13!,
which is solved by KENO in the continuous-energy mode:

n~ ZX, E !Sf ~ ZX, E !

St ~ ZX, E !
St ~ ZX, E !Fn~ ZX, E, ZV!

�
n~ ZX, E !Sf ~ ZX, E !

St ~ ZX, E !
St ~ ZX, E !� 1

k
�

E '
�

V'
dE '

d ZV'

4p

n~ ZX � R ZV, E ' !Sf ~ ZX � R ZV, E ' !

St ~ ZX � R ZV, E ' !

� x~ ZX � R ZV, E ' r E !St ~ ZX � R ZV, E ' !fn�1~ ZX � R ZV, E ' ZV' !

� �
E '
�

V'
dE '

dV'

4p

Ss~ ZX � R ZV, E ' r E, ZV' r ZV!

St ~ ZX � R ZV, E ' !

� St~ ZX � R ZV, E ' !Fn~ ZX � R ZV, E ', ZV' !� . ~13!

Note that on the left side of Eq. ~13!, n~ ZX, E !Sf ~ ZX, E !Fn~ ZX, E, ZV! is the fission production for the n’th generation.
The solution strategy utilized by KENO solves Eq. ~13! by using an iterative procedure. The fission production

at point ZX at energy point E due to neutrons in the ~n � 1!’th generation, normalized to the system multiplication, is
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1

k
�

E '
�

V'
dE '

dV'

4p

n~ ZX, E ' !Sf ~ ZX, E ' !

St ~ ZX, E ' !
x~ ZX, E ' r E !St ~ ZX, E ' !Fn�1~ ZX, E ', ZV' ! . ~14!

The collision points used in KENO are chosen by selecting path lengths from the distribution e�T ~R! , which is the
probability of transport from any position ZX � R ZV to position ZX.

The collision density of neutrons at energy E per unit solid angle about ZV resulting from the fission source
produced by the ~n � 1!’th generation, normalized to the system multiplication, is

St ~ ZX, E!�
0

`

d Re�T ~R! �
1

k
�

E '
�

V'
dE '

dV'

4p

n~ ZX � R ZV, E ' !Sf ~ ZX � R ZV, E ' !

St ~ ZX � R ZV, E ' !

x~ ZX � RV, E ' r E !St ~ ZX � R ZV, E ' !Fn�1~ ZX � R ZV, E ', ZV' !
� . ~15!

The scattering source at position ZX emerging at energy E
and direction ZV resulting from previous collisions in the
same generation is

�
E '
�

V'
dE ' dV'

Ss~ ZX, E ' r E, ZV' r ZV!

St ~ ZX, E ' !

� St ~ ZX, E ' !Fn~ ZX, E ', ZV' ! .

The collision density from the scattering source at energy
E, per solid angle about ZV, is

St ~ ZX, E !�
0

`

d Re�T ~R!�
E '
�

V'
dE ' dV'

�
Ss~ ZX � R ZV, E ' r E, ZV' r ZV!

St ~ ZX � R ZV, E ' !

� St ~ ZX � R ZV, E ' !Fn~ ZX � R ZV, E ', V' ! . ~16!

The total collision density, which is the sum of the col-
lision densities from fission and scattering sources multi-
plied by ~n~ ZX, E !Sf ~ ZX, E !!0St~ ZX, E !, is the relationship
from which KENO picks the source points for the next
generation. The details of solving Eq. ~16! will be dis-
cussed in Sec. III.

II.B. Multigroup-Mode Solution Methodology

Multigroup equations are derived in a manner simi-
lar to the continuous-energy equations. Converting Eq. ~2!
to multigroup form yields

ZV{¹Fg~ ZX, ZV! � Stg~ ZX !F~ ZX, ZV! � qg~ ZX, ZV! , ~17!

where

g � energy group of interest

Fg~ ZX, ZV! � angular flux of neutrons having their en-
ergies in group g, at position ZX and angle
ZV

Stg~ ZX ! � macroscopic total cross section of the
media at position ZX for group g, corre-
sponding to

Stg~ ZX ! �

�
DE
�

V

dE dV St ~ ZX, E !F~ ZX, E, ZV!

�
DE
�

V

dE dV F~ ZX, E, ZV!

,

where
DEg defines group g

qg~ ZX, ZV!qg~X, V! � total source contributing to
energy group g at position ZX
in direction ZV.

As in the continuous-energy-mode solution, using an in-
tegrating factor on both sides of Eq. ~17! and defining

eTg~R! � e
�

0

R

~ ZX�R ' ZV!dR '

,

Eq. ~18! can be written:

Fg~ ZX, ZV! ��
0

`

qg~ ZX � R ZV, ZV!e�Tg~R! dR . ~18!

At this point, since there is no external source, the
problem becomes an eigenvalue problem with the total
source defined as

qg~ ZX, ZV! � (
g '
�dV' Fg ' ~ ZX, ZV!Ss~ ZX, g ' r g, ZV' r ZV!

�
1

k
Qg~ ZX, ZV! , ~19!

where

k � largest eigenvalue of the integral
equation

Qg~ ZX, ZV! � fission source at position ZX for energy
group g and direction ZV ~all fission
contributions to group g from all energy
groups in the previous generation!

Ss~ ZX, g ' r g, ZV' r ZV!

� scattering cross section for scattering at
position ZX from group g ' and direction
ZV' to group g and direction ZV.
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In terms of energy, the scatter can be defined as

Ss~X, g ' r g, ZV' r ZV! �

�
DEg

�
DEg'

Ss~ ZX, E ' r E, ZV' r ZV!F~ ZX, E ', ZV' ! dE ' dE

�
DEg'

F~ ZX, E ', ZV' ! dE '
, ~20!

where

DEg � energy-range-defining energy group g

DEg ' � energy-range-defining energy group g ' .

Assuming the fission neutrons to be isotropic, the fission source Qg~ ZX, ZV! can be written as

Qg~ ZX, ZV! �
1

4p (
g '
�
ZV'

dV' Fg ' ~ ZX, ZV' !x~ ZX, g ' r g!ng ' ~ ZX !Sfg ' ~ ZX ! , ~21!

where

x~ ZX, g ' r g! � fraction of neutrons born in energy group g from fission in energy group g ' in the media at
position X

ng ' ~ ZX ! � number of neutrons resulting from a fission in group g ' at position X

Sfg ' ~ ZX ! � macroscopic fission cross section of the material at position ZX for a neutron in energy group g ' .

Substituting Eq. ~19! into Eq. ~18! yields Eq. ~22!:

Fg~ ZX, ZV! ��
0

`

d Re�Tg~R! � 1

k
Qg~ ZX � R ZV, ZV! � (

g '
��

V'
dV' Fg ' ~ ZX � R ZV, ZV' !Ss~ ZX � R ZV, g ' r g, ZV' r ZV!�� .

~22!

The definition of k may be given as the ratio of the number of neutrons in the ~n �1!’th generation to the number
of neutrons in the n’th generation or the largest eigenvalue of the integral equation. Using Eq. ~21!, Eq. ~22! can be
written as

Fg~ ZX, ZV! ��
0

`

d Re�Tg~R! � 1

k (
g '
�
ZV'

dV'

4p
Fg ' ~ ZX � R ZV, ZV' !x~ ZX � R ZV, g ' r g!ng ' ~ ZX !Sfg ' ~ ZX � R ZV!

� (
g '
��

V'
dV' Fg ' ~ ZX � R ZV, ZV' !Ss~ ZX � R ZV, g ' r g, ZV' r ZV!�� . ~23!

Writing Eq. ~23! in “generation notation,” multiplying and dividing certain terms by Stg~ ZX !, and multiplying both
sides of the equation by ng~ ZX !Sfg~ ZX ! yields Eq. ~24!, which is solved by KENO in the multigroup mode:

ng~ ZX !Sfg~ ZX !

Stg~ ZX !
Stg~ ZX !Fg, n~ ZX, ZV!

�
ng~ ZX !Sfg~ ZX !

Stg~ ZX !
Stg~ ZX !�

0

`

d Re�Tg~R!

� � 1

k (
g '
�

V'

dV'

4p

ng~ ZX � R ZV!Sfg ' ~ ZX � R ZV!

Stg ' ~ ZX � R ZV!
x~ ZX � R ZV, g ' r g!Stg '~ ZX � R ZV!Fg ', n~ ZX � R ZV, ZV' !� , ~24!
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where

n � n’th generation

n � 1 � ~n � 1!’th generation.

Note that on the left side of Eq. ~24!, ng~X !Sfg~X !
Fg,n~X, V! is the fission production for the n’th generation.

The solution strategy utilized by KENO in the multi-
group mode solves Eq. ~24! by using an iterative proce-
dure. The fission production at point ZX in energy group g
due to neutrons in the ~n � 1!’th generation, normalized
to the system multiplication, is

1

k (
g '
�

V'

dV'

4p

ng ' ~ ZX !Sfg ' ~ ZX !

Stg ' ~ ZX !
x~ ZX, g ' r g!

� Stg '~ ZX !Fg ', n~ ZX, ZV' ! .

The collision points used in KENO are chosen by se-
lecting path lengths from the distribution e�Tg~R! , which
is the probability of transport from any position ZX � R ZV
to position ZX.

The collision density of neutrons in group g per unit
solid angle about ZV resulting from the fission source
produced by the ~n � 1! generation, normalized to the
system multiplication, is

Stg~ ZX !�
0

`

d Re�Tg~R!

� �
1

k (
g '
�

V'

dV'

4p

ng ' ~ ZX � R ZV!Sfg ' ~ ZX � R ZV!

Stg ' ~ ZX � R ZV!

x~ ZX � R ZV, g ' r g!Stg ' ~ ZX � R ZV!Fg ', n~ ZX � R ZV, ZV' !
� .

~25!

The scattering source at position ZX emerging in group
g and direction ZV, resulting from previous collisions
in the same generation, is

(
g '
�

V'
dV'

Ss~ ZX, g ' r g, ZV' r ZV!

Stg ' ~ ZX !

� Stg ' ~ ZX !Fg ', n~ ZX, ZV' ! .

The collision density from the scattering source in
group g, per solid angle about ZV, is

Stg~ ZX !�
0

`

d Re�Tg~R! (
g '
�

V'
dV'

�
Ss~ ZX � R ZV, g ' r g, ZV' r ZV!

Stg ' ~ ZX � R ZV!

� Stg ' ~ ZX � R ZV!Fgg ', n~ ZX � R ZV, ZV' ! . ~26!

The total collision density, which is the sum of the
collision densities from fission and scattering sources,
times ~ng ' ~ ZX !Sfg ' ~ ZX !!0Stg ' ~ ZX ! is the relationship from
which KENO picks the source points for the next gener-
ation. The details of solving Eq. ~26! will be discussed in
Sec. III.

III. THE SOLUTION ALGORITHM

KENO solves Eq. ~16! in the continuous-energy mode
and Eq. ~26! in the multigroup mode. Because the Monte
Carlo method is employed in the solution of Eqs. ~16!
and ~26!, every calculated quantity has a statistical un-
certainty associated with it.

In order to minimize the statistical variation of keff

and other calculated parameters per unit computer time,
KENO utilizes weighted tracking, also known as implicit
capture, rather than analog tracking. Weighted tracking
accounts for absorption by reducing the neutron weight,
rather than allowing the neutron history to be terminated
by absorption. The details of this and other techniques
used in treating collisions are discussed in Sec. III.D.

III.A. Problem Initialization

Based on the calculation mode selected, various ini-
tialization tasks are performed. In both modes, total cross
sections for each mixture are determined from the nu-
clides provided in the mixing table. Each nuclide in the
continuous-energy cross-section library has a union en-
ergy mesh that contains all the points from all reaction
types. The points for each reaction type are selected such
that they can re-create the continuous-energy cross sec-
tions within some tolerance, assuming a linear relation
between adjacent points. Most reactions for a nuclide do
not use the entire union mesh but are represented using
energy points that are a subset of the union mesh. KENO
will read all reaction cross sections for each nuclide at
problem execution and map all reactions of that nuclide
to the union mesh of the nuclide. This method allows the
cross-section library to store only one energy mesh and
allows faster sampling of the reactions during execution.

After the data initialization tasks are complete, the
Monte Carlo random walk can be performed according
to the procedures that are documented in Secs. III.B
through III.K.

III.B. Initial Source Distribution

Before the Monte Carlo simulation can be per-
formed, the initial source distribution of neutrons must
be sampled. Each mixture is checked for the presence of
fissionable material. For each fissionable mixture, the
volume fraction of fissionable material must be calcu-
lated on a per nuclide basis to determine which fission
energy distribution is used for each source neutron.
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The first source distribution comprises the initial spa-
tial coordinates, direction cosines, and energy for each
neutron within the problem. The energy of each source
neutron is sampled from the fission energy distribution
of a fission reaction with a fissionable nuclide within the
mixture. If more than one fissionable nuclide is present,
the i ’th nuclide is selected using the following relation:

(
j�1

i�1

Sf
j � R (

j�1

N

Sf
j
� (

j�1

i

Sf
j , ~27!

where

Sf
j � macroscopic fission cross section for the j ’th

nuclide

R � random number ~0, 1#

N � total number of fissionable nuclides in the
mixture.

Note that the relation in Eq. ~27! requires the knowl-
edge of the fission cross section at a particular energy.
Therefore, an initial energy of 0.025 eV is assumed for
selecting the appropriate nuclide to sample. If the fission
cross sections of all fissionable nuclides of the mixture
are zero at 0.025 eV, then the sampling energy is in-
creased to the energy corresponding to the first nonzero
fission cross section. Once the i ’th nuclide is selected,
the fission reaction of that nuclide at the initial energy of
0.025 eV is sampled, and the exit energy and angle after
the sampled fission reaction are stored as the starting
energy and angle of that neutron. In the multigroup mode,
the energy of each source neutron is sampled from the
multigroup fission spectrum x~ ZX, g! of the mixture. Each
initial neutron is assigned a default weight of C � WTAVG,
where C is the normalization factor determined as

C~ki, fc, ZV, E ! � (
E '

P~ki, fc, E ', ZV, E !

WTAVG~g ', ki !
, ~28!

where

P � probability density function ~pdf ! for
fission

ki � importance determined by the BIAS ID
of the region ~default � 1! and therefore
is implicitly a function of spatial position

fc � index for first-chance fission, second-
chance fission, etc., probabilities; fission
probabilities are discussed in Sec. III.E

WTAVG � default or user-specified average weight
~Sec. III.D!.

Since weights are defined in terms of energy groups, g ' is
the energy group corresponding to the exit neutron en-
ergy E ' . In the multigroup mode, since all fission sources
are isotropic, C is determined as

C~ki ! � (
g '

x~ki, g ' !

WTAVG~g ', ki !
. ~29!

As evidenced by Eqs. ~28! and ~29!, normalization is
determined based on the initial assigned weights. Note
that since both P and x sum to 1.0, if the average weights
are constant with a value of 0.5, the normalization factors
will be 2.0.

For the spatial distribution of initial neutrons, KENO
offers various options under “START DATA.” These start
options are listed in Table I. The default start option,
which is flat across the global array or unit, is usually
sufficient. If the global array or unit has large outer di-
mensions with only a small fraction of the volume con-
taining fissionable material, much time may be wasted in
sampling positions that do not contain any fissionable
material. If the fraction of the volume containing fissile
material is relatively small, execution may terminate due
to excessive time spent in sampling the source neutron
distribution. Generally, this type of problem will run at a
reasonable time once a good starting distribution is cre-
ated. Changing the initial distribution is trivial and usu-
ally involves specifying a tightly fitting cuboid around
the fissionable material.

III.C. Collision Site Selection

Since weighted tracking is employed, each neutron
must be tracked until the history is terminated via leak-
age from the system or the particle weight drops suffi-
ciently and it is “killed” via roulette. Given a homogeneous
material, a neutron will travel, on average, 1 mean free
path between collisons. The determination of the dis-
tance to the next collision is determined using the fol-
lowing pdf:

f ~x! dx � St
m~E !e�St

m~E !x dx , ~30!

where

St
m~E ! � macroscopic total cross section for mix-

ture m at energy E

x � distance to the next collision.

The pdf in Eq. ~30! describes the probability that a neu-
tron will have an interaction between x and x � dx along
its flight path. Integrating Eq. ~30! over the distance vari-
able yields the following cumulative distribution func-
tion ~cdf !:

F~x! ��
0

x

dx ' St
m~E !e�St

m~E !x ' � 1 � e�St
m~E !x .

~31!

The next collision site is determined by setting the cdf in
Eq. ~31! equal to a random number R, uniformly distrib-
uted on the interval @0, 1! and solving for x:
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R ' � 1 � e�St
m~E !x , R ' � @0,1!

1 � R ' � e�St
m

~E !x

�ln~1 � R ' ! � St
m~E !x , R ' � @0,1!

x � �ln~1 � R ' !0St
m~E ! . ~32!

Recognizing that ~1 � R! is also a uniformly distributed
random number, albeit in the domain ~0,1# , we may re-
write Eq. ~32! as

x � �ln~R!0St
m~E ! . ~33!

Note that Eq. ~31! requires the total cross section for
mixture m at energy E in order to calculate the next colli-
sion site. If the neutron energy is in the unresolved reso-
nance range ~URR! of any of the nuclides in the mixture,
and those nuclides have corresponding probability-table
data, KENO samples the appropriate probability tables and
recalculates the mixture total cross section at the neutron
energy during the random walk. Details of the probability-
table treatment are discussed in Sec. III.K. Once the re-
vised St

m~E ! is determined, Eq. ~33! is used to select the
next collision site within mixture m at energy E. In the

multigroup mode, there is no probability table, and the
equation used to sample the next collision site is

x � �ln~R!0Stg
m . ~34!

III.D. Collision Treatment

Once the collision site is determined, the collision
can be modeled, and the postcollision parameters can be
calculated. In the continuous-energy mode, each colli-
sion is modeled with an individual nuclide, whereas in
the multigroup mode, no such distinction is made. If a
mixture is defined by multiple nuclides, the target nu-
clide must be selected at each collision site. If there are N
different nuclides present in a mixture, Eq. ~35! can be
used to select the i ’th target nuclide for interaction:

(
j�1

i�1

St
j~E ! � R (

j�1

N

St
j~E ! � (

j�1

i

St
j~E ! , ~35!

where St
j is the macroscopic total cross section for the

j ’th nuclide at energy E.
As noted above, the collision energy may be in the

URR of one or more nuclides within the mixture. Con-
sequently, the total cross section for each nuclide that has

TABLE I

Starting Distributions Available in KENO

Start
Type Starting Distribution

0 Uniform throughout fissile material within the volume defined by ~a! the outer region of a single unit, ~b! the
outer region of a reflected array having the reflector key set true, ~c! the boundary of the global array, or ~d! a
user-specified cuboid.

1 The starting points are chosen according to a cosine distribution throughout the volume of a user-specified
cuboid. Points that are not in fissile material are discarded.

2 An arbitrary fraction of neutrons is started uniformly in the unit located at a user-specified position in the global
array. The remainder of the neutrons is started in fissile material, from points chosen from a cosine distribution
throughout the volume of a user-specified cuboid.

3 All neutrons are started at a user-specified position within the unit located at a user-specified position in the
global array.

4 All neutrons are started at a user-specified position within user-specified units in the global array.

5 Neutrons are started uniformly in fissile material in user-specified units in the global array.

6 The starting distribution is arbitrarily input. The final neutron number to be started at a user-specified point
relative to the global coordinate system or at a user-specified point relative to the unit located at a global array
position is specified.

7 The starting points are chosen according to a flat distribution in the X and Y dimensions and a @1.0 � cos~z!# 2

distribution in the Z dimension throughout the volume of a user-specified cuboid defined. Points that are not in
fissile material are discarded.

8 Neutrons are started with flat distribution in X and Y, and a segmented distribution in Z, with user-specified X-Y
limits and a user-specified relative fraction in Z.

Goluoglu et al. MONTE CARLO CRITICALITY METHODS IN SCALE

NUCLEAR TECHNOLOGY VOL. 174 MAY 2011 221



unresolved resonance data is sampled from the probability-
table information prior to selecting the next collision site,
as discussed in Secs. III.C and III.K. Subsequently, the
sampled values for the total and partial reactions are
stored for retrieval for determining the next collision
type. Therefore, the macroscopic nuclide total cross-
section values St

j~E ! that are used in Eq. ~35! are those
that are used to determine St

m~E ! in Eq. ~33!. With the
corrected values for St

j~E !, Eq. ~35! is used to select the
target nuclide for interaction. In the multigroup mode,
the calculation proceeds without having to choose a tar-
get nuclide since that information is not needed.

Because an explicit collision treatment is dictated
by the continuous-energy cross-section data, the type of
reaction must be modeled explicitly in the continuous-
energy mode. Figure 1 provides a summary of the cross-
section hierarchy and can be used as an aid to
understanding the collision treatment in KENO in the
continuous-energy mode.

After selecting the collision target, the absorption ~ab-
sorbed!, fission, ~n, 2n! , and ~n, 3n! weights are deter-
mined. In the multigroup mode, ~n, 2n! and ~n, 3n! weights
are not determined because corresponding reaction prob-
abilities are not available. Subsequently, the neutron’s
weight is reduced by the nonabsorption probability:

w �
ss

i~E !

st
i~E !

wb � Pnabs~E !wb , ~36!

where

ss
i~E ! � microscopic scattering cross section for

the i ’th ~selected! nuclide at energy E

st
i~E ! � microscopic total cross section for the

i ’th ~selected! nuclide at energy E

Pnabs~E ! � nonabsorption probability of the neutron
at energy E

wb � weight before collision.

The absorption and fission weights are calculated
using, respectively, the relations in Eqs. ~37! and ~38!:

wa �
sa

i~E !

st
i~E !

wb � Pabs~E !wb , ~37!

where

sa
i~E ! � microscopic absorption cross section for

the i ’th ~selected! nuclide at energy E

Pabs~E ! � absorption probability of the neutron at
energy E

and

wf �
Tn i~E !sf

i~E !

st
i

wb � Pfiss~E !wb , ~38!

Fig. 1. Cross-section hierarchy for particle interactions.
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where

Tn i~E ! � average number of neutrons released per
fission for the i ’th ~selected! nuclide at
energy E

sf
i~E ! � microscopic fission cross section for the

i ’th ~selected! nuclide at energy E

Pfiss~E ! � fission probability of the neutron at en-
ergy E.

In the multigroup mode, the energy variables in
Eqs. ~36!, ~37!, and ~38! are replaced by energy group
index g. The nonabsorption, absorption, and fission prob-
abilities are sometimes referred to as the collision
probabilities.

If the neutron energy is in the URR of the selected
target nuclide and probability-table data are available,
the collision probabilities are adjusted by sampling the
partial reactions from the appropriate probability table
and recomputing the total cross section. In particular, the
revised or sampled values for scattering, absorption, and
fission must be used to calculate the collision weights as
defined by Eqs. ~36!, ~37!, and ~38!. Depending on the
neutron’s weight, splitting and0or roulette are performed
as necessary.

To prevent expending excessive computer time track-
ing low-weight neutrons, Russian roulette is played if the
weight of the neutron drops below a preset low weight
WTLOW. The default value is one-third times the aver-
age weight. Neutrons survive Russian roulette with the
probability ~W0WTAVG !, where W is the current weight
of the particle, and are assigned an average weight
WTAVG.

If the weight of the neutron exceeds a preset value
WTHIGH, the neutron is split into two neutrons, each
having a weight equal to one-half the weight of the orig-
inal neutron. After splitting, only one of the split neu-
trons is followed. The other neutrons are stored to be
tracked at the end of the current generation ~i.e., split
neutrons are all considered part of the current generation
and therefore are tracked as additional particles!. This
procedure is repeated until the weight of the split neutron
is less than the value WTHIGH. The default value for the
preset high weight is three times the average weight.
Both Russian roulette and splitting are techniques for
reducing computer time without adding any biasing.

The value of WTAVG, and therefore WTLOW and
WTHIGH, can be assigned as a function of position and
energy. The position dependence is determined by the
BIAS IDs ~see Sec. III.G!. The values used by KENO are
as follows:

DWTAV � 0.5 is the default value of WTAVG.

WTAVG � DWTAV is the weight given a neutron
that survives Russian roulette.

WTLOW � WTAVG03.0 is the value of weight at
which Russian roulette is played.

WTHIGH � WTAVG *3.0 is the value of weight at
which neutron is split.

Once the current weights are calculated ~w,wa,wf !,
the collision can be processed to determine the type of
interaction and the corresponding exiting energy and angle
if secondary neutrons are generated. In the multigroup
mode, the exit group and angle of the secondary neutron
are determined.

The kinematics data in the continuous-energy KENO
library are provided in the laboratory or target-at-rest
system as opposed to the center-of-mass system. By ad-
hering to the laboratory coordinate system, KENO does
not have to transform between different coordinate sys-
tems during the random walk; however, the energy and
angle representations for elastic and discrete-level inelas-
tic scattering become more complex in the laboratory
system. For example, an angular distribution that is iso-
tropic in the center-of-mass system is anisotropic in the
laboratory system. Moreover, the secondary energy dis-
tribution as a function of exit angle in the laboratory
system can be double-valued ~i.e., two possible exit en-
ergies with respect to a single angle! for energies above
the threshold for the reaction. Figure 2 shows the exit
energy versus exit cosine in the laboratory system for
several incident energies in the double-valued region for
7Li. The range of the double-valued region for all nu-
clides with inelastic cross sections in the ENDF0B-VII
Release 0 library are plotted as a function of atomic weight
ratio in Fig. 3. Likewise, a similar double-valued distri-
bution is observed for elastic scattering with hydrogen in
the laboratory system if the actual mass ratio is used ~i.e.,
A � 0.99928, as opposed to A � 1.0!. Consequently,

Fig. 2. Exit energy versus exit cosine for selected energies in
the double-valued region in the laboratory system for
7Li.
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when generating the continuous-energy cross sections
for KENO, special care is exercised in the construction
of the secondary angle and energy distributions in the
laboratory system.

After selecting the nuclide for interaction according
to Eq. ~35! and calculating the weights using Eqs. ~36!,
~37!, and ~38! to determine if the particle is to be killed
or scattered, the collision is modeled using the following
procedures.1

Reaction Selection

At each collision site, the type of collision must be
selected based on the cross-section data. Moreover, the
k’th reaction can be randomly selected using the relation
in Eq. ~39!:

(
j�1

k�1

sj ~E ! � R (
j�1

NI

sj ~E ! � (
j�1

k

sj ~E ! , ~39!

where

sj~E ! � cross section for the j ’th reaction at energy
E

NI � number of elastic and nonelastic reactions
~i.e., excludes neutron disappearance
reactions!.

Note that the fission reactions ~e.g., total fission, first-
chance fission, second-chance fission, etc.! are ex-
cluded from Eq. ~39! because an implicit approach is
used to treat fission. The details of the fission treatment
are provided in Sec. III.E. If a neutron production reac-
tion with multiple exit neutrons @e.g., ~n, 2n!, ~n, 3n!,
etc.# is selected, the weight of the neutron is adjusted
by the multiplicity to account for the additional neu-
trons @e.g., w � 2w for ~n, 2n!, w � 3w for ~n, 3n!,
etc.# .

Exit Angle Selection

The cross-section library provides a kinematics data
block with a flag that indicates the number of secondary
angles for each incident neutron energy. If the value of
this flag is 1 and the corresponding cosine value is �2,
then the reaction is flagged to be isotropic since the co-
sine value of �2 is mathematically not possible. The
cross-section library also provides the energy distribu-
tions of secondary particles for each angle for a specified
reaction. The exiting angle for the collision can be ob-
tained as follows:

1. Isotropic emission—The exiting angle cosine is
sampled uniformly between �1 and �1:

m � 2R � 1 . ~40!

2. Anisotropic emission—The exiting angle cosine
must be sampled from an anisotropic distribution that is
provided in the cross-section library for the specified
reaction.

The secondary angular distribution data are provided
as a function of incident energy. The initial record of each
section for a reaction provides the number of incident
energies NE for the secondary angular and energy distri-
butions. Corresponding to each incident energy is a sec-
ondary angular distribution.

For each angular distribution record, there is an LMU
flag and an NPU flag that describe the format of the data.
The LMU flag designates whether the secondary distri-
bution is provided in equiprobable cosine bins or in non-
equiprobable cosine bins. The NPU flag specifies the
number of cosine values in the distribution. Based on the
incident energy of the neutron, the angular distribution
data are sampled from two distributions that bracket the
incident energy. The exiting angle cosine m in the labo-
ratory system is then determined by linearly interpolat-
ing between the sampled values.

Exit Energy Selection

In addition to the angular distributions of the kine-
matics data, the cross-section library provides the energy
distributions of secondary particles for a specified reac-
tion. The secondary energy distributions are provided as
a function of incident energy and secondary angle cosine
in each section. Once the exiting angle cosine is selected,
the exiting energy is selected from the energy distribu-
tion that corresponds to the ~E, m! pair.

For each energy distribution record, there is an LE
flag and an NPE flag that describe the format of the data.
The LE flag designates whether the secondary distribu-
tion is provided in equiprobable energy bins or in non-
equiprobable energy bins. The NPE flag specifies the
number of secondary energy values in the distribution.
For elastic scattering and discrete-level inelastic scatter-
ing, the NPE flag is equal to the NPU flag due to the
one-to-one correspondence between angle and energy.

Fig. 3. Range of discrete-level inelastic scattering double-
valued region.
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Azimuthal Angle Selection

Azimuthal angle h is selected uniformly between 0
and 2p ~i.e., h � 2Rp, where R is a random number!.

Direction Cosine Calculation

Calculate the new direction cosines in the laboratory
system using Eqs. ~41!, ~42!, and ~43!:

u ' � um � Mv 2 � w 2M1 � m2 cos~h! , ~41!

v ' � vm �
uv

Mv 2 � w 2
M1 � m2 cos~h!

�
w

Mv 2 � w 2
M1 � m2 sin~h! , ~42!

and

w ' � wm �
uw

Mv 2 � w 2
M1 � m2 cos~h!

�
v

Mv 2 � w 2
M1 � m2 sin~h! , ~43!

where

u,v,w � initial direction cosines

u ',v ',w ' � exiting direction cosines

m � cosine of the scattering angle

h � azimuthal angle.

When a neutron is scattered in the multigroup mode,
a new energy group is selected from the cumulative trans-
fer probability distribution. This group-to-group transfer
determines an angular scattering distribution, usually ex-
pressed as a Legendre expansion of the cross-section
transfer array. A set of discrete angles and probabilities is
generated by a generalized Gaussian quadrature proce-
dure, preserving the moments of the Legendre expansion
of the angular scattering distribution. Minor adjustments
can be made to the moments of the Legendre expansion
to avoid negative values. KENO treats P0 and P1 Legen-
dre expansions as special cases. If the scattering distri-
bution is isotropic, a flag is set to randomly select new
direction cosines from an isotropic distribution, instead
of using discrete scattering angles. If the distribution is a
P1 expansion, KENO randomly selects the cosine of the
scattering angle according to

1. 6 Tm 6� 10�1003: average direction cosine is nearly
zero, which is somewhat arbitrarily defined to be 103 �
10�10, and therefore scattering distribution is isotropic

2. 6 Tm 6 � 103: m � ~M1 � 6z Tm � ~3 Tm!2 � 1!	3 Tm

or

3. 6 Tm 6 � 103: m � z~1 � Tm! � Tm,

where

z � uniform random variable between �1 and �1

Tm � mean cosine of the scattering angle.

Otherwise, selection is performed according to the
same procedures as in the continuous-energy mode that
are described above.

III.E. Fission Treatment

As noted in Sec. III.D, an implicit approach is used
to treat a fission event. During the collision treatment,
the fission weight is calculated using Eq. ~38!. After pro-
cessing the collision, the fission weight is evaluated to
determine if the fission treatment should be applied. If
the fission weight is greater than zero, the collision oc-
curred in material containing at least one fissile isotope.
During the random walk, several fission source points
must be generated to provide an adequate representation
of the true source distribution. A minimum production
factor mpf is defined at the beginning of each generation
to ensure that enough fission points are generated:

mpf � 
1 �
3.0

MNPG
� Ok , ~44!

where

Ok � running average of keff through the current
generation ~1.0 for first two generations!

NPG � number of histories ~particles! per generation.

Equation ~44! represents a rough estimate of the 99%
lower confidence interval for the distribution of the gen-
eration keff . This factor is a function of the square root of
the number of neutrons per generation and was chosen
because it usually produces an adequate number of inde-
pendent fission points and does not produce so many that
an excessive amount of time is spent choosing from the
fission points that are produced.

If the fission weight is greater than zero, a pseudo-
fission weight pfw is calculated as follows:

pfw �
wf

R
�

n i~E !sf
i~E !

Rst
i~E !

wb . ~45!

If the pseudo-fission weight is less than the mini-
mum production factor that is given by Eq. ~44!, fission
points are not generated, and tracking of the particle
continues. However, if the fission weight is greater than
the minimum production factor, pfw is redefined to be
the minimum production factor divided by a random
number:
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pfw �
mpf

R
. ~46!

Once the pseudo-fission weight is redefined, a fis-
sion point can be generated. If the mixture is defined by
multiple nuclides, the target nuclide is selected based on
the fission cross sections as follows:

(
j�1

i�1

Sf
j~E ! � R (

j�1

N

Sf
j~E ! � (

j�1

i

Sf
j~E ! , ~47!

where N is the number of different nuclides in the mixture.
After the target nuclide is selected, the exit angle and

energy from the fission reaction with that nuclide is sam-
pled. If the selected nuclide has both prompt and delayed
neutron spectrums available, the type of spectrum is ran-
domly sampled. Note that the user may force the use of a
prompt neutron spectrum. If the chosen spectrum type is
prompt neutron spectrum and the nuclide has first-
chance, second-chance, etc., fission data available, one
of the chance-fission distributions is randomly selected.
Then, the fission reaction at the current neutron energy is
sampled to determine the exit energy and angle. Each
time a fission point is generated, the pseudo-fission weight
is stored with the point in the fission bank. The quantity
of fission points kept to be used as fission positions for
the next generation is limited to the number of positions
in the fission bank ~input parameter NFB!. Typically,
NFB is equal to the input parameter NPG, the number of
neutrons per generation. Before storing the point, the
fission bank must be checked for an available storage
location. If the fission bank is full, the bank is searched
for the smallest pseudo-fission weight that is subsequently
compared with the pseudo-fission weight of the new fis-
sion point. The point with the largest pfw value is stored
in the fission bank. If the pseudo-fission weight of the
new point is less than all pfw values in the bank, the new
point is not stored. If the fission bank is not full or an
available storage location is found, the fission point is
stored in the bank. When a new point is stored in the
fission bank, the energy and angular cosine must be se-
lected from the kinematics data, as described above. In
the multigroup mode, the energy group of fission is cho-
sen randomly from the fission spectrum of the mixture in
which the fission occurred. Once the neutron data are
stored for the new fission point, the fission weight of the
history is decremented by the minimum production fac-
tor. If the remaining fission weight is greater than zero,
the fission treatment procedures are repeated until the
fission weight of the history has been exhausted.

When the next generation is ready to be processed,
data are transferred from the fission bank into the neutron
bank to be used as starting positions for the fission neu-
trons. If more than NPG neutrons are saved in the fission
bank, NPG of those having the highest values of pfw will
be used. If too few fission positions were stored ~less
than the number per generation!, a warning message to

that effect is printed, and additional fission points are
randomly chosen from those that were stored until the
number of fission points available to start the next gen-
eration is equal to the number of neutrons per generation.

III.F. System Eigenvalue and Other Estimators

The generation keff for generation n is calculated by

kn �

(
NPG

wf

NPG
, ~48!

where fission weights are summed over number of par-
ticles sampled at that generation. The running average
keff of active generations is calculated by

Ok �

(
AG

kn

AG
, ~49!

where

AG � number of active generations

Ok � average keff over AG active generations.

Both average keff and generation keff values are listed
in the output. In addition, at the completion of all gener-
ations, keff values as a function of generations run and
generations skipped are shown in text-based plots in the
output. Analysis of the generation keff values is per-
formed to determine the best system value with the small-
est standard deviation by determining the number of
generations that should be skipped. Note that the HTML
output, if requested, contains a graphical representation
of the evolution of the keff values as well as other indi-
cators that can be viewed as images and copied into other
documents.

In addition, system parameters such as average fis-
sion group, energy of average lethargy of fission, system
mean free path, and system average number of neutrons
per fission event as well as neutron lifetime and genera-
tion time are calculated and listed. Note that the neutron
lifetime and generation time are not the usual kinetics
parameters. Rather, the lifetime is the average life span
of a neutron ~in seconds! from the time it is born until it
is absorbed or leaks from the system. The generation
time is the average time ~in seconds! between successive
neutron generations.

III.G. Biasing or Weighting

A study by Hoffman2 shows the default weight val-
ues used in KENO to be reasonable for bare critical as-
semblies. Figure 4, taken from this study, shows the
analytic relationship between the variance and WTLOW
when WTAVG is 0.5. Note that the default value of 0.167
for WTLOW is very close to the minimum point on the
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curve. Experimental results of actual Monte Carlo cal-
culations3 for a wide variety of critical systems provide
further assurance that 0.167 is an excellent general choice
for WTLOW when WTAVG is 0.5.

Figure 5, also from the Hoffman study, shows the
analytic relationship between the variance and the value
chosen for WTAVG for a value of WTLOW � 106. Al-
though the KENO default value for WTAVG is not the
optimum, a close examination of the data shows the vari-
ance to be changing relatively slowly as a function of the
value of WTAVG. Even though this study shows a value
near 0.26 to be optimum for the system examined, it is
not optimum for all types of systems. Further studies of
a wide variety of system types would be needed before
changing the default value of WTAVG from the 0.5.

Inside a fissile core, the importance of a neutron is a
slowly varying function in terms of energy and position.
Hence, for many systems, the standard defaults for
WTLOW and WTAVG are good values to use. For reflec-
tors, however, the worth of a neutron varies both as a

function of distance from the fissile material and as a
function of energy. As a neutron in the reflector becomes
less important relative to a neutron in the fissile region, it
becomes desirable to spend less time tracking it. There-
fore, a space- and energy-dependent weighting or biasing
function is used in KENO to allow the user to minimize
the variance in keff per unit tracking time. When a biasing
function is used in a reflector, it becomes possible for a
neutron to move from one importance region into an-
other whose WTLOW is greater than the weight of the
neutron. When this occurs, Russian roulette is played to
reduce the number of neutrons tracked. When the reverse
occurs, that is, the neutron moves to a region of higher
importance, its weight may be much higher than WTAVG
for that region. When the weight of the neutron is greater
than a preset value WTHIGH, the neutron is split into two
neutrons, each having a weight equal to one-half the
weight of the original neutron. This procedure is repeated
until the weight of the split neutron is less than WTHIGH.
WTHIGH is the weight at which splitting occurs.

The weighting or biasing function for a given core
material and reflector material can be obtained by using
the adjoint solution from discrete ordinates codes for a
similar ~usually simplified! problem. This adjoint flux
gives the relative contribution of a neutron at a given
energy and position to the total fissions in the system.
The weighting function for KENO is thus proportional to
the reciprocal of the adjoint flux. Although such a func-
tion can be difficult to obtain, the savings gained makes
the effort worthwhile for many of the materials that are
frequently used as reflectors. Biasing functions have been
prepared for several reflector materials commonly used
in KENO calculations. The use of biasing to minimize
the variance in keff per unit computer time will usually
increase the variance in other parameters such as leakage
or absorption in the reflector.

III.H. Differential Albedos

Arrays reflected by thick layers of material having a
small absorption-to-scattering ratio may require large
amounts of computer time to determine keff because of
the relatively long time a history may spend in the re-
flector. A differential albedo technique, which is cur-
rently available for multigroup mode calculations only,
was developed for use with the KENO codes to eliminate
the need for tracking particles in the reflector. This in-
volves returning a history at the point it impinges on the
reflector and selecting an emergent energy and polar angle
from a joint density function dependent upon the incident
energy and polar angle. The weight of the history is ad-
justed by the functional return from the reflector, which
is also based on the incident energy and angle.

The characteristics of a differential albedo emulate
the attributes of the reflector material and are indepen-
dent of the material or materials adjacent to the reflector.
Thus, a differential albedo that is generated for a given

Fig. 4. Analytic estimate of the relationship between WTLOW
and the variance sk

2 when WTAVG is 0.5.

Fig. 5. Cross-analytic estimate of the relationship between
WTAVG and the variance sk

2 when WTLOW is 106.
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reflector material can be used with any array, regardless
of the type of fuel or fissile material contained within the
array.

For many calculations involving reflected arrays of
fissile material, the differential albedo treatment is a pow-
erful tool that can significantly reduce the computing
time required to determine keff . The savings will natu-
rally vary, depending on the importance of the reflector
to the system. A substantial effort is required to generate
a differential albedo, but the savings gained are well
worth the effort for commonly used reflector materials.

To generate the differential albedo information for a
material, a fixed-source calculation must be made for
each incident energy and angle. The data presently avail-
able for use with KENO were generated by 1-D discrete
ordinates calculations for slab geometry, representing in-
finite slabs. Consequently, for a finite reflector, these
data will not correctly treat histories that enter the reflec-
tor near an edge or corner. Past experience with differ-
ential albedo reflectors indicates that keff appears to be
conservative for small faces and will tend toward the
correct result as the face becomes large relative to the
area near the corners. Care must be taken to ensure that
any surface to which a differential albedo is applied is
large enough that the errors at the edges can be ignored.

Because differential albedos are time-consuming to
generate, those corresponding to the Hansen-Roach 16-
energy-group structure are the only differential albedos
currently available for use with KENO. In the past, their
use was limited to problems utilizing cross sections hav-
ing the Hansen-Roach 16-energy-group structure. KENO
extends the use of differential albedos to other energy-
group structures by allowing appropriate energy trans-
fers. This is accomplished by creating lethargy boundary
tables for the albedo group structure and the cross-
section group structure and determining the lethargy
interval corresponding to the desired transfer ~cross-
section group structure to albedo group structure or vice
versa! based on a uniform lethargy distribution over the
interval. When the energy-group boundaries of the cross
sections and albedos are different, the results should be
scrutinized by the user to evaluate the effects of the
approximations.

III.I. Fluxes

Fluxes are computed in KENO with a track-length
estimator from all active generations ~all but user-
defined number of generations that are skipped!. The
scalar flux in region z for energy group g for a single
generation is computed as

Fg, z �

(
k�1

K

Wk, z lk, z

Vz (
k�1

K

Wk, 0

, ~50!

where

lk, z � distance traversed by particle k while within
region z and energy group g

Wk, z � weight of particle k while traversing region z

Vz � volume of region z

Wk,0 � initial weight of particle k

K � total number of histories in the generation.

The average fluxes for all active generations and the
standard deviation in the averages are also computed.

KENO is also capable of computing the angular flux
for a symmetric-level quadrature set. The angular flux
for energy group g in region z for quadrature direction n
is computed as

Fg, z
n �

(
k�1

K

Wk, z lk, z, n

Vz (
k�1

K

Wk, 0

, ~51!

where lk, z,n is the distance traversed by particle k while
within region z and energy group g within the quadrature
direction bin n.

The angular flux can be expanded to a flux moment
using an appropriate spherical harmonics expansion.
KENO has even number symmetric-level quadrature sets
S2 through S16.

Flux moments can also be computed directly in
KENO. The j ’th moment, corresponding to real-valued
spherical harmonics functions for a single generation for
energy group g in region z, is computed as

Efg, z
j �

(
k�1

K

Rk
j Wk, z lk, z

Vz (
k�1

K

Wk, 0

, ~52!

where Rk
j is the real-valued spherical harmonics function

for moment index j corresponding to the direction of
particle k.

KENO offers the option of computing the angular
fluxes and flux moments using a transformed coordinate
system such that the moments are based on a polar rather
than a Cartesian position vector.This is a three-dimensional
~3-D! extension of the 1-D method for calculating the flux
moments in terms of Legendre polynomials based only
on the direction cosine with respect to the spatial coordinate.

This coordinate transform is illustrated in Fig. 6,
where Zi, Zj, and Zk represent the directional coordinate sys-
tem axes; m, h, and j represent the direction cosines; and
u and r represent the polar and azimuthal angles of the
“normal” coordinate system. The same symbols “primed”
represent the transformed coordinate system. Here, the
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transformed polar or Zk ' axis is colinear with the position
vector 5r directed from the center of the region for which
moments are desired to the point at which the flux tally
occurs. By using the center of the region as a reference
point, consistency of the moment calculation is ensured
with differing models of the same system. The Zi ' and Zj '
axes are chosen to form an orthogonal coordinate system
with Zi ' held in the plane formed by Zi and Zj. The use of
constraints other than the restriction of Zi ' to this plane
may be explored in future studies. If an additional con-
straint is not placed on either Zi ' or Zj ' , the transform would
be able to rotate about Zk ' , and the consistency of consec-
utive transformations of the same direction could not be
ensured. With the transform computed, the position and
direction of travel of the particle remain unchanged, but
the quadrature directions and0or spherical harmonics terms
are calculated using the transformed coordinate system.
With the direction cosines consistently transformed for
each history, the new polar and azimuthal angles can be
computed, and the spherical harmonics functions can be
calculated for each history.

KENO offers a mesh flux tally where the fluxes are
computed in a user-defined cubic mesh superimposed on
the geometry model. The mesh is defined from the origin
of the global unit and is oriented with the Cartesian axes.
At the end of each particle track, appropriate track lengths
are assigned to the mesh intervals that were crossed for
the region in which the track occurred. The length of the

actual particle track is equal to the sum of the lengths
assigned to the meshes encountered by the particle track.
Because the coordinates of the mesh are defined in terms
of the global unit, fluxes for regions in repeated units
~i.e., units in arrays or holes! may be stored separately for
each occurrence of the unit. The volumes of each region
in each mesh interval are computed such that the fluxes
are appropriately normalized on a per-unit-volume basis,
consistent with Eq. ~51!. When the mesh flux option is
activated, all requested fluxes, scalar, angular, and0or
moment, are computed for each mesh interval.

III.J. Statistical Uncertainty

The statistical uncertainty calculated by KENO is
the standard deviation of the mean. This assumes a large
sample having a normal distribution. KENO calculates
the real variance using an iterative approach and lag co-
variance data between generations as follows4,5:

Step 1: The sample variance and covariance esti-
mates are calculated.

Step 2: The apparent variance is set equal to the
sample variance, and the apparent covariance is set equal
to the sample covariance.

Step 3: The real covariance is set equal to the appar-
ent covariance, and the real variance is calculated.

Step 4: Using the real variance and apparent covari-
ance, the real covariance is calculated.

Step 5: The real variance is recalculated.

Step 6: Steps 4 and 5 are repeated until the real vari-
ance converges within a preset tolerance. The covariance
estimates are calculated only for the previous 20 gener-
ations. A maximum of 50 iterations is allowed for the real
variance to converge.

III.K. Probability Table Treatment

For each isotope with unresolved resonance data,
multiple probability tables may be used to describe the
URR in the continuous-energy-mode calculations. The
header block in the cross-section file for each isotope has
a flag that provides the number of probability tables for
an isotope. Each table is defined for an incident energy
Ei . For a particle with energy E, a search must be per-
formed to find the probability tables with incident ener-
gies that bracket the particle energy ~i.e., Ei � E � Ei�1!.
Once the appropriate tables are identified, the tables are
sampled to obtain the total, elastic scattering, fission, and
capture cross-section values in the URR ~Ref. 6!.

The probability-table block in the cross-section file
provides four separate records that correspond to each
reaction within a table: total, elastic, fission, and capture.
However, the probability-table construction is based on
the total cross section. Therefore, the probabilities in

Fig. 6. Coordinate transform used for quadrature direction and
spherical harmonics terms.
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each table refer to the total cross-section band values,
and the bands are sampled based on the total cross sec-
tion. Once the band for the table corresponding to the
energy Ei is sampled, the corresponding partial reaction
cross-section values are selected from the same band as
the total cross section. The cross-section values for the
same band are selected from the table corresponding to
the energy Ei�1 as well. The final total and partial cross-
section values are determined by linear interpolation be-
tween Ei and Ei�1 table values.

IV. KEY FEATURES

This section describes the features such as geometry
options, restart capabilities, system analysis with fission
matrix information, adjoint mode calculations, and two-
dimensional ~2-D! slice plots.

IV.A. Geometry

IV.A.1. KENO V.a

Because of its speed, KENO V.a is widely used even
though it is restricted to the use of specific shapes. These
shapes are called geometry regions or regions. Allowed
shapes are cubes, cuboids ~rectangular parallelepipeds!,
spheres, cylinders, hemispheres, and hemicylinders. These
shapes must be oriented along orthogonal axes and can-
not be rotated. They can be translated. Hemispheres and
hemicylinders are not limited to half-spheres and half-
cylinders; the definitive plane can be positioned by en-
tering a chord. The value of this chord can range from the
positive magnitude of the radius ~giving a complete sphere
or cylinder! to the negative magnitude of the radius ~giv-
ing a zero volume, nonexistent sphere or cylinder!.

A major restriction applied to KENO V.a geometry is
that intersections are not allowed. Furthermore, each suc-
cessive geometry region must completely enclose the
preceding region. Tangency and shared faces are al-
lowed. The volume of a region is the volume of the spec-
ified shape minus the volume of the preceding region
shape and any holes contained in the region. To alleviate
the complete enclosure restriction, KENO V.a allows mul-
tiple sets of geometry regions with each set indepen-
dently governed by this restriction. Each set of these
multiple geometry regions is called a unit. Units can be
stacked together in 3-D rectangular arrays or lattices.
Units that are to be stacked together in this manner must
have a rectangular parallelepiped outer region, and the
adjacent faces of adjacent units must be the same size and
shape. An array can be treated as a unit and used within
another array; this is called nesting.

The use of holes in KENO V.a allows a unit to be
emplaced within another unit, thereby alleviating the re-
striction that each region within a unit must completely
enclose all preceding regions within that unit. However,

a hole is not allowed to intersect other holes or regions. A
unit that is to be used as a hole need not have a rectan-
gular parallelepiped as its outer boundary. A hole is not a
void space since a unit actually occupies the space in it.

Multiple arrays can be described in KENO V.a. The
global array in an unreflected problem is the outermost
array in the problem geometry description. The global
array in a reflected problem is the array referenced by the
global unit.

Consistent with past versions, KENO V.a retains the
capability of running a single-unit problem. A single-unit
problem is one that has no array description or holes.

IV.A.2. KENO-VI

KENO-VI geometry can model any geometric shape
that can be described using quadratic equations. These
geometric shapes are stacked together forming regions.
The set of regions is then used to build units. A set of
predefined shapes that include cones, cuboids, cylin-
ders, dodecahedrons, ecylinders ~elliptical cylinders!, el-
lipsoids, hexprisms, hoppers, parallelepipeds, planes,
rhombohedrons, rhexprisms ~rotated hexprisms!, spheres,
and wedges, as well as others, is used to construct re-
gions. In addition, the keyword quadratic is provided to
input surfaces composed of the generalized quadratic
equation. These surfaces can be used to construct addi-
tional shapes not presently contained in KENO-VI. All
shapes and surfaces can be rotated and translated to any
orientation and position within their respective unit.
Hemispheres and hemicylinders can be constructed using
spheres and cylinders with one or more chords. Sur-
faces and equations are rotated using angles associated
with the Euler X-convention and translated by provid-
ing a new position for the origin.

A major improvement in KENO-VI is the ability to
intersect regions. This is done by specifying whether a
particular region is inside or outside each body or surface
in the unit. Only those bodies and surfaces that are nec-
essary to define the region must be specified. Addition-
ally, a unit boundary volume must be specified for each
unit. Only the volume contained in the boundary volume
is considered part of the unit. Like KENO V.a, each unit
is independent; however, in KENO-VI, a global bound-
ary must be specified for each problem, including a sin-
gle unit problem. Unlike KENO V.a, region volumes are
no longer analytically calculated because of the complex-
ity involved with intersecting regions. Each region vol-
ume can be specified in the input or statistically calculated
using random points or rays.

Arrays in KENO-VI are significantly more flexible
and complex than in KENO V.a. Arrays may be com-
posed of either cuboids, hexprisms, rhexprisms, or dodeca-
hedrons. Like KENO V.a, the faces of adjacent units in an
array must have the same size. This means that all hex-
prisms, rhexprisms, or dodecahedrons that make up an
array must be of the same size. An array boundary must
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be specified for each array, and only that portion of the
array within the boundary is considered a part of the
system. Also, the specified array must fill all the volume
in the specified array boundary. The array boundary may
be any shape that can be specified using quadratic
equations.

The use of holes is also more flexible in KENO-VI.
Like KENO V.a, within a unit, holes cannot intersect
other holes or the unit boundary, but they can intersect
region boundaries. The use of holes is not necessary to
build complex geometries; they are used primarily to
more efficiently build complex geometries and reduce
the amount of computer time needed for the problem. In
KENO-VI the crossing to each surface in the unit must be
calculated after each collision. The number of surfaces in
a unit and the number of collisions in the unit are directly
proportional to the amount of CPU time required for the
problem. By moving some of the surfaces in a unit into
another unit that is included as a hole, all the surfaces in
the hole unit except the outer boundary are removed from
the containing unit. The judicious use of holes in KENO-VI
can significantly speed up the calculation.

Multiple arrays can be described in KENO-VI. If a
global array is desired or needed for start or matrix data,
it must be specified. In KENO-VI the outermost bound-
ary is always specified as the global-unit boundary. If the
outermost boundary is to be the array boundary, a global
unit must still be specified, with the global-unit boundary
coinciding with the array boundary. Unlike past versions
of KENO, KENO-VI cannot run a single-unit problem
without specifying a global unit.

IV.B. Restart

KENO incorporates a versatile and convenient re-
start capability. The decision to write a restart file re-
quires the user to specify only the number of generations
between writing restart data and the unit number where
the restart file is to be written. The input data, which
describe the problem, are the first data written on the
restart data file. After the input data have been written on
the restart data file, the calculated data are written to a
second file at the end of each specified generation. These
data include the generation number, random number, num-
ber of histories per generation, number of energy groups,
bank lengths, common information, the keff ’s by gener-
ation, the neutron bank, the fission densities, matrix ar-
rays, and the calculated group-dependent data. These
group-dependent data are written a group at a time and
include leakages, absorptions, fissions, and fluxes.

The KENO restart capability allows a problem to be
restarted at the first generation with different input be-
cause all data input supersedes data from the restart data
file.

If a problem is to be restarted at a generation greater
than 1, the only data that can be changed are certain
parameter data. Changes in the parameter data that are

not allowed include ~a! requesting fissions and absorp-
tions by region if they were not requested by the parent
case, ~b! requesting fission densities and fluxes if they
were not requested by the parent case, ~c! requesting
matrix information that was not requested in the parent
case, and ~d! changing the configuration of the neutron
bank to be different from that of the parent case.

If a problem is to be restarted following a generation
for which restart data were not written, the code will
write a message and restart with the next available gen-
eration for which restart data exist. If no such generation
is found, the problem is terminated.

IV.C. System Eigenvalue Calculation With Matrix

Matrix keff calculations provide an additional method
of calculating the keff of the system. Cofactor keff ’s and
source vectors, which describe the contribution to the
system keff from each unit, hole, or array, are additional
information that can be provided when the matrix keff is
calculated. The necessary source and fission weight data
are collected during the course of tracking the neutrons
through the system. This information is converted to a
fission production matrix, which is the number of next-
generation neutrons produced in unit, hole, or array J by
a neutron born in unit, hole, or array I. The principal
eigenvalue of the fission probability matrix is the matrix
keff . The fission product matrix for any of the four alter-
natives present in KENO is calculated using the appro-
priate transport operator as shown in Eq. ~53!:

@A# ZX �
1

l
ZX ,

Aij ��nSf
j Fij ,

and

Fij ��Tij nSf
i Fi , ~53!

where

@A# � eigenvalue transport operator

Aij � fissions in position j caused by neu-
tron born in position i

Sf
i � fission macroscopic cross section in

position i

Fij � flux in position j caused by neu-
trons born in position i

Tij � transport operator from position j to
position i

(
i

nSf
i Fi � 1 � normalization function.
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KENO offers four alternatives when calculating the ma-
trix keff , as follows:

1. If MKP � YES is specified in the parameter data,
the fission production matrix is collected by array posi-
tion or position index in the global array. The position
index is used to reference a given location in a 3-D lat-
tice. For a 2 � 2 � 2 array, there are nine unique position
indices as shown in Table II. Position zero contains ev-
erything outside the global array. The fission production
matrix is the number of next-generation neutrons pro-
duced at index J by a neutron born at index I. This matrix
is used to calculate the matrix keff , cofactor keff ’s, and the
source vector by the position index. Because the size of
the fission probability matrix is the square of the array
size ~for a 4 � 4 � 4 array there are 4096 entries!, it can
use vast amounts of computer memory.

2. If MKU �YES is specified in the parameter data,
the fission production matrix is collected by unit. It is the
number of next-generation neutrons produced in unit J
by a neutron born in unit I. This matrix is used to calcu-
late the matrix keff , cofactor keff ’s, and source vector by
unit.

3. If MKH �YES is specified in the parameter data,
the fission production matrix is collected by hole num-
ber. Matrix information can be collected at either the
highest hole nesting level ~first level of nesting! or the
deepest hole nesting level. HHL � YES specifies that
the matrix information will be collected at the first nest-
ing level. By default, the matrix information is collected
at the deepest nesting level. The fission production ma-
trix is the number of next-generation neutrons produced
in hole J by a neutron born in hole I. This matrix is used
to calculate the matrix keff , cofactor keff ’s, and the source
vector by hole.

4. If MKA�YES is specified in the parameter data,
the fission production matrix is collected by array num-

ber. It can be collected at the highest array level ~first
level of nesting! or at the deepest array level. HAL �
YES specifies that the matrix information will be col-
lected at the first nesting level. By default, the matrix
information is collected at the deepest nesting level. The
fission production matrix is the number of next-generation
neutrons produced in array J by a neutron born in array I.
This matrix is used to calculate the matrix keff , cofactor
keff ’s, and the source vector by array.

The user can simultaneously utilize all methods of
calculating the matrix keff . The results are labeled in the
printout. Matrix keff ’s cannot be calculated for a single-
unit problem.

A cofactor keff is the eigenvalue of the fission pro-
duction matrix, reduced by the row and column that ref-
erence the specified unit or position index. The difference
between the keff for the system and the cofactor keff for a
unit or position index is an indication of the in situ keff of
that unit or the contribution that unit makes to the keff of
the system. The cofactor keff of a unit devoid of fissile
material should approximate the keff of the system.

IV.D. Adjoint Mode Calculations

In the multigroup mode of calculations, KENO of-
fers adjoint mode calculations. In the adjoint mode, for
each mixture j, ng

j Sfg
j is normalized to one and stored

in x j~g!. Likewise, x j~g! is normalized using the same
normalization constant and stored in ng

j Sfg
j . As a result,

the source points for the next generation are selected
based on a distribution that looks like the fission spec-
trum x j~g! normalized to the integral of ng

j Sfg
j , and the

energy group distribution of the next-generation source
neutrons looks like ng

j Sfg
j normalized to one. Figure 7

shows the forward and adjoint x~g! and ngSfg values
for 235U in the 238-energy-group structure. Generally,
x j~g! is zero below ;1 keV in the forward mode and
zero above ;1 eV in the adjoint mode. Consequently,
when the adjoint neutron energy group is above the
electron-volt range, no positions are selected. Hence, the
adjoint mode calculations run longer to achieve the same
statistical uncertainty on keff and may suffer from not
storing enough fission points for the next generation. In
the adjoint mode, in addition to the adjoint keff , which
should be the same as the forward keff within statistical
uncertainty, the adjoint fluxes may be calculated. Adjoint
mode calculations are currently not available in the
continuous-energy mode.

IV.E. Plots

Two-dimensional plots of slices specified through
the geometry can be generated and displayed ~a! as char-
acter plots using alphanumeric characters to represent
mixture numbers, unit numbers, or bias identification
numbers or ~b! as color plots that generate a PNG file

TABLE II

Position Indices

Position

X Y Z

0 0 0 0
1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
6 2 1 2
7 1 2 2
8 2 2 2
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using colors to represent mixture numbers, unit numbers,
or bias identification numbers.

V. PERFORMANCE AGAINST BENCHMARKS

KENO codes have been tested in both multigroup
and continuous-energy modes using hundreds of bench-
mark cases.7–10 Benchmark problems referenced below
have been selected to provide a validation suite from a
wide range of fissile systems. The benchmark problems
are divided into six groups: Highly enriched uranium
~HEU! systems, intermediate-enriched uranium ~IEU!
systems, low-enriched uranium ~LEU! systems, mixed
oxide ~MOX! systems, plutonium ~Pu! systems, and 233U
systems. The benchmark problems are from the “Inter-
national Handbook of Evaluated Criticality Safety Bench-
mark Experiments”11 ~IHECSBE!. Detailed model
descriptions are not provided in this paper but are avail-
able in Sec. 3 of the appropriate evaluation in IHECSBE.

A total of 262 benchmark problems have been mod-
eled and analyzed in six groups. All KENO calculations
used continuous-energy cross sections based on ENDF0
B-VII Release 0 evaluations and have been run with a
sufficient total number of histories to achieve a standard
deviation of keff of 0.0005 or less. The performance of

the KENO code against these benchmark problems is
demonstrated in Figs. 8 through 13, in which the primary
Y-axis is the benchmark and KENO-calculated eigenval-
ues with 2s error bars. Generally, multigroup mode re-
sults are very similar to the continuous-energy-mode
results. The exceptions may be due to the inadequacy of
the resonance self-shielding treatment due to theory, lim-
itations of the 1-D unit cell models used for cross-section
processing, or unidentified differences between the
continuous-energy and multigroup cross sections. Iden-
tification of the actual reasons would be very time-
consuming, as it would require analyzing each case to
determine the need, if any, and the applicability of the
resonance self-shielding treatment and therefore is deemed
beyond the scope of this paper.

Table III lists the average ratios of total execution
times between the continuous-energy-mode and
multigroup-mode calculations for the six sets of calcu-
lations. Generally, the multigroup-mode calculations are
about five times faster.

The HEU group consists of 76 benchmarks. Most of
the calculated keff results are within 2s of the experimen-
tal values with three exceptions; these are within 3s.

The IEU group consists of nine benchmarks. All but
one benchmark keff value is within 2s of the experimen-
tal values. The last case is 4.1s different, which amounts
to ;0.2% difference. The reason for this is unknown andFig. 7. Forward and adjoint x~g! and ngSfg for 235U in 238-

energy-group structure.

Fig. 8. Calculated eigenvalues and numbers of sigma differ-
ences for HEU benchmarks.
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may be due to input problems since the other two cases in
the same series are calculated more accurately.

The LEU group contains 106 benchmarks. Most of
the calculated keff values are within 2s of the experimen-
tal values. One series of benchmarks designated by LEU-
COMP-THERM-039 has keff differences that are within
3s of the experimental values. In all LEU benchmark
cases that are calculated for this paper, one case stands
out with a very large difference. Case 104 of LEU-SOL-
THERM-17 shows ;6s difference between the bench-
mark keff value and the experimental value. Published
results of this series of benchmarks exhibit similar dif-
ferences in their calculations.11

The MOX group contains 36 cases, with most of the
calculated keff values within 2s of the experimental val-
ues. The rest of the cases are calculated within 3s of the
benchmark values.

The Pu group consists of 26 benchmarks. All but one
are calculated within 2s. The case Pu-MET-FAST, 008-1
is within 3s, which is ;0.2% different.

Fig. 9. Calculated eigenvalues and numbers of sigma differ-
ences for IEU benchmarks.

Fig. 10. Calculated eigenvalues and numbers of sigma differ-
ences for LEU benchmarks.

Fig. 11. Calculated eigenvalues and numbers of sigma differ-
ences for MOX benchmarks.

Fig. 12. Calculated eigenvalues and numbers of sigma differ-
ences for Pu benchmarks.

Fig. 13. Calculated eigenvalues and numbers of sigma differ-
ences for 233U benchmarks.
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The 233U group consists of nine benchmarks. All of
the calculated keff values are within 2s of the benchmark
values.

VI. SUMMARY

The theory and governing equations for Monte Carlo
simulation of a self-multiplying system by KENO codes
of the SCALE code system have been outlined. The so-
lution algorithm has been explained by providing details
of problem initialization, initial source distribution, and
collision site selection during tracking, collision, and fis-
sion treatment. Additional features such as biasing, dif-
ferential albedos, calculation of flux tallies as well as
standard deviations, geometry features, restart capabili-
ties, system analysis techniques with matrix, and 2-D
plots have been explained.

Performance of both continuous-energy-mode and
multigroup-mode calculations has been demonstrated
against experimental benchmarks for 262 cases that in-
clude HEU, IEU, LEU, MOX, Pu, and 233U systems. No
timing studies have been performed as they depend highly
on the type of machine and system resources available.
All problems were run on various nodes of the CPILE2
Linux cluster at Oak Ridge National Laboratory, which
uses the 64-bit Redhat Enterprise Linux version 4.7 op-
erating system. Each node has a minimum of 16 GB of
memory. In general, the multigroup mode uses two to six
times less CPU time than the continuous-energy-mode
calculations.
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TABLE III

Average Ratio of Total Execution Times

Continuous Energy0
Multigroup

HEU 6
IEU 2
LEU 5
MOX 6
Pu 6
233U 4
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