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ABSTRACT 

 
 Most experiments on neutron or heavy-ion cascade-produced irradiation of pure metals and 
metallic alloys demonstrate unlimited void growth as well as development of the dislocation structure.  In 
contrast, the theory of radiation damage predicts saturation of void swelling at sufficiently high irradiation 
doses and, accordingly, termination of accumulation of interstitial-type defects.  It is shown in the present 
paper that, under conditions of steady production of one-dimensionally (1-D) mobile clusters of self-
interstitial atoms (SIAs) in displacement cascades, any one of the following three conditions can result in 
indefinite damage accumulation.  First, if the fraction of SIAs generated in the clustered form is smaller 
than some finite value of the order of the dislocation bias factor.  Second, if solute, impurity or transmuted 
atoms form atmospheres around voids and repel the SIA clusters.  Third, if spatial correlations between 
voids and other defects, such as second-phase precipitates and dislocations, exist that provide shadowing 
of voids from the SIA clusters.  The driving force for the development of such correlations is the same as 
for void lattice formation and is argued to be always present under cascade-damage conditions.  It is 
emphasised that the mean-free path of 1-D migrating SIA clusters is typically at least an order of 
magnitude longer than the average distance between microstructural defects; hence spatial correlations on 
the same scale should be taken into consideration.  A way of developing a predictive theory is discussed.  
An interpretation of the steady-state swelling rate of ~1%/dpa observed in austenitic steels is proposed 



1.   INTRODUCTION 
 
 Efforts of many scientists for more than a half of a century have resulted in substantial 
understanding of the response of various materials to irradiation.  A spectrum of new radiation-induced 
phenomena emerged: void swelling, hardening, creep, growth, formation of ordered structures, 
modification of phase diagrams, etc.  The contribution of theory to understanding of the radiation-induced 
processes was significant.  For example, the development of the NRT standard for a common measure of 
the irradiation dose in different materials [1], the theory of homogeneous nucleation of point defect 
clusters [2,3], the Standard Rate Theory (SRT) of void swelling ([4-9]) and its further development for the 
inclusion of vacancy clustering in cascades, the BEK model [10], all these constituted and complemented 
each other in theory of radiation damage.  Two phenomena were predicted before their observation: void 
swelling by Greenwood, Foreman and Rimmer in 1959 [11] (discovered by Cawthorne and Fulton in 1966 
[12,13]) and radiation-induced segregation (RIS) by Anthony in 1972 [14] (first observed by Okamoto, 
Harkness and Laidler in 1973 [15]).  Also, Foreman [16] predicted in 1972 the existence of one-
dimensional transport of interstitial-type defects along close-packed crystallographic directions in metals 
under neutron irradiation to explain the void lattice formation, which was first observed by Evans in 
molybdenum in 1971 [17]. 
 
 From a critical point of view, however, the existing information was not understood to a level 
sufficient to provide the theory with a leading role in creating radiation-resistant materials.  Moreover, 
some observations were in contradiction with the SRT and BEK model.  These include higher swelling 
rates near grain boundaries than in the grain interior in the following cases: high purity copper and 
aluminium irradiated with fission neutrons or 600 MeV protons (see original references in reviews 
[18,19]); aluminium irradiated with 225 MeV electrons [20]; neutron-irradiated nickel [21] and stainless 
steel [22].  Furthermore, the swelling rate at very low dislocation density in copper is higher [23-25], and 
the dependence of the swelling rate on the densities of voids and dislocations is different [26], than 
predicted by the SRT.  It gradually became clear that something important was missing in the theory.  
There was evidence that this missing part could not be all the effect of solute and impurity atoms or the 
crystal structure.  Indeed, austenitic steels of significantly different compositions and swelling incubation 
periods exhibit similar steady-state swelling rates of ~1% per NRT displacement per atom (dpa) [27].  
And, although generally the bcc materials show remarkable resistance to swelling [27,28], the alloy V-
5%Fe showed the highest swelling rate of ~3% per dpa: 90% at 30 dpa [29]. 
 
 A key break-through in resolving some of the problems was due to formulation of the ‘Production 
Bias Model’ (PBM), first by Woo and Singh [30,31] and then, in its modern form, by Singh and co-
authors [32-37].  The PBM enjoys advantages of the BEK theory and, in addition, succeeds in explaining 
several striking observations, such as high swelling rates at low dislocation density and near grain 
boundaries [32-34]; higher swelling rates in materials with smaller grain size [35]; the recoil energy 
effect, i.e. higher swelling rates under neutron compared to Frenkel-pair-producing electron irradiation 
[36,37]; and the absence of void lattices in 1 MeV electron irradiated materials.  The framework of the 
model also accounts for the minimum swelling rate in Fe-Cr alloys at ~10 at% Cr [38] and the absence of 
copper precipitate growth in Fe-Cu alloys at temperature less than 300°C [39].  The model owes its 
success to the recognition of two distinguishing features of defect production by high-energy recoils: first, 
the formation of thermally-stable clusters of self-interstitial atoms (SIAs) directly in displacement 
cascades, fact revealed both experimentally [40-44] and in molecular dynamics (MD) simulations [45-48]; 
and, second, the one-dimensional motion of the SIA clusters [46,49-52].  A fine review of the key 
experimental data and their analysis leading to formulation of the PBM can be found in [18].  
 
 Perhaps more important than explanation of any particular effect was a change of the entire 
concept of radiation damage theory by recognising that qualitatively different mechanisms operate in 
materials under, say, electron irradiation when the initial damage is in the form of the Frenkel pairs only, 
and neutron irradiation, when the continuous production of thermally-stable glissile SIA clusters in 
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displacement cascades takes place.  (The sessile SIA clusters are also produced but in our view are not as 
important in the analysis presented here.)  Three comments can be made to facilitate appreciation of this 
concept.  First, the formation of the SIA clusters under neutron irradiation is qualitatively different from 
that during 1 MeV electron irradiation.  Indeed, the nucleation of the SIA clusters under electron 
irradiation is limited to relatively small irradiation doses, when the total sink strength of the lattice defects 
including immobilised SIA clusters is low enough for the rate of the association reactions between two 
SIAs to be sufficiently high.  In contrast, the cascade production of the SIA clusters operates at all times.  
Second, like the PBM, the BEK model also accounts for clustering of defects produced in cascades, but 
only vacancies in the form of small vacancy loops.  Consequently, it contributes to the description of the 
microstructure evolution, but only at low temperatures, when the vacancy loops are thermally stable.  In 
contrast, the SIA clusters are thermally stable at all temperatures of practical importance.  Thus, since 
BEK model does not consider production of SIA clusters, it cannot describe damage accumulation 
properly even at low temperatures because it cannot include the consequence of 1-D diffusion of SIA 
clusters.  Third, unlike the BEK theory, in the PBM it is crucial that some fraction of the SIA clusters is 
mobile and escapes to various sinks.  Otherwise, accumulation of an extremely high density of these 
clusters would occur, known as ‘Singh-Foreman catastrophe’ [32], leading to complete termination of 
any further evolution of the microstructure.  In contrast, in the BEK theory, the accumulation of a high 
density of vacancy clusters is only possible at sufficiently low temperature, due to their low thermal 
stability. 
 
 The successful applications of the PBM so far have been limited to low irradiation doses (<1 dpa) 
and pure metals (e.g. copper).  Furthermore, the PBM in its present form predicts that the void swelling 
should come to saturate at some high dose level.  This prediction originates from the mixture of one-
dimensional and three-dimensional reaction kinetics under cascade damage conditions, hence from the 
assumption lying at the heart of the model, i.e. the production of one-dimensionally (1-D) migrating SIA 
clusters in cascades.  More specifically, it stems from the fact that the interaction cross-section with a void 
is proportional to the void radius, r , for 3-D migrating vacancies and to r2  for 1-D diffusing SIA 
clusters.  As a result, above some critical radius, the latter becomes higher than the former and the net 
vacancy flux to such voids negative. 
 
 In contrast, experiments demonstrate unlimited void growth at high doses for a majority of 
materials and irradiation conditions (see e.g. [27-29]).  Thus, even the PBM fails to account for the most 
important observation under neutron or heavy ion irradiation.  Some specific mechanisms could operate in 
different materials, but the observed unlimited damage accumulation is a common feature in all materials.  
So, while the lattice type and the presence of solute and impurities atoms distinguish one material from 
another, there must be general reasons for the observed unlimited defect accumulation, common for all 
materials.  Revealing these reasons seems to be a central problem of the radiation damage physics and is 
the main objective of the present work. 
 
 To solve the problem we propose to reconsider the assumptions of the PBM which are proved to 
be reasonable at low doses but may be completely unrealistic at higher doses and for alloys.  It is 
assumed, for example, that the spatial distribution of voids and properties of void surfaces, the 1-D 
transport behaviour of SIA clusters and the evolution of dislocation microstructure remain unaltered 
during continuous irradiation to high doses.  However, even in the case of pure metals, complications may 
arise at higher doses because of continuous production of transmutational impurities during neutron 
irradiation.  The presence of impurity atoms and alloying elements is likely to modify the behaviour of 
voids as well as dislocations as sinks because of segregation of impurity atoms and affect the diffusivities 
of both 3-D migrating point defects and 1-D migrating SIA clusters.  Other complications may be due to 
development of spatial correlations between different type defects in the form of void super-lattices, 
dislocation walls, decoration of dislocations with loops, association of voids with second-phase 
precipitates and dislocations (see Section 4.1 for further discussion).  All these may lead to incorrect 
description of the reaction kinetics and thereby the nature and magnitude of damage accumulation.  It is 
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therefore vitally important to include realistic treatments of the issues mentioned above into the PBM and 
make it suitable for predicting the microstructure evolution and mechanical properties of technological 
materials under reactor relevant operational conditions. 
  
 The paper is organised as follows.  In Section 2, it is shown that voids can grow indefinitely if the 
production bias, i.e. the fraction of SIAs produced in cascades in the form of 1-D mobile clusters is 
smaller than a certain value of the order of the dislocation bias, but argued that this condition is unlikely to 
be satisfied for neutron irradiation.  In Section 3, the conditions for the onset of void lattice formation are 
analysed and it is argued that spatial correlations of voids with each other and with other defects must be a 
common feature in all materials and be always present under cascade irradiation.  The development of 
these correlations minimises the void-SIA cluster interaction intensity, and leads to screening of voids 
from the SIA clusters.  So, the void lattices represent just one type of spatial correlations possible and its 
very absence is an indication that correlations of other types prevail.  In Section 4, the theory is 
generalised for inclusion of the correlation-screening effects and is shown to explain the unlimited void 
growth and provide a simple interpretation of the universal swelling rates observed in stainless steels.  In 
Section 5, it is shown that development of solute and impurity atmospheres around voids, which repel the 
SIA clusters, may assist or even solely explain the unlimited void growth.  A summary and outlook are 
given in Section 6. 
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2. GROWTH AND SATURATION OF VOIDS DISTRIBUTED RANDOMLY 
 
 In this section, an equation for the void saturation radius in conditions when both the production 
and dislocation bias operate is derived.  It is assumed for simplicity that the primary damage produced in 
cascades of atomic displacements consists of 3-D mobile single vacancies and SIAs and 1-D mobile SIA 
clusters only.  The fraction of the SIAs in the latter, , represents the production bias factor in such a 
model.  The void growth is considered after the end of the void nucleation stage when the mobile defects 
interact only with existing voids of a number density 

ε i
g

N  and edge dislocations of a density ρ .  All defects 
are assumed to be distributed randomly over the volume.  Then, according to the PBM (see, e.g. in [35]), 
the swelling rate, dS / dφ  ( S ), is equal to the difference in the arrival rates of vacancies, 
single SIAs and SIAs in clusters to voids: 

= 4πr3N / 3

 
dS
dφ

= ε i
g 4πrN

4πrN + Zvρ
−

πr2N
πr2N + πρrd / 2

⎛
⎝⎜

⎞
⎠⎟
+ (1− ε i

g )
4πrN

4πrN + Zvρ
−

4πrN
4πrN + Ziρ

⎛
⎝⎜

⎞
⎠⎟

, (1) 

 
where  is the irradiation dose in dpa, which takes into account the fraction of defects that 
survive intra-cascade recombination ( ,  being the fraction of point defects recombining 

during the cooling stage of cascades [34]),  and  are the capture efficiencies of edge dislocations for 
vacancies and single SIAs, respectively, and  is the dislocation capture radius for the SIA clusters.  In 
the right-hand side of equation (1), the swelling rate is divided into two terms proportional to the fractions 
of 1-D and 3-D migrating SIAs, respectively.  If all the SIAs were produced in the clustered form and 
migrated 1-D, then only the first term would exist and the swelling would be terminated when the void 
mean radius reached the value 

φ = εsurvφ
NRT

εsurv = 1− ε r

Zv

rd

2

ε r

iZ

rm0 = πrd / Zv  [33].  If, on the other hand, no 1-D migrating clusters are 
formed, as under electron irradiation, then only the second term would be present and unlimited void 
growth would be observed, with a rate proportional to the dislocation bias factor , which 
originates from a stronger interaction of single SIAs than vacancies with edge dislocations [11]. 

B = Zi / Zv −1

 
 In general, the two terms interplay and the swelling rate becomes negative for voids with radius 
bigger than the following critical value 
 
 
 rm = rm0F B / ε i

g( ), (2) 

 
where 
 

 F(x) =
2 1+ x( ) / 1+ B( )

1−α ± 1−α( )2 + 4α 1− γ x( )2⎡
⎣

⎤
⎦

, (3) 

 
α = 4πrm0N / Ziρ  and γ 2 = 1− ε i

g( )/ 1+ B( ).  The parameter α  is the ratio of sink strengths of voids 
and dislocations for 3-D migrating defects in the saturation regime.  Note that 

, i.e. with a good accuracy it is equal to the same ratio for 1-D migrating 
defects.  Equation (2) represents general solution corresponding to zero swelling rate.  There can be no, 
one or two solutions for the saturation radius, depending on the values of the parameters 

α = πrm0
2 N / πrd ρ( / 2)1+ B( )

α  and .   ε i
g
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 So, when α ≥ 1 (voids are dominant sinks for both 1-D and 3-D migrating defects), there is no 
solution, corresponding to unlimited void growth, if , or one solution, if .  In the latter 
case, the critical radius is given by the ‘+’ sign in equation (3) and increases with increasing B , 
approaching infinity when .  Figure 1 shows this dependence for 

ε i
g ≤ γ B ε i

g > γ B
/ ε i

g

ε i
g →γ B α =10 and B =0.04.  In this 

figure, regions of void dissolution and of limited and unlimited void growth are indicated. 
 

 
Figure 1.  The dependence of the saturated void radius on the ratio of the dislocation bias and the 

fraction of SIAs produced in the form of 1-D migrating SIA clusters, calculated for α =10 
and B =0.04. 

 
 
 When α < 1 (edge dislocations are dominant sinks), the dependence of the steady-state void 
radius on the ratio of the dislocation and production bias factors is shown in figure 2.  (See also figure 3 
for more calculation results.)  As seen from figure 2, there is no swelling saturation if the fraction of 1-D 
diffusing SIAs is smaller than some finite value: ε i

g < 2Bγ / α1/2 +α−1/2( ).  For , there is one 

stable solution, while for the intermediate values of , there are two, one stable and one unstable, 
solutions.  The stable solutions correspond to ‘+’ and the unstable to ‘-’ sign in equation (3).  The unstable 
solution defines a dividing line between regions of dissolution and unlimited void growth. 

ε i
g > Bγ

ε i
g

 5



 
Figure 2.  Same as in figure 1 but for α =0.1. 

 

 
Figure 3.  Same as in figure 1 but for different α . 
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 Summarising the results presented above, we conclude that an unlimited growth of randomly 
distributed voids is possible if the fraction of 1-D diffusing defects is smaller than some finite value of the 
order of the dislocation bias factor, B : 
 

 ε i
g <

Bγ , α ≥ 1,

Bγ
2

α1/2 +α−1/2 , α < 1.

⎧
⎨
⎪

⎩⎪
 (4) 

 
 It is known that the value of  depends on the recoil energy and, according to MD simulations, 
is ~0.6 in iron and copper for the primary knock-on atom energy ~10 keV [47].  These simulations are of 
nanosecond scale and the defects produced are still confined within a small region of ~10 nm size, so that 
the annealing that follows should result in additional clustering and recombination reactions that might 
change the fraction .  There seem to be a scatter of opinions on the value of the dislocation bias, 

ε i
g

ε i
g B .  

Estimates produced using elasticity theory considered the edge dislocation-point defect interactions 
introduced by Cottrell (the first order size effect) [53] and Eshelby (the stress-induced interaction) [54] 
and resulted in B ≈ 0.2÷0.5 [55,56].  If these values were correct, the dislocation bias would be able to 
compete with the production bias and explain the unlimited void growth.  However, fitting the SRT to 
available experimental data on swelling in electron-irradiated materials requires B  to be an order of 
magnitude smaller, ~0.02 [37,57].  It is generally believed that the SRT is quite capable of describing void 
swelling in this case, so that the small values of B  should deserve more trust.  Hence, it is unlikely that 
condition (4) is satisfied under cascade-produced irradiation.  To elucidate the reasons behind the 
discrepancy between different approaches for estimating the dislocation bias, this area should be revisited. 
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3. ONSET OF SPATIAL CORRELATIONS DUE TO 1-D MIGRATING SIA CLUSTERS 
 
 Another possibility for the unlimited void growth can be provided by development of spatial 
correlations either between voids or between voids and other lattice defects, such as dislocations and 
precipitates, that shadow voids from the SIA clusters.  Below, in the next two sections, we argue that this 
must be the case.  The analysis is started with specific but already well-known spatial correlations 
between voids in the form of a void lattice.  This phenomenon is observed in a number of bcc metals (Mo, 
W, Nb, Ta), the fcc metals Ni and Al, the hcp Mg, and some alloys, e.g. stainless steel, under neutron and 
heavy-ion irradiations (see e.g. in a review [58]).  In an accompanying paper [59] the conditions for the 
onset of void ordering in metals under cascade irradiation are analysed by using a mathematical approach 
of Helbing and Vicsek [60] developed for the description of lane formation in pedestrian crowds.  To 
make the present paper self-consistent, below the method is briefly outlined and the main conclusions are 
described. 
  
 The physical model is the same as described in the beginning of the previous section.  With the 
total void density assumed to be constant, the local void density changes due to voids leaving and entering 
the local region and hence obeys a continuity equation 
 
 

 
∂N
∂φ

= −div NV − D∇N( ), (5) 

 

where  is the mean velocity and V = 〈 ν j Δ jj∑ 〉 D =
1
6
〈 ν j Δ j

2
j∑ 〉  is the diffusion coefficient of voids, 

defined locally.  Here,  for the components corresponding to collisions of voids with 
vacancies, single SIAs and SIAs in clusters, respectively,  are the collision frequencies, 

j = v, i, cl
ν j = pj /ΩN Ω  

being the atomic volume,  are the vectors of void displacements after collisions and the averaging is 
performed over voids in the local area.  In [59], the expressions for the void velocity and diffusion 
coefficient through the microstructure parameters and the basic conditions for destabilisation of 
homogeneous solution, , of equation (5) are derived.  For this the linear stability analysis is applied.  
Using the ansatz  , where 

Δ j

hom

hom + %N exp(
N

N = N iqR + aφ) R  is the radius vector, q  is a wave vector and 
 is the amplification factor, the most favourable conditions for destabilisation are found to be for a wave 

vector satisfying the following conditions 
a

 
 , (6) r << q−1 << L3D

  
 q [bk ,bk ' ] , (7) 
 
where and  ( ) are any two different Burgers vectors of the SIA clusters and 

 is the mean free path of 3-D migrating point defects.  These conditions define 

the void movement leading to formation of close-packed planes  of voids, which is consistent 
with the observed isomorphism of the void and host lattices.  Note that the mean-free path of 1-D 
migrating clusters,  (see, e.g. in [61]): 

kb

4π
'kb

Zvρ

L

'kk ≠

)−1/2L3D ≈ rN +(

1D

bk ,bk '⎡⎣ ⎤⎦
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 L1D = πr2N + πρrd / 2( )−1
, (8) 

 
does not enter explicitly the conditions (6) and (7).  The destabilisation of the homogeneous solution due 
to condition (7) is only possible, however, if the concentration fields of the SIA clusters around distant 
voids overlap, which require big .  L1D >> L3D

  
 The conditions for the onset of void ordering are then derived, which can be written using 
parameters defined in the present paper and assuming Zi = Zv = 1 as 
 
 

 
4π r3

3Ω
>

nm
3

1+
1

α r / rm( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1+
2 − ε i

g

ε i
gm

1+α r / rm( )2
1+α r / rm( )

r
rm

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (9) 

 
where n=4 for the bcc and n=6 for the fcc crystal lattice is the number of different Burgers vectors and m 
is the mean number of SIAs in a cluster.  Equation (9) predicts that, for low enough dislocation density, 
spatial correlations between voids should always be present, except for very early stages of irradiation, 
when voids are too small, of the order of ten vacancies (see figure 1 in [59]).   
  
 The spatial correlations between voids are possible, of course, if correlations with other defects of 
a higher density do not prevail.  We believe that we know why voids sometimes form super-lattices, 
although not all aspects of the process are yet well understood, e.g. the reason for low swelling rates or 
even saturation of swelling observed in void lattices.  So, the real question is why it does not happen every 
time?  We propose that spatial correlations always develop under cascade damage conditions.  The void 
lattices represent only one type, which is realised when the void number density is high enough.  The very 
absence of a void lattice must be an indication of the existence of correlations of voids with other defects.  
At lower void density, spatial correlations with other defects, e.g. precipitates and dislocations, are 
formed.  Which correlations prevail depends on the densities of different defects as well as some other 
properties as also discussed in the next section.  In the analysis presented above it is assumed that voids 
are correlated with each other rather than with other elements of microstructure.  For a system containing 
voids and edge dislocations, this assumption is satisfied if the probability that an SIA cluster is generated 
between two voids is higher than that between a void and a dislocation, that is, if [59] 
 
 
 . (10) r2N > ρrd

 
It is proposed in [59] that this is the reason why the void lattice formation is observed at high void and 
low dislocation density, rather than due to the limitations imposed by equation (9).  This also implies that 
other microstructure features, e.g. dislocations and precipitates, must be involved in shadowing voids 
from the 1-D mobile SIA clusters and establishing spatial correlations.  So, for example, considering void 
movement in the presence of a gradient of dislocation density and representing the spatial dependence of 
the dislocation density in the form  , an equation for the amplification factor can 
be obtained as 

ρ = ρhom + %ρ exp(iqdR)

 
 

 
 
a =

%ρ
%N

qd
2Ad

2 exp i qd − q( )R⎡⎣ ⎤⎦ − q2D , (11) 
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where  is a function of microstructure, such as void and dislocation densities, and other parameters.  
The first term in the right-hand side of equation (11) is positive, thus providing most favourable 
conditions for destabilisation of the homogeneous solution, , if q

Ad

ρhom = qd , i.e. when void positions 
correlate with that of dislocations. 
  
 This section can be summarised as follows: spatial correlations between voids and either voids or 
other microstructure elements must almost always be present under cascade-damage conditions.  The 
prevalence of specific spatial correlations, e.g. between voids or between voids and other defects, such as 
precipitates and dislocations, should be governed by corresponding defect densities.  In the next section 
we argue that the development of such correlations must be one of the key mechanisms responsible for the 
unlimited damage accumulation observed in reactor materials. 
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4. EFFECT OF CORRELATIONS ON SWELLING RATE 
 
4.1. Background  
 
 It follows from the preceding section that a predictive theory of damage accumulation under 
cascade-damage conditions must account for the effect of spatial correlations on screening of voids from 
the SIA clusters.  It is worth mentioning that already in 1970 serious doubts were expressed by Farrell and 
Houston [62] on the validity of the void nucleation theories based on homogeneous nucleation.  Later, 
Singh and Leffers [23] concluded that a new concept is needed for treating the problem of defect 
accumulation under cascade damage conditions, and then Krishan et al. [63] made first attempt to extend 
the theory beyond the conventional mean-field approach.   
 
 Experimental evidence on association of large voids with various precipitates (G, η, Laves, etc.) 
[12,64-68] and growth of voids in the compression side of edge dislocations (see e.g. [62,69-70]) has been 
known for a long time.  More recent evidence is due to Kozlov, Portnykh et al. [71,72] and Xu et al. [73].  
In the latter work, association between copper precipitates and vacancy clusters was revealed, which we 
propose can be due to screening of voids from the SIA clusters by the precipitates.  Kozlov, Portnykh et 
al. [71,72] observed spatial correlations in 20% cold-worked 16Cr–15Ni–2Mo–2Mn austenitic steel 
irradiated up to ~100 dpa irradiation dose in a BN-600 fast reactor in the temperature range from 410 to 
600ºC.  Transmission electron microscopy revealed voids of three main types: a-type associated with 
dislocations, b-type associated with G-phase precipitates and c-type distributed homogeneously in the 
matrix.  The c-type voids were the smallest in size and made practically no contribution to swelling, while 
the a-type voids were the largest.  Note the high irradiation doses in these experiments, which might be 
the reason why the association was detectable.  As argued in the previous section, such spatial correlations 
must be a common feature in all materials under cascade-irradiation conditions and present even at low 
irradiation doses.  The difficulty of observing them in most cases is due to much larger scale of 1-D than 
3-D correlations.  Indeed, common perception restricts spatial correlations to those developing on a scale 
of the order of the average distance between defects, , which is typically ~100 nm.  So, in a void 
lattice, the presence of correlations is obvious.  In contrast, the mean-free path of 1-D migrating SIA 
clusters, , equation (8), is typically ~μm or even longer, especially at low irradiation dose, when the 
size and the number density of defects are still small.  As irradiation proceeds,  decreases due to 
increase of the defect density and/or size, getting closer to .  This is one of the reasons why spatial 
correlations at high irradiation dose should be easier to detect. 

L3D

L1D

L1D

L3D

 
 The development of spatial correlations of voids with precipitates, which repel the SIA clusters, 
seems quite natural: the nucleation and survival of a void in the vicinity of and in one of the close-packed 
directions from a precipitate should be much easier than in the matrix away from any defects, because of 
partial or complete shadowing of the void by the precipitate from the SIA clusters.  A small precipitate 
with no long-range strain field would block only one crystallographic direction for the arrival of SIA 
clusters to the void.  This may significantly enhance the formation rate of void nuclei, since it is highly 
sensitive to the difference between vacancy and interstitial fluxes.  However, it will be shown below that 
this would increase the maximum void size only slightly.  Simple geometrical screening would allow a 
large precipitate to block, on average, up to half of all the directions.  If, in addition, the precipitate repels 
the SIA clusters due to long-range strain field, the void would not interact with the SIA clusters at all until 
its size exceeds the range of strain field.   
 
 The growth of voids in the compression sides of edge dislocations is another possibility of void 
screening, although it appears initially more difficult to justify due to the possibility of dislocation climb, 
which would break the void-dislocation correlation.  Clearly, this situation is not simple and requires 
detailed investigation, which takes into account the influence of elastic interaction between voids and 
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dislocations on dislocation climb.  In any case, repulsive barriers for the SIA clusters due to precipitates 
and compression regions of edge dislocations have to be introduced into the theory.   
 
 To reveal the effect of repulsive barriers and screening of voids on the void growth, void swelling 
is considered below in three situations: (a) in the absence of repulsive barriers, (b) with repulsive barriers 
but in the absence of spatial correlations and (c) with spatial correlations present.  Random distribution of 
dislocations and repulsive barriers is assumed in all cases and dislocation bias is neglected for simplicity. 
 
4.2. Void swelling in the absence of repulsive barriers  
 
 For the situation (a), i.e. in the absence of repulsive barriers and randomly distributed voids, the 
swelling rate is described by equation (1), which we simplify by neglecting the dislocation bias, that is by 
taking ,  Zi = Zv

 

  
dS
dφ

= ε i
g α r / rm( )

1+α r / rm( )−
α r / rm( )2

1+α r / rm( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ε i

g p3V − p1V( ). (12) 

 
This equation defines  and , the probabilities that a 3-D migrating vacancy and a 1-D migrating 
SIA produced in a cascade are absorbed by a void.   

p3V p1V

 
4.3. Void swelling in the presence of repulsive barriers not correlated with voids   
 
 For situation (b), let us define the probability that a cluster is absorbed by a void, that is  in 
equation (2).  Consider the probabilities that an SIA cluster is produced between two sinks/barriers of 
particular types.  These are proportional to the products of the cross-sections of those sinks/barriers:  
for repulsive barriers (=  for precipitates or 

p1V

σ bar

σ ppt ≡ πrppt
2 Nppt ∝ ρ  for compression regions of edge 

dislocations),  for voids and  for attractive part of dislocations.  These 
proportionalities are collected in table 1, together with the total sum, which is the normalising constant for 
the corresponding probabilities, and the partial sum for voids.  The total is obtained as a sum of all values 
from (i) to (vi), while the partial value for the SIA clusters interacting with voids only is the sum of (ii), 
(iii) and one half of (v).  The half occurs because half of the SIA clusters produced between a void and a 
dislocation must be captured by the dislocation.  The ratio of the partial to the total equals the probability 
that a cluster is absorbed by a void, .  In this way, the swelling rate is obtainable from equation (12) 
by replacing  

σV = πr2N

p1V

σ d = πρrd / 2

 
 
  

 p1V →
σV σ d + 2σ bar + σV( )
σ d + σ bar + σV( )2

, (13) 

 

 p3V → p3V 1−
σ ppt

2

σ d + σ ppt + σV( )2
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. (14) 
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Table 1.  Determination of probabilities of different reactions for 1-D mobile SIA clusters in a 
system containing voids, dislocations and repulsive barriers (subscript ‘bar’).  

 
i Two barriers σ bar

2  
ii A void and a barrier 2σVσ bar  
iii Two voids σV

2  
iv Two dislocations σ d

2  
v A dislocation and a void 2σ dσV  
vi A dislocation and a barrier 2σ dσ bar  
 Total sum σ d + σ bar + σV( )2  
 Partial sum for voids σV σ d + 2σ bar + σV( ) 

 
 Equation (13) has already been explained above, while equation (14) accounts for the SIA clusters 
captured between two repulsive barriers.  In the framework of the model considered, where high vacancy 
super-saturation exists, such clusters must eventually recombine with freely migrating vacancies.  The 
factor in the brackets of equation (14) excludes the corresponding fraction of vacancies from reactions 
with voids.  The resulting equation for the swelling rate is 
 

 
dS
dφ

= ε i
g p3V

1+ σV + 2σ bar( )/σ d

1+ σV + σ bar( )/σ d⎡⎣ ⎤⎦
2 1− p3V

−1 −1( )σV

σ d

⎡

⎣
⎢

⎤

⎦
⎥ . (15) 

 
Taking into account that  and σV /σ d = α r / rm( 2) p3V = α r / rm( )/ 1+α r / rm( )⎡⎣ ⎤⎦  (see equation (12)), 
one finally obtains 
 

 
dS
dφ

=
ε i

g p3V 1− r / rm( )
1+α r / rm( )2 + σ bar /σ d

1+
σ bar /σ d

1+α r / rm( )2 + σ bar /σ d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (16) 

 
 As can be seen from this equation, the steady-state saturation radius of voids is the same as 
without repulsive barriers.  The effect of randomly distributed barriers is a decrease in the swelling rate by 
enhancing recombination of the SIA clusters with freely migrating vacancies.  The swelling rate tends to 
zero in the limit , e.g. for large number density of precipitates.  Thus, the presence of randomly 
distributed repulsive barriers in the matrix decreases the swelling rate but does not affect the void 
saturation radius.  

σ bar →∞

 
4.4. Void swelling in the presence of correlations   
 
 Situation (c), when spatial correlations exist, is similar to situation (b).  The only difference is in 
the cross-sections of the repulsive barriers and voids.  Equation (15) is still valid provided that correct 
cross-sections are used.  Let us introduce parameters ηbar  and ηV , which we call ‘correlation-screening 
factors’, such that the products ηbarσ bar  and ηVσV  give the correct cross-sections.  The case ηV = 0  
corresponds to complete screening of voids from the SIA clusters and ηV = 1 to the case of randomly 
distributed voids, and similarly for repulsive barriers.  By substituting these into equation (15), one 
obtains a generalised version of equation (16) 
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dS
dφ

= ε i
g p3V

1+ηVα r / rm( )2 + 2ηbarσ bar /σ d

1+ηVα r / rm( )2 +ηbarσ bar /σ d
⎡
⎣

1−ηV
r
rm⎤

⎦
2

⎛

⎝⎜
⎞

⎠⎟
. (17) 

 
s can be seen from this equation, the screening of voids results in an increase of swelling rate and the A

saturation radius,  %rm , which is defined by rescaling: 
 

 %rm = rm /ηV . (18) 

It follows from this equation that unlimited void growth is possible if voids are completely 
reene

 
 
sc d from the SIA clusters, i.e. when ηV = 0 .  This can be realised, e.g. when voids grow near big 
precipitates with long-range strain field, repulsive for the SIA clusters, or in the compression sides of edge 
dislocations.  The voids can grow then until their size exceeds the range of the repulsive field. 
 

 
Figure 4.  Dependence of swelling on irradiation dose calculated using equation (17) for N =1022 m-3, 

rm =5 nm, ε i
g = 0.2 , ηbarσ bar /σ d = 1, εsurv = 0.1  and different values of the correlation-

screening factor of voids, ηV .  The curve with full squares has been calculated for 
correlations developing with irradiation dose (see text). 

 
Figure 4 presents the dependence of swelling on irradiation dose calculated using equation (17) 

r 
 
fo N =1022 m-3, rm =5 nm, ε i

g =0.2, ρ ≈ 6 ×1014 m−2  (so that α =1), ηbarσ bar /σ d = 1 and different 
valu of the corre tion-scree g factes la nin or of voids, ηV .

on 
  The curv with esponds to the 

case, when spatial correlations develop with irradiati dose as: η = 1−φNRT /10  when φNRT ≤ 10  and 
e 

V

full squares corr

ηV

εsu

from e

= 1 when φNRT > 10 .  The survival fraction of defects i taken t
0.1  (see  after equation (1)) and the initial void radius was 0.25 nm.  As can be seen 

gure, with 

n cascades was o be equal to 

rv =
 th

 d itionefin
 fi ηV =1, it takes just several dpa for the swelling to saturate at a value corresponding 
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to the void saturation radius rm .  For ηV =0.5, the saturation radius is twice as high and it takes longer for 
the saturation to occur.  F  or ηV =0, there is no saturation, i.e. voids grow indefinitely and the swelling rate 
is proportional t ε i

g  (see further discussion below in relation to equation (23))o .  
 
4.5. Calculation of correlation-screening factors   
 
 Now let us calculate the parameters ηbar  and ηV

Nppt

 for the case, when all voids are assumed to grow 
in the immediate vicinity of, and in the close-packed directions from, precipitates.  The precipitate number 
density must therefore be higher than that of voids: .  The parameter ≥ N ηbar = ηppt  is equal to the 
total cross-sections of precipitates averaged over all  close-packed crystallographic directions from 
which the SIA clusters can arrive, and normalised to that for the random distribution of defects.  If voids 
are smaller than precipitates, r , then 

2n

rppt≤

ηppt

 

 =
2n

1
σ ppt

2nπrppt
2 Nppt − πr2N( ). (19) 

 
 The first term in brackets is the total cross-section of precipitates in all  directions.  The 
second term stands for the reduction of the precipitate cross-section by screening due to voids and is equal 
to the total cross-section of voids in one direction, because a void can shadow a precipitate from only one 
direction.  In addition, large voids, , can block up to n , i.e. half, of all directions for the arrival 

of the SIA clusters.  We introduce a function 

2n

r rppt>>

ϑppt r( ): ϑppt r ppt= r( )= 1  and limr→∞ϑppt r( )= n , for the 

description of this effect.  Finally, 
 

 ηppt

−
1

2n
=

1
r2N

rppt
2 Nppt

, r ≤ rppt ,

1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=
1

 (20) 

−
ϑppt r( )

2n
N

Nppt

, r > rppt .

 
The correlation-screening factor of voids is derived in the same way: 
 

 ηV

−
ϑV rppt( )

2n
, r ≤ rppt ,

1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (21) 
rppt

2

r2−
1

2n
, r > rppt .

 
 There are two differences between equations (20) and (21), however.  First, the number densities 
of voids and precipitates do not enter equation (21) since each void is affected by one precipitate; hence 
both terms in the brackets of equation (19) are proportional to the void number density, that is 

.  Second, unlike voids, precipitates, especially large ones, may have long strain fields, 

which repel the SIA clusters.  Hence, the function 

2nπr2N − πrppt
2 N

ϑV rppt( ) may be different from unity even at , 

but we did not take this into account in equation (21).  And what is more important, a void growing in the 
repulsive stress field can be shielded from the SIA clusters from all directions: 

r > rppt
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 limrppt →∞ϑV rppt( )= 2n . (22) 

 
This would create the possibility for voids to grow until their size exceeds the range of the stress field.  
This conclusion should remain valid for voids in the compression side of edge dislocations as well.   
 
 
4.6. Interpretation of the universal swelling rate observed in stainless steels   
 
 Before concluding this section, we would like to point out that the present analysis provides for 
the first time an interpretation of the steady-state swelling rate of 1%/(NRT dpa) observed in austenitic 
stainless steels of different compositions [27].  Note that the swelling rate described by equation (17) is 
maximum if voids are completely screened from the SIA clusters, i.e. when ηV = 0 , and if the 
recombination of the SIA clusters with vacancies is negligible.  If these conditions hold, then the swelling 
rate is 
   

  
dS

dφNRT ≈ εsurvε i
g 4πrN

4πrN + Zvρ
≈

1
2
εsurvε i

g . (23) 

 
 Here we replaced the ratio of sink strengths by one half, since, typically 4πrN ≈ Zvρ  in the case 
considered.  Let us now make some estimates.  The survival fraction of defects in cascades can be 
estimated as =0.1, which is the value of ~0.2 calculated by MD [47,48] divided by two.  The factor of 
two is an estimate for additional recombination of defects during the annealing stage of cascades.  Then, 
the observed swelling rate of 1%/(NRT dpa) [27] can be explained if , which is close to the 
results of MD simulations of cascades [48] and to the best fit value obtained in [37] to reproduce swelling 
in neutron-irradiated Cu at low irradiation dose.  This analysis is also supported by calculations presented 
on figure 4, where the curve with full squares illustrates a possible scenario of void swelling in stainless 
steels, when spatial correlations develop with irradiation dose.  Thus, the universal steady-state swelling 
rate observed in austenitic stainless steels can be interpreted as equal to the half of the production bias, i.e. 
half of the fraction of SIAs that survive inter-cascade recombination and are produced as 1-D mobile 
clusters. The independence of the swelling rate on steel composition can be explained by the 
independence of the cascade process on the composition: the final defect structure at the end of the 
cascade process is defined in the early stages of a cascade when the energies involved are still much 
higher than the differences in various binding energies of defects with solute atoms.  

εsurv

ε i
g ≈ 0.2

   
 The correlation of the incubation period of swelling with the formation of the dislocation network 
observed [27] may be connected with an increase of the volume for the nucleation of voids, where voids 
are screened from the SIA clusters.  Higher dislocation density also corresponds to smaller dislocation 
climb rate, which might be essential for preserving void-dislocation correlations.  In this context it is 
worth mentioning that, at relatively high temperature, prior cold-work is observed to increase swelling 
rates both in pure iron and austenitic alloys, by accelerating the void nucleation and thereby shortening the 
duration of the transient period of swelling  [74,75]. 
 
 Summarising this section, we conclude that spatial correlations between voids and other defects 
must be an effective mechanism for void swelling, or, more exactly, for maintaining the operation of 
production bias at large void size. 
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5. INFLUENCE OF SOLUTE ATMOSPHERES 
 
 The RIS of alloying elements was first observed by Okamoto et al. [15] near voids in a high-purity 
18Cr-8Ni-1Si stainless steel during in-situ bombardment in a high-voltage electron microscope.  It has 
been observed since in many other materials irradiated with different energetic particles near sinks of point 
defects such as voids, dislocations and grain boundaries.  It is also responsible for the radiation-induced 
modification of phase diagrams of alloys [76,77].  It changes not only the stability of second-phase 
precipitates observed under thermal-equilibrium conditions but also their composition and, in some cases, 
leads to appearance of new phases.  It also affects mechanical properties of alloys by changing chemical 
composition near dislocations and grain boundaries.  In addition, it has been found to affect accumulation of 
radiation damage, for there is correlation between swelling rates and partial diffusion coefficients of impurity 
atoms [78,79].  Extensive observations of RIS and precipitation that precedes and accompanies void swelling 
led Garner [80] to a hypothesis that micro-chemical evolution is one of the major factors that controls the 
onset of swelling in stainless steels.  Thus, RIS is a common phenomenon that influences microstructure 
evolution of structural materials under irradiation.  

 
If the primary damage is in the form of Frenkel pairs, the main effect of RIS on damage 

accumulation is to change the absorption/emission rates of mobile point defects by different sinks [81-83].  
The change of sink strength due to RIS is generally different for vacancies and single SIAs thus leading to 
appearance of an additional bias.  Marwick [83] estimated theoretically that the RIS-induced bias factor of 
a free surface in a foil of Fe-Cr-Ni alloy is ~10%, which is of the order of, or even higher than, the 
dislocation bias (see discussion of the value of the latter at the end of Section 2).  Thus, damage 
accumulation in irradiated alloys has to be different from that in pure metals.   
  
 Further development of these ideas in the framework of the SRT was undertaken by Golubov et 
al. [84,85].  The main difficulty encountered was the fact that RIS takes place near all sinks of point 
defects, and thus affects them in a similar way and produces similar changes in sink efficiencies (  and 

 in equation (1)).  Hence, at a first sight, the overall effect, which is proportional to the difference of 
sink efficiencies, 

Zi

Zv

B , must be small.  It was recognised that this is only true if the influence of dislocation 
climb on RIS is neglected.  So, according to the theory proposed, in an alloy, the swelling rate has the 
same functional form as in a pure metal but with an effective bias factor, , which, to a first 
approximation, is a sum of the bias factors due to the dislocation stress field, 

Beff

B , and the RIS near voids, 
, and dislocations, : BV

RIS Bd
RIS

 
 . (24) Beff = B + Bd

RIS − BV
RIS

 
In this equation,  depends on the rate of dislocation climb, and hence on the swelling rate, Bd

RIS &S , and 
 of a small void is equal to  of immobile dislocation, as shown in [85]: BV

RIS Bd
RIS

 

 . (25)  Bd
RIS( &S → 0) = BV

RIS

 
 Thus, if the dependence of the dislocation bias factor on the climb velocity is neglected, the 
effective bias would be equal to the dislocation bias factor.  It was proposed in [84,85] that, for the 
swelling rates observed, the segregation bias factor of dislocations should be negligible compared with 
that of voids: B d

RIS << B V
RIS , since the RIS profiles at moving dislocations should be much flatter. 
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Figure 5. Concentration profiles of a component A in a binary AB alloy, C , normalized by the initial 
concentration , calculated near a plain grain boundary for different velocities of the boundary motion.  
The boundary moves from the left to the right. 

A

CA0

 
 The conjecture about the absence of segregation profiles at moving dislocations is supported by 
the observations of the RIS profiles near moving grain boundaries (see e.g. [86]).  A theoretical analysis 
of RIS profiles in a substitutional binary alloy of A and B components near a moving planar grain 
boundary was performed in [87] using the segregation model of Wiedersich et al. [88] in the framework of 
the SRT.  Some results on the steady-state concentration profile of A component, , normalised by the 
initial concentration C , calculated for different velocities of the boundary motion, V , are shown in 
figure 5.  In this figure, the distance 

CA

A0

x  from the boundary is normalised by the mean distance between 
sinks for point defects, k−1 , where k2  is the total sink strength for 3-D migrating point defects.  
Typically, m-2, so that k2 = 1014 kx = 1  corresponds to x =100 nm.  The velocity V  is normalised as 
U = Vk / 2G , where G  is the damage rate.  As can be seen from the figure, the RIS profile depends 
significantly on the boundary velocity and disappears when U ≈ 1. 
  
 For a moving dislocation or growing void, the analysis is more complicated.  Some estimates can 
be made, however, by assuming that the results obtained for the moving grain boundary can be used for 
other sinks.  The swelling rate depends on the velocity of edge dislocation climb, V , as d

 
 , (26)  

&S = Vd ρb
 
where  is the Burgers vector length of dislocations.  Assuming , which is frequently the case, 
e.g. in austenitic stainless steels [89], one obtains for the normalised velocity of dislocation 

b ρ = k2 / 2
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 .  (27)  Ud ≈Vd k / 2G = &S / kbG
 
For m-2, nm and k 2 = 1014 b ≈ 0.3 &S / G ≈ 1%/dpa [27,89], the normalised velocity is U .  
According to figure 5, the segregation for such a velocity must be very small.  Similar analysis can be 
performed for voids.  The swelling rate is connected with the velocity of the void surface movement, 

, via the following equation 

d ≈ 3

 VV = &r
 
 , (28) &S = VV kV

2r
 
where  is the sink strength of voids.  Assuming , one obtains kV

2 = 4πrN kV
2 = k2 / 2

   
  
 . (29)  UV ≈VV k / 2G = &S / krG
 
 
It follows from equations (27) and (29) that U , and so U  for V ≈Udb / r V <<Ud r >> b .  Hence, the 
effect of void surface motion on segregation profiles must be negligible. 
 

Similar or even bigger effect of RIS on void growth may be expected in neutron irradiation.  The 
migration properties of the SIA clusters are known to be sensitive to the presence of lattice imperfections 
and so the cluster interaction with lattice defects (voids, dislocations, etc.) must be strongly affected by 
enrichment/depletion by solute elements.  If solute atmospheres develop near dislocations as well as near 
voids and both repel the SIA clusters, the result would be a decrease in the swelling rate due to enhanced 
recombination rate of SIA clusters with vacancies, which can be a strong effect.  If, on the other hand, 
only voids are affected by RIS and repel the clusters, the effect would be similar to decrease of the 
correlation-screening factor,  , due to shadowing effect.  The spatial correlation and screening 
would then be due to dispersed solute atoms instead of precipitates or dislocations.  In the limiting case of 
complete screening of voids distributed randomly over the volume, the swelling rate can be described by 
equation (17) with  , 

 
 and the cross-section of repulsive barriers of precipitates and voids, 

ηV → 0

ηppt = 1ηV = 0
σ bar = σ ppt + σV : 
 
 

 
dS
dφ

= ε i
g p3V

1+ 2σ bar /σ d

1+ σ bar /σ d[ ]2
. (30) 

 
 
 The irradiation doses required for the development of RIS profiles are known to be in the same 
range as for the incubation period of swelling, i.e. from about one to several tens of dpa.  Thus, the 
dependence presented in figure 4 by full squares (see description in next paragraph after equation (18)) 
can also be used for schematic illustration of the effect of RIS on swelling rate.  Finally, we conclude that 
the effect of RIS on swelling is similar to the screening effect from precipitates and dislocations and may 
even solely explain unlimited void growth in the framework of PBM. 
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6. SUMMARY AND OUTLOOK 
 
 Research over more than half of a century has resulted in substantial understanding of the 
response of various materials to neutron irradiation.  Theory has made a significant contribution to this but 
failed to acquire a leading role in creating radiation-resistant materials.  This is despite the fact that, from 
early on, there was evidence that the mechanisms responsible for the microstructure evolution under 
neutron irradiation are qualitatively different from those during irradiation with 1 MeV electrons.  It was 
known, for example, that features of the initial damage, such as vacancy and interstitial clustering, were 
different, and that the large-scale behaviour of materials under neutron irradiation disobeys predictions of 
the SRT [28].  Their potential importance was largely ignored and so the SRT dominated theoretical 
interpretation of experimental data on neutron and heavy-ion irradiations, with dubious outcome. 
  
 The PBM gives the most promising theoretical approach, which explains several striking 
observations listed in the introduction section and its validity has been confirmed by carefully-planned 
experiments (e.g. [36]).  The uniqueness of these time-consuming and expensive experiments in the 
history of radiation damage physics should be emphasised: they provided direct evidence that the driving 
force for damage accumulation under neutron irradiation is orders of magnitude stronger than under high-
energy electron irradiation of similar NRT dpa rate. 
  
 In its present form, the PBM is valid for small-dose irradiation of pure materials but it does not 
fully incorporate the effects of spatial correlations, despite the fact that the main observations explained 
by the model are due to them, i.e. void lattice formation due to correlations between voids; and grain 
boundary and grain size effects due to correlation of voids with grain boundaries.  This seems to be the 
main deficiency of the model that prevents its wider application. 
  
 Our analysis of the problem can be summarised in the following statements, which we propose for 
consideration and judgement by the reader. 
 

1. Voids can grow indefinitely if the production bias, i.e. the fraction of SIAs produced in cascades 
in the form of 1-D mobile clusters, is smaller than a certain value of the order of the dislocation 
bias, but, according to our current understanding, this condition is unlikely to be satisfied for 
neutron irradiation.  To elucidate the reasons behind the discrepancy between different approaches 
for estimating the dislocation bias, this area should be revisited. 

2. Spatial correlations always occur under cascade damage conditions as a result of interactions of 1-
D migrating SIA clusters with defects, such as voids and dislocations.  The void super-lattice is 
only one type of correlations, which is realised at high void density.  The very absence of a void 
lattice must be an indication of the existence of correlation of voids with other defects.  Densities 
of defects, such as voids, dislocations and precipitates, govern prevalence of particular types of 
spatial correlations.  The development of correlations minimises the void-SIA cluster interaction 
intensity by screening voids from the SIA clusters.  The characteristic range of spatial correlations 
is of the order of the mean-free path of 1-D migrating SIA clusters, which is typically at least an 
order of magnitude longer than the average distance between the defects, ~μm.  The correlation 
effects are known to exist even if the point defects executing 3-D random walk are the only 
migrating entities (see figure 22 in [90]), but their effect on microstructure evolution is negligible.  
In contrast, under cascade irradiation, correlation effects are large and their existence becomes the 
only controlling factor for damage accumulation at high enough doses. 

3. Voids that are not screened from the SIA clusters, i.e. randomly distributed over the volume, stop 
growing above a certain radius.  Voids that are screened by precipitates having no long-range 
strain field stop growing at a higher void size.  Precipitates with long-range strain fields repulsive 
for the SIA clusters and compressive sides of edge dislocations are two examples of regions 
where voids can grow until their size exceeds the range of the repulsive field. 
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4. If repulsive barriers for the SIA clusters, e.g. precipitates and compressive regions of edge 
dislocations, are randomly distributed and not correlated with voids, they decrease the swelling 
rate but do not affect the void saturation radius. 

5. The steady-state swelling rate of ~1%/dpa observed in austenitic stainless steels can be interpreted 
as being equal to about half of the production bias, i.e. half of the fraction of SIAs that survive 
inter-cascade recombination and are produced as 1-D mobile clusters.  Its weak dependence on 
steel composition is probably because the final defect structure is governed by early stages of the 
cascade, when the energies involved are much higher than differences in binding energies of 
defects with solute atoms. 

6. The observed correlation of the incubation period of swelling with the formation of a dislocation 
network may be connected with an increase of the volume for the nucleation and growth of voids 
in which voids are screened from the SIA clusters.  Higher dislocation density also corresponds to 
smaller dislocation climb rate, which might be essential for preserving void-dislocation 
correlations. 

7. The atmospheres of solute elements near voids may repel SIA clusters and assist or even solely 
explain the unlimited void growth within the framework of PBM. 

8. Solute, impurity and transmuted atoms may decrease the diffusion rate of SIA clusters, thus 
increasing the recombination rate of clusters with freely migrating vacancies.  In the limiting case 
of very high binding energy of SIA clusters with impurity atoms, the so-called ‘Singh-Foreman 
catastrophe’ may occur, i.e. accumulation of an extremely high density of immobilised SIA 
clusters that prevent further evolution of the microstructure.  This effect can explain the existence 
of the incubation period of swelling commonly observed in stainless steels.  In this case, the end 
of the incubation period can be attributed to cleaning the matrix of solute atoms by segregation to 
sinks.  It suggests that material resistance to irradiation can be improved by adding suitable 
solutes to cause the ‘Singh-Foreman catastrophe’ for a desired period of time.  Another way is to 
destroy spatial correlations of voids with other defects by any means. 

  
 Thus, it is suggested to add two additional points to the list of distinguishing features of 
microstructure evolution under neutron compared to electron irradiation at high enough doses: 
transmutation of atoms, which transforms even pure metals to alloys, and development of spatial 
correlations.  Generally, it follows from the analysis presented that the presence of 1-D mobile SIA 
clusters in crystals under cascade irradiation makes the development of spatial correlations between voids 
and other microstructural features inevitable.  Hence, all theories developed to date are incomplete and 
incapable of accurately predicting damage accumulation in alloys under cascade irradiation at high doses.  
The development of a predictive theory requires revisiting all essential constituent elements of the theory.  
These include the nucleation, growth and movement of voids and other lattice defects in the presence of 
mutual spatial correlations, for all heterogeneous aspects of microstructure evolution deserve attention.  
Due to increased geometrical complexity of these problems compared to those without correlations, their 
solution will probably require much closer linkage between different approaches, such as quantum 
mechanical, MD, Monte Carlo and analytical, than is currently the case.  Carefully planned experiments 
must be a central part of such studies.  In addition, a revival of the RIS theory and its further development 
for accounting for SIA clusters is necessary for understanding the sensitivity of microstructure to material 
composition.  Generally, the challenge is to create such a theory, where the mean-field approach in its 
conventional form is abandoned, a task not attempted before. 
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