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Passive Time Coincidence Measurements with 
HEU Oxide Fuel Pins

• Passive measurements are part of a larger 
project to actively detect SNM

• Collaborators
– Idaho National Laboratory

• J. Jones, B. Blackburn, S. Watson, J. Johnson
– Los Alamos National Laboratory

• C. Moss, K. Ianakiev, L. Waters
– Oak Ridge National Laboratory

• J. Mihalczo, P. Hausladen, S. McConchie
– Idaho State University/Idaho Accelerator Center

• A. Hunt, S. Thompson, M. Kinlaw
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Passive Measurements Purpose

• Project goal
– Evaluate the ability to actively determine the 

presence of SNM using both pulsed and CW 
operational accelerator modes

– Distinguish HEU from DU

• Compare HEU detection capabilities of 
passive and active measurements

• Passive HEU and DU measurements with 3He 
detectors presented here
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Passive Detection Signatures

• Active measurements induce fission on 235U to emit 
multiple neutrons and gammas correlated in time

• Passive detection of HEU is possible with either 
fissions or decays
– 235U fission emits multiple neutrons and gammas initiated 

by spontaneous fission (1.6x10-1 fissions s-1 kg)
– 235U decay yields 186 keV gamma (8x107 γ s-1 kg-1) difficult to 

detect through shielding

Fission

HEU

Shielding
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Experimental Setup

• HEU samples:
– Unirradiated U3O8 fuel 

pins with 46 wt% 235U
– 1 kg, 4 kg, and 8 kg 235U 
– Single steel can (11 cm 

diam., 15.5 cm length) 
contains 4 kg sample  

– Two cans placed next to 
each other to give 8 kg 
sample

• HEU samples surrounded by foam in 55 gal drum 

• 31 kg DU sample used for comparison

• 2 banks of 16 poly moderated 3He detectors
– 2.5 cm diameter
– Located 35 cm from center of drum

Drum

Fuel Pin Can

3He 
Detector
Bank70
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Experimental Setup - Photographs

Sample drum

Bank of 8 
moderated 3He 
detectors

Fuel 
Pins

Fuel Pin 
Can
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Electronics Setup with NMIS

• Fast (1 GHz) online 10-channel time correlation processing with 
simultaneous list mode acquisition
– 2 dual card boards in PC with appropriate NMIS software
– Online analysis gives time correlation functions, Feynman 

variance, multiplet rates, and multiplet probability distributions for 
an input time window

– Offline analysis used to determine correlation functions and 
multiplet distributions for arbitrary window size and to calculate 
Feynman variance as a function of window size

3He 
detectors
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Neutron Coincidence Time Distributions

• Neutron efficiency determined to be ~1% using Cf-
252 fission chamber

• Difference in doubles rate evident from HEU and DU 
neutron coincidence time distributions

• 1 kg sample barely distinguishable from background

Sample Measurement 
Times (min)

8 kg HEU 35.0

4 kg HEU 17.5

1 kg HEU 346.5

31 kg DU 17.5

Background 3495.3
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Feynman Variance (Y2F)

• Feynman variance (Y2F) is related to the probability that 
two neutrons are from the same fission chain

• Calculated from the “random” gate multiplicity 
distribution (window size = T)
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• The efficiency, fission 

rate, and multiplication 
can be estimated from A

• Passive measurements 
on an HEU sphere have 
been performed at LLNL 
using this framework1

1Verbeke, et al, UCRL-PROC-231582, 2007.
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Multiplet Distribution

• Multiplets2 of order m, Rm, are the number of 
times m events occur in a time window, T
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HEU and DU Comparisons – Y2 and Y2F

• Y2F is sensitive 
sample size but 4 kg is 
discrepant

• Count rate for the 4kg 
is overestimated 
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HEU and DU Comparisons – Multiplets

• HEU amounts distinguishable using rate and 
probability normalization

• Cannot use simple rate argument (doubles, 
triples, etc.) to distinguish the HEU from DU
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MCNP Simulations

• Fuel pin geometry modeled in MCNP5 to calculate 
keff (multiplication)

• Not enough statistics to allow usage of triples rates
• Need more data (active or passive) to better measure 

the multiplication
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Conclusions and Future Work

• HEU presence is evident in passive measurements 
– 1 kg sample barely distinguishable from background
– 4 kg sample measurements are discrepant

• Future work includes:
– Using the point kinetics framework to estimate 

multiplication and fission rates
– Analyze measurements with fast liquid scintillators (in 

progress)

• Using active measurements, compare passive and 
active detection capabilities
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