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ABSTRACT 
 

The expected service life of the Next Generation 
Nuclear Plant is 60 years. Structural analyses of the 
Intermediate Heat Exchanger (IHX) will require the 
development of unified viscoplastic constitutive models 
that address the material behavior of Alloy 617, a 
construction material of choice, over a wide range of 
strain rates. 

Many unified constitutive models employ a yield 
stress state variable which is used to account for cyclic 
hardening and softening of the material. For low stress 
values below the yield stress state variable these 
constitutive models predict that no inelastic deformation 
takes place which is contrary to experimental results. The 
ability to model creep deformation at low stresses for the 
IHX application is very important as the IHX operational 
stresses are restricted to very small values due to the low 
creep strengths at elevated temperatures and long design 
lifetime. 

This paper presents some preliminary work in 
modeling the unified viscoplastic constitutive behavior of 
Alloy 617  which  accounts for the  long term, low stress,  
* Notice: This submission was sponsored by a contractor of the United States 
Government under contract DE-AC05-00OR22725 with the United States 
Department of Energy. The United States Government retains, and the 
publisher, by accepting this submission for publication, acknowledges that the 
United States Government retains, a nonexclusive, paid-up, irrevocable, 
worldwide license to publish or reproduce the published form of this 
submission, or allow others to do so, for United States Government purposes. 

 

creep behavior and the hysteretic behavior of the material 
at elevated temperatures. The preliminary model is 
presented in one-dimensional form for ease of 
understanding, but the intent of the present work is to 
produce a three-dimensional model suitable for inclusion 
in the user subroutines UMAT and USERPL of the 
ABAQUS and ANSYS nonlinear finite element codes. 

Further experiments and constitutive modeling efforts 
are planned to model the material behavior of Alloy 617 
in more detail. 

1. Introduction 
 

The High Temperature Gas-cooled Reactor (HTGR) 
design has been selected by the U.S. Department of 
Energy for the Next Generation Nuclear Plant (NGNP) 
Project. The NGNP will demonstrate the use of nuclear 
power for electricity and hydrogen production. It will 
have an outlet gas temperature in the range of 900°C and 
a plant design service life of 60 years. Alloy 617 is the 
material of choice for the Intermediate Heat Exchanger 
(IHX), a primary system component. 

An ASME Boiler and Pressure Vessel (B&PV) Code, 
Section III draft Code Case for Alloy 617 was developed 
in the late 1980’s. It provides rules of construction for 
HTGRs with reactor outlet temperatures of about 950°C. 
Due to the inelastic behavior exhibited by Alloy 617 that 
includes: (1) the lack of a clear distinction between time-
independent and time-dependent behavior; (2) the high 
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dependence of flow stress on strain rate; and (3) softening 
with time, temperature, and strain, Corum and Blass 
(1991) recommended that inelastic design analyses must 
be based on unified constitutive equations, which do not 
distinguish between time-independent plasticity and time-
dependent creep. 

Several unified viscoplastic constitutive models for 
Alloy 617 were developed in the 1990’s. Chang and Pugh 
(1991) and Corum and Blass (1991) developed a unified 
viscoplastic constitutive model originated by Robinson 
(1984). Corum and Blass (1991) tabulated the material 
constants for this model of Alloy 617 at temperatures 
ranging from 649oC up to 982oC. At about the same time 
Schwertel et al. (1991) developed the constitutive models 
of Robinson and Chaboche to describe the constitutive 
behavior of Alloy 617 at 600oC and 850oC. 

For one-dimensional loading, the flow rule of these 
viscoplastic models can be represented generally in the 
form 

 _"p = _"0©1(p)

¿
F

D

Àn

sgn(¾ ¡X)_"p = _"0©1(p)

¿
F

D

Àn

sgn(¾ ¡X) (1) 
 

where _"p_"p is the viscoplastic strain rate,  the reference 
strain rate, ¾¾ the stress, and XX the back stress. The 
Macauley bracket is defined by h , where 

 is the Heaviside function, and sgn(sgn(  is the signum 
function. The state variable DD is the drag stress and the 
quantity FF  is given as 

_"0_"0

==
x)x)

xi xH(x)hxi xH(x)
H(x)H(x)

 

Robinson : F = (¾ ¡X)2 ¡ Y 2Robinson : F = (¾ ¡X)2 ¡ Y 2 
 

Chaboche : F = j¾ ¡Xj ¡ YChaboche : F = j¾ ¡Xj ¡ Y  
 

where YY  is the “yield stress state variable” that serves as a 
cut-off value for the magnitude of the overstress, j , 
below which 

¾ ¡X jj¾ ¡X j
_"p_"p is zero, i.e., only elastic deformation 

occurs. The function ©  is used to model tensile stress 
drops and tertiary creep and is discussed in section 5. 
Since this function is assumed to be unity at the start of 
deformation and increases slowly with cumulative 
viscoplastic deformation, it is taken as unity in the 
succeeding sections of the paper. It is discussed in detail 
in sections 5 and 8 of the paper. 

1(p)©1(p)

The material constants which Schwertel et al. (1991) 
used with the Chaboche model at 850oC give good 
correlation with the experimental hysteretic behavior of 
Alloy 617 at strain rates between 5£  and 5£  
per second. At a strain amplitude of §§ 0.25% the stress 
amplitude varies from 150 to 300 MPa. For this 

temperature the yield stress state variable is taken as 25.2 
MPa, so that creep cannot take place below a stress 
threshold of 25.2 MPa. Similarly, the model developed by 
Chang and Pugh (1991) and Corum and Blass (1991) has 
a yield stress state variable of 16.5 MPa at 850oC, so that 
no creep is possible at stresses below 16.5 MPa. 

10¡65£ 10¡6 10¡25£ 10¡2

Clearly, in order to model creep at low stress levels, 
the value of the yield stress state variable must either be 
zero or very small. Many models use the yield stress state 
variable as a repository for cyclic strain hardening and 
softening, so that making the yield stress state variable 
zero or small is not a desirable option in the constitutive 
model. 

Another option does exist. Freed and Walker (1995) 
proposed making the asymptotic values of the state 
variables in unified viscoplastic constitutive models 
depend either linearly or quadratically on the saturated 
stress. This procedure seems to have originated with 
Miller (1976). In a recent publication Michel, Assire and 
Cambefort (2001) also used this procedure in modeling 
the constitutive behavior of an austenitic stainless steel. 
The advantages of this procedure in simplifying the 
material constant determination are well known (Freed, 
and Walker (1995)). It now appears to be not only 
advantageous, but also necessary, if the yield stress state 
variable is retained as a repository for cyclic hardening 
and softening behavior, and the viscoplastic model is still 
required to model low stress creep behavior. 

The framework for such a unified viscoplastic 
constitutive model is discussed in the following sections. 

2. Viscoplastic Model Requirements 
 

Many tests on a wide range of materials have shown 
that the limiting form of the back stress at saturation (well 
into the plastic region and at high strain rates) ranges 
from 0  to 0 , (see Figure 4 of Qian and Fan, 1991) 
where ¾¾ is the saturated stress in the plastic region. 

:4¾0:4¾ :6¾0:6¾

In a creep test at high stress levels (> 70 MPa for 
Alloy 617), the back stress will grow from X ¼  at the 
beginning of the creep test up to its maximum value of 

 . As XX grows, the value of the 
overstress ¾ ¡  decreases in the primary creep region, 
after which ¾ ¡  
and the creep rate will remain constant as the material 
enters the secondary creep regime whose rate is governed 
by the value of 1 . 

0X ¼ 0

¾ = c¾ = c

a ¾a ¾ (0:4 < a < 0:6)(0:4 < a < 0:6)
X¾ ¡X

X¾ ¡X

¡ a1¡ a

= ¾ a¾ = (1¡ a) onstant= ¾ a¾ = (1¡ a) onstant¡¡
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Larger amounts of primary creep are expected when 
the value of the back stress XX at the beginning of the 
creep test is small and the value of aa is relatively large 

, while smaller amounts are expected if the initial 
value of XX is large and aa is small. The constant aa can 
thus be used to vary the amount of primary creep 
exhibited by the material before it enters the secondary, 
or steady state, creep regime. It also governs the 
secondary creep rate. 

(a < 1)(a < 1)

At large stress values the amount of primary creep is 
large and the secondary creep rate is also large. This fits 
in with the observed values (0  exhibited by 
many materials. At small stress values the amount of 
primary creep is small or non-existent and the secondary 
creep rate is also small until tertiary creep sets in. This 
seems to indicate a small value of 

:4 < a < 0:6)(0:4 < a < 0:6)

(1¡ a)(1¡ a), implying that 
. 0:95 < a < 0:990:95 < a < 0:99

This requires an evolutionary equation for the back 
stress in which the limiting value at saturation, where 

, is given by X   at large 
strain rates and by X   at small 
strain rates.  

_X ¼ 0_X ¼ 0 ¼ a ¾X ¼ a ¾
¼ b ¾X ¼ b ¾ (0(0

(0:4 < a < 0:6)(0:4 < a < 0:6)
:95 < b < 0:99):95 < b < 0:99)

Since a yield stress state variable will be included to 
model the evolution of cyclic hardening, the preceding 
restrictions apply to the saturation value of the internal 
stress, which is the sum of the back stress and yield stress 
state variables. 

3. Flow Rule 
 

Introduce a binary switch function, »», by means of the 
relation: 

 » =
jXj
L( _p)

» =
jXj
L( _p)

 (2) 
 

where  is the saturation value of the back stress XX 
when , including thermal recovery, and _p_p is the 
equivalent viscoplastic strain rate. 

L( _p)L( _p)
_X =_X = 00

The flow rule takes the form 

 _"p = _"0

¿ j¾ ¡Xj ¡ Y

D

Àn

sgn (¾ ¡X)_"p = _"0

¿ j¾ ¡Xj ¡ Y

D

Àn

sgn (¾ ¡X) (3) 

where a new yield stress state variable is defined as 
 

  (4) Y = (k + R) »mjXjY = (k + R) »mjXj
 

in which kk and RR are non-dimensional state variables and 
. The state variable kk is constant but RR can evolve 

in time.  
m ¸ 0m ¸ 0

The binary switch function »» is unity in the plastic 
region for large stresses and strain rates when the back 
stress  saturates to its limit value L , and is 
essentially zero in the elastic regions and at small stresses 
and strain rates where XX is small. Both »» and XX are 
responsible for reducing the yield stress state variable YY  
to zero at small stress values, with the power exponent in 
the expression »  governing how quickly the yield stress 
state variable YY  approaches zero as the stress is reduced.  
Note that these features for the yield stress state variable 
are what distinguish this new flow rule from others in the 
Chaboche type models. 

XX ( _p)L( _p)

m»m

Under tensile loading conditions, the flow rule in 
equation (3) may be written as 

_"p = _"0

μ
¾ ¡X(1 + (k + R)»m)

D

¶n

= _"0

μ
¾ ¡ Z

D

¶n

_"p = _"0

μ
¾ ¡X(1 + (k + R)»m)

D

¶n

= _"0

μ
¾ ¡ Z

D

¶n

 (5) 
 
in which Z  is the internal stress. Under steady 
state conditions when the back stress XX and binary 
variable  (but not necessarily the slowly evolving state 
variable ) have reached their saturated values, the 
preceding discussion indicates that at saturation the 
internal stress, ZZ , takes on the values 

= X + YZ = X + Y

»»
RR

 

  (6) Z = X + Y = a¾Z = X + Y = a¾
 

with 0  at large strain rates, and :4 < a < 0:60:4 < a < 0:6
 

Z = X + Y = b ¾Z = X + Y = b ¾ (7) 
 

with 0  at small strain rates. :95 < b < 0:990:95 < b < 0:99

If the amount of internal stress at saturation, a¾a¾ and 
, respectively, is partitioned into the back stress XX and 

yield stress state variable YY  in the form 
b¾b¾

 

X = fa ¾ ;X = fa ¾ ; and (8) 
 

Y = (1¡ f) a¾Y = (1¡ f) a¾ (9) 
 

equation (6) is recovered at high strain rates, and by 
replacing aa with bb in equations (8) and (9), equation (7) is 
recovered at small strain rates. With the use of equations 
(4), (8) and (9), and taking »  at saturation, the 
additional relations 

= 1» = 1

 

f =
1

1 + (k + R)
f =

1

1 + (k + R)
  and (10) 
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1¡ f =
(k + R)

1 + (k + R)
1¡ f =

(k + R)

1 + (k + R)
 (11) 

 

are obtained. 

Thus at saturation, where , the back stress XX is 
required to have the following properties: 

_X = 0_X = 0

 

X = fa¾X = fa¾  at large strain rates, and (12) 
 

X = fb ¾X = fb ¾  at small strain rates. (13) 

Under tensile loading conditions, the flow rule in 
equation (5) can be used to obtain 

D

μ
_"p

_"0

¶1=n

= ¾ ¡ ZD

μ
_"p

_"0

¶1=n

= ¾ ¡ Z  (14) 

At the saturation of the internal stress ZZ , equations (6) 
and (7) can be used, together with j _"pj pj _" = _pj p= _, in equation 
(14) to arrive at the limiting conditions 

 ¾ =
D

1¡ a

μ
_p

_"0

¶1=n

¾ =
D

1¡ a

μ
_p

_"0

¶1=n

 at large strain rates (15) 

 ¾ =
D

1¡ b

μ
_p

_"0

¶1=n

¾ =
D

1¡ b

μ
_p

_"0

¶1=n

 at small strain rates (16) 

4. Back Stress Evolutionary Equation 
 
The back stress evolutionary equation takes the 

special form  

_X = c _"p ¡ c
X

L( _p)
_p ¡ c¤ _"0

jXjn¡1X

Dn
_X = c _"p ¡ c

X

L( _p)
_p ¡ c¤ _"0

jXjn¡1X

Dn
 (17) 

where cc is a constant and L  in the dynamic recovery 
term is given by the relation 

( _p)L( _p)

L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

+ ³L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

+ ³  (18) 

with  being a constant. The term ¤¤ in the thermal 
recovery term of equation 

³³
(17) is given by 

 ¤ =

μ
1¡ b

fb

¶n

¤ =

μ
1¡ b

fb

¶n

 (19) 
 

At large strain rates, the first term in equation (18) is 
dominant, while the second term dominates at slow strain 
rates. The magnitude of the constant ³³  determines the 
strain rate at which the first term becomes large or 
insignificant compared with the second term. Thus 

L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

;L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

; for large _p_p (20) 

L( _p) = ³L( _p) = ³  , for small  (21) _p_p

On setting  in equation _X = 0_X = 0 (17) the limiting back stress 
is determined by either of the implicit relations 
 

L( _p) = L( _p)

"
1 + ¤

_"0

_p

L( _p)Ln¡1( _p)

Dn

#¡1

L( _p) = L( _p)

"
1 + ¤

_"0

_p

L( _p)Ln¡1( _p)

Dn

#¡1

 (22) 

or 

 L( _p) = D

μ
(L( _p)¡ L( _p)) _p

¤L( _p) _"0

¶1=n

L( _p) = D

μ
(L( _p)¡ L( _p)) _p

¤L( _p) _"0

¶1=n

 (23) 

 
where the first equation is used when thermal recovery is 
small in comparison with dynamic recovery, while the 
second is used in the opposite case. These equations are 
solved by Newton-Raphson iteration. 
 
The preceding relations show that the limiting value of 
the back stress becomes smaller as ¤¤ becomes larger and 

 and nn become smaller. DD

For large , equation _p_p (22) gives 

L( _p) = L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

L( _p) = L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

 (24) 

where equation (20) was used in the second equality. Use 
of equation (15) in equation (24) gives 

   at large strain rates (25) L( _p) = fa¾L( _p) = fa¾

Similarly, equation (22) admits the limit 

L( _p) =
fb

1¡ b
D

μ
_p

_"0

¶1=n

L( _p) =
fb

1¡ b
D

μ
_p

_"0

¶1=n

 (26) 

for small , and upon using equation _p_p (16), it becomes 

   at small strain rates (27) L( _p) = fb¾L( _p) = fb¾

Hence, the back stress evolutionary equation (17) leads to 
results that satisfy the requirements given in equations 
(12) and (13). Later refinements of the viscoplastic model 
will require the use of a number of back stress 
components in order to more accurately capture the shape 
of the stress-strain curves for Alloy 617 under tensile and 
hysteretic loading. 

5. Tertiary Creep Modeling 
 

As the strains of interest are less than 5%, no 
distinction between stress and load control is necessary in 
interpreting creep test data in that strain range. As a first 
effort at modeling tertiary creep, ways that various 
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authors have used in modeling tertiary creep without the 
explicit introduction of a new damage state variable were 
explored. 

Consider the following form of the flow rule for 
tensile loading of a creep specimen 

 _"p = _"0

μ j¾ ¡Xj ¡ (k + R) »mjXj
D

¶n

_"p = _"0

μ j¾ ¡Xj ¡ (k + R) »mjXj
D

¶n

 (28) 
 

In order for _"p_"p to increase during the tertiary creep 
process when the stress ¾¾ is held constant, it is necessary 
that one or more of the following takes place: 
 

1) The back stress XX decreases so that ¾ ¡X¾ ¡X increases 
and the yield stress state variable Y R)»mjXjY R)»mjXj 
decreases, both of which increase the numerator in 

= (k += (k +

(28); 
2) The drag stress state variable DD decreases in the 

denominator of (28), so that the bracketed term 
increases; 

3) The power law exponent nn decreases. 
 

If one or more of the processes in 1) to 3) are stronger 
than the others, then it may be permissible for the other 
processes to operate in a manner opposite to that (if they 
alone operated) required for tertiary creep. All that is 
required is that the net influence of all three processes is 
such as to produce an increase in the right hand side of 
equation (28). The introduction of a new damage state 
variable would cause the drag stress to be multiplied by 
this variable, producing a new effective drag stress that 
would essentially decrease the denominator of (28) during 
creep. 

Tachibana and Krempl (1998) have proposed an 
evolutionary equation for the back stress limit at large 
strain rates, corresponding to L  in equation ( _p)L( _p) (17), 
which decreases during the creep process. They achieve 
this decrease by postulating that the evolutionary 
equation governing the limit back stress is give by 

  (29) _L = ¡¯ p (L¡ Lmin)_L = ¡¯ p (L¡ Lmin)
 

where pp is the cumulative viscoplastic strain 
 

  (30) p =

Z t

0
j _"pjd¿p =

Z t

0
j _"pjd¿

 

The saturation back stress is assumed to decrease to a 
limiting value of L  from its initial value of L  at a rate 
depending on the value of ¯p¯p. Since 

minLmin 1L1

pp is the cumulative 
inelastic deformation, this rate increases with cumulative 
deformation. There is a provision in their model for 

thermal recovery to reduce the limiting back stress to 
zero, using a formulation similar to equation (22). 

Chang and Pugh (1991) modified the saturated back 
stress in their constitutive model, which included only 
thermal recovery and no dynamic recovery, by taking its 
limiting form as 

 Limit back stress =
L

©
= L©¡1=

L

©
= L©¡1 (31) 

 

where the function ©© is given by © = 1 , or if ¸̧ is 
small enough, by © = e© = e . The inverse of this 
function, , goes to zero as p !1p !1, 
resulting in a limiting saturation stress which eventually 
goes to zero. As deformation proceeds, the saturated back 
stress decreases, causing an increase in the viscoplastic 
flow rate which enables tertiary creep to be modeled. The 
variation of the saturated limit stress with cumulative 
deformation in equation 

+ ®p¸© = 1 + ®p¸

))xp(®p¸xp(®p¸

(¡®p¸)(¡®p¸)©¡1 = e©¡1 = expxp

(31) was first used with unified 
viscoplastic models by Marquis (1979) to model cyclic 
hardening and softening of the back stress dynamic 
recovery term, and is used in the Chaboche models at 
ONERA in France.  

In their model, Chang and Pugh (1991) also multiply 
the flow rule by the function ©©, which, being an 
increasing function of the cumulative deformation, also 
enhances the tertiary creep flow rate. This also has 
another effect besides increasing the tertiary creep flow 
rate, which is discussed below. 

Chang and Pugh (1991) use the Orowan equation 
_"p = N©bv_"p = N©bv
bb

N©N©

, where N  is the mobile dislocation density, 
 is the Burgers vector, and vv is the average dislocation 

velocity to relate their unified viscoplastic model to 
dislocation dynamics. In particular, the velocity vv is 
related to the power of the overstress (i.e. the numerator 
in equation 

©N©

(28)), while the mobile dislocation density, 
, is related to the drag stress (1  in the 

denominator of a power law model. 
=D)n(1=D)n

In a tensile test conducted at a constant strain rate, the 
condition _" ¼ _"p_" ¼ _"p holds in the saturated portion of the 
stress-strain curve. If the mobile dislocation density N  
increases as the plastic region is entered, due to the 
increase in ©©, then the average mobile dislocation 
velocity  must decrease in order to maintain the total 
strain rate, _"_", constant. Since the dislocation velocity vv 
depends on the stress or overstress raised to a power, the 
stress must also decrease. This stress drop on entering the 

©N©

vv
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plastic region was observed (see Chang and Pugh, 1991) 
in tensile tests on Alloy 617 at a temperature of 950oC. 

Two functions, ©  and ©1(p)©1(p) 2(p)©2(p), will be used in a 
preliminary effort at modeling the stress drop and tertiary 
creep in the flow rule. The first function directly 
multiplies the flow rule, while the inverse of the second 
function directly multiplies the back stress and the yield 
stress in the flow rule. Chang and Pugh (1991) used the 
same function in the flow rule and in the saturated back 
stress. The ©© functions are presented in section 8. 

6. Assumption of Constant Drag Stress 
 

The flow rule in equations (5) to (9) can be 
rearranged, and for tensile loading, can be written as in 
equation (15) at saturation for large strain rates. Cyclic 
hardening or softening during strain amplitude controlled 
fatigue tests can be modeled by the evolutionary 
equations for the back stress XX or by the state variable RR. 

Consider a monotonic tensile test loaded under 
constant strain rate  until saturation is well established. 
At time t  in this saturation regime, the strain rate is 
increased by a decade to . The straining continues 
under this new strain rate, and after some transient period, 
saturation is re-established at time t2t2 at a different level. 
The change in the stresses at these two respective 
saturation levels is given by, assuming both  and  are 
high, 

_"1_"1

1t1
_"2_"2

_"1_"1 _"2_"2

 

  (32) (1¡ a) [¾(t2)¡ ¾(t1)] = A(1¡ a) [¾(t2)¡ ¾(t1)] = A
 

where 
 

 A ´ D(t2)

μ
_"p(t2)

_"0

¶1=n

¡D(t1)

μ
_"p(t1)

_"0

¶1=n

A ´ D(t2)

μ
_"p(t2)

_"0

¶1=n

¡D(t1)

μ
_"p(t1)

_"0

¶1=n

 (33) 
 

Thus the change in the saturated stresses depends only on 
the magnitudes of the viscoplastic strain rates if the drag 
stress  is constant. If the drag stress hardens/softens 
during cyclic deformation, the change in the saturated 
stresses will increase/decrease after the specimen has 
undergone fatigue cycling. Many metals exhibit 
approximately the same change in the saturated stresses 
before and after fatigue testing (Krempl, 1987), and this 
rules out incorporating secular cyclic hardening or 
softening over large numbers of cycles into the drag stress 
state variable. 

DD

7. Cyclic Hardening and Softening 
 

Because the change in the saturated stresses due to 
change in strain rates after fatigue cycling do not change 
in magnitude, the repository for cyclic hardening must 
reside in either the yield stress state variable or the back 
stress. The evolutionary equation for the growth of the 
dimensionless isotropic state variable  is taken to be a 
standard growth law of the form 

RR

 

  (34) _R = g (R1 ¡R) _p + ` jRq ¡Rj½¡1(Rq ¡R)_R = g (R1 ¡R) _p + ` jRq ¡Rj½¡1(Rq ¡R)

where R . (t = 0) = 0R(t = 0) = 0

Below a threshold value of R , the static 
recovery term is positive and enhances the hardening. 
When the state variable  exceeds this threshold value, 
the thermal recovery becomes negative and the rate of 
hardening towards the final value of R 1R 1 is 
decreased. This decrease in the hardening rate is 
enhanced at slow rates of straining. At very small strain 
rates, the term in  in 

= RqR = Rq

R

RR

= R= R

qq

_p_p

qRq

(34) becomes much smaller than 
the thermal recovery term, and RR hardens (or softens) to 
the final value of R  depending on whether R  is positive 
(or negative). Alloy 617 exhibits this type of cyclic 
hardening behavior in fatigue tests conducted at constant 
strain amplitude at elevated temperatures. 

8. Unified Viscoplastic Constitutive Model 
 

The equations proposed for use in an initial modeling 
effort to characterize the deformation behavior of Alloy 
617 between room temperature and temperatures up to 
950oC are collected below. 

_"p = _"0 ©1(p)

¿
F

D

Àn

sgn
³
¾ ¡X©¡1

2 (p)
´

_"p = _"0 ©1(p)

¿
F

D

Àn

sgn
³
¾ ¡X©¡1

2 (p)  ́

F =
¯̄
¾ ¡X©¡1

2 (p)
¯̄
¡ Y ©¡1

2 (p)F =
¯̄
¾ ¡X©¡1

2 (p)
¯̄
¡ Y ©¡1

2 (p)¯̄
Y = (k + R) »mjXjY = (k + R) »mjXj

¯̄
 

 

 

©1(p) = 1 + ®1 p¸1©1(p) = 1 + ®1 p¸1 
 

©2(p) = 1 + ®2 p¸2©2(p) = 1 + ®2 p¸2 

_p = j _"pj and p =

Z t

0
j _"p(¿)jd¿_p = j _"pj and p =

Z t

0
j _"p(¿)jd¿  

» = jXj=L( _p)» = jXj=L( _p) 

L( _p) = L( _p)

"
1 + ¤

_"0

_p

L( _p)Ln¡1( _p)

Dn

#¡1

L( _p) = L( _p)

"
1 + ¤

_"0

_p

L( _p)Ln¡1( _p)

Dn

#¡1
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L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

+ ³L( _p) =
fa

1¡ a
D

μ
_p

_"0

¶1=n

+ ³  

¤ =

μ
1¡ b

fb

¶n

¤ =

μ
1¡ b

fb

¶n

 
 

f = [1 + (k + R)]¡1f = [1 + (k + R)]¡1 
 

_X = c _"p ¡ c
X

L( _p)
_p ¡ c¤ _"0

jXjn¡1X

Dn
_X = c _"p ¡ c

X

L( _p)
_p ¡ c¤ _"0

jXjn¡1X

Dn
 

_R = g (R1 ¡R) _p + ` jRq ¡Rj½¡1(Rq ¡R)_R = g (R1 ¡R) _p + ` jRq ¡Rj½¡1(Rq ¡R) , 

with R  (t = 0) = 0R(t = 0) = 0

in which the parameters nn, DD, mm, ® , ® , ³³ , ¸ , ¸ , kk, aa, 
, , , , , , and ½½ are temperature dependent 

material constants, and  is a constant reference strain 
rate. 

1®1 2®2 1¸1 2¸2

bb cc gg R1R1 RqRq `̀

_"0_"0

9. Numerical Example 
A numerical example on strain-controlled cycling 

together with a 60 year creep test is presented in this 
section using the unified viscoplastic constitutive model 
developed in this paper. 

Table 1. Preliminary material constants at 850ºC for 
hysteresis loops simulation 

Material Constants (850ºC) 
EE  146,700 MPa 
nn 5.6 
DD 300 MPa 
kk 0.14 
¸1¸1 1 
¸2¸2 0.35 
gg 0 
`̀ 0 

R1R1 0 
RqRq 0 
cc 400,000 MPa 
mm 0.75 
®1®1 0 
®2®2 3.0 
aa 0.45 
bb 0.65 
_"0_"0 1/s 
½½ 1 
³³  10 MPa 

 

Using the material constants at 850ºC from Schwertel 
et al. (1991) as a guide, the material constants were 
identified to give the expected behavior over ten decades 
of strain rate. They are given in Table 1. These material 
constants have not been optimized; they are merely 
approximate values chosen to demonstrate proof of 
concept for the preliminary constitutive model.  

Computed hysteresis loops for three strain rates 
spanning ten decades are shown in Figure 1, with the two 
highest strain rates compared against the experimental 
data of Schwertel et al. (1991). No creep or hysteresis 
data are available at the lowest strain rate. The flow rule  

Power Law Flow Rule
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S
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P
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5x10-12/s, simulation

 
Figure 1. Computed hysteresis loops at 850ºC with a 

power law flow rule 

exponent  was chosen to give a relatively small 
saturated stress of 7.5 MPa at a strain rate of  
per second, using the material constants in Table 1, and it 
is evident that the calculated stress amplitude at the strain 
rate of 5£5£  per second is too small for this low value 
of the power law exponent. Even with this low value of 
the exponent (Schwertel et al. (1991) use a value of  -

) a large amount of thermal recovery is required to 
bring the saturated stress level down to a value of 7.5 
MPa. The value of b  in Table 1 gives a sufficient 
amount of thermal recovery at low strain rates, but what 
is required is a value around b . If the value of bb is 
made larger than 0.65, the amount of thermal recovery 
will be too small and this precludes the limiting back 
stress from reaching a small value at very small strain 
rates. This is clear evidence of the failure of the power 
law flow rule which is valid for about five decades of 
strain rate, and indicates the need for a hyperbolic sine 

n = 5:6n = 5:6

10¡510¡5

5£ 10¡125£ 10¡12

n = 1n = 111

= 0:65b = 0:65

= 0:95b = 0:95
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flow rule to model the behavior over ten strain rate 
decades. 

As shown in Figure 2, a hyperbolic sine flow rule of 
the form 

_"p = _"0 A©1(p)

¿
sinh

F

D

Àn

sgn
³
¾ ¡X©¡1

2 (p)
´

_"p = _"0 A©1(p)

¿
sinh

F

D

Àn

sgn
³
¾ ¡X©¡1

2 (p)  ́ (35) 

in which  
 

F =
¯̄
¾ ¡X©¡1

2 (p)
¯̄
¡ Y ©¡1

2 (p¯ ¯ )F =
¯̄
¾ ¡X©¡1

2 (p)
¯̄
¡ Y ©¡1

2 (p¯ ¯ )     (36) 
 

with , ,  and D  MPa 
gives much better agreement with Schwertel et al’s stress 
amplitude test values. 

A = 7£ 10¡6A = 7£ 10¡6 n = 4n = 4 b = 0:95b = 0:95 = 65D = 65

 
Hyperbolic Sine Flow Rule
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Figure 2. Computed hysteresis loops at 850ºC with a 

hyperbolic sine flow rule 

No attempt has been made to optimize the hyperbolic 
material constants to fit the width of the hysteresis loops. 
With this flow rule the stress at the very low strain rate of 

 per second can be made less than 10 MPa, yet 
at the intermediate strain rate of 5£  per second the 
stress is large enough at 200 MPa to match the 
experimental values. The power law shown in Figure 1 
cannot achieve this behavior over ten strain rate decades. 

5£ 10¡125£ 10¡12

10¡55£ 10¡5

A simulation of a very long, 60 year, creep test at a 
stress level of 7.5 MPa is shown in Figure 3, where the 
material creeps to about 1% total strain in 60 years at a 
constant secondary creep rate of about 5£  per 
second when the tertiary creep constants ®2  and 

 are set to give no tertiary creep. When the 
constants are chosen to have the values in Table 1, the 
creep deformation accelerates to about 5.5% total strain in 
60 years. This stress level of 7.5 MPa for the creep test is 

well below the yield stress levels of 16.5 MPa in Chang 
and Pugh’s (1991) ORNL model and 25.2 MPa in 
Schwertel et al’s (1991) Chaboche model. These models, 
as presented with the accompanying material constants, 
would give zero creep at 7.5 MPa because the stress is 
below the yield threshold and only elastic behavior is 
predicted. The yield stress state variables in these models 
could be eliminated, but the repository for secular cyclic 
hardening would have to be taken up by either the back 
stress or the drag stress. Hence the need for a revision in 
the yield behavior at low stresses as advocated in this 
paper.  

10¡125£ 10¡12

= 0®2 = 0
¸2 = 0¸2 = 0

60 Year Creep Test Simulation of Alloy 617
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Figure 3. Computed creep curve at 850ºC with and 

without tertiary creep. Stress is at 7.5 MPa. 

10. Summary 
Some preliminary work in modeling the unified 

viscoplastic constitutive behavior of Alloy 617 which 
accounts for the long term, low stress, creep behavior and 
the hysteretic behavior of the material at elevated 
temperatures was presented in this paper. The initial 
numerical result shows that the approach developed is 
promising and further experiments and identification of 
the material constants are planned to model the behavior 
of Alloy 617 in more detail. 

We have determined that a power law flow rule 
which operates well over five decades of strain rate is not 
sufficient to model the behavior of Alloy 617 over ten 
strain rate decades extending from 5£  per second 
down to 5£  per second (equivalent to 1% strain in 
60 years) and for this requirement a hyperbolic sine rule 
appears promising. Preliminary simulations give 
encouraging results over ten decades of strain rate. A 

10¡25£ 10¡2

10¡125£ 10¡12
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modification to the yield stress state variable of unified 
viscoplastic models is required if both low stress creep 
and high stress hysteresis loop deformation behavior is to 
be modeled. 
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