
Exploring HPCS Languages in Scientific Computing

Richard F. Barrett, Sadaf R. Alam, Valmor F. de Almeida, David E. Bernholdt,
Wael R. Elwasif, Jeffery A. Kuehn, Stephen W. Poole, and Aniruddha G. Shet
Oak Ridge National Laboratory, Oak Ridge, TN

E-mail:
rbarrett,alamsr,dealmeidav,bernholdtde,elwasifwr,kuehn,spoole,shetag@ornl.gov

Abstract.
As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper

computational and memory hierarchies, and increased heterogeneity, developers of scientific software are
increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we
explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS)
program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety
of features not found in currently popular HPC programming environments and make it easier to express
powerful computational constructs, leading to new ways of thinking about parallel programming. Though
the languages and their implementations are not yet mature enough for a comprehensive evaluation, we
discuss some of the important features, and provide examples of how they can be used in scientific
computing. We believe that these characteristics will be important to the future of high-performance
scientific computing, whether the ultimate language of choice is one of the HPCS languages or something
else.

1. Introduction
As high-performance computing reaches the petascale and anticipates reaching the exascale inside of a
decade, the nature of the hardware is changing rapidly. High-end systems now routinely encompass tens
and even hundreds of thousands of CPU cores. Adding more cores per chip, and the details of how they
share resources can be quite important for performance. Heterogeneous processors (LANL’s Roadrunner
petaflop system [1] includes three different processor architectures), complex memory hierarchies, and
heterogeneous interconnects all further complicate the HPC environment. As we build toward exascale,
these factors will become even more important.

Unfortunately current programming models are not capable of fully exploiting the enormous
performance potential of these architectures [2–4]. Current models are designed to provide access
to low level runtime system mechanisms in order to achieve performance. They generally require
the programmer to manage every aspect of complex parallel algorithms, including mapping from
conceptually global data structures to local storage, coordination of data exchange, and other aspects. As
hardware architectures become larger and more complex, low-level approaches to parallel programming
become less and less tractable for real applications.

Three new programming languages are being developed, as part of the High-Productivity Computing
Systems (HPCS) program, sponsored by the U.S. Defense Advanced Research Projects Agency
(DARPA), that are intended to address this issue. Chapel [5, 6], Fortress [7, 8], and X10 [9, 10]
represent perhaps the largest concerted investment in the development of new environments for parallel
programming in several decades. These “HPCS languages” incorporate the results of past research

in parallel programming models with novel ideas and approaches relevant to emerging hardware
architectures to produce high-level languages with support for object oriented and generic programming,
a broad range of constructs for expressing both task and data parallelism at multiple levels, and a global
view of data. We (the authors of this paper) believe that these languages are at least representative of
a new generation of parallel programming environments which are appropriate for widespread use in
high-end scientific and technical computing, and therefore worthy of deeper examination.

Because these languages are still relatively early in their development, we focus on the general
features of the languages and their expressiveness for scientific computing. At present, the details of
the language specifications continue to change, and the implementations generally do not provide all of
the planned features, nor have they been tuned for performance. Performance is obviously one of the
many issues faced by any new programming environment. We believe that the approach taken by these
languages offers many potential benefits for performance portability across architectures, with more use
of compilers and runtimes to help than is possible with current parallel programming environments.
Where possible we point out syntax and semantics we believe could be exploited by the compiler and
runtime system for achieving these goals.

We begin with a brief discussion of related efforts, followed by an overview of the new languages.
We then explore the use of these languages using computations common to a broad set of scientific
applications. Throughout these cases we discuss the opportunities provided by the languages qualified
with the challenges faced by the language developers and compiler implementers. We end with some
conclusions drawn from our experiences.

2. Background and Related Work
The dominant programming model in high-performance scientific computing couples a sequential
programming language (i.e. Fortran) with the MPI message passing library [11, 12]. In this approach,
all responsibility for managing parallelism, coordinating data exchange, and implementing global data
structures falls on the programmer.

For hierarchical parallelism, of increasing interest as multi-core CPUs become ubiquitous, OpenMP
[13] is often added to the mix. OpenMP offers implicit multithreaded parallelism controlled by compiler
directives, and targets shared-memory environments.

High Performance Fortran (HPF) [14, 15] was an early attempt at a truly parallel language for high-
performance scientific computing. However the first version suffered from a number of limitations
(particularly the lack of task parallelism, and limited parallel data structures) and implementation
challenges, and interest waned before these could be remedied [16].

More recently, languages such as Co-Array Fortran (CAF, [17]), Unified Parallel C (UPC, [18]), and
Titanium [19, 20], collectively known as the partitioned global address space (PGAS) languages have
been developed, and have gained some popularity. These languages were designed as minimal extensions
of their underlying sequential languages (Titanium is based on Java) to provide some parallelism. While
they do provide mechanisms to address remote memory via load/store semantics, they do not provide
support for sophisticated global data structures. In CAF, global data objects are merely local objects with
an index for the processor appended. In UPC, only one-dimensional arrays can be distributed. They also
provide little in the way of parallel control structures.

A wide range of research languages developed over the years have also had important influences on
the designs of the HPCS languages. The reader is referred to papers from the language teams themselves
(see next section) for appropriate details. Of particular significance in the scientific computing context
is the ZPL language [21,22], which demonstrated an approach to describing array operations at a higher
level, thus allowing code that is both safer and more flexible for a compiler to map onto the underlying
architecture.

3. Overview of Languages
At a high level, the three languages have many similarities, though in detail there are significant
differences. All three languages emphasize the expression of parallelism at a high level by the
programmer and relying on the compiler/runtime/library infrastructure to produce an optimized
implementation for the underlying parallel architecture.

In all three, program execution starts with a single conceptual thread of control, which then generates
more parallelism through the use of language constructs (i.e. not strictly SPMD). Parallelism is mapped
onto a multi-level conceptual model that is roughly approximated by the “processes” and “threads” of the
traditional MPI-based programming model, for which each language has different terminology. Memory
in all three is globally addressable, and data is global and can be distributed. Locality control permits
computation and data to be assigned to specific system resources for performance reasons. The base
languages are object-oriented and provide generic programming capabilities.

3.1. Chapel
Chapel [5, 6] is being designed by Cray Inc. to support general parallel programming while narrowing
the gap between mainstream and HPC languages. Chapel’s design builds on concepts from ZPL [21,22],
High-Performance Fortran (HPF, [15]), and Cray’s multithreaded extensions to C and Fortran [23], while
adopting a variety of other useful features from mainstream and academic languages.

A locale in Chapel symbolizes a unit of architectural locality on the target machine, containing
processing and storage capabilities. A locale’s memory is uniformly accessible to computations
running on it. Each locale supports a dynamic set of tasks that are created using begin, cobegin, and
coforall statements. Tasks are synchronized using synchronization (sync) variables that have full/empty
semantics, and atomic sections that provide transactional memory capabilities. Data and tasks can be
mapped to machine resources (locales) using on clauses. The mapping may be explicitly specified, or
data driven. Chapel supports data parallelism via domains, a first-class language concept representing
an index set. Domains can be iterated over in parallel using forall and coforall loops, and are used to
declare, resize, and slice arrays. Domains and their arrays may be partitioned across a set of locales using
distributions, which map from the global view of an aggregate to its implementation on distinct locales.

3.2. Fortress
Fortress [7,8], being developed by Sun Microsystems, Inc., is designed to be an open, growable language.
Consequently, it is designed with a small set of core language features, and the majority of concepts are
coded in libraries.

Fortress programs are multithreaded; a user may explicitly spawn threads, or call implicitly parallel
constructs that create threads managed by the Fortress language implementation. Atomic sections enable
synchronization of threads. Fortress regions abstractly describe the underlying machine structure and
can have an arbitrary hierarchical structure. Thread affinity to particular regions may be specified with at
expressions, and distributions allow management of data locality. Parallelism can be programmed inside
libraries as distributions and generators.

Fortress also provides a variety of novel features targeting the HPCS program’s productivity goals,
including built-in constructs for managing components and interfaces, expressing tests and contracts, and
methods for rendering the code that look like typeset mathematics.

3.3. X10
X10 [9, 10], which is being developed by IBM Corp., is designed to leverage the extensive software
ecosystem around the Java language. X10 is defined as a serial subset of Java, extended with additional
concurrency, distribution, and locality features.

In X10, a place corresponds to a data-coherent processing element, with each place supporting a
dynamic set of lightweight activities. Activities specify logical parallelism and may be composed in

arbitrarily nested ways using async, future, foreach, and ateach constructs, and are translated by the
X10 compiler/runtime into running threads. An activity executes to completion on the place where it
is created, but can launch activities on other places, and detect termination of all such activities via
the finish statement. Clocks enable synchronization of dynamically created activities across places.
Activities within a place uniformly and coherently access its memory using atomic statements; weaker
ordering semantics exist for inter-place data accesses. Similar to Chapel, X10 provides a ZPL-like “array
language” to express high-level operations on distributed arrays.

3.4. Language Versions and Status Table 1. Language Versions
Language Specification Implementation
Chapel v0.775 [24] v0.7 compiler
Fortress v1.0 [7] v1.0 interpreter
X10 v1.3 [25] v1.5 compiler

The versions of the languages available at the time
of this writing are shown in Table 1. None of the
current implementations fully support the features
and capabilities envisioned by their developers.
Where possible, we present and discuss code that
works today, but given the fact that these languages are still very much under development, it is useful to
also discuss what we expect to be possible in future implementations based on our interactions with the
developers.

4. Examples
We illustrate Chapel, Fortress, and X10 using computations common to a broad set of scientific
applications. Finite difference stencils, used to solve partial differential equations, illustrate the
data parallel model. A mesh sweeping algorithm for solving first-order hyperbolic PDE with linear
characteristics illustrates more complex data parallel capabilities and object-oriented features. The
Hartree-Fock method, used in quantum chemical simulations, illustrates task parallelism and atomic
operations.

4.1. Finite Difference Stencils

Figure 1. Local-view parallel vs. global-view
programing model.

A broad range of physical phenomena in science and
engineering can be described mathematically using
partial differential equations (PDE). Determining the
solution of these equations on computers is often
accomplished using finite differencing methods, based
on stencil computations. Figure 1 illustrates the
advantage of the global view which we will exploit.
The local view model requires that the code developer
explicitly manage the decomposition of the domain
across the parallel processors and the induced inter-
process communication sharing requirements; the
global view model frees the code developer from these
tasks.

4.1.1. Chapel A 9-point stencil in two dimensions is shown in Code 1. An arithmetic domain
(PhysicalSpace) describes the grid points in the physical space. From it, we derive a second
domain (AllSpace), which adds space for applying boundary conditions. Arrays are allocated using
this boundary space, while iteration is controlled by the physical space. Utilizing these domains
in the computation rather than explicit indices provides the compiler flexibility for arranging and
operating on data, and also avoids mistakes with loop bounds, a common source of coding errors.

Code 1. 9-point stencil in 2d - Chapel
1 const PhysicalSpace : domain(2) distributed(Block) = [1..m, 1..n],
2 AllSpace = PhysicalSpace.expand(1);
3 const Stencil9pt = [-1..1, -1..1];
4 const div = 1.0 / 9.0;
5 var g1, g2 : [AllSpace] real;
6 forall i in PhysicalSpace do
7 g2(i) = (+reduce [j in Stencil9pt] g1(i+j)) * div;

Code 2. 5-point stencil in 2d - Chapel
1 const Stencil:sparse subdomain(Stencil9pt)=
2 ((-1,0),(0,-1),(0,0),(0,1),(1,0));
3 - OR -
4 const Stencil:sparse subdomain(Stencil9pt) =
5 [(i,j) in Stencil9pt] if (abs(i) + abs(j) < 2) then (ij);

By configuring the
stencil computa-
tion as a reduc-
tion over a set of
grid points, we
can more clearly
express the in-
tent of this com-
putation, convey-
ing to the com-
piler the intent of
the computation
within the con-
text of the data
structure.

Using a sparse domain we define a 5-point stencil as a subset of the arithmetic domain 9-point stencil,
shown in Code 2 expressed in two different ways. The computation code remains unchanged, illustrating
Chapel’s polymorphic capabilities. For more on difference stencils using Chapel, see [26, 27].

Code 3. 5-point stencil in 2d - X10
1 public class stencil {
2 static final region (:rank==2) Rall = [0:N+1,0:N+1], Rcore = [1:N,1:N];
3 static final dist (:rank==2) Dall=(dist(:rank==2)) dist.factory.block(Rall),
4 Dcore=(Dall | Rcore),
5 Dhalo=(Dall - Dcore.region);
6 final double[Dcore:rect&&rank == 2] gridnew = (double[Dcore:rect&&rank == 2])
7 new double[Dcore](point [i,j]) {
8 return ((a[i-1,j]+a[i,j-1]+a[i,j]+a[i,j+1]+a[i+1,j])*0.2);};

4.1.2. X10 The X10 implementation is shown in Code 3. Data is distributed across the available places,
with work-sharing loop constructs performing the computation. The region declarations create abstract
one dimensional and two dimensional templates, which are sliced up and distributed across the available
places by the dist declarations. The declared distributions, at this point still abstract objects, are then
used when declaring and allocating array objects. The array is allocated and accessed according to its
distribution. Included in the array declarations for gridold and gridnew are pointwise initialization
constructs which run in parallel at each X10 place, a fact which is used to update gridnew with the
5-point stencil. Array operations such as the difference, absolute value, and sum over the core regions of
the old and new grids as well as the update of the core region of the old grid based on the new grid are
also performed in parallel.

Code 4. 5-point stencil in 2d - Fortress
1 stfivept[\Elt extends
2 Number\](z:Elt,o:Elt) :() = do
3 a = array[\Elt\](N,N)
4 b = array[\Elt\](N,N)
5 for j <- 2#(N-3) do
6 for i <- 2#(N-3) do
7 b[i,j] :=
8 (a[i-1,j]+a[i,j-1]+a[i,j]+a[i,j+1]+a[i+1,j]) * 0.2
9 end

10 end

4.1.3. Fortress A poly-
morphic implementation us-
ing Fortress (instantiated
for any Number type) of
the 5-point stencil compu-
tation is shown in Code 4.
The loop bound constraints
depend on the start values,
so the loop iterations are
set to N-3. Fortress of-
fers multi-dimensional ar-

ray data structures called traits, which can be instantiated with any data type. The array elements could be
distributed in multiple regions of the memory hierarchy and the region method returns the locality of an
array element. In addition, the for loop construct in fortress is by default parallel and nondeterministic.

4.2. Hartree-Fock Method
The Hartree-Fock method of quantum chemistry [28], widely used in quantum chemical simulations,
combines a task-parallel algorithm with operations on distributed data, and is characterized by irregular
and unpredictable parallel tasks as well as distributed data access. A thorough examination of this
problem in the HPCS languages appears in [29, 30]. Due to space limitations, we focus here on just
one example drawn from this rich computational problem.

The most computationally intensive step in the Hartree-Fock method is construction of the Fock
matrix,

Fµν ← Dλσ{2(µν|λσ)− (µλ|νσ)}
where the indices µ, ν, λ, σ denote the basis functions, and D is the density matrix. (µν|λσ) is a rank-
4 tensor representing the two-electron repulsion integrals. Formation of the Fock matrix is an O(N4)
operation for N basis functions.

Figure 2. Schematic of the Fock matrix construction algorithm.

The scalable par-
allel implementa-
tion of the heart
of the Fock matrix
construction algo-
rithm is illustrated
in Figure 2. The
density (input) and
Fock (output) ma-
trices are fully-dis-
tributed arrays, which
are accessed in blocks, sized to match integral blocks. The computationally intensive evaluation of in-
tegrals is distributed across the available processes using a four-fold loop over the index space (blocked
appropriately). Because the integral blocks are highly non-uniform both in terms of size and computa-
tional cost, the implementation must be dynamically load balanced in order to scale.

In contrast to MPI, the HPCS languages provide a variety of parallel constructs which can be used to
implement dynamic load balancing for this algorithm in a number of different ways. One approach makes
use of a task pool concept. The “pool” is a common work area, or list of tasks. Producers submit tasks to
the pool and consumers execute them. In the Fock-build algorithm, the producer would generate the lists
of integral blocks that need to be evaluated, and all processes would consume these tasks as they become
available (see [29, 30] for details). This approach utilizes the languages’ atomic operations to manage
the global task pool data structures, and locality-aware task management features to distribute the work.
The task pool idea provides a very flexible way of expressing and managing many kinds of parallelism.
In addition to irregular problems, task pools can provide flexible management of parallel multitasking
and other complex concepts. Task pool implementations can be as sophisticated as necessary to account
for data locality and other considerations. As processor (and core) counts grow, one important way of
expressing more parallelism is to more carefully examine data dependencies and allow unrelated parallel
operations to take place on subsets of the available processes. We believe that the task pool pattern will
become increasingly relevant to high-performance scientific computing, and therefore also the language
(or library) constructs that support it.

In this paper, we illustrate in more detail another load balancing approach using a shared global
counter, which is well-suited to a single large-scale irregular computation. In this case, the four-fold
loop indices are mapped onto a linear sequence of computational tasks, which can be represented with a
simple integer counter. When a process needs work, it reads the counter to obtain the sequence number

Code 5. Shared counter for dynamic load balancing - X10
1 int G = 0;
2 finish ateach(point [p] : dist.factory.unique(place.places)) {
3 int myG, L = 0;
4 future<int> F = future (place.FIRST_PLACE) {read_and_increment_G()};
5 myG = F.force();
6 for(point [iat] : [1:natom])
7 for(point [jat, kat] : [1:iat, 1:iat])
8 for(point [lat] : [1:(kat==iat?jat:kat)]) {
9 if (L == myG) {

10 F = future (place.FIRST_PLACE) {read_and_increment_G()};
11 buildjk_atom4(new blockIndices(. . .));
12 myG = F.force();
13 }
14 ++L;
15 }
16 }

of the next task it should perform, and increments it so that the next reader will get the following task.
Clearly this entire operation must be performed atomically, or there is a risk that another process will
read the unincremented value and duplicate the task. This is the approach used in the first scalable,
dynamically load balanced version of the fully-distributed Hartree-Fock algorithm [28, 31, 32], which
used the Global Array (GA) Toolkit [33], which provides the concept of a globally shared counter with
an atomic read-and-increment operation, as well as a global view of distributed arrays, and one-sided
messaging (get/put semantics), all of which also appear in the HPCS languages.

4.2.1. X10 In Code 5, the root activity creates the globally shared counter G on the first place (line
1). Then it uses the ateach construct (line 2) to launch a copy of the Fock-build algorithm (lines 3–
16) on each place. The finish (line 2) causes the root activity to block until the rest of the algorithm
completes on every place. Each place iterates over the same sequence of tasks (the four-fold loop, lines
6–8), using L to count the tasks. When L matches the next task assigned to the place (myG), it evaluates
that integral block. Assignments (myG) are obtained from a remote atomic read-and-increment operation
on the globally shared counter G on the first place (lines 4 and 10). When every place has completed the
four-fold loop, all tasks will be evaluated.

Code 6. Atomic read-and-increment - X10
1 private int read_and_increment_G() {
2 int myG;
3 atomic myG = G++;
4 return myG;
5 }

X10 requires that remote references to mutable
data (in this case the shared counter G) be done
asynchronously, hence the use of the future
construct at lines 4 and 10. Separation between
spawning the future and forcing it (as in lines 10
and 12) allows computation and communication to be
overlapped.

Code 6 shows how the atomic read-and-increment operation is straightforwardly implemented with
an atomic section.

4.2.2. Chapel Our Chapel implementation in Code 7 employs the coforall statement to create
distinct concurrent computations for all the locales, with an on clause binding one computation to one
locale (line 2). Each computation loops over the index space of tasks (lines 4–7).

The shared counter G is created on the first locale as a synchronization variable of
the sync type, which provides full/empty semantics (line 1). Once written, such a vari-
able cannot be re-written until it is emptied. Likewise, an empty variable cannot be re-
read until it is written. Computations attempting to write to a full sync variable or

read from an empty one will block until another computation changes the variable’s state.

Code 7. Shared counter for dynamic load balancing - Chapel
1 var G : sync int = 0;
2 coforall loc in LocaleSpace on Locales(loc) {
3 var (L,lattop,myG) = (0,0,readAndIncrementG());
4 for iat in 1..natom do
5 for (jat, kat) in [1..iat, 1..iat] {
6 lattop = if (kat==iat) then jat else kat;
7 for lat in 1..lattop {
8 if (L == myG) then
9 cobegin {

10 buildjk_atom4(new blockIndices(. . .));
11 myG = readAndIncrementG();
12 }
13 L += 1;
14 }
15 }
16 }
17 def readAndIncrementG() {
18 const myG : int = G;
19 G = myG + 1;
20 return myG;
21 }

Code 8. Shared counter for dynamic load balancing - Fortress
1 numRegs = 10
2 var G : ZZ32 = 0
3 for reg<-1#numRegs at region(reg) do
4 (L,myG) : ZZ32... := (0,read_and_increment_G())
5 for iat<-seq(1#natom), jat<-seq(1#iat),
6 kat<-seq(1#iat), lat<-seq(1#(if (kat=iat)
7 then jat else kat end)) do
8 if (L = myG) then
9 do

10 buildjk_atom4 blockIndices(. . .)
11 also do
12 myG := read_and_increment_G()
13 end
14 end
15 L += 1
16 end
17 end
18 read_and_increment_G() : ZZ32 = do
19 var myG : ZZ32
20 atomic do
21 myG := G
22 G += 1
23 end
24 myG
25 end

Taking advantage of these semantics to
atomically update the counter in the
readAndIncrementG method from
Code 7, every computation first does
a read (line 18) followed immediately
by a write of G (line 19) to fetch the
next task. The processing of a newly
assigned task is overlapped with the
fetch of the next task inside a cobegin
statement (Code 7, line 9).

4.2.3. Fortress The Fortress version
in Code 8 spawns parallel threads using
the for expression, with the at expres-
sion denoting the region where each
thread should run (line 3). (At the time
of this writing, since Fortress does not
support distinct regions, numRegs is
used to simulate the different regions.)
All threads traverse the iteration space
in a serial fashion as mandated by the
seq multi-generator for loop (lines
5–7). The also construct (line 11)
runs a new task concurrently with up-
date to the shared counter G. The
read_and_increment_G function is
implemented as an atomic method
(lines 18–25).

4.3. Mesh sweeping
Methods for solving a first-order,
hyperbolic PDE with linear charac-
teristics often employ a sweeping
method to traverse the domain along
the corresponding characteristic direc-
tion. This is accomplished in prac-
tice by first, approximating the PDE
domain by a polyhedron (polygon if
two-dimensional), second, partition-
ing the polyhedron into a set of
non-overlapping sub-polyhedra (sub-
polygon), thereby defining a mesh,
and third, coloring the mesh repre-
sentation data so that each color represents a group of mesh elements wherein an exact so-
lution to the original PDE is obtained by simple integration along the characteristic direc-
tion. (Figure 3 illustrates the idea.) If all groups of elements are visualized with a con-
tinuous colormap, they give rise to a sequence of fronts roughly orthogonal to the charac-
teristic direction. Therefore a colored group of elements is referred to as a wave front.

Figure 3. Mesh sweeping
Left: mesh with 123,888 triangles around 100 square particles. Right:
wave front coloring of mesh sweeping in the horizontal direction left to
right. Blue indicates all elements marked in the first wave front, and
red, all elements in the last front.

Although first-order, hy-
perbolic PDE’s with linear
characteristics fall short to
represent many physical pro-
cesses of interest, they are
at the heart of many iterative
schemes used to solve more
complex and realistic models.
For instance, in neutron trans-
port models used in nuclear
reactor simulations, the dis-
cretization of the angular vari-
ables (known as discrete ordi-
nates) leads to a set of first-
order, hyperbolic PDE’s in as
many directions as there are
ordinates; this set is further
augmented by the discretization of the neutron energy variable. The overall solution scheme iterates
within an outer loop to update the integral terms (scattering and source) in the original model. Another
related example is the use of mesh sweeping on radiative transfer problems [34].

The most frequent parallel implementation of a mesh sweeping method is obtained by spatially
partitioning the graph of the whole mesh (either in parallel or sequentially) and distributing the data
across processors explicitly. This requires the time-consuming, error-prone reconstruction of the mesh
data on each processor, e.g. connectivity, numbering, physical boundary conditions, artificial internal
boundary information, etc. by the programmer. Once the data has been distributed, mesh sweeping
is applied independently in each processor on the local data, and an outer loop is needed to update
interprocessor boundary information when solving the associated PDE problem. This approach no longer
guarantees an exact solution of the problem but upon sufficient convergence and multiple full sweeps of
the domain, the approximate solution is typically acceptable.

Our implementation of a sweeping algorithm for a two-dimensional (2-D) mesh using Chapel in
Code 9 explores the underlying parallel infrastructure of the language to avoid an explicit spatial
partitioning of the mesh data. The gains are twofold, no need for mesh partitioning and tedious extra
programming to reconstruct local mesh data, and no need for multiple sweeps by the PDE host solver.

For simplicity we do not save the wave fronts in this example code but override them each time a
full front has been computed. In line 1, the mesh partition set object, setT, is created by instantiation
of a finite element partition class whose constructor reads a mesh input data file, mesh.dat. The data
is then stored in various containers which distribute their corresponding data over Chapel locales. The
essential functionality derives from the systematic/nested use of a generic vector container similar to a
class template (Code 10). All sweep directions are looped over in parallel starting in line 4. sweepDir
is a (real,real) pair direction from the vector sweepDirections of all desired sweep directions
spanning the range 0–360◦. A mask over all mesh elements is created in line 5 and marked as blue, that
is, all elements are initially ahead of the current wave front while the null element (line 6) is always
behind any front, hence, colored green. This mask is a distributed vector of type int, with range
0..setTCardinality. As the sweeping of the mesh proceeds, the number of blue elements reduces
and the while statement in line 7 terminates the process. The core of the look-ahead searching to color
the wave front mesh elements as red is in lines 8–20. Before starting the parallel loop over all elements
in line 8, the mask never has any red color value, that is, elements are colored either ahead of the front
or behind the front. In line 9, only the elements ahead of the front are queried. Initially the color status
setColor of any given blue element is set to true (line 10) indicating that the element is a candidate for
the new wave front. Next, for each edge in the list of all edges, the outward pointing, unit normal vector

Code 9. Look-ahead mesh sweeping - Chapel
1 var setT = new FiniteElementPartition("mesh.dat"); //create dist. mesh part. set
2 const setTCardinality:int = setT.GetCardinality(); //# of mesh elements; large
3 enum {blue, green, red}; //color for ahead of front, behind, and on the front
4 forall sweepDir in sweepDirections { //parallel loop over sweep directions
5 var waveFrontMask = new Vector(int,0..setTCardinality,blue);//distributed vector
6 waveFrontMask(0) = green; //null element id points to green
7 while (waveFrontMask.Find(blue)) { //keep coloring while blue exists
8 forall fE in setT.GetMembers {
9 if (waveFrontMask(fE.GetId()) == blue) {

10 var setColor:bool = true;
11 forall edge in fE.GetEdges() {
12 const normal = fE.GetEdgeNormal(edge);
13 if (normalˆsweepDir < 0.0){ //if sweep direction enters edge
14 const neMemberId:int = setT.GetNeighborMemberId(fE,edge);
15 if (waveFrontMask(neMemberId) != green) {setColor = false;}
16 }
17 if (setColor == true) {waveFrontMask(fE.GetId()) = red;}
18 }
19 } // end if mesh element ahead of front
20 } // end parallel loop over mesh elements
21 forall i in waveFrontMask {if (i != blue) {i = green;}}
22 } // end while
23 } // end parallel loop over sweep directions

is computed and compared (via an inner product) to the sweeping direction (line 13). If the sweeping
direction points towards the inside of the element then the neighbor element sharing that edge (line 14)
is tested for its position relative to the wave front (line 15). If the neighbor is on the front or ahead
of the front, then the current element is not selected (line 15). In the event that all edges in the list
fE.GetEdges() (line 11) of the candidate mesh element, fE, fail the test in line 15, then it is colored as
a wave front element (line 17). Once all remaining blue elements are searched, the mask color is updated
to convert the red elements into green (lines 21).

Code 10. Sample of a generic vector distributed container - Chapel
1 class Vector { // generic/template class
2 // Accessors and modifiers
3 def GetType() type {return T;}
4 def GetSize() {return rng.high-rng.low+1;}
5 def GetRange() {return rng;}
6 def GetDomain() {return dom;}
7 def Resize(n: range = 1..0) {rng = n; dom = [rng];}
8 def Clear() {this.Resize();}
9 def Find(val:T):bool {return LinearSearch(data,val)(1);}

10 def these() var {for i in dom {yield data(i);}}
11 // Members
12 type T;
13 var rng:range(int);
14 var value:T;
15 var dom:domain(1) distributed(Block) = [rng];
16 var data:[dom] T = value;
17 }

It is clear from Code 9
that the sweeping algorithm
can be expressed almost
identically to other sequen-
tial object-oriented codes,
and it is equally intuitive.
However it has the poten-
tial to exploit parallelism
since all objects eventually
use distributed vectors of
generic types (Code 10) for
their underlying data stor-
age. This implementation
of a distributed vector pre-
serves Chapel domain and
range variables in the same
program unit, and exposes a
familiar interface for the user accustomed to object-oriented and generic programming. We have tested
this Chapel implementation extensively on various 2-D meshes data sets (Figure 3) which is equaly
valid for 3-D meshes upon substitution of face(s) for edge(s) in Code 9, and implementation of the
respective member functions.

5. Conclusions
We have attempted to illustrate some of the features in the HPCS languages that make these languages
much better aligned with the needs of the next generation of HPC scientific codes and the hardware on
which they will run. In contrast to the MPI library+sequential language environment which currently
dominates parallel scientific computing, the HPCS languages integrate parallel control structures,
distributed data, and other important features such as atomic operations into a comprehensive higher-
level expression of the computation that should allow the compiler and the runtime system to effectively
perform transformations and optimizations for different underlying hardware platforms.

However, the qualifier should in the sentence above is an important one. As we have noted already,
these languages are still early in their development, and implementations are not yet mature with respect
to capabilities or performance. Performance is obviously on par with expressiveness when it comes to
evaluating new programming environments for HPC, and many of the features of the HPCS languages
will be challenging to implement efficiently.

For example, the stencil code frees us from dealing with the mechanics of distributing and sharing
data, and we expect this to be a manageable task by a compiler due to the regular structure of the grid.
The unstructured grid operated on by the sweep algorithm will require advanced partitioning techniques
and associated inter-process communication requirements.

Additionally, all three languages anticipate supporting software transactional memory in the form of
constructs for synchronizing access to shared data by distributed threads of control. Atomic sections
have the potential of easing programming by relieving the programmer from the burden and pitfalls of
explicit lock-based schemes. Scalable implementation of transactional memory in distributed memory
environments is a challenging area of research. The shared counter schemes of dynamic load balancing
will require efficient techniques for doing atomic updates.

On the other hand, the development teams for these languages are all very much aware of the
complexities they face, and are sensitive to the experience of High-Performance Fortran, which has
been attributed in part to pushing the compiler technology of the time too far [16], and have no wish to
repeat it. The developers are confident that the proposed features can be implemented effectively.

Further, while the languages provide constructs suitable for exploiting the heterogeneous and other
advanced features of architectures in very flexible ways, effectively managing these capabilities within
the context of algorithmic requirements will also be challenging. Though once again, we observe that
the higher-level integrated view of the computation provided by the HPCS languages should allow more
use of tools and automation, and therefore require less detailed programmer effort to make them work.

In addition to a variety of performance and implementation-related issues, there are many other
concerns on the long road to possible widespread of a new language for scientific computing. Large-scale
applications and key libraries will not immediately be rewritten in a new language, therefore all three
languages plan to provide interoperability with existing languages and libraries. In all languages, the
plan is to provide basic interoperability via Babel [35] or a similar mechanism. Parallel data distributions
to match those used by important libraries (for example ScaLAPACK) might be predefined to aid users.
I/O is clearly extremely important for scientific computing, but has been deferred by the language teams
in order to focus on the core of the languages first.

We have found the development teams to be enthusiastic and responsive to our questions, experiences,
and suggestions. Feedback related to real scientific applications is particularly valuable at these formative
stages. But at the same time, we want to provide two cautions that, given the HPF experience [16], seem
very important. First, prospective users should make sure they set their expectations in accord with the
stated level of maturity of the languages and implementations. At this stage, for example, most users
would find it more productive to begin learning about the new concepts presented in these languages,
and thinking about how they might apply to their applications rather than actually trying to write code
for the HPCS languages. Second, patience within the user community will be important to allow new
languages to reach a level of maturity and quality at which it becomes reasonable to evaluate them as
possible alternatives to long-standing approaches, which have thirty or more years of experience and

usage behind them.
Although we cannot predict the success of these languages, we believe there is ample justification for

the computational scientist to be supportive of the efforts. We look forward to tracking the progress of
the HPCS language specifications and their implementations.

Acknowledgements
We thank all three of the language development teams for their support and discussions through this
work.

This work has been supported by the Laboratory Directed Research and Development Program of Oak
Ridge National Laboratory (ORNL), and the ORNL Postmasters Research Participation Program which
is sponsored by ORNL and administered jointly by ORNL and by the Oak Ridge Institute for Science
and Education (ORISE). ORNL is managed by UT-Battelle, LLC for the U. S. Department of Energy
under Contract No. DE-AC05-00OR22725. ORISE is managed by Oak Ridge Associated Universities
for the U. S. Department of Energy under Contract No. DE-AC05-00OR22750.

References
[1] Roadrunner supercomputer, Los Alamos National Laboratory http://www.lanl.gov/roadrunner
[2] Alam S, Barrett R, Kuehn J, Roth P and Vetter J 2006 IEEE International Symposium on Workload Characterization
[3] Dongarra J, Gannon D, Fox G and Kennedy K 2007 CTWatchQuarterly 3
[4] Post D and Votta L 2005 Physics Today 58
[5] Chamberlain B L, Callahan D and Zima H P 2007 International Journal of High Performance Computing Applications

21 291–312
[6] Chapel home page http://chapel.cs.washington.edu/
[7] Allen E, Chase D, Hallett J, Luchangco V, Maessen J W, Ryu S, Jr G L S and Tobin-Hochstadt S 2008

http://projectfortress.sun.com/Projects/Community/browser/trunk/Specification/
fortress.1.0.pdf

[8] Fortress home page http://fortress.sunsource.net/
[9] Charles P, Donawa C, Ebcioglu K, Grothoff C, Kielstra A, von Praun C, Saraswat V and Sarkar V 2005 Proceedings of

Object-Oriented Programming, Systems, Languages, and Applications(OOPSLA)
[10] X10 home page http://x10.sf.net/
[11] Snir M, Otto S, Huss-Lederman S, Walker D and Dongarra J 1998 MPI: The Complete Reference: Volume 1 - 2nd Edition

(The MIT Press)
[12] Gropp W, Huss-Lederman S, Lumsdaine A, Lusk E, Nitzberg B, Saphir W and Snir M 1998 MPI: The Complete

Reference: Volume 2 - The MPI-2 Extentions (The MIT Press)
[13] OpenMP home page http://openmp.org
[14] High Performance Fortran Forum 1993 High Performance Fortran language specification Tech. Rep. CRPC-TR92225

Center for Research on Parallel Computation, Rice University, Houston, TX
[15] High Performance Fortran Forum 1997 High performance fortran language specification, version 2.0 Tech. rep. Rice

University
[16] Kennedy K, Koelbel C and Zima H 2007 Proceedings of the third ACM SIGPLAN conference on History of programming

languages
[17] Numrich R and Reid J 1998 ACM Fortran Forum 17 1–31
[18] UPC home page http://upc.gwu.edu
[19] 2006 The Titanium project home page http://titanium.cs.berkeley.edu/
[20] Hilfinger P, Bonachea D, Datta K, Gay D, Graham S, Liblit B, Pike G, Su J and Yelick K 2005 Titanium language

reference manual Tech. Rep. UCB/EECS-2005-15 U.C. Berkeley http://titanium.cs.berkeley.edu/
papers/EECS-2005-15.pdf

[21] Chamberlain B L, Choi S E, Deitz S J and Snyder L 2004 Proceedings of the IEEE International Workshop on Productivity
and Performance in High-End Computing (PPHEC)

[22] ZPL home page http://www.cs.washington.edu/research/zpl/
[23] Cray, Inc. 2005 Cray MTA-2 Programmer’s Guide s-2320-10
[24] Chapel language specification http://chapel.cs.washington.edu/spec-0.775.pdf
[25] X10 language specification http://x10.cvs.sourceforge.net/x10/x10.man/v1.0/x10.pdf?view=

log
[26] Barrett R, Poole S and Alam S R 2007 Expressing POP from a Global View Using Chapel: Towards a More Productive

Ocean Model Tech. Rep. TM-2007/122 Oak Ridge National Laboratory

[27] Barrett R, Alam S and Poole S W 2008 Proc. 50th Cray User Group Meeting
[28] Foster I T, Tilson J L, Wagner A F, Shepard R L, Harrison R J, Kendall R A and Littlefield R J 1996 Journal of

Computational Chemistry 17 109–123
[29] Shet A G, Elwasif W R, Harrison R J and Bernholdt D E 2008 2008 IEEE International Parallel and Distributed

Processing Symposium
[30] Shet A G, Elwasif W R, Harrison R J and Bernholdt D E 2008 Programmability of the HPCS languages: A case study with

a quantum chemistry kernel (extended version) Technical report ORNL/TM-2008/011 Oak Ridge National Laboratory
see http://www.ornl.gov/info/reports/

[31] Harrison R J, Guest M F, Kendall R A, Bernholdt D E, Wong A T, Stave M, Anchell J L, Hess A C, Littlefield R J, Fann
G L, Nieplocha J, Thomas G S, Elwood D, Tilson J L, Shepard R L, Wagner A F, Foster I T, Lusk E and Stevens R
1996 Journal of Computational Chemistry 17 124–132

[32] Tilson J L, Minkoff M, Wagner A F, Shepard R, Sutton P, Harrison R J, Kendall R A and Wong A T 1999 International
Journal of High Performance Computing Applications 13 291–302

[33] Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H and Apra E 2006 International Journal of High Performance
Computing Applications 20 203–231

[34] de Almeida V F 2003 An iterative phase-space explicit discontinuous galerkin method for stellar radia-
tive transfer in extended atmospheres Technical Manuscript ORLN/TM-2003-072 Oak Ridge National Lab-
oratory Tennessee, TN 37831-6181, U.S.A. also available by request to dealmeidav@ornl.gov or at
http://dealmeidav.ornl.gov

[35] Lawrence Livermore National Laboratory Babel http://www.llnl.gov/CASC/components/babel.html

