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Today: Approaching a Peak Petaflop

• Hardware characteristics (~100-300 Teraflops peak)
– 10,000-100,000 processors
– 2-4 cores per processor
– Homogeneous processor environment

• Application characteristics
– Scaling up problem size/resolution
– Increasing physical fidelity/model complexity
– Early explorations of coupled simulation

• Dominant programming model
– Sequential language (Fortran/C/C++)
– 2-sided messaging library (MPI)
– threads (OpenMP)
– Age: ~30 years
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Tomorrow: Sustained Petaflops
and Beyond

• Hardware characteristics (10-100 petaflops peak)
– 100,000-1,000,000 processors
– 100-1,000 cores per processor
– Heterogeneous processor environment may be common

• Example: LANL Roadrunner: Opteron, PowerPC, Cell
• Also GP-GPUs, integrated GPUs, FPGAs, etc.

• Application characteristics
– Scaling up problem size/resolution leveling off
– Increasing physical fidelity/model complexity
– Serious coupled simulation
– Serious algorithmic scaling challenges

• Increase in multi-level parallelism
• Increase in adaptive representations, irregular computations

• Dominant programming model
– ???
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Fortran+MPI+OpenMP Forever?
• I hope not!

– The “assembly language” of parallel programming

• Pushes too much complexity onto the programmer
– Explicit/local management of complex distributed data structures
– Coordination among O(106-108) communication endpoints, more 

threads

• Parallelism bolted on to sequential language makes 
program expression, comprehension, tuning, etc. harder

• Fortran is still relatively low level
– Expresses basic computations, but not domain abstractions
– F2003 better, but not widely used (implemented?) yet

• MPI emphasizes the mechanics of data movement, 
obscures scientific problem and abstractions

• OpenMP is mostly about loop-level parallelism, but much 
more is needed
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The Nature of Scientific 
Programming has Changed

• It used to be that straightforward formula translation was 
sufficient

• Now, it involves the manipulation of complex, hierarchical 
abstractions in environments requiring huge levels of 
concurrency

• The change has been incremental, and the tools are still 
just doing formula translation
– Pushes too much complexity on the programmer (concurrency, 

abstractions, etc.)
– Abstractions not exposed, so compiler/tools little help

• Programming models must make a leap!
– Slow, but growing realization that the traditional approach is 

tapped out
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What’s the Alternative?
• Higher-level core language
• Integrated concurrency
• Global view of data
• PGAS (Partitioned Global Address Space)?

– Co-Array Fortran (CAF)
– Unified Parallel C (UPC)
– Titanium

• HPCS (High Productivity Computing Systems)
– Chapel (Cray)
– Fortress (Sun)
– X10 (IBM)

• Domain-specific languages
– What to build upon?
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PGAS is Not Enough

• Simplest possible extension to {Fortran,C,Java} to 
provide basic parallelism

• Base languages are not high enough level

• Each language has a variety of problems and 
limitations
– CAF doesn’t really provide a global view of data
– UPC only understands distributed arrays in 1d, hard to 

optimize
– Titanium is a dialect of Java

• A step in a positive direction
– But not a large enough step
– Possibly useful in a transitional sense (more later)
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Next-Generation HPC 
Programming Languages

• HPCS (High Productivity Computing Systems) Languages
– Chapel (Cray), Fortress (Sun), X10 (IBM)
– Embody key features for productivity, expressiveness

• Higher-level core language
– Rich array data types, object oriented, generic programming, library-

oriented, extensible

• Integrated concurrency
– Task and data parallelism, multi-level concurrency, parallel 

loops/generators/iterators, atomic sections, futures, etc.

• Global view of data
– Distributed data types, one-sided access model, ZPL-like “array 

language”

• Backed by significant DARPA HPCS and vendor investment
• If not the future choice, then representative of it
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HPCS Language Issues
• Language definition and 

reference implementation
• Performance

– Is there a conceptual 
performance model users can 
employ when writing code?

– How does the general language 
model map onto specific 
architectures?

– Quality of compiler and runtime 
optimizations

• Adoption
– Who should we pitch these

languages to, when? 
– How do we educate people 

about these languages?
– Transition strategies and 

interoperability?

Application perspective
• Is the language capable of 

expressing the application 
(effectively and efficiently)?

• Where are the performance 
bottlenecks in specific 
applications?

• How much must the user 
change their code to get the 
required performance?

• What applications make the best 
early targets?

• What is the “right” balance 
between old and new in 
applications?
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Fock Matrix Construction 
(Quantum Chemistry)

Fμν← Dλσ { 2 (μν|λσ) - (μλ|νσ) }
• Indices μ, ν, λ, σ represent basis functions (N)
• F is Fock matrix, D is density matrix

– Held in core

• (μν|λσ) are “two-electron repulsion integrals”
– Due to permutational symmetries, only O(N4/8) unique
– Can be evaluated on the fly

• In integral-driven algorithm, each integral contracts with six 
different D elements, contributing to six different F
elements

• Challenge: irregularity
– Integrals evaluated in blocks of varying size (1-10,000+ integrals)
– Average 500 FLOPs per integral, but wide variation
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Scalable Fock Build Algorithm

D F

Integrals (μν|λσ)
P0 P1 P2 P3 P4 …

Hierarchically blocked, dynamically load balanced, integral-driven

• Idea first implemented by Furlani and King (1995) using MPI
– Efficient implementation (up to 16 CPUs) required heroic effort 
– Privately, approach not considered viable in general

• Inspired development of Global Array Toolkit (PNNL)
– Library-based implementation of PGAS concepts

• NWChem implementation (1995) using GA scales to 1000s of CPUs
– Simple to code

D, F
global-view 
distributed 
arrays

task-local working blocks

work pool 
of integral 
blocks

••
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HPCS Language Features Used In 
Fock Matrix Build (1)

Language constructs usedLoad balancing 
approach

not currently 
specified

multi-generator 
for loops

iterators +  
forall loops

Dynamic, Language 
(Runtime) Managed

asynchronous 
activities + 

locality control

explicit threads 
+ locality 
control

unstructured 
computations + 
locality control

Static, Program Managed

unconditional 
atomic sections 

+ futures

atomic 
expressions

synchronization 
variables

Shared 
counter

conditional 
atomic sections 

+ futures

abortable
atomic 

expressions

synchronization 
variables

Task poolDynamic, 
Program 
Managed

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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HPCS Language Features Used In 
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory 
functions 

(subarray)

slicingsub-array

array class 
methods 

(add,scale)

fortress library 
operators          

(+,juxtaposition)

array 
promotions of 

scalar 
operators (+,*)

arithmetic

array 
initialization 

functions

comprehensions 
/ function 

expressions

array 
initialization 
expressions

initializationGlobal-
view array 
operations

finish async 
(task) +    

ateach (data)

tuple (task) +   
for loop (data)

cobegin (task) 
+ domain 

iterator (data)

Mixed data and task 
parallelism

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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X10 Programming Model

• Dynamic parallelism with a Partitioned Global Address Space
• Places encapsulate binding of activities and globally addressable data

• Number of places currently fixed at launch time
• All concurrency is expressed as asynchronous activities

• Subsumes threads, structured parallelism, messaging, DMA transfers, etc.
• Atomic sections enforce mutual exclusion of co-located data

• No place-remote accesses permitted in atomic section
• Immutable data offers opportunity for single-assignment parallelism

Storage classes:

• Activity-local

• Place-local

• Partitioned 
global 

• Immutable 

Source: IBM X10 tutorial
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X10 vs Java
• X10 language builds on 

the Java language
– Shared underlying 

philosophy: shared 
syntactic and semantic 
tradition, simple, small, 
easy to use, efficient to 
implement, machine 
independent

• X10 does not have
– Dynamic class loading
– Java’s concurrency 

features
• Thread library, volatile, 

synchronized, wait, 
notify

• X10 restricts
– Class variables and static 

initialization

• X10 adds to Java
– Value types, nullable
– Array language

• Multi-dimensional arrays, 
aggregate operations

– New concurrency features
• Activities (async, future), 

atomic blocks, clocks
– Distribution

• Places, distributed arrays

Source: IBM X10 tutorial
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HPCS Language Features Used In 
Fock Matrix Build (1)

Language constructs usedLoad balancing 
approach

not currently 
specified

multi-generator 
for loops

iterators +  
forall loops

Dynamic, Language 
(Runtime) Managed

asynchronous 
activities + 

locality control

explicit threads 
+ locality 
control

unstructured 
computations + 
locality control

Static, Program Managed

unconditional 
atomic sections 

+ futures

atomic 
expressions

synchronization 
variables

Shared 
counter

conditional 
atomic sections 

+ futures

abortable
atomic 

expressions

synchronization 
variables

Task poolDynamic, 
Program 
Managed

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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Static, Program Managed – X10
• Cyclic distribution of integral blocks

Integrals (μν|λσ)
Places           0                1   ....   MAX – 1          0                1   ….                      

int lattop;
place placeNo = place.FIRST_PLACE;
finish for(point [iat] : [1:natom])
for(point [jat] : [1:iat]) 

for(point [kat] : [1:iat]) {
lattop = (kat==iat?jat:kat);
for(point [lat] : [1:lattop]) {
final blockIndices bI = new

blockIndices(bas_info[iat,1], …);
async (placeNo) {

buildjk_atom4(bI);
}
placeNo = placeNo.next();

}
}

Initialize our place variable
finish waits until all blocks are 
evaluated 

Loop over the iteration space

Construct new integral block

Launch an activity on (remote) 
place to evaluate new block 

Get next place, in cyclic order
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Chapel Programming Model
• Multithreaded parallel programming

– Global view of computation, data structures
– Abstractions for data and task parallelism

• data: domain, forall, iterators
• task: begin, cobegin, coforall, sync variables, 
atomic

– Composition of parallelism
– Virtualization of threads 

• Locality-aware programming
– locale: machine unit of storage and processing
– domains may be distributed across locales
– on keyword binds computation to locale(s)

Source: Cray Chapel presentation
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Chapel Programming Model
• Object-oriented programming

– OOP can help manage program complexity
– Classes and objects are provided in Chapel, but 

their use is typically not required
– Advanced language features (e.g. distributions) 

expressed using classes 

• Generic programming and type inference
– Type parameters
– Latent types
– Variables are statically-typed

Source: Cray Chapel presentation
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HPCS Language Features Used In 
Fock Matrix Build (1)

Language constructs usedLoad balancing 
approach

not currently 
specified

multi-generator 
for loops

iterators +  
forall loops

Dynamic, Language 
(Runtime) Managed

asynchronous 
activities + 

locality control

explicit threads 
+ locality 
control

unstructured 
computations + 
locality control

Static, Program Managed

unconditional 
atomic sections 

+ futures

atomic 
expressions

synchronization 
variables

Shared 
counter

conditional 
atomic sections 

+ futures

abortable
atomic 

expressions

synchronization 
variables

Task poolDynamic, 
Program 
Managed

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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Dynamic, Program Managed – Chapel
• Taskpool of integral blocks

S-1

…

tail head

producers consumers

0

1

class taskpool {
const poolSize;
var taskarr : [0..poolSize-1] 

sync blockIndices; 
var head, tail : sync int = 0;
def add(bI) {

const pos = tail;
tail = (pos+1)%poolSize;
taskarr(pos) = bI;

}
def remove() {

const pos = head;
head = (pos+1)%poolSize;
return taskarr(pos);

}
}

Runtime configurable taskpool size

Add a block at tail position

Consume the block at head position

head and tail manage the taskpool

Circular queue of integral blocks

Sync variables synchronize access of the 
taskpool by multiple producers and 
consumers
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Dynamic, Program Managed – Chapel
• Producer/consumer interaction via taskpool

config const numLocs = 100;
config const poolSize = 1;
const t = taskpool(poolSize);

cobegin {
coforall loc in 1..numLocs do

consumer();

producer();
}

Runtime configurable consumer count
Runtime configurable taskpool size
Create the taskpool

Launch producers and consumers in parallel

/* genBlocks is an iterator that
yields the collection of 
integral blocks */

forall bI in genBlocks() do
/* add a block to the

taskpool */
t.add(bI);

producer
/* consume a block from the      

taskpool */ 
var bI = t.remove();
while (bI.ilo != 0) {
/* evaluate integral block */
buildjk_atom4(bI);
bI = t.remove();

}

consumer
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Fortress Programming Model

• A growable, open language
– Push decisions out to libraries

• Math/science-based presentation

• Type system – objects and traits

• Security model, including type safety

• Component management, testing, contracts

• Efficient abstractions
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Fortress Programming Model

• Encapsulate parallelism in libraries

• Data model – shared global address space

• Control model – multithreaded
– Both explicit and implicit threads

• Abstractions for managing thread and data 
distribution 

• Transactional access to shared variables
– Atomic blocks, lock-free



Sandia National Laboratories 259 October 2007

HPCS Language Features Used In 
Fock Matrix Build (1)

Language constructs usedLoad balancing 
approach

not currently 
specified

multi-generator 
for loops

iterators +  
forall loops

Dynamic, Language 
(Runtime) Managed

asynchronous 
activities + 

locality control

explicit threads 
+ locality 
control

unstructured 
computations + 
locality control

Static, Program Managed

unconditional 
atomic sections 

+ futures

atomic 
expressions

synchronization 
variables

Shared 
counter

conditional 
atomic sections 

+ futures

abortable
atomic 

expressions

synchronization 
variables

Task poolDynamic, 
Program 
Managed

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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Dynamic, Runtime Managed – Fortress

• Fortress for loops are parallel by default

• Parallelism in for loops is given by the generator list

• Generator list defines a nested order of iterations

• Iterations are evaluated by implicit threads spawned 
and managed by the runtime

• Generators are a library feature that control the 
mapping of threads to processors

• Users can write their own specialized generators 

Parallel loop 
nest handles   
the mapping 
of threads to 
processors

for iat<-1#natom, jat<-1#iat, kat<-1#iat,
lat<-1#(if (kat=iat) then jat else kat end) do

buildjk_atom4 blockIndices(…)
end
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HPCS Language Features Used In 
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory 
functions 

(subarray)

slicingsub-array

array class 
methods 

(add,scale)

fortress library 
operators          

(+,juxtaposition)

array 
promotions of 

scalar 
operators (+,*)

arithmetic

array 
initialization 

functions

comprehensions 
/ function 

expressions

array 
initialization 
expressions

initializationGlobal-
view array 
operations

finish async 
(task) +    

ateach (data)

tuple (task) +   
for loop (data)

cobegin (task) 
+ domain 

iterator (data)

Mixed data and task 
parallelism

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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Mixed Task and Data Parallelism
Fortress

• (,) is a tuple expression

• Tuple elements are evaluated in parallel by 
separate implicit threads

• t() is an array factory function that employs a for 
loop over the array indices

(jmat2T,kmat2T) = (jmat2.t(),kmat2.t())
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Mixed Task and Data Parallelism
Chapel

• cobegin launches parallel tasks

• [(i,j) in D] is a parallel loop derived ”automatically”
from the domain (index space) D

• Each task iterates over the elements of the distributed 
array in parallel

cobegin {
[(i,j) in D] jmat2T(i,j) = jmat2(j,i);
[(i,j) in D] kmat2T(i,j) = kmat2(j,i);

}
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Mixed Task and Data Parallelism
X10

finish {
async ateach(point[i,j] : D)
jmat2T[i,j] = future (D[j,i])

{jmat2[j,i]}.force(); 
async ateach(point[i,j] : D)
kmat2T[i,j] = future (D[j,i])

{kmat2[j,i]}.force(); 
}

• ateach creates parallel activities that operate on points in the 
distribution D of the array

• The two ateach statements run in parallel because of asyncs
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HPCS Language Features Used In 
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory 
functions 

(subarray)

slicingsub-array

array class 
methods 

(add,scale)

fortress library 
operators          

(+,juxtaposition)

array 
promotions of 

scalar 
operators (+,*)

arithmetic

array 
initialization 

functions

comprehensions 
/ function 

expressions

array 
initialization 
expressions

initializationGlobal-
view array 
operations

finish async 
(task) +    

ateach (data)

tuple (task) +   
for loop (data)

cobegin (task) 
+ domain 

iterator (data)

Mixed data and task 
parallelism

X10 (IBM)Fortress 
(Sun)

Chapel 
(Cray)
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Global-View Array Arithmetic 
Operations

+, * are promoted over 
arrays

+ and juxtaposition are 
Fortress library operators

add and scale are array 
class methods

jmat2 = jmat2.add(jmat2T);
jmat2 = jmat2.scale(2);
kmat2 = kmat2.add(kmat2T);

X10

jmat2 = (jmat2+jmat2T)*2;
kmat2 += kmat2T;

Chapel

jmat2 := 2(jmat2+jmat2T)
kmat2 := kmat2+kmat2T

Fortress



Sandia National Laboratories 339 October 2007

Expressivity and Performance
• Integrals have permutational symmetries, giving rise to 

triangular iteration spaces:
– (μν|λσ) such that μ ≥ ν; λ ≥ σ; μν ≥ λσ (N4/8 unique elements)

• Such irregularities are common, and can unnecessarily 
inhibit parallelism

• Can the programmer provide a specialized distribution that 
will
– Make the expression of a common code motif simpler, and 
– Allow the compiler+runtime to do a better job of parallelizing the 

space?

• Possible extension: Add a weighing function to allow the 
runtime to do a better job of scheduling and load balancing 
iterations
– Predictions can may replace or complement dynamic load balancing
– Under discussion with Cray
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Building More Complex 
Abstractions

• Object orientation, generic programming

• Programmer-written data distributions, iterators, 
generators

• All three languages also intend to offer an 
unprecedented flexibility to extend the language
– Libraries
– Compiler optimizations and specializations
– Language syntax (Fortress, X10)

• Extremely powerful tools to support high-level 
domain-specific abstractions
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range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O], 
in C[V,V,O,O], in D[V,V,V,O], 
out S[V,V,O,O])=

begin
S[a,b,i,j] == sum[ A[a,c,i,k] * B[b,e,f,l] 

* C[d,f,j,k] * D[c,d,e,l],
{c,d,e,f,k,l}];

end 

Tensor Contraction Engine (TCE)
• High-level domain-specific language for a 

class of problems in quantum 
chemistry/physics based on contraction of 
large multi-dimensional tensors

• Specialized optimizing compiler
– Produces F77+GA code, linked to runtime libs

∑=
cefkl

cdeldfjkbeflacikabij DCBAS
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TCE Equivalent in HPCS 
Languages

• Object model, distributed array language 
capable of expressing complex tensor data 
structures
– Reduces need for separate language

• User-written array distributions implement 
tensors
– Reduces need for separate runtime

• Ability to extend compiler
– Reduces need for separate compiler
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Maybe it’s Not So Far Off?
range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O], 
in C[V,V,O,O], in D[V,V,V,O], 
out S[V,V,O,O])=

begin
S[a,b,i,j] == sum[ A[a,c,i,k] * B[b,e,f,l] 

* C[d,f,j,k] * D[c,d,e,l],
{c,d,e,f,k,l}];

end 

config const V = 3000, 
O = 100; 

const DV = 1..V,             
DO = 1..O;             

const DVVOO = [DV, DV, DO, DO], 
DVVVO = [DV, DV, DV, DO]; 

var A, C, S: [DVVOO] real,   
B, D: [DVVVO] real;      

forall (a, b, i, j) in DVVOO do
S(a,b,i,j) = + reduce [(c,d,e,f,k,l) in [DV,DV,DV,DV,DO,DO]]

(A(a,c,i,k) * B(b,e,f,l) * C(d,f,j,k) * D(c,d,e,l));
);

Simple TCE input

Chapel version
by Brad Chamberlain, Cray
(working code!)
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Programmability vs Performance
• The easiest way to write a matrix 

transpose a matrix involves 
O(N2) messages (elementwise)

• Reduce to O(P2) (processorwise) 
via appropriate tiling of loops

• Possible to do manually, but 
non-intuitive and error-prone to 
write, harder to read

• Should be possible for compiler 
to recognize and do

– Integration of parallelism helps

• High expectations for HPCS 
languages to be able to map 
multi-level parallelism to diverse 
architectures, aggressively 
optimize

• Can it be done without sacrificing 
programmability?

/* Element-wise transpose = O(N2)*/
finish ateach(point [i,j]:D)

jmat2T[i,j] = future (D[j,i]) {jmat2[j,i]}.force();

/* Each place updates the local portion of the 
distributed transpose array by fetching 
relevant portions from other places = O(P2)*/
finish ateach(point [p] :

dist.factory.unique(place.places)) {
final region RP = (D | here).region;
final dist DP = dist.factory.blockCyclic(RP,   

n/place.MAX_PLACES);
foreach(point [pl] :
dist.factory.unique(place.places)) {

final region RPL = (DP |
place.factory.place(pl)).region;

final double value [.] darr = future 
(place.factory.place(pl)) {get(RPL)}.force();    

jmat2T.update(darr);
} 

}
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But Computational Scientists 
Don’t Like Big Leaps!

• Much work to be done before these languages are 
ready for users

• Most areas have a few people who would willingly 
experiment with early versions

• Must define interoperability mechanisms w/ existing 
approaches
– Language interop (a la Babel)
– Programming model interop

• X10 group developing C/C++ library of key X10 concepts
– Data model interop

• Develop transitional approaches
– User education

• HPCS concepts unfamiliar to the majority
– Code migration

• For those who want a multistage migration path
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A Recipe for a New HPC Language
• Continued engagement with vendor language teams
• Strong focus on application needs combined with good CS design
• Compiler/runtime research to support HPC programmability
• Ecosystem of tools (debuggers, profilers, etc)
• Identify and work with good early adopters
• Develop transitional tools

– Interoperability with other languages and programming models
– Look for spin-off customized programming models to facilitate transition 

for certain application groups
• Develop educational materials

– This is not your father’s HPC – many new concepts, unfamiliar to many 
programmers

– Get material into college classrooms (example of Java)
• Marinate for quite a while

– Adoption of a new HPC language will take a long time
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Possible Transitional Approaches

• PGAS languages
– Introduces global-view concepts, integrated parallelism
– Moves users away from thinking about messages
– Co-Array features on fast-track for next Fortran standard

• Bundle-Exchange-Compute (BEC) model (Sandia)
– User indicates desire to share data, and when data must be 

present
– Library manages data layout,  movement, etc.
– Available as library withor without (small) language extension
– Shown useful for algorithms with random fine-grained data 

sharing

• Others, especially domain-specific?

• More work needed!
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Conclusions

• Current Fortran+MPI+OpenMP approach will not get 
us to sustained petaflops sustainably

• Need to make a revolutionary leap in approach
• HPCS languages offer the kinds of features we need

– Perhaps not the solution, but definitely the right direction!
– Expressiveness looks good, performance still to be proven

• Must provide an evolutionary path to join the 
revolution

• All of this will take time (and $$$), so we had better 
get started


