
Sandia National Laboratories 1Sandia National Laboratories9 October 2007 19 October 2007

Exploring the Programmability of
High Level Parallel Languages with a

Quantum Chemistry Kernel

Aniruddha G. Shet, David E. Bernholdt,

Wael R. Elwasif, and Robert J. Harrison

Oak Ridge National Laboratory

Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory
(ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725

Sandia National Laboratories 29 October 2007

Today: Approaching a Peak Petaflop

• Hardware characteristics (~100-300 Teraflops peak)
– 10,000-100,000 processors
– 2-4 cores per processor
– Homogeneous processor environment

• Application characteristics
– Scaling up problem size/resolution
– Increasing physical fidelity/model complexity
– Early explorations of coupled simulation

• Dominant programming model
– Sequential language (Fortran/C/C++)
– 2-sided messaging library (MPI)
– threads (OpenMP)
– Age: ~30 years

Sandia National Laboratories 39 October 2007

Tomorrow: Sustained Petaflops
and Beyond

• Hardware characteristics (10-100 petaflops peak)
– 100,000-1,000,000 processors
– 100-1,000 cores per processor
– Heterogeneous processor environment may be common

• Example: LANL Roadrunner: Opteron, PowerPC, Cell
• Also GP-GPUs, integrated GPUs, FPGAs, etc.

• Application characteristics
– Scaling up problem size/resolution leveling off
– Increasing physical fidelity/model complexity
– Serious coupled simulation
– Serious algorithmic scaling challenges

• Increase in multi-level parallelism
• Increase in adaptive representations, irregular computations

• Dominant programming model
– ???

Sandia National Laboratories 49 October 2007

Fortran+MPI+OpenMP Forever?
• I hope not!

– The “assembly language” of parallel programming

• Pushes too much complexity onto the programmer
– Explicit/local management of complex distributed data structures
– Coordination among O(106-108) communication endpoints, more

threads

• Parallelism bolted on to sequential language makes
program expression, comprehension, tuning, etc. harder

• Fortran is still relatively low level
– Expresses basic computations, but not domain abstractions
– F2003 better, but not widely used (implemented?) yet

• MPI emphasizes the mechanics of data movement,
obscures scientific problem and abstractions

• OpenMP is mostly about loop-level parallelism, but much
more is needed

Sandia National Laboratories 59 October 2007

The Nature of Scientific
Programming has Changed

• It used to be that straightforward formula translation was
sufficient

• Now, it involves the manipulation of complex, hierarchical
abstractions in environments requiring huge levels of
concurrency

• The change has been incremental, and the tools are still
just doing formula translation
– Pushes too much complexity on the programmer (concurrency,

abstractions, etc.)
– Abstractions not exposed, so compiler/tools little help

• Programming models must make a leap!
– Slow, but growing realization that the traditional approach is

tapped out

Sandia National Laboratories 69 October 2007

What’s the Alternative?
• Higher-level core language
• Integrated concurrency
• Global view of data
• PGAS (Partitioned Global Address Space)?

– Co-Array Fortran (CAF)
– Unified Parallel C (UPC)
– Titanium

• HPCS (High Productivity Computing Systems)
– Chapel (Cray)
– Fortress (Sun)
– X10 (IBM)

• Domain-specific languages
– What to build upon?

Sandia National Laboratories 79 October 2007

PGAS is Not Enough

• Simplest possible extension to {Fortran,C,Java} to
provide basic parallelism

• Base languages are not high enough level

• Each language has a variety of problems and
limitations
– CAF doesn’t really provide a global view of data
– UPC only understands distributed arrays in 1d, hard to

optimize
– Titanium is a dialect of Java

• A step in a positive direction
– But not a large enough step
– Possibly useful in a transitional sense (more later)

Sandia National Laboratories 89 October 2007

Next-Generation HPC
Programming Languages

• HPCS (High Productivity Computing Systems) Languages
– Chapel (Cray), Fortress (Sun), X10 (IBM)
– Embody key features for productivity, expressiveness

• Higher-level core language
– Rich array data types, object oriented, generic programming, library-

oriented, extensible

• Integrated concurrency
– Task and data parallelism, multi-level concurrency, parallel

loops/generators/iterators, atomic sections, futures, etc.

• Global view of data
– Distributed data types, one-sided access model, ZPL-like “array

language”

• Backed by significant DARPA HPCS and vendor investment
• If not the future choice, then representative of it

Sandia National Laboratories 99 October 2007

HPCS Language Issues
• Language definition and

reference implementation
• Performance

– Is there a conceptual
performance model users can
employ when writing code?

– How does the general language
model map onto specific
architectures?

– Quality of compiler and runtime
optimizations

• Adoption
– Who should we pitch these

languages to, when?
– How do we educate people

about these languages?
– Transition strategies and

interoperability?

Application perspective
• Is the language capable of

expressing the application
(effectively and efficiently)?

• Where are the performance
bottlenecks in specific
applications?

• How much must the user
change their code to get the
required performance?

• What applications make the best
early targets?

• What is the “right” balance
between old and new in
applications?

Sandia National Laboratories 109 October 2007

Fock Matrix Construction
(Quantum Chemistry)

Fμν← Dλσ { 2 (μν|λσ) - (μλ|νσ) }
• Indices μ, ν, λ, σ represent basis functions (N)
• F is Fock matrix, D is density matrix

– Held in core

• (μν|λσ) are “two-electron repulsion integrals”
– Due to permutational symmetries, only O(N4/8) unique
– Can be evaluated on the fly

• In integral-driven algorithm, each integral contracts with six
different D elements, contributing to six different F
elements

• Challenge: irregularity
– Integrals evaluated in blocks of varying size (1-10,000+ integrals)
– Average 500 FLOPs per integral, but wide variation

Sandia National Laboratories 119 October 2007

Scalable Fock Build Algorithm

D F

Integrals (μν|λσ)
P0 P1 P2 P3 P4 …

Hierarchically blocked, dynamically load balanced, integral-driven

• Idea first implemented by Furlani and King (1995) using MPI
– Efficient implementation (up to 16 CPUs) required heroic effort
– Privately, approach not considered viable in general

• Inspired development of Global Array Toolkit (PNNL)
– Library-based implementation of PGAS concepts

• NWChem implementation (1995) using GA scales to 1000s of CPUs
– Simple to code

D, F
global-view
distributed
arrays

task-local working blocks

work pool
of integral
blocks

••

Sandia National Laboratories 129 October 2007

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

iterators +
forall loops

Dynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

explicit threads
+ locality
control

unstructured
computations +
locality control

Static, Program Managed

unconditional
atomic sections

+ futures

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

+ futures

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 139 October 2007

HPCS Language Features Used In
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory
functions

(subarray)

slicingsub-array

array class
methods

(add,scale)

fortress library
operators

(+,juxtaposition)

array
promotions of

scalar
operators (+,*)

arithmetic

array
initialization

functions

comprehensions
/ function

expressions

array
initialization
expressions

initializationGlobal-
view array
operations

finish async
(task) +

ateach (data)

tuple (task) +
for loop (data)

cobegin (task)
+ domain

iterator (data)

Mixed data and task
parallelism

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 149 October 2007

X10 Programming Model

• Dynamic parallelism with a Partitioned Global Address Space
• Places encapsulate binding of activities and globally addressable data

• Number of places currently fixed at launch time
• All concurrency is expressed as asynchronous activities

• Subsumes threads, structured parallelism, messaging, DMA transfers, etc.
• Atomic sections enforce mutual exclusion of co-located data

• No place-remote accesses permitted in atomic section
• Immutable data offers opportunity for single-assignment parallelism

Storage classes:

• Activity-local

• Place-local

• Partitioned
global

• Immutable

Source: IBM X10 tutorial

Sandia National Laboratories 159 October 2007

X10 vs Java
• X10 language builds on

the Java language
– Shared underlying

philosophy: shared
syntactic and semantic
tradition, simple, small,
easy to use, efficient to
implement, machine
independent

• X10 does not have
– Dynamic class loading
– Java’s concurrency

features
• Thread library, volatile,

synchronized, wait,
notify

• X10 restricts
– Class variables and static

initialization

• X10 adds to Java
– Value types, nullable
– Array language

• Multi-dimensional arrays,
aggregate operations

– New concurrency features
• Activities (async, future),

atomic blocks, clocks
– Distribution

• Places, distributed arrays

Source: IBM X10 tutorial

Sandia National Laboratories 169 October 2007

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

iterators +
forall loops

Dynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

explicit threads
+ locality
control

unstructured
computations +
locality control

Static, Program Managed

unconditional
atomic sections

+ futures

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

+ futures

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 179 October 2007

Static, Program Managed – X10
• Cyclic distribution of integral blocks

Integrals (μν|λσ)
Places 0 1 MAX – 1 0 1 ….

int lattop;
place placeNo = place.FIRST_PLACE;
finish for(point [iat] : [1:natom])
for(point [jat] : [1:iat])

for(point [kat] : [1:iat]) {
lattop = (kat==iat?jat:kat);
for(point [lat] : [1:lattop]) {
final blockIndices bI = new

blockIndices(bas_info[iat,1], …);
async (placeNo) {

buildjk_atom4(bI);
}
placeNo = placeNo.next();

}
}

Initialize our place variable
finish waits until all blocks are
evaluated

Loop over the iteration space

Construct new integral block

Launch an activity on (remote)
place to evaluate new block

Get next place, in cyclic order

Sandia National Laboratories 189 October 2007

Chapel Programming Model
• Multithreaded parallel programming

– Global view of computation, data structures
– Abstractions for data and task parallelism

• data: domain, forall, iterators
• task: begin, cobegin, coforall, sync variables,
atomic

– Composition of parallelism
– Virtualization of threads

• Locality-aware programming
– locale: machine unit of storage and processing
– domains may be distributed across locales
– on keyword binds computation to locale(s)

Source: Cray Chapel presentation

Sandia National Laboratories 199 October 2007

Chapel Programming Model
• Object-oriented programming

– OOP can help manage program complexity
– Classes and objects are provided in Chapel, but

their use is typically not required
– Advanced language features (e.g. distributions)

expressed using classes

• Generic programming and type inference
– Type parameters
– Latent types
– Variables are statically-typed

Source: Cray Chapel presentation

Sandia National Laboratories 209 October 2007

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

iterators +
forall loops

Dynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

explicit threads
+ locality
control

unstructured
computations +
locality control

Static, Program Managed

unconditional
atomic sections

+ futures

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

+ futures

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 219 October 2007

Dynamic, Program Managed – Chapel
• Taskpool of integral blocks

S-1

…

tail head

producers consumers

0

1

class taskpool {
const poolSize;
var taskarr : [0..poolSize-1]

sync blockIndices;
var head, tail : sync int = 0;
def add(bI) {

const pos = tail;
tail = (pos+1)%poolSize;
taskarr(pos) = bI;

}
def remove() {

const pos = head;
head = (pos+1)%poolSize;
return taskarr(pos);

}
}

Runtime configurable taskpool size

Add a block at tail position

Consume the block at head position

head and tail manage the taskpool

Circular queue of integral blocks

Sync variables synchronize access of the
taskpool by multiple producers and
consumers

Sandia National Laboratories 229 October 2007

Dynamic, Program Managed – Chapel
• Producer/consumer interaction via taskpool

config const numLocs = 100;
config const poolSize = 1;
const t = taskpool(poolSize);

cobegin {
coforall loc in 1..numLocs do

consumer();

producer();
}

Runtime configurable consumer count
Runtime configurable taskpool size
Create the taskpool

Launch producers and consumers in parallel

/* genBlocks is an iterator that
yields the collection of
integral blocks */

forall bI in genBlocks() do
/* add a block to the

taskpool */
t.add(bI);

producer
/* consume a block from the

taskpool */
var bI = t.remove();
while (bI.ilo != 0) {
/* evaluate integral block */
buildjk_atom4(bI);
bI = t.remove();

}

consumer

Sandia National Laboratories 239 October 2007

Fortress Programming Model

• A growable, open language
– Push decisions out to libraries

• Math/science-based presentation

• Type system – objects and traits

• Security model, including type safety

• Component management, testing, contracts

• Efficient abstractions

Sandia National Laboratories 249 October 2007

Fortress Programming Model

• Encapsulate parallelism in libraries

• Data model – shared global address space

• Control model – multithreaded
– Both explicit and implicit threads

• Abstractions for managing thread and data
distribution

• Transactional access to shared variables
– Atomic blocks, lock-free

Sandia National Laboratories 259 October 2007

HPCS Language Features Used In
Fock Matrix Build (1)

Language constructs usedLoad balancing
approach

not currently
specified

multi-generator
for loops

iterators +
forall loops

Dynamic, Language
(Runtime) Managed

asynchronous
activities +

locality control

explicit threads
+ locality
control

unstructured
computations +
locality control

Static, Program Managed

unconditional
atomic sections

+ futures

atomic
expressions

synchronization
variables

Shared
counter

conditional
atomic sections

+ futures

abortable
atomic

expressions

synchronization
variables

Task poolDynamic,
Program
Managed

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 269 October 2007

Dynamic, Runtime Managed – Fortress

• Fortress for loops are parallel by default

• Parallelism in for loops is given by the generator list

• Generator list defines a nested order of iterations

• Iterations are evaluated by implicit threads spawned
and managed by the runtime

• Generators are a library feature that control the
mapping of threads to processors

• Users can write their own specialized generators

Parallel loop
nest handles
the mapping
of threads to
processors

for iat<-1#natom, jat<-1#iat, kat<-1#iat,
lat<-1#(if (kat=iat) then jat else kat end) do

buildjk_atom4 blockIndices(…)
end

Sandia National Laboratories 279 October 2007

HPCS Language Features Used In
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory
functions

(subarray)

slicingsub-array

array class
methods

(add,scale)

fortress library
operators

(+,juxtaposition)

array
promotions of

scalar
operators (+,*)

arithmetic

array
initialization

functions

comprehensions
/ function

expressions

array
initialization
expressions

initializationGlobal-
view array
operations

finish async
(task) +

ateach (data)

tuple (task) +
for loop (data)

cobegin (task)
+ domain

iterator (data)

Mixed data and task
parallelism

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 289 October 2007

Mixed Task and Data Parallelism
Fortress

• (,) is a tuple expression

• Tuple elements are evaluated in parallel by
separate implicit threads

• t() is an array factory function that employs a for
loop over the array indices

(jmat2T,kmat2T) = (jmat2.t(),kmat2.t())

Sandia National Laboratories 299 October 2007

Mixed Task and Data Parallelism
Chapel

• cobegin launches parallel tasks

• [(i,j) in D] is a parallel loop derived ”automatically”
from the domain (index space) D

• Each task iterates over the elements of the distributed
array in parallel

cobegin {
[(i,j) in D] jmat2T(i,j) = jmat2(j,i);
[(i,j) in D] kmat2T(i,j) = kmat2(j,i);

}

Sandia National Laboratories 309 October 2007

Mixed Task and Data Parallelism
X10

finish {
async ateach(point[i,j] : D)
jmat2T[i,j] = future (D[j,i])

{jmat2[j,i]}.force();
async ateach(point[i,j] : D)
kmat2T[i,j] = future (D[j,i])

{kmat2[j,i]}.force();
}

• ateach creates parallel activities that operate on points in the
distribution D of the array

• The two ateach statements run in parallel because of asyncs

Sandia National Laboratories 319 October 2007

HPCS Language Features Used In
Fock Matrix Build (2)

Language constructs usedOperations

restrictionarray factory
functions

(subarray)

slicingsub-array

array class
methods

(add,scale)

fortress library
operators

(+,juxtaposition)

array
promotions of

scalar
operators (+,*)

arithmetic

array
initialization

functions

comprehensions
/ function

expressions

array
initialization
expressions

initializationGlobal-
view array
operations

finish async
(task) +

ateach (data)

tuple (task) +
for loop (data)

cobegin (task)
+ domain

iterator (data)

Mixed data and task
parallelism

X10 (IBM)Fortress
(Sun)

Chapel
(Cray)

Sandia National Laboratories 329 October 2007

Global-View Array Arithmetic
Operations

+, * are promoted over
arrays

+ and juxtaposition are
Fortress library operators

add and scale are array
class methods

jmat2 = jmat2.add(jmat2T);
jmat2 = jmat2.scale(2);
kmat2 = kmat2.add(kmat2T);

X10

jmat2 = (jmat2+jmat2T)*2;
kmat2 += kmat2T;

Chapel

jmat2 := 2(jmat2+jmat2T)
kmat2 := kmat2+kmat2T

Fortress

Sandia National Laboratories 339 October 2007

Expressivity and Performance
• Integrals have permutational symmetries, giving rise to

triangular iteration spaces:
– (μν|λσ) such that μ ≥ ν; λ ≥ σ; μν ≥ λσ (N4/8 unique elements)

• Such irregularities are common, and can unnecessarily
inhibit parallelism

• Can the programmer provide a specialized distribution that
will
– Make the expression of a common code motif simpler, and
– Allow the compiler+runtime to do a better job of parallelizing the

space?

• Possible extension: Add a weighing function to allow the
runtime to do a better job of scheduling and load balancing
iterations
– Predictions can may replace or complement dynamic load balancing
– Under discussion with Cray

Sandia National Laboratories 349 October 2007

Building More Complex
Abstractions

• Object orientation, generic programming

• Programmer-written data distributions, iterators,
generators

• All three languages also intend to offer an
unprecedented flexibility to extend the language
– Libraries
– Compiler optimizations and specializations
– Language syntax (Fortress, X10)

• Extremely powerful tools to support high-level
domain-specific abstractions

Sandia National Laboratories 359 October 2007

range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O],
in C[V,V,O,O], in D[V,V,V,O],
out S[V,V,O,O])=

begin
S[a,b,i,j] == sum[A[a,c,i,k] * B[b,e,f,l]

* C[d,f,j,k] * D[c,d,e,l],
{c,d,e,f,k,l}];

end

Tensor Contraction Engine (TCE)
• High-level domain-specific language for a

class of problems in quantum
chemistry/physics based on contraction of
large multi-dimensional tensors

• Specialized optimizing compiler
– Produces F77+GA code, linked to runtime libs

∑=
cefkl

cdeldfjkbeflacikabij DCBAS

Sandia National Laboratories 369 October 2007

TCE Equivalent in HPCS
Languages

• Object model, distributed array language
capable of expressing complex tensor data
structures
– Reduces need for separate language

• User-written array distributions implement
tensors
– Reduces need for separate runtime

• Ability to extend compiler
– Reduces need for separate compiler

Sandia National Laboratories 379 October 2007

Maybe it’s Not So Far Off?
range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O],
in C[V,V,O,O], in D[V,V,V,O],
out S[V,V,O,O])=

begin
S[a,b,i,j] == sum[A[a,c,i,k] * B[b,e,f,l]

* C[d,f,j,k] * D[c,d,e,l],
{c,d,e,f,k,l}];

end

config const V = 3000,
O = 100;

const DV = 1..V,
DO = 1..O;

const DVVOO = [DV, DV, DO, DO],
DVVVO = [DV, DV, DV, DO];

var A, C, S: [DVVOO] real,
B, D: [DVVVO] real;

forall (a, b, i, j) in DVVOO do
S(a,b,i,j) = + reduce [(c,d,e,f,k,l) in [DV,DV,DV,DV,DO,DO]]

(A(a,c,i,k) * B(b,e,f,l) * C(d,f,j,k) * D(c,d,e,l));
);

Simple TCE input

Chapel version
by Brad Chamberlain, Cray
(working code!)

Sandia National Laboratories 389 October 2007

Programmability vs Performance
• The easiest way to write a matrix

transpose a matrix involves
O(N2) messages (elementwise)

• Reduce to O(P2) (processorwise)
via appropriate tiling of loops

• Possible to do manually, but
non-intuitive and error-prone to
write, harder to read

• Should be possible for compiler
to recognize and do

– Integration of parallelism helps

• High expectations for HPCS
languages to be able to map
multi-level parallelism to diverse
architectures, aggressively
optimize

• Can it be done without sacrificing
programmability?

/* Element-wise transpose = O(N2)*/
finish ateach(point [i,j]:D)

jmat2T[i,j] = future (D[j,i]) {jmat2[j,i]}.force();

/* Each place updates the local portion of the
distributed transpose array by fetching
relevant portions from other places = O(P2)*/
finish ateach(point [p] :

dist.factory.unique(place.places)) {
final region RP = (D | here).region;
final dist DP = dist.factory.blockCyclic(RP,

n/place.MAX_PLACES);
foreach(point [pl] :
dist.factory.unique(place.places)) {

final region RPL = (DP |
place.factory.place(pl)).region;

final double value [.] darr = future
(place.factory.place(pl)) {get(RPL)}.force();

jmat2T.update(darr);
}

}

Sandia National Laboratories 399 October 2007

But Computational Scientists
Don’t Like Big Leaps!

• Much work to be done before these languages are
ready for users

• Most areas have a few people who would willingly
experiment with early versions

• Must define interoperability mechanisms w/ existing
approaches
– Language interop (a la Babel)
– Programming model interop

• X10 group developing C/C++ library of key X10 concepts
– Data model interop

• Develop transitional approaches
– User education

• HPCS concepts unfamiliar to the majority
– Code migration

• For those who want a multistage migration path

Sandia National Laboratories 409 October 2007

A Recipe for a New HPC Language
• Continued engagement with vendor language teams
• Strong focus on application needs combined with good CS design
• Compiler/runtime research to support HPC programmability
• Ecosystem of tools (debuggers, profilers, etc)
• Identify and work with good early adopters
• Develop transitional tools

– Interoperability with other languages and programming models
– Look for spin-off customized programming models to facilitate transition

for certain application groups
• Develop educational materials

– This is not your father’s HPC – many new concepts, unfamiliar to many
programmers

– Get material into college classrooms (example of Java)
• Marinate for quite a while

– Adoption of a new HPC language will take a long time

Sandia National Laboratories 419 October 2007

Possible Transitional Approaches

• PGAS languages
– Introduces global-view concepts, integrated parallelism
– Moves users away from thinking about messages
– Co-Array features on fast-track for next Fortran standard

• Bundle-Exchange-Compute (BEC) model (Sandia)
– User indicates desire to share data, and when data must be

present
– Library manages data layout, movement, etc.
– Available as library withor without (small) language extension
– Shown useful for algorithms with random fine-grained data

sharing

• Others, especially domain-specific?

• More work needed!

Sandia National Laboratories 429 October 2007

Conclusions

• Current Fortran+MPI+OpenMP approach will not get
us to sustained petaflops sustainably

• Need to make a revolutionary leap in approach
• HPCS languages offer the kinds of features we need

– Perhaps not the solution, but definitely the right direction!
– Expressiveness looks good, performance still to be proven

• Must provide an evolutionary path to join the
revolution

• All of this will take time (and $$$), so we had better
get started

